
3

TENSOLVE: A Sofiware Package for Solving
Systems of Nonlinear Equations and Nonlinear
Least Squares Problems Using Tensor Methods

Ali Bouaricha-
Argonne National Laboratory

and
Robert B. Schnabei t

University of Colorado

This paper describes a modular software package for solving systems of nonlinear equations
and nonlinear least squares problems, using a new dass of methods caUed tensor methods. It is
intended for small t o medium-sized problems, say with up to 100 equations and unknowns, in
cases where it is reasonable to calculate the Jacobian matrix or approximate it by fmite mer-
ences at each iteration. The software allows the user to select between a tensor method and a
standard method based upon a linear model. The tensor method models F(z) by a quadratic
model, where the second-order term is chosen so that the model is hardy more expensive to
form, store, or solve than the standard Linear model. Moreover, the software provides two dif-
ferent global strategies, a line search and a two-dimensional trust region approach. Test results
indicate that, in general, tensord methods are significantly more efficient and robust than stan-
dard methods on small and mediumsized problems in iterations and function evaluations.

Categories and Subject Descriptors: G. 1.5 [Numerical Analysis]: Roots of Nonlinear Equations-
systems of equafiow G. 1.6 [Numerical Analysis]: Optimization-least squares metho& G.4
[Mathemat ics of Computing]: Mathematical Software

Generd Terms: .Ugorithms

Additional Key Words and Phrases: tensor methods, nonlinear equations, nonlinear least squares,
rank-deficient matrices

'Mathemaria a d Computer Science- Division, Argonne National Laboratory, Argonne, Illinois 60439,
bouuich4)ma.anl.gov. Research supported in part by the Office of Scientific Computing, U.S. Department of
Energy, andet Contrlct W-31-10S-Eng-38.

'Department of Computer Science, University of Colorado, Boulder, Colorado 80309-0430,
bobby0cs.coIorado.edu. Rtseazch supported by AFOSR Grants No. AFOSR90-0109 and F49620-941-0101,
ARO Grants No. DAAL03-91-G-0151 and DAAHO4-94-(3-0228, a d NSF Grant No. CCR9101795.

\ ~~

Ths submittad manuscript has been authored
by a contractor of the U.S. Government
undar contract No. W-31-104ENG.38.
Accordingly, the U. S Government retains a
nonexclusive, royalty-freo licenls to Publish
or reproduce the publirhed form of this
contribution. of allow othm lo do 10. for
U. S. Government ~m-m. -, -- ~. . . - . ,

I

1

i- ----

http://bouuich4)ma.anl.gov
http://bobby0cs.coIorado.edu

DISCLAIMER

Portions of this document may be illegible
in electronic image products. hages are
produced from the best available original
document.

DISCLAIMER

This report was prepared as a n account of work sponsored by a n agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, o r assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, o r process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to’any specific commercial product, process, or service by
trade name, trademark, manufacturer, o r otherwise does not nesesariiy constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

’

I

1. Introduction

This paper describes a modular software package for solving systems of nonlinear equations of
the form

F : R" 4 R", m 3 n, (1.1)
where F is assumed to be a t least once continuously differentiable, using a new class of methods
c d e d tensor methods. Lf m is equal to n, the package solves the nonlinear equations prob-
lem, F (z) = 0, while if rn is greater than n it solves the nonlinear least squares problem,
minzERn 11 F(z) 112-

Tensor methods base each iteration on a quadratic model of the nonlinear function,

where 2, is the current iterate, and Tc is a three-dimensional object referred to as a tensor. No
second derivative information is used in forming the tensor term 2''. Instead, T, is formed by
asking the model to interpolate up to J.' past function values in a way that hardly increases the
storage requirements or arithmetic cost per iteration over standard linear model based methods.
The package also provides an option to use a method based on the standard linear model ((1.2)
without the tensor term); it then performs a standard Newton method for nonlinear equations
or Gauss-Newton method for nonlinear least squares. The global strategy used in either case
can either be a line search strategy or a two-dimensional trust region method over the subspace
spanned by the steepest descent direction and the tensor (or Newton/Gauss-Newton) step.

Required input to the package includes the dimensions m and n of the problem, where m is
the number of nonlinear equations and n is the number of unknowns; a subroutine to e d u a t e
the function F(z); and an estimate 20 of the solution 2.. The user may provide a code to
calculate the Jacobian rather than having it computed by finite differences, may choose the
standard method rather than the tensor method, and may specify various tolerances.

Upon completion, the program returns with a n approximation xp to the solution z,, the value
of the sum of squares of the function F (x p) , the value of the gradient G(zp) = F ' (Z ~) ~ F (Z ~)
of the function $ l l F (~) 1 1 2 ~ at xp, and a flag specifying under which stopping condition the
algorithm was terminated.

The tensor methods upon which this software package is based were originally introduced
by Schnabel and Frank [ill, for nonlinear equations, One main contribution of this paper is the
provision and extensive testing of a software package incorporating these methods. In addition,
the extension of these methods to nonlinear least squares, and the incorporation of a trust region
strategy with tensor methods, are new contributions of this paper.

The remainder of this paper is organized as follows. In Section 2 we give a brief overview
of tensor methods for nonlinear least squares problems (tensor methods for nonlinear equations
can be regarded as a special case of these). Ln Section 3 we discuss the globally convergent
modifications for tensor methods for systems of nonlinear equations and nonlinear least squares
problems. Section 4 gives an overview of the key features and options provided by the software
package. We then describe the user interface to the package in Section 5 , which includes both'
a simplified default calling sequence and a longer calling sequence. In Section 6 we describe the
meaning of the input, input-output, and output parameters for the package. Section 7 presents

2

t:
?

k

P

the default values provided by the package. A few implementation dependencies are described
in Section 8. Section 9 gives an example of the use of the package. Finally, in Section 10 we
summarize and discuss our experimental results using the package, with both line search and
trust region strategies, on nonsingular and singular test problems.

2. BriefOverview of Tensor Methods

Tensor methods are general-purpose methods intended especially for problems where the Jaco-
bian matrix a t the solution is singular or ill-conditioned. The idea is to base each iteration upon
a model that has more information than the standard linear model but is not appreciably more
expensive to form, store, or solve. Specifically, each iteration is based upon a quadratic model
(1.2) of the nonlinear function F (x) . The particular choice of the tensor term T, E Rmxnxn
causes the second-order term T,dd in (1.2) to have a simple and useful form. The tensor term is
chosen to allow the model M (z , + d) to interpolate values of the function F (x) at past iterates
z-k; that is, the model should satisfy

where
k = 1, ..., p .

k = 1, ..., p ,

The past points 1 - 1 , ..., x , ~ are selected so that the set of directions { S k } from z, to the
selected points is strongly linearly independent; each direction S k is required to make an angle
of at least 45 degrees with the subspace spanned by the previously selected past directions. The
procedure of finding Linearly independent directions is implemented easily by using a modified
Gram-Schmidt algorithm, and usually results in p = 1 or 2.

After selecting the linearly independent past directions sk, the tensor term is chosen by the
procedure of Schnabel and Frank [111, which generalizes in a straightforward way to nonlinear
least squares. T, is chosen to be the smallest matrix that satisfies the interpolation conditions
(2.1); that is,

subject to T c S k S k = 2 (F (z - k) -
where llT,ll~, the Frobenius norm of Tc, is defined by

m n n

i=l]=I k = l

The solution to (2.2) is the sum of p rank-one tensors
P

whose horizontal faces are symmetric:

where a k is the k-th column of A E Rmxp, A defined by A = Z M - I , Z is an (m x p) matrix
whose columns are Zj = 2 (F(z , j) - F(z,) - F'(z,)sj), and M is a (p x p) matrix defined
by M (i , j) = (s i T S j) 2 , 1 5 i, j 5 p .

3

I L

If we use the tensor term (2.4), the tensor model (1.2) becomes

The simple form of the quadratic term in (2.5) is the key to being able to efficiently form,
store, and solve the tensor model. The cost of forming the tensor term in the tensor model. is
O (m n p) 5 O(mn1-5) arithmetic operations, since p 5 fi, which is small in comparison with
the O(mn2) cost per iteration of Gauss-Newton methods. The additional storage required is 4 p
rn-vectors, which is small in comparison with the storage for the Jacobian matrix.

