Algorithm 768: TENSOLVE: A Software
Package for Solving Systems of Nonlinear
Equations and Nonlinear Least-Squares
Problems Using Tensor Methods

ALl BOUARICHA

Argonne National Laboratory

and

ROBERT B. SCHNABEL
University of Colorado at Boulder

This article describes a modular software package for solving systems of nonlinear equations
and nonlinear least-squares problems, using a new class of methods called tensor methods. It
is intended for small- to medium-sized problems, say with up to 100 equations and unknowns,
in cases where it is reasonable to calculate the Jacobian matrix or to approximate it by finite
differences at each iteration. The software allows the user to choose between a tensor method
and a standard method based on a linear model. The tensor method approximates F(x) by a
quadratic model, where the second-order term is chosen so that the model is hardly more
expensive to form, store, or solve than the standard linear model. Moreover, the software
provides two different global strategies: a line search approach and a two-dimensional trust
region approach. Test results indicate that, in general, tensor methods are significantly more
efficient and robust than standard methods on small- and medium-sized problems in itera-
tions and function evaluations.

Categories and Subject Descriptors: G.1.5 [Numerical Analysis]: Roots of Nonlinear Equa-
tions—systems of equations; G.1.6 [Numerical Analysis]: Optimization—least-squares meth-
ods; G.4 [Mathematics of Computing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: Nonlinear equations, nonlinear least squares, rank-
deficient matrices, tensor methods

1. INTRODUCTION

This article describes a modular software package for solving systems of
nonlinear equations of the form

Authors’ addresses: A. Bouaricha, Mathematics and Computer Science Division, Argonne
National Laboratory, Argonne, IL 60439; R. B. Schnabel, Department of Computer Science,
University of Colorado at Boulder, Boulder, CO 80309-0430.

Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1997 ACM 0098-3500/97/0600-0174 $3.50

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997, Pages 174-195.

Algorithm 768: TENSOLVE D 175
F:R*"—>R" m =n, (1)

where F' is assumed to be at least once continuously differentiable, using a
new class of methods called tensor methods. If m is equal to n, the package
solves the nonlinear equations problem, F(x) = 0, while if m is greater
than n, it solves the nonlinear least-squares problem, min__,. F(x)l,.

Tensor methods base each iteration on a quadratic model of the nonlinear

function

1
Mix, +d)=Fx,) + F'(x,) d + 2 T.dd, (2)

where x, is the current iterate, and 7, is a three-dimensional object
referred to as a tensor. No second derivative information is used in forming
the tensor term T',. Instead, T, is formed by asking the model to interpolate
up to n Y2 past function values in a way that hardly increases the storage
requirements or arithmetic cost per iteration over standard linear model-
based methods. The package also provides an option to use a method based
on the standard linear model (Eq. (2) without the tensor term); it then
performs a standard Newton method for nonlinear equations or Gauss-
Newton method for nonlinear least squares. The global strategy used in
either case can be a line search strategy or a two-dimensional trust region
method over the subspace spanned by the steepest descent direction and
the tensor (or Newton/Gauss-Newton) step.

Required input to the package includes (1) the dimensions m and n of the
problem, where m is the number of nonlinear equations, and n is the
number of unknowns; (2) a subroutine to evaluate the function F(x); and
(3) an estimate x, of the solution x.. The user may provide a code to
calculate the Jacobian rather than having it computed by finite differences,
may choose the standard method rather than the tensor method, and may
specify various tolerances. Upon completion, the program returns with an
approximation x, to the solution x-, the value of the sum of squares of the
function F(x,), the value of the gradient G(x,) = F’(xp)TF(xp), and a flag
specifying under which stopping condition the algorithm was terminated.

The tensor methods on which this software package is based were
originally introduced by Schnabel and Frank [1984] for nonlinear equa-
tions. One main contribution of this article is the provision and extensive
testing of a software package incorporating these methods. In addition, the
extension of these methods to nonlinear least squares and the incorpora-
tion of a trust region strategy with tensor methods are new contributions.

The remainder of the article is organized as follows. In Section 2 we give
a brief overview of tensor methods for nonlinear least-squares problems
(tensor methods for nonlinear equations can be regarded as a special case
of these). In Section 3 we discuss the globally convergent modifications for
tensor methods for systems of nonlinear equations and nonlinear least-

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

176 . Ali Bouaricha and Robert B. Schnabel

squares problems. Section 4 gives an overview of the key features and
options provided by the software package. Finally, in Section 5 we summa-
rize and discuss our experimental results using the package, with both line
search and trust region strategies, on nonsingular and singular test problems.

2. BRIEF OVERVIEW OF TENSOR METHODS

Tensor methods are general-purpose methods intended especially for prob-
lems where the Jacobian matrix at the solution is singular or ill condi-
tioned. The idea is to base each iteration on a model that has more
information than the standard linear model, but is not appreciably more
expensive to form, store, or solve. Specifically, each iteration is based on a
quadratic model (2) of the nonlinear function F(x). The particular choice of
the tensor term T.€ R™*"*" causes the second-order term T.dd in (2) to
have a simple and useful form. The tensor term is chosen to allow the
model M(x, + d) to interpolate values of the function F(x) at past iterates
x_;; that is, the model should satisfy

1
Fx_,) = F(x,) + F'(x,) s, + 2 T.sps,k=1,...,p, (3)
where
S, =X~ X, k=1,...,p.
The past points x_;, ..., x_, are selected so that the set of directions

{s;} from x, to the selected points is strongly linearly independent; each
direction s, is required to make an angle of at least 45 degrees with the
subspace spanned by the previously selected past directions. The procedure
of finding linearly independent directions is implemented easily by using a
modified Gram-Schmidt algorithm, and usually results in p = 1 or 2.

