QUAD_CACHE — A Numerical Integration Interface
for Finite Element Methods

Linbo ZHANG

State Key Laboratory of Scientific and Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences.

March 22, 2022

Abstract

The QUAD_CACHE module included in the PHG toolbox is a generic numerical integration interface
for implementation of finite element methods. It provides the QCACHE object with a set of supporting
functions, which can be used to transparently precompute and store values of basis functions and their
derivatives (gradient, divergence, curl, etc.), as well as values of user functions, at the quadrature
points of a given quadrature rule, and then use them to compute numerical integrations of various
variational forms. It is intended to be the new user interface for implementing numerical integrations
in PHG, and PHG users are encouraged to use it in place of the old style phgQuadXXXX functions.

This document briefly describes the design principle and main functions of the QCACHE object.

Contents

1 Introduction 1

2 The QDESC Object 3

3 User Functions 3
3.1 The function phgQCNew 3
3.2 The function phgQCFree 3
3.3 The functions phgQCAdd* L 4
3.4 The functions phgQCSetRule and phgQCSetQuad)
3.5 The functions phgQCIntegratex it 5
3.6 The functions phgQCClone 6
3.7 The functions phgQCGetNP 6

4 Sample programs 6

1 Introduction

In the implementation of finite element methods, one needs to compute integrals of the form:

/Df(a:) dz

where the integration domain D is an element or a subdomain of an element (a face, an edge, etc.),
and the integrand f(z) is a product of basis functions, derivatives of basis functions and user functions,
optionally projected along the normal or tangent directions of D in the case D is a lower dimensional
surface or curve. These integrals are generally computed with numerical quadrature using a numerical
quadrature rule [2].

Originally, PHG provides a set of functions for computing integrals, either in an element or on a face
of an element, of various types of variational forms. For example, the function phgQuadGradBasAGradBas
is used to compute integrals of the following form:

/ Vi AVyp; dz,

where e is an element, ¢; and ¢; are respectively the j-th and i-th basis function in the element, and A
is a coeflicient function which can be either a scalar function or a matrix function. In the phgQuadXXXXX
functions the values of the basis functions and their derivatives at the quadrature points are precomputed
and stored (cached) in the corresponding DOF_TYPE object for reuse, in a transparent way across successive
calls. See [3], Section 2.4, for more details.

The main problem with the above user interface for computing element-wise variational forms is that
the set of functions is becoming increasingly large, and still users often need to write their own functions
for types of variational forms not covered by available functions in the library, which is both non trivial
and redundantly done by different users.

The QCACHE object is intended to replace the aforementioned numerical quadrature functions in PHG.
It is implemented in the files include/phg/quad-cache.h and src/quad-cache.c in the PHG source
package. It can be easily configured to interface with any finite element package, through providing a
QDESC object with a small set of member functions. The interface for PHG is defined by the QDESC object
QD_PHG in the file src/quad-cache.c, which can serve as a sample code if you wish to create your own
QDESC objects for other finite element packages. Another QDESC example is the QD_P4EST, which defines
an interface for the PHG-to-p4est module (see files in the p4est subdirectory in the PHG’s source files.)

Let’s illustrate with a simple example. For solving the Poisson equation —Awu = f using finite
element methods, we need to compute the following integrals:

/ij - Vip; dz, /f‘Pi dz,

where e is an element, and ¢; (0 < i < n) are the basis functions in e. The pseudo code for computing
the above integrals with a QCACHE object is as follows:

ELEMENT *e;
DOF #u_h = phgDofNew(g, DOF_P3, "u_h", NULL); /* u_h is the FE solution */
QCACHE *qc = phgQCNew(QD_PHG, u-h); /* u.h for the FE space */
int Q.f = phgQCAddXYZFunction(qc, func_f, 1); /* Qf is the FID for f */
ForAllElements(g, e) {
INT eno = e->index;
int n = qc->qd->n_bas(qc, eno);
QUAD *quad = phgQuadGetQuad3D(4) ; /* 4th order quadrature rule */
FLOAT vol = phgGeomGetVolume(g, e);
phgQCSetQuad(qc, quad, vol);
for (int 1 = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
val = phgQCIntegrate(qc, eno, Q.-GRAD, j, qc, eno, Q-GRAD, i);
/* add val to the stiffness matrix */