Once the tensor model (2.5) is formed, a root of the tensor model is found. It is possible
that no root exists; in this case a least squares solution of the model is found instead. Thus, in
general, we solve the problem

A generalization of the process in Schnabel and Frank [ll] shows that the solution to (2.6)
can be reduced to the solution of a small number of quadratic equations, m - n + q quadratic
equations in p unknowns, plus the solution of n - q linear equations in n - p unknowns. Here q
is equal to p whenever F'(z,) is nonsingular and usually when rank(F'(z,)) 2 n - p ; otherwise,
q is greater than p . Thus the system of linear equations is square or underdetermined, and the
system of quadratic equations is equally determined or overdetermined. The main steps of the
algorithm are the following:

.

1. An orthogonal transformation of the variabIe space is used to cause the m equations in n
unknowns to be linear in n - p variables, (21 E R"-P, and quadratic only in the remaining
p variables, (22 E RP.

2. An orthogonal transformation of the equations is used to eliminate the n - p transformed
linear variables from n - q of the equations. The result is a system of m - n + q quadratic
equations in the p unknowns, (22, plus a system of n - q equations in all the variables that
is linear in the n - p unknowns, 21.

3. A nonlinear unconstrained optimization software package, UNCMIN [12], is used to minimize
the 12 norm of the m - n + q quadratic equations in the p unknowns, 22. (If p = 1, this
procedure is done analytically instead.)

-4. The system of n - q linear equations that is linear in the remaining n - p unknowns is
solved for 8,.

The arithmetic cost per iteration of the above process is the standard O(mn2) cost of a QR
factorization of an m x n matrix, plus an additional O (m n p) 5 O(mn1-') operations, plus
the cost of using UNCMIN in Step 3 of the algorithm. The cost of using UNCMIN is expected
to be O(p4) 5 O(n2) operations, since each iteration requires O(p3) (O(p2q) when q > p)
operations and a small multiple of p iterations generally suffice. Thus, the total cost of the
above algorithm is the O(mn2) cost of the standard method plus at most an additional cost of

4

i ',

I
I

O(rn7~1.~) arithmetic operations. Note that in the case when p = 1 and q 2 1, the onevariable
minimization problem is solved very inexpensively in closed form; this turns out to be the most
common case in practice.

The Newton or Gauss-Newton step is computed inexpensively (in O(nznp) operations) a
by-product of the tensor step solution. Using the tensor step and the Newton or Gauss-Newton
step, the global portion of the algorithm determines the next iterate, as is described in the next
section. The overall algorithm is summarized below.

Algorithm 2.1. An I t e r a t i o n of t he Tensor Method

Given m, n, x,, F(z,)

1.
2.

3.

4.

5.

6 .

7.

Calculate F’(xc), and decide whether t o s top , if not:
S e l e c t t h e p a s t po in ts t o use i n t h e tensor model from among the
fi most recent po in ts .
Calculate t h e second-order term of t h e t e n s o r model, T,, so t h a t
t h e tensor model i n t e rpo la t e s F (x) at a l l t h e poin ts s e l e c t e d in Step 2.
Find the r o o t of t h e tensor model, o r i ts minimizer (in t h e 12 norm)
i f it has no r e a l roo t .
If rn > n o r GLOBAL = two-dimensional t r u s t region then
5.1. Compute t h e standard s t e p as a by-product of t h e tensor model solution.
5.2. S e l e c t t h e tensor o r standard s t e p using Algorithm 3.1.
Selec t z+ using e i t h e r a l ine search o r a two-dimensional trust region
g loba l s t r a t egy .
6.1. If GLOBAL = l i n e search then

If rn > n perform Algorithm 3.3, where t h e search d i r e c t i o n is

E l s e { m = n) perform Algorithm 3.2.

Perform Algorithm 3.4 using t h e model se lec ted i n Step 5.2 .

t h e s t e p se lec ted i n Step 5.2

ElseIf GLOBAL = tuo-dimensional trust region then

Set z, - z+, F(z,) +- F(z+), go t o Step I.

The reader may refer to [l], [2], [6] , and (111 for more details on tensor methods for nonlinear
equations and nonlinear least squares problems. These papers give preliminary indications that
tensor methods are more efficient and more robust computationally than standard methods, and
show that tensor methods have a superior rate of convergence to Xewton’s method on nonlinear
equations problems where rank{F’(z,)} = n - 1.

3. Globally Convergent Modifications for Tensor Methods

This section describes the global strategies in the tensor algorithm given above. As with all
algorithms for nonlinear equations and optimization, purely local tensor methods may fail to
converge if the initial guess is far away from the solution. To address this problem, two types of
modifications are used in general, line search methods and trust region methods, and either may

5

be best for a particular problem. For this reason, both of these global methods are included in
our software package.

This section first describes the overall framework that is used in both the line search and
trust region approaches for tensor methods. This framework involves a choice of whether to
use the tensor step or the Newton/Gauss-Newton step as the basis for the global strategy at a
given iteration. Next we briefly describe the line search that is used in the line search methods.
Finally, we describe a new model trust region approach for tensor methods that is used in the
trust region methods.

3.1. Globally Convergent Ekamework for Tensor Methods for Nonlinear Least Squares

Our computational experience has shown that when one is far from the solution, it is important
to sometimes allow the global step to be based upon the Newton/Gauss-Newton step rather than
the tensor step, and we have constructed heuristics to make this choice. Our experimentation
has led to two different sets of heuristics, one that is used in both the Line search and trnst region
methods for nonlinear least squares as well as the trust region method for nonlinear equations,
and a second that is used in line search methods for nonlinear equations. They differ primarily
in how much they bias the choice toward the tensor step. Both are constructed so that close to
the solution, the tensor step is nearly always selected. This section gives these heuristics and
the overall global frameworks that are based upon them.

Algorithm 3.1 gives the global framework that is used for nonlinear least squares and for
trust region methods for nonlinear equations. In this framework, the Gauss-Newton step is
chosen whenever the tensor step is not a descent direction, when the tensor step is a minimizer
of the tensor model and does not provide enough decrease in the tensor model, or when the
quadratic system of m - n + q equations in p unknowns cannot be solved by WCMIN [12] within
the iteration limit. Otherwise, the tensor step is chosen. In the definitions of 4 and MT, the
Newton step and model are used for nonlinear equations, the Gauss-Newton step and model are
used for nonlinear least squares.

Algorithm 3.1.

Let

Global Framework f o r Tensor Methods f o r Nonlinear Least
Squares and f o r Trust Region Methods f o r Nonlinear Equations

z, = cur ren t i t e r a t e ,
J (z c) = approximation t o F'(z,),
g = J (s C) * F (z ,) , t h e gradient of 3 F(z)~F(z) a t z,,
dt = minimizer .of t h e tensor model,
d, = Neuton o r Gauss-Neuton s tep : -J(z,)-'F(z,) o r - (J (z c) T J (z c)) - ' J(.c)TF(.c)

i f J(z,) is s u f f i c i e n t l y uell-conditioned,
Levenberg-Marquardt s t e p - (J (z c) T J (. c) + I.LI)-'J(zc)*F(zc) 0th erwise ,
where ,u = n E 1 1 J(zc) 111 11 J(zc) II-, E = machine epsi lon,

h l ~ = t e n s o r model,
MN = Newton o r Gauss-Newton model.
IF (no r o o t o r minimizer of the t e n s o r model was found) OR

((minimizer of t h e tensor model t h a t is not a r o o t was found AND
(II MT (2, + 4) 112 > 5 (I I F(G) I12 + II M d z c + dn) 112 1)) OR 1

6

L
I

(gTdt > II 9 112 I 1 dt 112 1)
THEN

x+ t x, + X d,,, X E (O , l] s e l e c t e d by line search, o r
x+ t x, + a d,, - p g , CY, p se lec ted by trust region algorithm

z+ t x, + X d t , X E (0,1] se lec ted by l ine search, o r
x+ + x, + a dr - p g , a, p se lec ted by trust region algorithm

ELSE

ENDIF

AJgorithm 3.2 gives the global framework that is used in Line search methods for nofiear
equations. Its main difference from Algorithm 3.1 is that it always tries the tensor step fist,
whether or not this step meets the descent or model decrease conditions of Algorithm 3.1. If
xc + d: provides enough decrease in ~ ~ F (z) ~ ~ , then it is used as the next iterate. If not, the
strategy may tentatively compute global steps in both the Newton and the tensor directions.
That is, the global step x: = x, + Adn produced by a line search in the Newton direction d,,
is calculated. In addition, if d: is a descent direction, the global step 2: = x, + Xdt produced
by a line search in the tensor direction also is calculated. Finally, we select ZC or x i depending
on whichever has the lower function value. Thus, this strategy may involve one or more extra
function evaluations when both line searches are performed.