After selecting the linearly independent past directions s,, the tensor
term is chosen by the procedure of Schnabel and Frank [1984], which
generalizes in a straightforward way to nonlinear least squares. T, is
chosen to be the smallest matrix that satisfies the interpolation conditions
(3); that is, we have

min [T, (4)

T E}em><n><n
c

subject to

T.spsp=2F(x_y) —Flx) —F'(x.) sp),

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 177

where |T.||z, the Frobenius norm of T, is defined by

T 7= 2 X 2 (T [, Jj, kD™

i=1j=1 k=1

The solution to (4) is the sum of p rank-one tensors whose horizontal faces
are symmetric:

p
T.= X a sk Sk (5)

k=1

where a,, is the kth column of A€ R™*?; A is defined by A = ZM !; Z is an
(m X p) matrix whose columns are Z; = 2(F(x_;) — F(x.) — F'(x.)s;); and
M is a (p X p) matrix defined by M;; = (s”;s,)%, 1 = i,j < p.

If we use the tensor term (5), the tensor model (2) becomes

1 p
M(xc + d) = F(xc) + F/(xc) d + 5 Z ap {dT sk}z' (6)

k=1

The simple form of the quadratic term in (6) is the key to being able to
efficiently form, store, and solve the tensor model. The cost of forming the
tensor term in the tensor model is O(mnp) = O(mn'®) arithmetic
operations, since p = n'2, which is small in comparison with the
O(mn?) cost per iteration of Gauss-Newton methods. The additional stor-
age required is 4p m-vectors, which is small in comparison with the
storage for the Jacobian.

Once the tensor model (6) is formed, a root of the tensor model is found. It
is possible that no root exists; in this case a least-squares solution of the
model is found instead. Thus, in general, we solve the problem

min || M(x, + d) |- (7)

deR"

A generalization of the process in Schnabel and Frank [1984] shows that
the solution to (7) can be reduced to the solution of a small number of
quadratic equations, m — n + g quadratic equations in p unknowns, plus
the solution of n — g linear equations in n — p unknowns. Here, q is equal
to p whenever F'(x,) is nonsingular and usually when rank(F'(x,))
= n — p; otherwise q is greater than p. Thus, the system of linear
equations is square or underdetermined, and the system of quadratic
equations is equally determined or overdetermined. The main steps of the
algorithm are the following:

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

178 . Ali Bouaricha and Robert B. Schnabel

(1) An orthogonal transformation of the variable space is used to cause the
m equations in n unknowns to be linear in n — p variables d 1ER"TP

and to be quadratic only in the remaining p variables &ZERP .

(2) An orthogonal transformation of the equations is used to eliminate the
n — p transformed linear variables from n — g of the equations. The
result is a system of m — n + g quadratic equations in the p

unknowns ds, plus a system of n — g equations in all of the variables

that is linear in the n — p unknowns d 1-

(3) A nonlinear unconstrained optimization software package, UNCMIN
[Schnabel et al. 1985], is used to minimize the [, norm of the m — n

+ g quadratic equations in the p unknowns &2. (If p = 1 this procedure
is done analytically instead.)

(4) The system of n — g linear equations that is linear in the remaining

n — p unknowns is solved for d;.

The arithmetic cost per iteration of the above process is the standard
O(mn?) cost of a QR factorization of an m X n matrix, plus an additional
O(mnp) = O(mn'?®) operations, plus the cost of using UNCMINin step (3) of
the algorithm. The cost of using UNCMINis expected to be O(p*) = O(n?)
operations, since each iteration requires O(p?) (O(p2g) when g > p)
operations and since a small multiple of p iterations generally suffice.
Thus, the total cost of the above algorithm is the O(mn?) cost of the
standard method plus at most an additional cost of O(mn'®) arithmetic
operations. Note that, in the case when p = 1 and ¢ = 1, the one-variable
minimization problem is solved very inexpensively in closed form; this
turns out to be the most common case in practice.

The Newton or Gauss-Newton step is computed inexpensively (in
O(mnp) operations) as a by-product of the tensor step solution. Using the
tensor step and the Newton or Gauss-Newton step, a line search or a
two-dimensional trust region global strategy determines the next iterate,
as described in the next section. The overall algorithm is summarized
below.

Algorithm 1. An Iteration of the Tensor Method

Given m, n, x., F(x,).

Step (0) Calculate F'(x.), and decide whether to stop.

Step (1) Select the past points to use in the tensor model from among
the \J/n most recent points.

Step (2) Calculate the second-order term of the tensor model, T, so

that the tensor model interpolates F'(x) at all the points selected in
Step (2).
Step (3) Find the root of the tensor model, or its minimizer (in the

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 179

L, norm) if it has no real root.

Step (4) if m > n or the two-dimensional trust region is used then
Compute the standard step as a by-product of the tensor model
solution.

Select the tensor or standard step using Algorithm 2.
Step (5) Select x, using either a line search or a two-dimensional
trust region global strategy:
if the line search is used then
if m > n then
perform Algorithm 4, where the search direction is the step
selected in Step (4)
else {m = n}
perform Algorithm 3
elseif the two-dimensional trust region is used then
Perform Algorithm 5 using the model selected in Step (4)

Step (6) Set x,<x,, F(x,)<F(x,), go to Step (0).

The reader may refer to Bouaricha [1986; 1992], Feng et al. [1992], and
Schnabel and Frank [1984] for more details on tensor methods for nonlin-
ear equations and nonlinear least-squares problems. These papers give
preliminary indications that tensor methods are more efficient and more
robust computationally than standard methods, and they show that tensor
methods have a superior rate of convergence to Newton’s method on
nonlinear equations problems where rank{F'(x:)} = n — 1.