}
val = phgQCIntegrate(qc, eno, Q-BAS, i, qc, eno, Q-f, 0);
/* add val to the RHS vector */

}
}
phegQCFree (&qc) ;

J

In the above example the Ps element is used, g is the pointer to the GRID object, and f is defined
by the user function func_f.

2 The QDESC Object

The QDESC object is used to define an interface to a specific finite element package. For more information
please refer to the comments on the struct QDESC in include/phg/quad-cache.h, and the code defining
QD_PHG in src/quad-cache.c.

3 User Functions

In this section we briefly introduce user functions for the QCACHE object.

3.1 The function phgQCNew

(QCACHE *phgQCNew (QDESC *qd, void *fe);]

It creates a new QCACHE object and returns a pointer to it. qd points to a predefined QDESC object
(QD_PHG for PHG users). fe is a pointer to a struct which provides information about the underlying
finite element space. The actual type of struct pointed to by fe depends on qd (for QD_PHG, fe points to
an DOF struct.)

A QCACHE object has functions attached to it, which are identified with an id of type int (called
function id, or FID) and can be used in the numerical integration functions presented later.

Below is a list of types of attached functions in a QCACHE object:

e The basis functions of the underlying finite element space. They are identified with the FID Q_BAS.
The member function n_bas() in the QDESC object returns the number of basis functions in the
element (predefined).

e The gradients of the basis functions of the underlying finite element space. They are identified with
the FID Q_GRAD (predefined).

e The divergences of the basis functions of the underlying finite element space. They are identified
with the FID Q_DIV (predefined, only valid for vector basis functions, i.e., when the dimension of
the basis functions equals the space dimension).

e The curls of the basis functions of the underlying finite element space. They are identified with
the FID Q_CURL (predefined, only valid for vector basis functions, i.e., when the dimension of basis
functions equals the space dimension).

e An user function, attached through calling one of the functions phgQCAdd*Function.

e The result of multiplying a predefined or previously attached function of any type with an user
function (the latter is called the coefficient function). This type of functions are attached by calling
one of the functions phgQCAdd*Coefficient.

e The result of projecting a predefined or previously attached attached function of any type using the
normal vectors either defined by calling the function phgQCSetConstantNormal, or available in the
quadrature rule. This type of functions are created by calling the function phgQCAddProjection.

e The result of applying an operator to a predefined or previously attached function of any type.
This is done through calling the function phgQCAddOperator. It provides a mechanism to apply a
general transformation to an attached function. In fact Q_DIV, Q_CURL and phgQCAddProjection
are internally implemented as operators.

3.2 The function phgQCFree

(void phgQCFree (QCACHE #**qc) ;)

It frees the QCACHE object pointed by *qc, and sets qc to NULL.

3.3 The functions phgQCAdd*

These functions attach an user function or a coefficient, or apply a projection or an operator to an existing
function, to the given QCACHE object. They return the FID of the resulting new attached function.

e The function phgQCAddFEFunction

(int phgQCAddFEFunction (QCACHE *qc, void *fe);)

It attaches the finite element function fe (a DOF object for QD_PHG) to qc.

e The function phgQCAddXYZFunction

int phgQCAddXYZFunction(QCACHE *qc, FUNC_3D func, int dim);
phg q

It attaches the function func to qc. The dimension (number of components) of the function is given
by dim.

o The function phgQCAddConstantFunction

[int phgQCAddConstantFunction(QCACHE *qc, FLOAT *data, int dim); J

It attaches a constant function to qc. The values of the function are given by data, and the
dimension (number of components) of the function is given by dim.

e The function phgQCAddFECoefficient

[int phgQCAddFECoefficient (QCACHE *qc, void *fe, int base_fid);)

It adds a coefficient function. The resulting function, which is attached to qc with the returned
FID, is the product of fe with the previously attached function whose FID is base_fid.