Algorithm 3.2. Global Framework f o r L i n e Search Hethods f o r Nonlinear Equations
Given z,, &, d t , g as defined in Algorithm 3.1, and a =
slope := gTdt
fe := i l l F(x,) l lZ2

f+ := $11 m:) 1122

X: := XC + dt

If f+ C fc + a

Else

min{slope,O} then
r e t u r n x+ = z:

Find an acceptable x; i n t h e Newton d i r e c t i o n d,,,

comment.
using Algorithm 3.3

Test if t he t e n s o r s t e p is s u f f i c i e n t l y descent
If 9% 2 - I I 9 112 I I dt 112 then

r e t u r n z+ = x?

Find an acceptable 2: i n t he tensor d i r e c t i o n d t ,

If

Else

Endif

Else

using Algorithm 3.3 .

r e t u r n x+ = xi;

re turn z+ = x i

II Oi;) II < I I Fb :) II then .

Endif
Endif

3.2. Global Framework for Line Search Methods for Nonlinear Equations

The line search used in the global frameworks outlined above is a standard quadratic backtrack-
ing line search. It starts with X = 1 and then, if 2, + d is not acceptable, reduces X mtil
an acceptable z, + Ad is found, based upon a one-dimensional quadratic model of F(z)=F(z).
Let us define

the one-dimensional restriction of f(x) = $11 F(s) 11z2 to the line through xc in the direction
d . If we need to backtrack, we use the values of j(O), f”(O), and f(X) to model f and then
take the value of X that minimizes this model as the next value of X in AIgorithm 3.3 subject to
restrictions on how much X can decrease at once (see, e.g., [4], pages 126-127 for more details).
This results in the following algorithm.

- Algorithm 3.3. Standard Quadratic Backtracking Line Search
Given z,, d , g = J (Z ,) ~ F (Z ~) , and a =
slope := gTd

X := 1.0
xp := z, + X d

While fp > f, + cy X - s lope do

fc := $11 F(zc) 1122

f p := i l l F (4 1h2
Atemp := - A - s lope / (2 C f p - fc - X - s lope l)
X :=max{Atmp, X/10}
xp := 2, + X d
f p := 311 F (Z p) 1122

EndUhile

3.3. Trust Region Tensor Methods for Nonlinear Equations and Nonlinear Least

Two computational methods-the locally constrained optimal (or “hook”) method and the dog-
leg method-are generally used for approximately solving the trust region problem based on the
standard model,

Squares

minimize 11 ~(z,) + J (z ,) ~ 1 1 2 ~ (3-1)
subject to 11 d 112 5 S,,

where 6, is the current trust region radius. When 6, is shorter than the standard step, the
locally constrained optimal method [8] finds a p, such that 11 d(pc) 112 zz a,, where d(pc) =
- (J (Z ~) ~ J (Z ~) + p I) - l J (~ c) T F (x c) . Then it takes z+ = x, + d(p,). The dogleg method is
a modification of the trust region algorithm introduced by Powell [lo]. Rather than finding a
point x+ = x, + d(pc) on the curve d(pc) such that 11 x+ - z, 11 zz 6,, it approximates this curve
by a piecewise linear function in the subspace spanned by the Newton direction and the steepest
descent direction - J (x c) * F (z C) , and takes z+ as the point on this piecewise curve for which
11 x+ - x, 11 = 6,. (See, e.g., [4] for more details.)

8

I
C

Unfortunately, these two methods are difficult to extend to the tensor model, because certain
key properties do not generalize to this model. Trust region algorithms based on (3.1) =e
defined because there is always a unique point x+ on the hookstep or dogleg curve that
Ild(pC)ll = 6,. Additionally, the value of 11 F(zc) + J(sC)d 1122 along these curves decreases
monotonically from x, to zn+, where x$ = x, + &, which makes the process reasonable. These
properties do not extend to the fourth-order s u m of squares of the tensor model, which may not
be convex. Furthermore, the analogous curve to d(p,) is more expensive to compute. For these
reasons, we consider a different trust region approach for our tensor methods.

The trust region approach that is used in this package is to solve a two-dimensional trust
region problem over the subspace spanned by the steepest descent direction and the tensor (or
standard) step. The main reasons that led us to adopt this approach are that it is easy to
construct and is closely related to dogleg-type algorithms over the same subspace. In addition,
the resultant step may be close to the optimal trust region step in practice. Byrd, Schnabel, and
Shultz [3] have shown that for unconstrained optimization using a standard quadratic model,
the analogous two-dimensiond minimization approach produces nearly as much decrease in the
quadratic model as the optimal trust region step in almost all cases.

The two-dimensional trust region approach for the tensor model computes an approximate
solution to the exact trust region problem

l P
minimize 11 ~(z,) + ~ (x ,) d + - ak {dTskl2 11z2 (3-2)

k=l 2

subject to 11 d 112 S,,
by performing a two-dimensional minimization

(3-3)
l P

minimize 11 F(s,) + J(z,)d + - 2 ak {dTsk}2 112'

[dt,g,], subject to 11 d 112 5 &,
where dt and g, are the tensor step and the steepest descent direction, respectively, and 6, is the
trust region radius. This approach always produces a step that reduces the quadratic model by
at least as much as a dogleg-type algorithm, which minimizes the model over a piecewise linear
curve in the same subspace. When Algorithm 3.1 chooses the Newton or Gauss-Newton step,
we instead solve the variant of (3.3) where dt is replaced by d, and the quadratic term in the
model is omitted.

Before we give the complete two-dimensional trust region algorithm for tensor methods.
we show how to convert the problem (3.3) into an unconstrained minimization problem in one
variable. This transformation is the key to solving (3.3) efficiently. First, we form an orthonormal
basis for the two-dimensional subspace by performing the projection

and normalizing j s and dt to obtain

9

t

Since d is in the subspace spanned by d; and g3, it can be written as

d = ad; + p&, a,@ E S. (3.6)
If we square the 22 norm of this expression for d and set it to 6:, we obtain the following equation
for p as a function of a:

p = JG;.
Substituting this expression for p into (3.6) and then the resulting d into (3.3) yields the global
minimization problem in the one variable a,

minimize 1 1 ~(z,) + a~(z,>CZt + J ~ J (~ ~) s ~ + 3 ~pk.~ &(as;SJt + ~ - S $ S ;) ~) J I ~ ~ ,
(3.7)

where -6, < a < 6,. Thus, problems (3.7) and (3.3) are equivalent.
We use the same procedure to convert the problem

minimize 11 F(x,) + J(z,)d 112'

* to the equivalent global minimization problem in the one variable a,

where -6, < a < 6,.

rithm.
The two-dimensional trust region method for tensor methods is given in the following algo-

Algorithm 3.4. Two-Dimensional T r u s t Region f o r Tensor Methods

Given x, , d,, dt as defined i n Algorithm 3.1.
L e t gr = -J(z ,)~ F(z,), t h e s t eepes t descent d i rec t ion ;

6, t h e current trust region radius;
d; and S; given by (3.5);
& obtained i n an analogous way t o dt

by applying transformations (3.4) and (3.5) to d,.