3. GLOBALLY CONVERGENT MODIFICATIONS FOR TENSOR METHODS

This section describes the global strategies in the tensor algorithm given
above. As with all algorithms for nonlinear equations and optimization,
purely local tensor methods may fail to converge if the initial guess is far
away from the solution. To address this problem, two types of modification
are used in general: line search methods and trust region methods; and
either may be best for a particular problem. For this reason, both of these
global methods are included in our software package.

This section first describes the overall framework that is used in both the
line search and trust region approaches for tensor methods. This frame-
work involves a choice of whether to use the tensor step or the Newton/
Gauss-Newton step as the basis for the global strategy at a given iteration.
Next, we briefly describe the line search that is used in the line search
methods. Finally, we describe a new model/trust region approach for tensor
methods that is used in the trust region methods.

3.1 Globally Convergent Framework for Nonlinear Least Squares

Our computational experience has shown that when one is far from the
solution it is important to allow the global step to be based sometimes on
the Newton/Gauss-Newton step rather than on the tensor step, and we
have constructed heuristics to make this choice. Our experimentation has

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

180 . Ali Bouaricha and Robert B. Schnabel

led to two different sets of heuristics: one that is used in both the line
search and trust region methods for nonlinear least squares as well as the
trust region method for nonlinear equations and a second that is used in
line search methods for nonlinear equations. They differ primarily in how
much they bias the choice toward the tensor step. Both are constructed so
that close to the solution the tensor step is nearly always selected. This
section gives these heuristics and the overall global frameworks that are
based on them.

Algorithm 2 gives the global framework that is used for nonlinear least
squares and for trust region methods for nonlinear equations. In this
framework, the Gauss-Newton step is chosen whenever the tensor step is
not a descent direction, when the tensor step is a minimizer of the tensor
model and does not provide enough decrease in the tensor model, or when
the quadratic system of m — n + g equations in p unknowns cannot be
solved by UNCMIN[Schnabel et al. 1985] within the iteration limit. Other-
wise the tensor step is chosen. In the definitions of d, and M, the Newton
step and model are used for nonlinear equations, while the Gauss-Newton
step and model are used for nonlinear least squares.

Algorithm 2. Global Framework for Nonlinear Least Squares and for
Trust Region Methods for Nonlinear Equations
Let x, = current iterate,

J(x,) = approximation to F'(x,),

g = J(x,)TF(x,), the gradient of (1/2)F(x)"F(x) at «x.,

d, = minimizer of the tensor model,

d, = Newton or Gauss-Newton step: —J(x.) 'F(x,)

or —(J(x.)7J(x.) J(x.)TF(x,) if J(x.) is sufficiently well condi-

tioned,
Levenberg-Marquardt step: —(J(x.)7J(x.) + wl) 'J(x.)"F(x.)
otherwise,
where u = \,//ne||J(xc)||1||J(xc)||00, € = machine precision,

M, = tensor model,

My = Newton or Gauss-Newton model.

if (no root or minimizer of the tensor model was found) or
((minimizer of the tensor model that is not a root was found)
and

(||MT (xc + dt)”Z > (1/2)(||F (xc)||2 + ||MN (xc + dn)”Z)))OI'

(g'd, > —107Ygl.ld.l>)
then

x, < x, + Ad,, A€(0,1] selected by line search, or
x, < x, + ad, — Bg, a, B selected by trust region algorithm

x, < x, + Ad;, A€(0,1] selected by line search, or
x, < x, + ad, — Bg, a, B selected by trust region algorithm

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 181

Algorithm 3 gives the global framework that is used in line search
methods for nonlinear equations. Its main difference from Algorithm 2 is
that it always tries the tensor step first, whether or not this step meets the
descent or model decrease conditions of Algorithm 2. If x, + d, provides
enough decrease in |F(x)|, then it is used as the next iterate. If not, the
strategy may tentatively compute global steps in both the Newton and the
tensor directions. That is, the global step x} = x, + Ad, produced by a line
search in the Newton direction d, is calculated. In addition, if d, is a
descent direction, the global step x. = x, + Ad, produced by a line search
in the tensor direction also is calculated. Finally, we select x” or x%
depending on whichever has the lower function value. Thus, this strategy
may involve one or more extra function evaluations when both line
searches are performed.

Algorithm 3. Global Framework for Line Search Methods for Nonlin-
ear Equations
Given x,, d;, g as defined in Algorithm 2, and a = 107%
slope := g'd,
fe = (1/2)|F(x,)|3
xt =x, + d,
foi= (1/2)|F &)
if f. < f. + a - min {slope,0} then
return x, = x’
else
Compute the Newton direction d,,

Find an acceptable x in the Newton direction d,, using Algo-
rithm 4

comment. Test if the tensor step is sufficiently descent
if g'd, = —107Ygl,lld.[, then

return x, = x7
else

Find an acceptable x‘. in the tensor direction d,, using Algo-
rithm 4

if [F («})] < [F (x%)] then
return x, = x7
else

return x, = x’
endif
endif
endif

3.2 Global Framework for Line Search Methods for Nonlinear Equations

The line search used in the global frameworks outlined above is a standard
quadratic backtracking line search. It starts with A = 1 and then, if x,

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

182 . Ali Bouaricha and Robert B. Schnabel

+ d is not acceptable, reduces A until an acceptable x, + Ad is found, based
on a one-dimensional quadratic model of F(x)"F(x). Let us define

X 1
) = 2 [F(x, + A d)|3,

which is the one-dimensional restriction of f(x) = (1/2)||F(x)||5 to the line
through x, in the direction d. If we need to backtrack, we use the values of

f(O),f(O), and f(/\) to model f and then take the value of A that minimizes
this model as the next value of A in Algorithm 4 subject to restrictions on
how much A can decrease at once (see, for example, Dennis and Schnabel
[1983, pp. 126-127] for more details). This results in the following algo-
rithm:

Algorithm 4. Standard Quadratic Backtracking Line Search

Given x., d, g = J(x.)"F(x,), and a = 10°*.

slope := g’d

fo:= (1/2)[|F(x,)3
A:=1.0

X, =%, + Ad

fy = (1/2)|F(x,)]3
while f, > f. + a - A + slope do
Nemp 1= — A? -+ slope /(2[f, — f. — A+ slope])
A := max {Ayp,,A/10}
x, =%, + Ad
f, = (1/2)|F ()3

endwhile

3.3 Trust Region Tensor Methods for Nonlinear Equations and Nonlinear
Least Squares

Two computational methods—the locally constrained optimal (or “hook”)
method and the dogleg method—are generally used for approximately
solving the trust region problem based on the standard model

min |F(x.) + J(x.) d |3 (8)
d

subject to
||d||2 = 807

where 8, is the current trust region radius. When §, is shorter than the
standard step, the locally constrained optimal method [Moré 1977] finds a
w. such that |d(u.)lls =~ 8., where d(p.) = —(J(x)TJ(x,)
+ wl) *J(x,)"F(x.). Then it takes x . = x, + d(u.). The dogleg method is a
modification of the trust region algorithm introduced by Powell [1970].

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 183

Rather than finding a point x, = x, + d(u.) on the curve d(u,) such that
|, — x =~ &, it (1) approximates this curve by a piecewise linear
function in the subspace spanned by the Newton direction and the steepest
descent direction —J(x,)"F(x,) and (2) takes x, as the point on this
piecewise curve for which ||x, — x| = 8. (see, for example, Dennis and
Schnabel [1983] for more details).

Unfortunately, these two methods are difficult to extend to the tensor
model, because certain key properties do not generalize to this model. Trust
region algorithms based on (8) are well defined because there is always a
unique point x, on the hookstep or dogleg curve such that |d(u.)| = 8..
Additionally, the value of |F(x,) + J(x.) d|5 along these curves decreases
monotonically from x, to x”}, where x". = x, + d,, which makes the process
reasonable. These properties do not extend to the fourth-order sum of
squares of the tensor model, which may not be convex. Furthermore, the
analogous curve to d(u.) is more expensive to compute. For these reasons,
we consider a different trust region approach for our tensor methods.

The approach is to solve a two-dimensional trust region problem over the
subspace spanned by the steepest descent direction and the tensor (or
standard) step. The main reasons that led us to adopt this approach are
that it is easy to construct and is closely related to dogleg-type algorithms
over the same subspace. In addition, the resultant step may be close to the
optimal trust region step in practice. Byrd et al. [1988] have shown that, for
unconstrained optimization using a standard quadratic model, the analo-
gous two-dimensional minimization approach produces nearly as much
decrease in the quadratic model as the optimal trust region step in almost
all cases.

The two-dimensional trust region approach for the tensor model com-
putes an approximate solution to the exact trust region problem

1 p
min [F(x,) + J(x,) d + = 2, apfds,)? |3 9
d 2 k=1
subject to
ldll; = 8.,
by performing a minimization
: 12
min [|F(x,) + J(x,) d + 3 > ap {d s, |l (10)
d k=1
subject to

||d||2 = 807 de Range {dt’ gs}7

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

184 . Ali Bouaricha and Robert B. Schnabel

where d, and g, are the tensor step and the steepest descent direction,
respectively, and 6, is the trust region radius. This approach always
produces a step that reduces the quadratic model by at least as much as a
dogleg-type algorithm, which minimizes the model over a piecewise linear
curve in the same subspace. When Algorithm 2 chooses the Newton or
Gauss-Newton step, we instead solve the variant of (10) where d, is
replaced by d, and where the quadratic term in the model is omitted.

Before we give the complete two-dimensional trust region algorithm for
tensor methods, we show how to convert the problem (10) into an uncon-
strained minimization problem in one variable. This transformation is the
key to solving (10) efficiently. First, we form an orthonormal basis for the
two-dimensional subspace by performing the projection

T

8= 8~ dtjdei (11)
and by normalizing g, and d, to obtain
a-, - (12)
Il 8l
Since d is in the subspace spanned by d, and g, it can be written as
d=ad, +Bg, a B €L0. (13)

If we square the /, norm of this expression for d and set it to 8%, we obtain
the following equation for B as a function of «a:

B = \!5? - 0(2.

Substituting this expression for 8 into (13) and then the resulting d into
(10) yields the global minimization problem in the one variable «:

min |F(x,) + adJ (x,) d, + V& — o®J(x,) &,

172 e
+ 3 > ay (asid, + \82 — o®sf g)% [, (14)
k=1

where —8, < a < 8,. Problems (14) and (10) are equivalent.
We use the same procedure to convert the problem

min |[F(x,) + J(x.) d|j3 (15)
d

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 185

subject to
ld|l; = &., d € Range {d,, g}

to the equivalent global minimization problem in the one variable a:
min [|[F(x,) + aJ(x,) d, + 82— o®J(x,) & (16)

where -6, < a < §,.
The two-dimensional trust region method for tensor methods is given in
the following algorithm.
Algorithm 5. Two-Dimensional Trust Region for Tensor Methods
Given x., d,,, d, as defined in Algorithm 2.
Let g, = —J(x.)"F(x,.), the steepest descent direction;
6, the current trust region radius;

d, and g, given by (12);

dn obtained in an analogous way to d, by applying transformations

(11) and (12) to d,,.
Step (0) Compute the global step
if tensor model selected then
Solve problem (14)

d = a: + dt + gs\fsf — al
where «, is the global minimizer of (14)

else { standard model selected }
Solve problem (16)

d = a.d, + §3\18? - a?
where «, is the global minimizer of (16)

endif
Step (1) Check the new iterate and update the trust region radius

x, =x. +d
if tensor model selected then

1 1
Py |F(x.) |5 — Y |F ()5

ratio =
1 1 S T 2(|12 1 2
, 1P + T d +) 3 ay ldmsi ;- PR
k=1
else
1 1
. 2 [F ()5 — 2 [F (x5
ratio =