Let m be the dimension of the function fe and n the dimension of the function base_fid. The
following conventions on the type of product and the dimension of the resulting function are used,
which are subject to future extensions:

— If n =1 or m = 1, then the product is regarded as a scalar function multiplied by a scalar or
vector function, and the dimension of the resulting function is nm.

— If n > 1 and m = n, then fe is regarded as a diagonal n x n matrix, and the dimension of the
resulting function is n.

— If n > 1 and m = n?, then fe is regarded as a full n x n matrix, and the dimension of the
resulting function is n.

o The function phgQCAddXYZCoefficient

[int phgQCAddXYZCoefficient (QCACHE *qc, FUNC_3D func, int dim, int base_fid); j

It’s similar to phgQCAddFECoefficient, but adds a FUNC_3D function of dimension dim, instead of
a finite element function.

See phgQCAddFECoefficient for conventions on the dimensions of the functions.

e The function phgQCAddConstantCoefficient

(int phgQCAddConstantCoefficient (QCACHE *qc, void *data, int dim, int base_fid);]

It’s similar to phgQCAddFECoefficient, but adds a constant function of dimension dim whose values
are given by data.

See phgQCAddFECoefficient for conventions on the dimensions of the functions.

e The function phgQCAddFIDCoefficient

[int pthCAddFIDCoefficient(QCACHE *qc, int fid, int base_fid);)

It’s similar to phgQCAddFECoefficient, but the coefficient function is a previously attached function
whose FID is fid.

See phgQCAddFECoefficient for conventions on the dimensions of the functions.

e The function phgQCAddProjection

(int phgQCAddProjection (QCACHE *qc, PROJ proj, int fid); j

It attaches to qc the new function obtained by projecting the existing function with the FID fid.
proj specifies type of projection (PROJ_NONE, PROJ_DOT and PROJ_CROSS). To use this function
normal vectors at the quadrature points must be available, either provided by the current quadrature
rule, or defined by phgQCSetConstantNormal.

e The function phgQCAddOperator

[int phgQCAddOperator (QCACHE *qc, OP_FUNC op, int fid);]

It creates and attaches to qc the new function obtained by applying the operator op to an existing
function with the FID fid.

e The function phgQCSetConstantNormal

[void phgQCSetConstantNormal (QCACHE *qc, const FLOAT *nv);]

It defines the constant normal vector (the same vector at all the quadrature points) used in the
projections.

3.4 The functions phgQCSetRule and phgQCSetQuad

These two functions set (or change) the quadrature rule of the QCACHE object. Calling one of them will
clear stored (cached) values of all function values as well as normal vectors.

The argument scale is the scaling factor (the weights will be multiplied by scale). It’s also used
to indicate whether the quadrature points are in physical coordinates (scale < 0, and in this case the
weights are not scaled), or in reference coordinates (scale > 0).

e The function phgQCSetRule

(void phgQCSetRule (QCACHE *qc, FLOAT *rule, FLOAT scale); j

It sets the quadrature rule of qc to rule. Note the quadrature rule can be obtained by calling one
of the phgQuadGetRule* and phgQuadInterface* functions, see [1] and doc/quad-XFEM.pdf for
more information.

e The function phgQCSetQuad (for PHG only)

[void phgQCSetQuad (QCACHE *qc, QUAD *quad, FLOAT scale); J

It sets the quadrature rule of qc to quad.

3.5 The functions phgQCIntegratex

These functions compute integrals using the attached functions, and the current quadrature rule and
normal vectors of the specified QCACHE objects. Currently only integration of bilinear forms are imple-
mented.

e The function phgQCIntegrate

FLOAT phgQCIntegrate(QCACHE *qcl, INT el, int fidl, int i1,
QCACHE *qc2, INT e2, int fid2, int i2);

It computes and returns the integral of the (dot) product of two functions, where £id1 and £id2
are FIDs, el and e2 are element indices, with £id1 attached to qcl and evaluated in el, and £id2
attached to qc2 and evaluated in e2. If £id1l (resp. £id2) is derived from a basis function, then i1
(resp. 12) gives the index of the basis function.