If tensor model s e l e c t e d then
Solve problem (3.7)
d = a, dt + S; JG:

where a, is t h e global minimizer of (3.7)
Else { standard model se lec ted }

Solve problem (3.9)
d = a, dn + S; d v z

where a, is t h e global minimizer of (3.9)

10

Endif
{Check new i t e r a t e and update t r u s t reg ion radius}
Z+ = xC + d
If 411 F(z+) 1122 - 411 F(zc) 1122 10-4 then

P e d
t h e global s t e p d is successful

Else
decrease t r u s t reg ion
go t o s t e p 1

Endif
where
p e d = $11 F(zc) + J (z c) d + 5
p e d = $11 F (z c) + J (z c) d 1122 -

I

tensor model s e l e c t e d ,

standard model se l ec t ed .
The methods used for adjusting the trust radius during and between steps are given in

Algorithm .46.4.5 [9, p. 3381. The initial trust radius can be supplied by the user; if not, it is set
to the length of the initial Cauchy step. Our software solves the one variable global optimization
problem by a straightforward partitioning scheme described in [2].

4. Overview of the Software Package

This section summarizes the key features of the software package.
The user has the option to solve systems of nonlinear equations or nonlinear least squares

problems. In either case, the required input for the software is the number of equations M, the
number of variables N, the function FVEC that computes F (z) , and an initial guess h. If M =
N, the problem is nonlinear equations; if H > N it is nonlinear least squares. The user does not
have to set a flag differentiating between the two problems.

Two methods of calling the package are provided. In the short version, the user supplies
only the above information, and default values of aJl other options and parameters are used.
(These include the use of the tensor rather than the standard method, the use of the line search
global strategy. and the calculation of the Jacobian by finite differences). In the other method
for calling the package. the user may override any default values of the package options and
parameters.

The package allows the user to use the tensor method or the standard Newton or Gauss-
Newton method. METHOD = 1 specifies the tensor method and is the default value. If the flag
METHOD is set to 0, the package will use the standard method.

Two global strategies are implemented in the software package, a line search method, and a
two-dimensional trust region method over the subspace spanned by the steepest descent direction
and the tensor (or Newton/Gauss-Newton) step. The global strategy may be specified using the
parameter GLOBAL. GLOBAL = 0 is the default and specifies the line search. GLOBAL = 1 specifies
the trust region.

If it is not
supplied, the package computes the Jacobian by finite differences. The finite difference routine

The user may supply an analytic routine to evaluate the Jacobian matrix.

11

L

xscaled =

is described in detail by Dennis and Schnabel [4]. The parameter J A C n G specifies whether an
analytic Jacobian has been provided. The default value, which specifies finite differences, is
JACFLG = 0. When the analytic Jacobian is supplied, the user has the option of checking the
supplied analytic routine against the package's finite difference routine; if HSG is set to 2 modulo
4, the package will not check the analytic Jacobian against the finite difference one; otherwise
it will.

Scaling information for the variables and/or the functions may be supplied by the user.
The software package is coded so that if the user inputs the typical magnitude typxj of each
component of x and/or the typical magnitude typfj of each component of the function F, the
performance of the package is equivalent to what would result from redefining the independent
variable x in the user's function and the components of the function F with

- 1ltYPXl

Fscaled =

1
- WYPfl

- l/tYPfrn j

. . .

1
and/or

- F . . .

12

D

output by means of the variable MSG, described in Section 6. The user may suppress
or may print the intermediate iterations results in addition to the standard output.

output

5. Interfaces and Usage

Two interfaces are provided with the system. NONLPO requires the user to provide only the
dimensions M and N of the problem, a subroutine to evaluate the function F, and a starting
vector XO (as well as three work arrays and their dimensions). NONLQ requires the user to supply
a l l parameters. However, the user may specify selected parameters only by first invoking the
subroutine DFAULT, which sets all parameters to their default d u e s , and then overriding only
the desired values. This is the normal usage of NONLQ.

The two calling sequences are as follows.

1. CALL NONLQO(NRH, NRN, NC, XO, H, N, WRKUNC, WRKNEn, wIu(NEN,
FVEC, HSG, XP, FP, GP, TERMCD)

2. CALL DFAULT(H, N, ITNLIH, JACFLG, GRADTL, STEPTL, FTOL,
METHOD, GLOBAL, STEPHX, DLT, TYPX, TYPF, IPR, MSG)

C USER OVERRIDES SPECIFIC DEFAULT VALUES PARAHETERS, E.G.

GRADTL = 1.OD-6
STEPTL = 1.OD-7
FTOL = 1.OD-10
JACFLG = i

CALL NONLq(NRM, NRN, NC, XO, H, N, TYPX, TYPF, ITNLIH, JACFLG,
GRADTL, STEPTL, FTOL, METHOD, GLOBAL, STEPMX, DLT, IPR,
WRKUNC, WRKNEM, WRKNEN, ANJA, FVEC, MSG, XP, FP, GP, TERMCD)

6. Parameters and Default Values

The parameters employed with the calling sequences of Section 5 are fully described here. NONLQO
uses only those parameters that are preceded by a n asterisk. When it is noted that module
DFAULT returns a given value, this is the value employed by interface NONLQO. The user may
override the default value by utilizing NONLq as shown above.

Following each variable name in the list below appears a one- or a two-headed arrow symbol
of the form -, -, and +-f. These symbols signify that the variable is for input, output, and
input-output, respectively.

The symbol E in some parts of this section designates the machine epsilon (see Section 8).

*NRM-+: A positive integer specifying the row dimension of the work array WRKNEH in the user's
calling program. NRM must satisfy the relation NRM 2 M + N; if not, the program will abort. The
provision of this variable, NRN, and NC (below) allows the user the flexibility of solving several

13

I

problems with different values of M and N one after the other, with the same work arrays.

*NRN+: A positive integer specifying the row dimension of the work array WRKNEN in the user's
calling program. NRN must satisfy the relation NRN 2 N; if not, the program will abort.

*NC-+: A positive integer specifying the row dimension of the work array WRKUNC in the user's
calling program. NC must satisfy the relation NC 2 rdi]; if not, the program will abort.

XO-+: An array of length N that contains an initial estimate of the solution x.

*M+: A positive integer specifying the number of nonlinear equations. The program will abort
if M 5 0.

*N+: A positive integer specifying the number of variables in the problem. The program
will abort if N ,< 0.

TYPX-: An array of length N in which the typical size of the components of X is specified.
The typical component sizes should be positive real scalars. If a negative value is specified, its
absolute value will be used. If 0. is specified, 1. will be used. This vector is used by the package
to determine the scaling matrix, D,. Although the package may work reasonably well in a large
number of instances without scaling, it may fail when the components of x, are of radically .

different magnitude and scaling is not invoked. If the sizes of the parameters are known to differ
by many orders of magnitude, then the scale vector TYPX should definitely be used. For example,
if it is anticipated that the range of values for the iterates zk would be

21 E [-10'0, lO'O]
z2 E [-io2 , 1041
23 E [-6 x lod6, 9 X

then an appropriate choice would be TYPX = (l.OD10, 1.0D3, 7.OD-6). Module DFAULT returns
TYPX = (1.OD0, ..., 1.ODO).

TYPF-: An array of length M in which the typical size of the components of F is specified.
The typical component sizes should be positive real scalars. If a negative value is specified,
its absolute value will be used. If 0. is specified, 1. will be used. This vector is used by the
package to determine the scaling matrix DF. TYPF should be chosen so that all the components
of D p (z) have similar typical magnitudes at points not too near a root, and should be chosen
in conjunction with FTOL. It is important to supply values of TYPF when the magnitudes of
the components of F (z) are expected to be very different; in this case, the program may work
better with good scaling information than with DF = I . If the magnitudes of the components
of F (z) are similar, the choice DF = I suffices. Module DFAULT returns TYPF = (1.OD0, ..., 1.ODO).

ITNLIMd: Positive integer specifying the maximum number of iterations to be performed before
the program is terminated. Module DFAULT returns ITNLIM = 150. If the user specifies ITNLIM
- < 0, the module INCHK will supply the value 150.

14

t
I

JACFLG-: Integer flag designating whether or not an analytic Jacobian h
the user.
JACFLG = 0 : No analytic Jacobian supplied.
JACFLG = 1 : Analytic Jacobian supplied.

b en supplied by

When JACFLG = 0, the Jacobian isobtained by finite differences. The module DFAULT r e t m s
the d u e 0. If the user specifies an illegal value, the module INCHK will supply the value 0.