1 2 1 2
S PG + I d I~ Pl

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

186 . Ali Bouaricha and Robert B. Schnabel

endif
if ratio = 107 * then

the global step d is successful
else

decrease trust region

go to Step 0

endif

The methods used for adjusting the trust radius during and between
steps are given in Algorithm A6.4.5 [Moré et al. 1981, p. 338]. The initial
trust radius can be supplied by the user; if not, it is set to the length of the
initial Cauchy step. Our software solves the one-variable global optimiza-
tion problem by a straightforward partitioning scheme described in
Bouaricha [1992].

4. OVERVIEW OF THE SOFTWARE PACKAGE

This section summarizes the key features of the software package.

The user has the option of solving systems of nonlinear equations or
nonlinear least-squares problems. In either case, the required input for the
software is the number of equations M the number of variables N, the
function FVEC that computes F(x), and an initial guess X,. If M= N, the
problem is nonlinear equations; if M> N, it is nonlinear least squares. The
user does not have to set a flag differentiating between the two problems.

Two methods of calling the package are provided. In the short version,
the user supplies only the above information, and default values of all other
options and parameters are used. (These include the use of the tensor
rather than the standard method, the use of the line search global strategy,
and the calculation of the Jacobian by finite differences). In the second
method for calling the package, the user may override any default values of
the package options and parameters.

The package allows the user to use the tensor method or the standard
Newton or Gauss-Newton method. METHOD= 1 specifies the tensor method
and is the default value. If METHODSs set to 0, the package will use the
standard method.

Two global strategies are implemented in the software package: a line
search method and a two-dimensional trust region method over the sub-
space spanned by the steepest descent direction and the tensor (or Newton/
Gauss-Newton) step. The global strategy may be specified using the param-
eter GLOBAL GLOBAL = 0 is the default and specifies the line search.
GLOBAL= 1 specifies the trust region.

The user may supply an analytic routine to evaluate the Jacobian matrix.
If it is not supplied, the package computes the Jacobian by finite differ-
ences. The finite-difference routine is described in detail by Dennis and
Schnabel [1983]. The parameter JACFLG specifies whether an analytic
Jacobian has been provided. The default value, which specifies finite
differences, is JACFLG = 0. When the analytic Jacobian is supplied, the
user has the option of checking the supplied analytic routine against the

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 187

package’s finite-difference routine; if MSGis set to 2 modulo 4, the package
will not check the analytic Jacobian against the finite-difference one;
otherwise it will.

Scaling information for the variables and/or the functions may be sup-
plied by the user. The software package is coded so that, if the user inputs
the typical magnitude ¢ypx; of each component of x and/or the typical
magnitude typf; of each component of the function F, the performance of
the package is equivalent to what would result from (1) redefining the

variables and functions to be x = D,.x and F = DyF, where D, = diag
(1/typx;) and Dy = diag (1/typf;) and (2) running the package without
scaling. The default value of each ¢typx; and typf; is 1 (i.e., no scaling).
Scaling is often important for problems in which there is great variation in
the magnitudes of individual variables and/or function components.

The package includes a module TSCHKI that examines the input param-
eters for illegal entries and consistency. Certain illegal or inconsistent
entries are reset to default values by this module, while other illegal
entries cause the package to terminate.

The standard (default) output from this package consists of printing the
input parameters, the final results, and the stopping condition. The printed
input parameters are those used by the algorithm and hence include any
corrections made by the module TSCHKI. The program will provide an error
message if it terminates as a result of input errors. The printed results
include a message indicating the reason for termination, an approximation
x, to the solution x,, the value of the sum of squares of the function
F(x,), and the gradient vector G(x,) = F'(x,)"F(x,) of the function
(1/2)||F(x)||3 at x,. The package provides an additional means for control-
ling the output by means of the variable MSG The user may suppress all
output or may print the intermediate iterations results in addition to the
standard output.

A general flowchart of the TENSOLVEpackage is shown in Figure 1.

5. TEST RESULTS

We have tested the TENSOLVEsoftware package using our algorithms
(described above) on a variety of nonsingular and singular problems. This
section summarizes and discusses the test results.

In our tests, the package terminates successfully if the relative size of
(x, — x.) is less than €V?| or if |[F(x,)|. is less than €#%. It terminates
unsuccessfully if the iteration limit of 150 is exceeded. If the last global
step fails to locate a point lower than x, in the line search or trust region
global strategies, or if the relative size of J(x.,)7F(x.) is less than €'/?, the
method stops and reports this condition; this may indicate either success or
failure. All of our computations were performed on a Sun SPARCstation 2
computer in the Computer Science Department at the University of Colo-
rado at Boulder, using double-precision arithmetic.

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

188 . Ali Bouaricha and Robert B. Schnabel

Nonlincar equations
and nonlincar leust

syuares driver

Newton method
or Gauss-Newton Tensor method

method

Analytic Jucobian

or linite dilference Form tensor

/ Jacobian mudel

H nonlincar least

Cuompute standard s(uares compute I nonlincar
step ensor and Gauss- cuations compulte
Newiton steps ensor step only

If two-dimcensional If linc scarch used
Scleet tensor trust region uscd apply Algorithm 3.3
or standard siep compute standard Lo find next iterate
siep

Apply line scarch
or two-dimensional
trust region 1o find

next iterute

|

Check stopping

criteria

Fig. 1. Structure of the TENSOLVEpackage.