For this function the dimensions (number of components) of £id1 and £id2 must be the same.

e The function phgQCIntegrateM

FLOAT *phgQCIntegrateM(QCACHE *qcl, INT el, int fidl, int il,
QCACHE *qc2, INT e2, int fid2, int i2,
int M, int N, int K, FLOAT *res);

It computes integral of the product of two functions and returns the result in res. Here £id1 (resp.
£id2) is regarded as a matrix function of dimension Mx K (resp. K x N) and the integrand is regarded
as a matrix function of dimension M x N, and res points to an array of FLOAT whose length is at
least M*N for returning the result. The other arguments (qc1 through i2) have the same meanings
as in the function phgQCIntegrate.

See comments at the top of the function phgQCIntegrate_ for more information.

e The function phgQCIntegrateFace

FLOAT phgQCIntegrateFace(QCACHE *qcl, INT el, int facel, int fidl,
PROJ projl, int iil,

QCACHE *qc2, INT e2, int face2, int fid2,
PROJ proj2, int i2);

It computes and returns the integral of the (dot) product of two functions on a face (in 2D a
“face” is actually an edge). The face can be an element face identified by both (el, facel) and
(e2, face2 (they should point to the same face), or the intersection of a surface (the interface)
with an element for interface problems. projl (resp. proj2) is the projection to apply to fid1l
(resp. £1d2). The other arguments have the same meanings as in the function phgQCIntegrate.

e The function phgQCIntegrateFaceM

FLOAT *phgQCIntegrateFaceM(QCACHE *qcl, INT el, int facel, int fidl,
PROJ proji1, int il,
QCACHE *qc2, INT e2, int face2, int fid2,
PROJ proj2, int i2,
int M, int N, int K, FLOAT *res);

It computes integral of the product of two matrix functions and returns the result in res. The
arguments M, N and K have the same meanings as in the function phgQCIntegrateM, while the other
arguments have the same meanings as in the function phgQCIntegrateFace.

3.6 The functions phgQCClone

[QCACHE *phgQCClone (QCACHE *qc0) ;]

It returns a QCACHE object with the same FE space, functions, coefficients, operators, projections, and
constant normal vector as that of qcO.

3.7 The functions phgQCGetNP

[int phgQCGetNP (QCACHE *qc) ;)

It returns the number of points of the current quadrature rule in gc.

4 Sample programs

The programs ipdg.c (an IPDG code for the Poisson equation) and interface.c (an IPDG code for
an elliptic interface problem) in the examples/ subdirectory in PHG’s source tree can serve as sample
programs on using the QUAD_CACHE interface.

References

[1] Tao Cui, Wei Leng, Huaging Liu, Linbo Zhang and Weiying Zheng, High-order numerical quadratures
in a tetrahedron with an implicitly defined curved interface, ACM Transactions on Mathematical
Software, 46, 1, Article 3 (March 2020), 18 pages. https://doi.org/10.1145/3372144

[2] Linbo Zhang, Tao Cui and Hui Liu, A set of symmetric quadrature rules on triangles and tetrahedra,
Journal of Computational Mathematics, 27, 1, 2009, 89-96.

[3] 4%, PHG P ZPEAR LG S K — 2 RN 1837 o) AT 130 N BB S, 2247 18 3,
T RHEBEECS 5 RGRAITTTBE 2006.

	Introduction
	The QDESC Object
	User Functions
	The function phgQCNew
	The function phgQCFree
	The functions phgQCAdd*
	The functions phgQCSetRule and phgQCSetQuad
	The functions phgQCIntegrate*
	The functions phgQCClone
	The functions phgQCGetNP

	Sample programs