CRADTL-: Positive scalar giving the tolerance at which the scaled gradient of f(z) = $F(z)*F(z)
is considered close enough to zero to terminate the algorithm. The scaled gradient is a mea-
sure of the relative change in F in each direction zj divided by the relative change in zi. More
precisely, the test used by the program is

Here Vf(z) = J (z) ~ D F ~ F (~) , and Fnorm = 311D~F(z)112~ where DF = d&zg(l/TYPFl, ..., l/lWFm).
The module DFAULT returns the value
INCHK wiU supply the value

If the user specifies a negative value, the module
.

STEpTL-: A positive scalar providing the minimum allowable relative step length. STEPTL
should be at least as small as where d is the number of accurate digits the user desires in
the solution z,. The actual test used is

The program may terminate prematurely if STEPTL is too large. Module DFAULT returns the
value c2I3. If the user specifies a negative value, the module INCHK will supply the value c2I3.

FTOL+: A positive scalar giving the tolerance at which the scaled function D F F (~) is con-
sidered close enough to zero to terminate the algorithm. The program is halted if l l D ~ F (z) 1 1 ~
is 5 FTOL. This is the primary stopping condition for nonlinear equations; the values of TYPF
and FTOL should be chosen so that this test reflects the user's idea of what constitutes a solution
to the problem. The module DFAULT returns the value c2i3. If the user specifies a negative value,
the module INCHK will supply the value c2i3 .

METHOD-: An integer flag designating which method to use.
METHOD = 0 : Newton or Gauss-Newton algorithm is used.
METHOD = 1 : Tensor algorithm is used.
Module DFAULT returns value 1. Lf the user specifies an illegal value, module INCHK will reset
METHOD to 1, and execution will continue.

GLOBAL-+: An integer flag designating which global strategy to use.
GLOBAL = 0 : Line search is used.

1s

I

GLOBAL = 1 : Two-dimensional trust region is used.
Module DFAULT returns value of 0. If the user specifies an illegal value, module INCHK will reset
GLOBAL to 0, and execution will continue.

 STEP^^: A positive scalar providing the maximum allowable scaled step Iength llD=(~+--5~)11~,
where D, = diag(l/TYPXI, ..., l/TYP&). STEPHX is used to prevent steps that would cause the
nonlinear equations problem to overflow, and to prevent the algorithm fiom leaving the area of
interest in parameter space. STEPMX should be chosen small enough to prevent these occurrences
but should be larger than any anticipated "reasonable" step. Module DFAULT returns the value
STEpMX = lo3. If the user specifies a nonpositive value, module INCHK sets STEPMX to lo3.

DLT-t: A positive scalar giving the initial trust region radius. When the line search strat-
egy is used, this parameter is ignored. For the trust region algorithm, if D L T is supplied, its
value should reflect what the user considers a maximum reasonable scaled step length at the
first iteration. If D L T is not supplied (DLT = -l.O), the routine uses the length of the Cauchy step
at the initial iterate instead. The module DFAULT returns the value -1.0. If the user specifies a
nonpositive value, module INCHK sets D L T = -1.0.

IPR-: The unit on which the package outputs information. DFAULT returns the value 6 , which
is the standard Fortran unit for the printer.

*WMUNC-: Workspace used by UNCMIN. The user must declare this array to have dimensions at
least N C x (2 [4 1 + 4) in the calling routine; if not, the program will abort.

*WRKNEM-t: Workspace used to store the Jacobian matrix, the function values matrix FV, the
tensor matrix ANLS, and working vectors. The user must declare this array to have dimensions
at least N R H x (N + 2 [f i 1 + 1 1) in the calling routine; if not, the program will abort.

*WRKNEN-: Workspace used to store the matrix S of previous directions, the matrix SHAT of
linearly independent directions, and working vectors. The user must declare this array to have
dimensions at least N R N x (2 [f i 1 + 1 3) in the calling routine; if not, the program will abort.

ANJA+: The name of a user-supplied subroutine that evaluates the first derivative (Jacobian)
of the function F(z). The subroutine must be declared EXTERNAL in the user's program and
must conform to the usage

CALL ANJACJAC, X , NRM, N) ,

where X is a vector of length N and the 2-dimensional array J A C is the analytic Jacobian of F at
X. When using the interface NONLQ, if no analytic Jacobian is supplied (JACFLG = 0), the user
must use the dummy name FDAJA as the value of this parameter.

* F V E C - + : The name of a user-supplied subroutine that evaluates the function F at an arbi-
trary vector X. The subroutine must be declared EXTERNAL in the user's calling program and
must conform to the usage

16

CALL FVEC(X, F, M , N) ,

where X is a vector of length N and F is a vector of length M. The subroutine must not alter the
values of X.

*MSGt+: An integer variable that the user may set OR input to inhibit certain automatic
checks or to override certain default characteristics of the package. (In the short call it shodd
be set to 0 on input.) There are four “message” features that can be used individually or in
combination as discussed below.
MSG = 0 : Values of input parameters, final results, and termination code are printed.
MSG = 2 : Do not check user’s analytic Jacobian routine against its finite difference estimate.
This may be necessary if the user knows the Jacobian is properly coded, but the program aborts
because the comparative tolerance is too tight. Do not use MSG = 2 if the analytic Jacobian is
not supplied.
MSG = 4 : Suppress printing of the input state, the final results, and the stopping condition.
MSG = 8 : Print the intermediate results; that is, the input state, each iteration including the
current iterate zk, ;11D~F(zk)llz’, and Vf(z) = J (z) T D ~ 2 F (z) , and the final results including
the stopping conditions.
The user may specify a combination of features by setting MSG to the sum of the individual com-
ponents. The module DFAULT returns a value of 0. On output, if the program has terminated
because of erroneous input, HSG contains an error code indicating the reason.
MSG = 0 : No error.
MSG = -1 : Illegal dimension , NRM < M+N.
MSG = -2 : Illegal dimension , NRH < N.
MSG = -3 : Illegal dimension , NC < [d l .
MSG = -4 : Illegal dimension , H 5 0.
MSC = -5 : Illegal dimension , N 5 0.
MSC = -6 : Program asked to override check of analytic Jacobian against finite difference esti-
mate, but routine A N J A not supplied (incompatible input).
MSC = -7 : Probable coding error in the user’s analytic Jacobian routine ANJA. Analytic and
finite difference Jacobian do not agree within the assigned tolerance.

*XP-: An array of length N containing the best approximation to the solution 2, upon re-
turn. (If the algorithm h a s not converged, the find iterate is returned).

*FP-: .4n array of length M containing the function value F(XP).

*CP-: An array of length N containing the gradient of the function +11F(z)112’ at XP.

* T E R M C D t : An integer that specifies the reason the algorithm was terminated.
TERMCD = 0 : No termination criterion satisfied (occurs if package terminates because of illegal
input).
TERMCD = 1 : function tolerance reached. Current iteration is probably solution.
TERMCD = 2 : gradient tolerance reached. For nonlinear least squares, current iteration is prob-

17

I

ably solution; for nonlinear equations, this could either be solution or local minimizer.
TERHCD = 3 : Successive iterates within tolerance. Current iterate may be solution, or algorithm
may have bogged down away from solution.
TERMCD = 4 : Last global step failed to locate a point h e r than XP. It is likely that either xp
is an approximate solution of the problem or STEPTL is too large.
TERMCD = 5 : Iteration limit exceeded.

7. Summary of Default Values

The following parameters are returned by the module DFAULT:

ITNLIN = 150
JACFLG = 0
IPR = 6
GRADTL =
FTOL = €213
STJPTL = €213
METHOD = 1
GLOBAL = 0
STEPMX = 10.OD+3
DLT = -1.ODO
TYPX = (l.ODO, ..., 1.ODO)
TYPF = (1 .ODO, . . . , 1 .OD01
MSG = 0

8. Implementation Details

This program package has been coded in Fortran 77 using double precision. It consists of
approximately 8700 lines of code, of which 3400 lines are the software package UNCMIN [12]
which has been designed to solve the unconstrained nonlinear optimization problem, and about
25% are comments. The total data storage required is about M x (N + 2 f i) + N x (N + 4 f i)
doubleprecision numbers. The program was developed and tested on a Sun4 computer in the
Computer Science Department at the University of Colorado at Boulder.