First, we tested the software package on the set of nonlinear equations
and nonlinear least-squares problems of Moré et al. [1981]. These problems
all have nonsingular Jacobians at the solution with the exception of
Powell’s singular function. Then we created singular test problems as
proposed by Schnabel and Frank [1984] by modifying the nonsingular test
problems of Moré et al. [1981] to the form

F(x) = F(x) — F'(x) A (ATA) AT (x—x.) (17)

where F(x) is the standard nonsingular test function; x, is its root or
minimizer; and A € R™** has full column rank with 1 = 2 = n. Note that x,

is a root or critical point of the modified problem, and rank F'(x.) = n
— rank(A). We used (17) to create two sets of singular problems, with
F'(x) having rank n — 1 and n — 2, respectively, by using

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 189

Table I. Nonlinear Equations and Nonlinear Least-Squares Test Problems Used in the
Comparison of the Tensor Method versus the Standard Method

Dimension

Problem m n
Brown almost linear 10 10
Broyden banded 30 30
Broyden tridiagonal 30 30
Chebyquad 7 7
Discrete boundary 30 30
Discrete integral 10 10
Helical valley 3 3
Powell singular 4 4
Rosenbrock 2 2
Trigonometric 30 30
Variable dimension 10 10
Watson 31 31
Wood gradient 4 4
NS=1,08 = 3 3
NS=2,08S=1 3 3
NS=1,08S=2 3 3
NS=2,08S=2 3 3
Wood 6 4
Variable dimension 12 10
Bard 15 3
Beale 3 2
Kowalik 11 4
Penaltyl 11 10
Penalty2 10 5
Brown badly scaled 3 2
Gauss function 15 3
Brown and Dennis 10 4
Chebyquad 8 4
Chebyquad 12 4
Chebyquad 16 4

NS and OS are the dimension of null space and the order of singularity for Griewank’s
singular functions, respectively.

AER™1, AT=(1,1,...,1)

and
- 1
AER™2, AT = , (18)

respectively.

We tested our tensor algorithm on 17 test functions for systems of
nonlinear equations (also including four functions from Griewank [1980]
whose Jacobian at the solution x. is singular and which are designated as
Griewank functions) and 11 test functions for nonlinear least squares.
Some of the test problems were run at various dimensions. All of these

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

190 . Ali Bouaricha and Robert B. Schnabel

Table II. Summary of Nonlinear Equations Test Problems Using Line Search

Tensor Average Ratio Tensor/Newton Only Only
Rank Newton Tensor
F'(x*) Better Worse Tie Iteration Function Evaluations Solved Solved
n 25 2 13 0.60 0.69 1 5
n—1 24 0 8 0.48 0.53 0 5
n— 2 27 1 5 0.46 0.56 0 8

Table III. Summary of Nonlinear Equations Test Problems
Using Two-Dimensional Trust Region

Average Ratio

Tensor Tensor/Newton Only Only
Rank Newton Tensor
F'(x*) Better Worse Tie Iterations Function Evaluations Solved Solved
n 26 3 13 0.61 0.72 1 6
n—1 24 1 9 0.49 0.63 0 4
n— 2 26 1 5 0.64 0.73 0 4

problems were also run with the standard method. The list of test problems
is given in Table I; the detailed test results are given in Bouaricha [1992].

Our computational results for the test problems whose Jacobians at the
solution have ranks n, n — 1, and n — 2 are summarized in Tables II-V,
where columns “Better” and “Worse” represent the number of times the
tensor method was better and worse, respectively, than the standard
method by more than one iteration. The “Tie” column represents the
number of times the number of iterations required by the tensor method
required is within one of that of the standard method. For each set of
problems, we summarize the comparative costs of the tensor and standard
methods using average ratios of two measures: iterations and function
evaluations. The average iteration ratio is the total number of iterations
required by the tensor method over all of the problems included, divided by
the total number of iterations required by the standard method on the
same problems. The same measure is used for the average function evalu-
ation ratio. These average ratios include only problems that were success-
fully solved by both methods. We have excluded from the summary of
statistics all cases where the tensor and standard methods converge to a
different root, or to the same root as each other but not to the singular root
x, in the case of singular problems. However, the statistics for the “Better,”
“Worse,” and “Tie” columns include the cases where only one of the two
methods converges and exclude the cases where both methods do not
converge. The total number of problems that were solved by one method but
not the other are given in the last two columns of each table.

In the test results obtained for both nonsingular and singular nonlinear
equations problems, the tensor method is virtually never less efficient than
the standard method and is usually more efficient. The improvement by the
tensor method over the standard method with the same global strategy is

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 191

Table IV. Summary of Nonlinear Least-Squares Test Problems Using Line Search

Average Ratio

Tensor Tensor/Gauss-Newton Only Only
Rank Gauss-Newton Tensor
F(x*) Better Worse Tie Iterations Function Evaluations Solved Solved
n 20 1 8 0.52 0.51 0 4
n—1 18 0 8 0.45 0.41 0 2
n— 2 28 0 5 0.48 0.48 0 4

Table V. Summary of Nonlinear Least-Squares Test Problems
Using Two-Dimensional Trust Region

Average Ratio

Tensor Tensor/Gauss-Newton Only Only
Rank Gauss-Newton Tensor
F(x*) Better Worse Tie Iterations Function Evaluations Solved Solved
n 26 1 5 0.66 0.76 0 3
n—1 19 2 5 0.66 0.71 0 1
n— 2 28 1 4 0.63 0.69 0 1

substantial, averaging about 49% in iterations and 41% in function evalu-
ations when the line search is used, and about 42% in iterations and 31% in
function evaluations when the trust region is used, on the problems that
are successfully solved by both methods. The improvement by the tensor
method over the standard method is more dramatic on problems with small
rank deficiency than on nonsingular problems, but is substantial in all
cases. On rank n — 1 problems, this is due in part to the tensor methods
achieving three-step Q-order 3/2 convergence, whereas Newton’s method is
linearly convergent with constant 1/2 [Feng et al. 1992].

The tensor method is also significantly more robust than the standard
Newton-based method for the nonlinear equations test set. Over all of the
nonlinear equations test problems, five rank-n problems, five rank-(n
— 1) problems, and eight rank-(n — 2) problems were solved by the tensor
method and not by the standard method when the line search was used,
and six rank-n problems, four rank-(n — 1) problems, and four rank-(n
— 2) problems were solved by the tensor method and not by the standard
method when the trust region was used. On the other hand, only one rank-
n problem was solved by the standard method and not by the tensor
method when the line search was used, and similarly when the trust region
was used.

For the entire set of nonsingular and singular nonlinear least-squares
problems, the average improvement of the tensor method over the standard
Gauss-Newton method is also substantial. Over the problems solved suc-
cessfully by both methods, the improvement averages about 52% in itera-
tions and 53% in function evaluations when the line search is used and
about 35% in iterations and 28% in function evaluations when the trust
region is used.

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

192 . Ali Bouaricha and Robert B. Schnabel

Table VI. Average Ratios of the Tensor Method versus the Gauss-Newton Method on
Zero-Residual Problems for Line Search and Trust Region

Line Search Trust Region
Rank
F'(x.) Iterations Function Evaluations Iterations Function Evaluations
n 0.43 0.44 0.43 0.56
n—1 041 0.37 0.64 0.62
n— 2 0.48 0.48 0.51 0.57

Table VII. Average Ratios of the Tensor Method versus the Gauss-Newton Method on
Nonzero-Residual Problems for Line Search and Trust Region

Line Search Trust Region
Rank
F'(x.) Iterations Function Evaluations Iterations Function Evaluations
n 0.64 0.64 0.78 0.88
n—1 0.48 0.45 0.67 0.79
n— 2 0.49 0.48 0.68 0.76

The tensor method is also considerably more robust than the Gauss-
Newton method for the nonlinear least-squares test set, especially in the
line search comparison. The tensor method solves several problems that the
standard Gauss-Newton method does not, and the reverse never occurs.
Over all of the nonlinear least-squares test problems, four rank-n prob-
lems, two rank-(n — 1) problems, and four rank-(n — 2) problems were
solved by the tensor method and not by the standard Gauss-Newton
method when the line search was used, and three rank-n problems, one
rank-(n — 1) problem, and one rank-(n — 2) problem were solved by the
tensor method and not by the standard Gauss-Newton method when the
trust region was used. On the other hand, there were no problems solved by
the standard Gauss-Newton method and not by the tensor method when
either the line search or the trust region was used.

A closer examination of the nonlinear least-squares test results shows
that the improvements by the tensor method are considerably larger for
zero-residual problems than for nonzero-residual problems. The difference
is most dramatic in the nonsingular case. Tables VI and VII show the
average iteration and function evaluation ratios of the tensor method
versus the Gauss-Newton method for zero- and nonzero-residual problems,
respectively. The performance differences may be attributable to the fact
that both the standard and tensor methods are linearly convergent on
nonzero-residual problems, but are more quickly convergent on zero-resid-
ual problems.

The comparison between the line search methods and the trust region
methods is very interesting, for both the standard and tensor methods. This
is summarized in Tables VIII and IX. These tables show that, on the
average, the two-dimensional trust region approach is often more efficient
than the line search method, especially on nonsingular problems. It is
important to note, however, that the line search method is simpler to

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 193

Table VIII. Average Ratios of Iterations and Function Evaluations of Newton with Trust
Region versus Newton with Line Search and Tensor with Trust Region versus Tensor with
Line Search for Nonlinear Equations

Newton TR/LS Tensor TR/LS
Rank
F'(x+) Iterations Function Evaluations Iterations Function Evaluations
n 0.80 0.84 0.70 0.57
n—1 0.78 0.89 0.96 0.93
n— 2 0.86 0.93 0.92 0.94

Table IX. Average Ratios of Iterations and Function Evaluations of Gauss-Newton with
Trust Region versus Gauss-Newton with Line Search and Tensor with Trust Region versus
Tensor with Line Search for Nonlinear Least-Squares Problems

Gauss-Newton TR/LS Tensor TR/LS
Rank
F'(x+) Iterations Function Evaluations Iterations Function Evaluations
n 0.70 0.65 0.75 0.76
n—1 0.72 0.71 1.05 1.09
n— 2 1.01 0.97 0.74 0.80

implement and to understand than the two-dimensional trust region ap-
proach and is appreciably faster in terms of CPU time on small, inexpen-
sive problems where the complexity of the code becomes the dominant cost.
It should also be noted that there is considerable variation in the compar-
ative efficiency of the line search and trust region methods on individual
problems and that either may be more efficient for a particular problem
class.

Perhaps a more important consideration in the general comparison of the
line search and trust region methods, however, is that the two-dimensional
trust region method solves considerably more of the test problems than the
line search method. The advantage in robustness is particularly large in
comparing line search and trust region versions of the standard methods; it
is smaller but still significant in comparing tensor methods for nonlinear
least squares and insignificant in our tests of tensor methods for nonlinear
equations. Over all of the nonlinear equations problems, 20 problems were
solved by the trust region method and not by the line search method,
whereas only five problems were solved by the line search method and not
by the trust region method. Over all of the nonlinear least-squares prob-
lems, 27 problems were solved by the trust region method and not by the
line search method, whereas only six problems were solved by the line
search method and not by the trust region method. The above statistics
include the test results for both the tensor and standard methods. Thus,
the trust region version seems to have a considerable advantage over the
line search version in its robustness, although more when using the
standard method than the tensor method. We note that the smaller average
improvement of the tensor method over the standard method in the trust
region cases (Tables IIT and IV) than the line search cases (Tables II and