There is one machine dependency. The machine epsilon is calculated by the package and used
in several places, including finite differences stepsizes and stopping criteria. On some computers,
the returned value may be incorrect because of compiler optimizations. The user may wish to
check the computer value of the machine epsilon and, if it is incorrect, replace the code in the
subroutine MACEPS with the following statement.

EPS = correc t value of machine epsi lon

9. Example of Use

In the example code shown below in Figure 1, we first call the default routine DFAULT which
returns with the default values, then override the values of GRADTL, FTOL, and STEPTL. Then we

18

call the interface NLEq to solve the system of nonlinear equations coded in FVEC. We arbitrarily
base our storage upon NRM = 100 and NRN = 30 to a h w for larger probIems than those shown.

PROGRAH TENSLV
INTEGER HRn,NRN,NC,H,N,ITNLIH,JACFLG,METHOD
INTEGER GLOBAL,IPR,MSG,TERMCD,I
PARAHETER (NRM = 100, NRN = 30, NC = 6)
DOUBLE PRECISION GRADTL,STEPTL,FTOL,STEPHX,DLT
DOUBLE PRECISION XO(NRN),W~C(NC,l6),WRKNEH(NRM,S3)
DOUBLE PRECISION WRKNEN(NRN,25) ,TYPX(NRN) ,TYPF(NRM)
DOUBLE PRECISION XP (NRN) ,FP (NRM) , GP (NRN)
EXTERNAL FDAJA,FVEC
READ(S,*) H , N
READ(S,*) (XO(1) ,I=l,N)
CALL DFAULT(H,N,ITNLIH,JACFLG,GFtADTL,STEPTL,FTOL,METEOD,

GRADTL = 1 .OD-5
FTOL = 1.OD-9
STEPTL = 1.OD-9
CALL NONLq(NRM,NRN,NC,XO,H,N,TYPX,TYPF,ITNLIH,JACFLG,GRADTL,

+ GLOBAL, STFPHX , DLT ,TYPX ,TYPF, IPR, MSG)

+ STEPTL,FTOL,HETHOD,GLOBAL,STEPHX,DLT,IPR,WRKUNC,
+ WRKNEH,WRKNEN,FDAJA,FVEC,HSG,XP,FP,GP,TEIMCD)

END

Figure 1. Driver to so lve a system of nonlinear equations or a nonlinear

C
C
C

least squares problem

The following is a subroutine for the Rosenbrock function.

SUBROUTINE FVEC(X,F,M,N)
INTEGER N,M
DOUBLE PRECISION X(N) ,F(H)

' F(1) = lO.ODO*(X(2)-X(1)**2)
F (2) = l.ODO-X(l)
RETURN
END

If we run the above example with the following input:
M, N: 2 2
XO: -1.2DO 1.ODO the output will be as follows:

NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV

RESULT
RESULT
RESULT
RESULT
RESULT
RESULT
RESULT

NLSTP

RESULT
RESULT
RESULT
RESULT
RESULT
RESULT
RESULT

TYPICAL x
0.1000000000000D+Ol 0.1000000000000D+01
DIAGONAL SCALING MATRIX FOR X
0.1000000000000D+Ol 0.1000000000000D+Ol
TYPICAL F
0.1000000000000D+01 0.1000000000000D+01
DIAGONAL SCALING MATRIX FOR F
0.1000000000000D+01 0.1000000000000D+01
JACOBIAN FLAG =O (=l IF ANALYTIC JACOBIAN SUPPLIED)
METHOD =1 ('1 IF TENSOR METHOD USED)
GLOBAL STRATEGY 10 (-0 IF LINE SEARCH USED)
ITERATION LIMIT = 150
HACHINE EPSILON f 0.2220446049250D-15
STEP TOLERANCE J 0.1000000000000D-08
GRADIENT TOLERANCE = 0.1000000000000D-04
FUNCTION TOLERANCE = 0.1000000000000D-08
HAXIMLTH STEP SIZE = 0.1000000000000D+04
TRUST REG RADIUS =-0.1000000000000D+01

ITERATION K = 0
X (K)
-0.1200000000000D+Ol 0.1000000000000D+01
FUNCTION AT X(K)

GRADIENT AT X(K)
-0.1077999998579D+03 -0.4400000000000D+02

0.1210000000000D+02

FUNCTION VALUE CLOSE TO ZERO

ITERATION K = 7
X (K)

FUNCTION AT X(K)

GRADIENT AT X(K)
-0.4270366293595D-09 0.7237543951455D-10

0.9999999997177D+OO 0.9999999994362D+00

0.3986881344063D-19

20

i

x

'

If we now wish to solve the nonlinear least squares problem given by the following subroutine
FVEC:

C
C
C

The following is a subroutine f o r t h e Wood function.

SUBROUTINE FVEC (X, F, H, N)
INTEGER M,N
DOUBLE PRECISION X(N) ,F(M)
F(1) = lO.ODO* (X(2) -X(1) **2)
F(2) = 1.000-X(1)
F (3) = SQRT (90. ODO) * (X (4) -X (3) **2)
F(4) l.ODO-X(3)
F (5) =I SQRT (10. ODO) * (X(2) +X (4) -2. ODO)
F(6) = (1 . ODO/SQRT(10. ODO)) * (X(2) -X(4))
RETURN
END

with the following input:
M, N: 6 4

GLOBAL: 1 (Le. this is set after the call to DFAULT in the driver program)
the output will be as follows:

XO: -30.ODO -1O.ODO -30.ODO -1O.ODO

NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV
NESLV

TYPICAL X
0.1000000000000D+Ol 0.1000000000000D+01
0.1000000000000D+01
DIAGONAL SCALING.MATRIX FOR X
0.1000000000000D+Ol 0.1000000000000D+01
0.1000000000000D+Ol
TYPICAL F
0.1000000000000D+Ol
0.1000000000000D+Ol

0.1000000000000D+Ol

DIAGONAL SCALING MATRIX FOR F

0.1000000000000D+Ol 0.1000000000000D+01
0.1000000000000D+01 0.1000000000000D+01 0.1000000000000D+Ol

0.1000000000000D+Ol

JACOBIAN FLAG =O (=l IF ANALYTIC JACOBIAN SUPPLIED)
METHOD =1 (=1 IF TENSOR METHOD USED)
GLOBAL STRATEGY =l (=O IF LINE SEARCH USED)
ITERATION LIMIT = 150
HACHINE EPSILON = 0.2220446049250D-15
STEP TOLERANCE = 0.1000000000000D-08

21

'

NESLV
NESLV
NESLV
NESLV

RESULT
RESULT
RESULT
RESULT
RESULT
RESULT
RESULT
RESULT
RESULT

NLSTP

RESULT
RESULT
RESULT
RESULT
RESULT
RESULT
RESULT
RESULT
RESULT

GRADIENT TOLERANCE = 0.1000000000000D-04
FUNCTION TOLERANCE = 0.1000000000000D-08
HAXIMUH STEP SIZE = 0.1000000000000D+04
TRUST REG RADIUS ~-0.1000000000000D+Ol

ITERATION K = 0
X(K)
-0.3000000000000D+02 -0.1000000000000D+02
-0.1000000000000D+02
FUNCTION AT X(K)

GRADIENT AT X(K)
-0.5460030962972D+07 -0.9122000000267D+05
-0.8211996230035D+05

0.7867288100000D+08

FUNCTION VALUE CLOSE TO ZERO

ITERATION K = 5
X(K)
0.1000000000000D+01 0.1000000000000D+01
0.1000000000000D+01

FUNCTION AT X(K)

GRADIENT AT X(K)

-0.3861688746554D-12

0.2488861702651D-26

0.11786127717lOD-11 -0.6152522979420D-12

0.1000000000000D+Ol

0.7212008821566D-12

10. Test Results

We have tested the TENSOLVE software package using the algorithms described above on a variety
of nonsingular and singular problems. This section summarizes and discusses the test results.

In our tests, the package terminates successfully if the relative size of (z+ - z,) is less
than rnacheps4, or 11 F(z+) lloo is less than machepsf . It terminates unsuccessfully if the
iteration Limit of 150 is exceeded. If the last global step fails to locate a point lower than 2,
in the Line search or trust region global strategies, or the relative size of J (Z +) ~ F (Z +) is less
than machepsi, the method stops and reports this condition; this may indicate either success
or failure. .4U our computations were performed on a Sun4 computer in the Computer Science
Department at the University of Colorado at Boulder, using doubleprecision arithmetic.

First we tested the software package on the set of nonlinear equations and nonlinear least
squares problems in Mor& Garbow, and Hillstrom [9]. These problems all have nonsingular
Jacobians at the solution with the exception of Powell's singular function. Then we created

22

singular test problems as proposed in Schnabel and Frank [ll] by modifying the nons inda r
test problems of Mor&, Garbow, and HiUstrom to the form

(10.1)

where F(z) is the standard nonsingular test function, z, is its root or minimizer, and A E Rmxk
has full column rank with 1 5 k 5 It. Note that z. is a root or critical point of the modified
problem, and rank p'(z,) = n-ranlc(A). We used (10.1) to create two sets ofsingular problems,
with p'(z) having rank n - 1 and n - 2, respectively, by using

A E RmX1, AT = (l,l, ..., l),

and
(10.2)

respectively.
We tested our tensor algorithm on 17 test functions for systems of nonlinear equations (also

including 4 functions from [i] whose Jacobian at the solution z, is singular and are designated as
Griewank functions) and 11 test functions for nonlinear least squares. Some of the test problems
were run a t various dimensions. W of these problems were also run with the standard method.
The list of test problems is given in Appendix A; the detailed test results are given in [2].

Our computational results for the test problems whose Jacobians at the solution have ranks
n, n- 1, and n-2 are summarized in Tables 1 to 4. In each of these tables, columns "Better" and
"Worse" represent the number of times the tensor method was better and worse, respectively,
than the standard method by more than one iteration. The "Tie" column represents the number
of times the tensor and standard methods required within one iteration of each other. For each
set of problems, we summarize the comparative costs of the tensor and standard methods using
average ratios of two measures: iterations, and function evaluations. The average iteration
ratio is the total number of iterations required by the tensor method over all the problems
included, divided by the total number of iterations required by the standard method on the same
problems. The same measure is used for the average function evaluation ratio. These average
ratios include only problems that were successfully solved by both methods. We have excluded
from the summary of statistics all cases where the tensor and standard methods converge to
a different root, or to the same root as each other but not the singular root z. in the case
of singular problems. However, the statistics for the "Better," "Worse," and "Tie" columns
include the cases where only one of the two methods converges, and exclude the cases where
both methods do not converge. The total number of problems that were solved by one method
but not the other are given in the last two columns of each table.

In the test results obtained for both nonsingular and singular nonlinear equations problems,
the tensor method virtually never is less efficient than the standard method and usually is
more efficient. The improvement by the tensor method over the standard method with the same
global strategy is substantial, averaging about 49% in iterations and 41% in function evaluations
when the line search is used, and about 42% in iterations and 31% in function evaluations when
the trust region is used, on the problems that are successfully solved by both methods. The
improvement by the tensor method over the standard method is more dramatic on problems

23

with small rank deficiency than on nonsingular problems, but is substantial in a cases. On r a d
n- 1 problems, this is due in part to the tensor methods achieving 3 step Q-order $ convergence
whereas the Newton’s method is linearly convergent with constant $ [SI.

The tensor method is also significantly more robust than the standard Newton-based method
for the nonlinear equations test set. Over 4 the nonlinear equations test problems, 5 rank n
problems, 5 rank n - 1 problems, and 8 rank n - 2 problems were solved by the tensor method
and not by the standard method when the line search was used, and 6 rank n problems, 4 rank
n - 1 problems, and 4 rank n - 2 problems were solved by the tensor method and not by the
standard method when the trust region was used. On the other hand, only 1 rank n problem
was solved by the standard method and not by the tensor method when the line search was used,
and only 1 rank n problem was solved by the standard method and not by the tensor method
when the trust region was used.

For the entire set of nonsingular and singular nonlinear least squares problems, the average
improvement of the tensor method over the standard Gauss-Newton method also is substantial.
Over the problems solved successfully by both methods, the improvement averages about 52%
in iterations and 53% in function evaluations when the line search is used, and about 35% in
iterations and 28% in function evaluations when the trust region is used.

The tensor method is also considerably more robust than the Gauss-Newton method for the
nonlinear least squares test set, especially in the line search comparison. The tensor method
solves several problems that the standard Gauss-Newton method does not, and the reverse
never occurs. Over all the nonlinear least squares test problems, 4 rank n problems, 2 rank
n - 1 problems. and 4 rank n - 2 problems were solved by the tensor method and not by the
standard Gauss-Newton method when the line search was used, and 3 rank n problems, 1 rank
n - 1 problems, and 1 rank n - 2 problems were solved by the tensor method and not by the
standard Gauss-Newton method when the trust region was used. On the other hand, there were
no, problems solved by the standard Gauss-Newton method and not by the tensor method when
either the line search or the trust region was used.

X closer examination of the nonlinear least squares test results shows that the improvements
by the tensor method are considerably larger for zero residual problems than for nonzero residual
problems. The difference is most dramatic in the nonsingular case. Tables 5 and 6 show the
average iteration and function evaluation ratios of the tensor method versus the Gauss-Newton
met hod for zero and nonzero residual problems, respectively. The performance differences may
be attributable to the fact that both the standard and tensor methods are linearly convergent
on nonzero residual problems, but are more quickly convergent on zero residual problems.

The comparison between the line search methods and the trust region methods is very
interesting, for both the standard and tensor methods. This is summarized in Tables 7 and 8.
These tables show that on the average, the two-dimensional trust region approach often is more
efficient than the line search method, especially on nonsingular problems. It is important to
note, however, that the line search method is simpler to implement and to understand than the
the two-dimensional trust region approach, and is appreciably faster in terms of CPU time on
small, inexpensive problems where the complexity of the code becomes the dominant cost. It
should also be noted that there is considerable variation in the comparative efficiency of the line
search and trust region methods on individual problems and that either may be more efficient
for a particular problem class.

24

Perhaps a more important consideration in the general comparison of the line search and
trust region methods, however, is that the two-dimension4 trust region method solves consid-
erably more of the test problems than the line search method. The advantage in robustness is
particularly large in comparing line search and trust region versions of the standard methods;
it is smaller but still significant in comparing tensor methods for nonlinear least squares, and
insignificant in our tests of tensor methods for nonlinear equations. Over all the nonlinear equa-
tions test problems, l rank n - l and 2 rank n - 2 problems were solved by the trust region and
not by the line search, whereas 1 rank n problem and 1 rank n - 1 problem were solved by the
line search and not by the trust region, when the tensor method was used. On the other hand,
when the Newton's method based code was used, 6 rank n problems, 6 rank n - 1 problems,
and 5 rank n - 2 problems were solved by the trust region and not by the line search, whereas
only 1 rank n problem, 1 rank n - 1 problem, and 1 rank n - 2 problem were solved by the line
search and not by the trust region. Over all the nonlinear least squares test problems, 7 rank n
problems and 3 rank n - 2 problems were solved by the trust region and not by the line search,
whereas 4 rank n problems were solved by the 'line search and not by the trust region, when
the tensor method was used. When the standard Gauss-Newton method was used, 7 rank n
problems, 2 rank n - 1 problems, and 8 rank n - 2 problems were solved by the trust region and
not by the Line search, whereas only 1 rank n- 1 problem and 1 rank n-2 problem were solved
by the line search and not by the trust region. Thus, the trust region version seems to have a
considerable advantage over the line search version in its robustness, although more when using
the standard method than the tensor method. We note that the smaller average improvement of
the tensor method over the standard method in the trust region cases (Tables 2 and 4) than the
line search cases (Tables 1 and 3) is related to the difference in problem sets that are included in
these statistics, because of the differing robustness of the line search and trust region methods.

Finally, we compared our tensor method with the NL2SOL package [5] on the set of nonlinear
least squares problems used in [SI that is listed in Appendix B. The reason we were interested
in making this comparison is that the NL2SOL method theoretically is superlinearly convergent
on nonzero residual problems ([5]), whereas the tensor method of this paper, like Gauss-Newton
methods, is only linearly convergent on nonzero residual problems. (This difference is related to
NL2SOL using a quadratic model of F (z) ~ F (z) whereas the tensor and Gauss-Newton methods
use models of F (t) .) The problems include a mixture of zero, small, and large residual problems.