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

194 . Ali Bouaricha and Robert B. Schnabel

Table X. Nonlinear Equations and Nonlinear Least-Squares Test Problems Used in the
Comparison of Tensor Method versus NL2SOL

Dimension
Problem m n
Rosenbrock 2 2
Helical Valley 3 3
Powell Singular 4 4
Wood 6 4
Beale 3 2
Box three-dimensional 10 3
Freudenstein and Roth 2 2
Watson 31 6
Watson 31 9
Watson 31 12
Watson 31 20
Chebyquad 8 8
Bard 15 3
Jennrich and Sampson 10 2
Kowalik 11 4
Osborne 1 33 5
Osborne 2 65 11

IV) is related to the difference in problem sets that are included in these
statistics, because of the differing robustness of the line search and trust
region methods.

Finally, we compared our tensor method with the NL2SOL package
[Dennis et al. 1981] on the set of nonlinear least-squares problems used by
Dennis et al. [1981] that is listed in Table X. The reason we were interested
in making this comparison is that theoretically the NL2SOL method is
superlinearly convergent on nonzero-residual problems [Dennis et al.
1981], whereas the tensor method of this article, like Gauss-Newton
methods, is only linearly convergent on nonzero-residual problems. (This
difference is related to NL2SOL using a quadratic model of F(x)7F(x),
whereas the tensor and Gauss-Newton methods use models of F(x).) The
problems include a mixture of zero, small, and large residual problems.

Table XI reports the comparative test results of the tensor method versus
NL2SOLon this test set. The first row compares the tensor method using a
line search with NL2SOL whereas the second row compares the tensor
method using a two-dimensional trust region with NL2SOL (NL2SOLuses a
trust region global strategy.) The table shows that on these test problems
the tensor method, on the average, is somewhat more efficient than
NL2SOL with an average improvement of about 58% in iterations and 29%
in function evaluations when the line search is used and about 24% in
iterations and 7% in function evaluations when the trust region is used.
(Note that the tensor method with line search is more efficient than the
tensor method with trust region on this test set.) There is no difference in
the robustness of the two packages of this test set; only one problem in the

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

Algorithm 768: TENSOLVE . 195

Table XI. Comparison of Tensor Method with NL2SOLon the Nonlinear Equations and
Nonlinear Least-Squares Test Problems Listed in Table X

Tensor versus NL2SOL Average Ratio-Tensor/NL2SOL
Global Strategy Better Worse Tie Iterations Function Evaluations
Tensor with LS 25 8 2 0.42 0.71
Tensor with TR 24 9 2 0.76 0.93

test set was solved by NL2SOL and not by the tensor method using either a
line search or a trust region method, and only one problem was solved by
the tensor method and not by NL2SOL These limited results indicate that
the tensor method appears to be quite competitive with NL2SOL for solving
least-squares problems.

ACKNOWLEDGMENTS

We would like to thank the two referees for criticism that helped us
improve the article.

REFERENCES

BOUARICHA, A. 1986. A software package for solving systems of nonlinear equations and
nonlinear least squares problems using tensor methods. M.S. thesis, Dept. of Computer
Science, Univ. of Colorado, Boulder, Colo.

BOUARICHA, A. 1992. Solving large sparse systems of nonlinear equations and nonlinear
least squares problems using tensor methods on sequential and parallel computers. Ph.D.
thesis, Dept. of Computer Science, Univ. of Colorado, Boulder, Colo.

ByrD, R. H., ScHNABEL, R. B., AND SHULTZ, G. A. 1988. Approximate solution of the trust
region problem by minimization over two-dimensional subspaces. Math. Program. 40, 3
(Apr.), 247-263.

DENNIS, J. E. AND SCHNABEL, R. B. 1983. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, Upper Saddle River, N.J.

DENNIS, J. E., Gay, D. M., AND WELSCH, R. E. 1981. An adaptive nonlinear least-squares
algorithm. ACM Trans. Math. Softw. 7, 3, 348—-368.

FENG, D., FRANK, P., AND SCHNABEL, R. B. 1992. An analysis of tensor methods for nonlinear
equations. Tech. Rep. CS-729-94, Dept. of Computer Science, Univ. of Colorado, Boulder,
Colo. Also appears as "Local convergence analysis of tensor methods for nonlinear equa-
tions.” Math. Program. 62 (1993), 437—-459.

GRIEWANK, A. O. 1980. Analysis and modification of Newton’s method at singularities. Ph.D.
thesis, Australian National Univ., Canberra, Australia.

MoRE, J. J. 1977. The Levenberg-Marquardt algorithm: Implementation and theory. In
Numerical Analysis. Lecture Notes in Mathematics, vol. 630. Springer-Verlag, New York,
105-116.

MORE, J. J., GARBOW, B. S., AND HiLLSTROM, K. E. 1981. Testing unconstrained optimization
software. ACM Trans. Math. Softw. 7, 1, 17-41.

PowerLL, M. J. D. 1970. A new algorithm for unconstrained optimization. In Nonlinear
Programming, J. B. Rosen, O. L. Mangasarian, and K. Ritter, Eds. Academic Press,
Orlando, Fla., 33—-65.

SCHNABEL, R. B. AND FRANK, P. D. 1984. Tensor methods for nonlinear equations. SIAM J.
Numer. Anal. 21, 815—-843.

SCHNABEL, R. B., KOONTZ, J. E., AND WEIss, B. E. 1985. A modular system of algorithms for
unconstrained minimization. ACM Trans. Math. Softw. 11, 4 (Dec.), 419-440.

Received October 1994; revised June 1996; accepted October 1996

ACM Transactions on Mathematical Software, Vol. 23, No. 2, June 1997.