Table 9 reports the comparative test results of the tensor method versus NL2SOL on this test
set. The first row of Table 9 compares the tensor method using a line search with NL2SOL, whereas
the second row compares the tensor method using a two-dimensional trust region with NL2SOL.
(NL2SOL uses a trust region global strategy.) The table shows that on these test problems,
the tensor method on the average is somewhat more efficient than NL2SOL, with an average
improvement of about 58% in iterations and 29% in function evaluations when the line search is
used, and about 24% in iterations and 7% in function evaluations when the trust region is used.
(Note that the tensor method with line search is more efficient than the tensor method with
trust region on this test set.) There is no difference in the robustness of the two packages of
this test set; only 1 problem in the test set was solved by NL2SOL and not by the tensor method
using either a line search or a trust region method, and only 1 problem was solved by the tensor
method and not by NL2SOL. These Limited results indicate that the tensor method appears to
be quite competitive with NL2SOL for solving least squares problems.

’ Rank
F’(z*)

n
n-1
n-2

Table 2: Summary for Nonlinear Equations Test Problems Using Twa-Dimensional Trust Region
Rank I Tensor I AverapreRatio I Only I Only

Tensor Average Ratio Only Only
Better Worse Tie Tensor/Newton Newton Tensor

Itn F e d Solved Solved
25 2 13 0.60 0.69 1 5
24 0 8 0.48 0.53 0 5
27 1 5 0.46 0.56 0 8

n- 0.49 0.63
0.64 0.73 4

Rank Tensor Average Ratio Only
F‘(zr) Better W o n Tensor/Gauss-Newton Gauss-Newton

Feval Solved Itn
n 20 1 8 0.52 0.5 1 0

n - 1 is 0 8 0.45 0.41 0
n-2 28 0 5 0.48 0.48 0

Only
Tensor
Solved
4
2
4

Rank Tensor Average Ratio OdY

n 26 1 5 0.66 0.76 0
n-1 19 2 5 0.66 0.71 0
n-2 28 1 4 0.63 0.69 0

F’(z,) Better Worse Tie ‘ Tensor/Gauss-Newton Gauss-Newton
Solved Itn Feval

26

O d Y
Tensor
Solved

3
1
1

' c ' *

Rank Linesearch
F'(z,) Itn F e d
n 0.43 0.44

n- 1 0.41 0.37
n- 2 0.48 0.48

TrustRegion
Itn F e d
0.43 0.56
0.64 0.62
0.51 0.57

Rank
P(z,)
n

n - 1
n - 2

Table 7: Average Ratios of Iterations and Function Evaluations of Newton with Trust Region
versus Newton with Line Search and Tensor with Trust Region versus Tensor with Line Search
for Nonlinear Equations

Line Search Trust Region
Itn F e d Itn F e d
0.64 0.64 0.78 0.88
0.48 0.45 0.67 0.79
0.49 0.48 0.68 0.76

Table 8: Average Ratios of Iterations and Function Evaluations of Gauss-Newton with Trust
Region versus Gauss-Newton with Line Search and Tensor with Trust Region versus Tensor with
Line Search for Nonlinear Least Squares Problems

0.71
0.97

27

Global strategy

Tensor w/ LS
Tensor w/ TR

References

Tensor versus NL2SOL Average Ratio-Tensor/~1,2S0L
Better Worse Tie Itn F e d

25 8 2 0.42 0.71
24 9 2 0.76 0.93

[l] A. Bouaricha, A Software Package for Solving Systems of Nonlinear Equations and Nonlin-
ear Least S p a r e s Problems Using Tensor Methods, M.S. thesis, Department of Computer
Science, University of Colorado at Boulder, 1986.

[2] A. Bouaricha, Solving Large Sparse Systems of Nonlinear Equations and Nonlinear Least
Squares Pmblems Using Tensor Methods on Sequential and Parallel Computers, Ph.D. the-
sis, Department of Computer Science, University of Colorado at Boulder, 1992.

[3] R. H. Byrd, R. B. Schnabel, and G. A. Shultz, Approzimation Solution of the Trust Region
Problem by Minimization ouer Two-Dimensional Subspaces, Mathematical Programming,
40 (1988), pp. 247-263.

[4] J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Optimization and
Nonlinear Equations, Prentice-Hall, Englewood Cliffs, N.J., 1983.

[5] J. E. Dennis, D. M. Gay, and R. E. Welsch, An Adaptive Nonlinear Least Squares Algorithm,
ACM Trans. Math. Softw., 7 (198l), pp. 348-368.

[6] D. Feng, P. Frank, R. B. Schnabel, A n Analysis of Tensor Methods for Nonlinear Equations,
Technical Report CS-CS-729-94, Department of Computer Science, University of Colorado
a t Boulder, 1992.

[7] A. 0. Griewank, Analysis and ModiJcation of Newton's Method at Singularities, Ph.D.
thesis, Australian Xational University, Canberra, 1980.

[a] J. J. %ford. The Leuenberg-itlarquardt Algorithm: Implementation and Theory, in iVumerical
Analysis, G. A. *Watson, ed., Lecture Notes in Mathematics, vol. 630, Springer-Verlag,
Berlin, 1977, pp. 105-116.

[9] J. J. Mor6, B. S. Garbow, and K. E. Hillstrom, Testing Unconstrained Optimization Soft-
ware, ACM Trans. Math. Softw., 7 (1981), pp. 17-41.

[lo] M. J. D. Powell, A New Algorithm for Unconstmined Optimization, in Nonlinear Progmm-
ming, J . B. Rosen, O.L. Mangasarian, and K. Ritter, eds., Academic Press, New York, pp.
1970,33-65.

28

[ll] R. B. Schnabel and P. D. Frank, Tensor Methodsfor Nonlinear Equations, SUM. J. N=.

[12] R. B. Schnabel, J. E. Koontz, and B. E. Weiss, A Modular System of Algorithms of Unmn-

Anal., 21 (1984), pp. 815-843.

strained Minimization, ACM Trans. Math. Softw., 11 (1985), pp. 419-440.

29

Appendix A

The columns in Tables A-1 and B-1 have the following meanings:

- Problem: name of the problem.

- rn: number of equations.

- n: number of variables.

- NS: dimension of nullspace for Griewank’s singular functions.

- OS: order of singularity for Griewank’s singular functions.

Table A-1: List of Nonlinear Equations and Nonlineaz Least Squares Test Problems Used in the
Comparison of Tensor Meth versus Standard Me

Problem

Brown almost linear
Broyden banded

Broyden tridiagonal
Chebyquad

Discrete boundary
Discrete integral

Helical d e y
Powell singular

Rosenbrock
Trigonometric

Variable dimension
Watson

Wood gradient
NS = 1 OS = 1
NS = 2 os = 1
N S = l O S = 2
NS = 2 os = 2

30

od
Dimension -
m
10
30
30
7

30
10
3
4
2
30
10
31
4
3
3
3
3

-

-

n
10
30
30
7

30
10
3
4
2
30
10
31
4
3
3
3
3

Table A-1: List of Nonlinear Equations and Nonlinear Least squares Test Problems Used in the
Comparison of Tensor Method ;enus Standard Me

I Problem

Wood
Variable dimension

Bard
Beale

Kowalik
Penalty1
Penalty2

Brown badly scaled
Gauss function

Brown and Dennis
C heby quad
Chebyquad
Cheby quad

iod (conti&
Dimension -
nt -
6
12
15
3
11
11
10
3
15
10
8
12
16 -

n
4
10
3
2
4
10
5
2
3
4
4
4
4

!d)

Appendix B

Table B-1: List of Nonlinear Equations and Nonlinear Least Squares Test Problems Used in the
Comparison of Tensor Method versus NL2SOL

Problem

Rosenbrock
Helical Valley

Powell Singular
Wood
Beale

Box three-dimensional
Freudenstein and Roth

Dimension

10
2 2

31

Problem

Watson
Watson
Watson
Watson

C heby quad
Bard

Jennrich and Sampson
Kowalik

Osborne 1
Osborne 2

32

Dimension
m n
31 6
31 9
31 12
31 20
8 8
15 3
10 2
11 4
33 5
65 11

:t ?s Test Problems Used in the

x

