High Order Numerical Quadrature Functions for XFEM

Linbo ZHANG

State Key Laboratory of Scientific and Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences.

February 26, 2021

Abstract
This document presents functions available in the PHG toolbox for numerical quadrature in
subdomains of an element cut by an implicit curved interface. Currently four element types, including
triangle, rectangle, tetrahedron and cuboid, are supported.

Contents

1 Introduction 1

2 Functions for general users 2
2.1 The function phgQuadInterfaceRuleApply . . . . . . . . . . . . o vt o 2
2.2 The function phgQuadInterfaceRuleInfo . . . . . . . . . . ... ... ... ........ 2
2.3 The function phgQuadInterfaceTetrahedron . . . . . . . . . . . ... ... ........ 3
2.4 The function phgQuadInterfaceTriangle . . . . . . . . . . . . . . v v v 4
2.5 The function phgQuadInterfaceCuboid . . . . . . . . . . . o 4
2.6 The function phgQuadInterfaceRectangle . . . . . . . . . .. . ... .. ... .. .. 5
2.7 The function phgQuadInterfaceMarkElement . . . . . . . . . . . . .. . . ... 5

3 Functions for PHG users 5
3.1 The function phgQuadInterface . . . . . . . . . . .. it i 6
3.2 The function phgQuadInterfaceMarkGrid . . . . . . . . . . . . . ... oo 6

4 Command-line options 6

5 Acknowledgements 7

1 Introduction

Let E be an element, which can be a triangle, rectangle, tetrahedron or cuboid, and L(x) a smooth level
set function. PHG provides C functions for computing highly accurate approximations of the following
integrals using the algorithm presented in [1] for triangles and tetrahedra, and a modified version of the
algorithm proposed in [2] for rectangles and cuboids:

- + 0 _
I _/Emr fx)dx, I —/EmQ+ fx)dx, I°= Enrf(X)dR (1)

where Q™ := {x | L(x) < 0}, QT := {x| L(x) > 0} and " := {x | L(x) = 0}. The level set function L(x)
and integrand f(x) are assumed smooth in F.
These functions are implemented in the following files:

include/phg/quad-interface.h
include/phg/quad-cuboid.hpp
src/quad-interface.c
src/quad-interface-triangle.c
src/quad-interface-cuboid.cxx



They can be used in implementations of extended finite element methods (XFEM) or other high order
methods for solving PDEs on unfitted meshes. Note that two functions, namely phgQuadInterface and
phgQuadInterfaceMarkGrid, are intended for PHG users only, while all other functions are for general
users and can be used in either PHG or non PHG programs.

2 Functions for general users

2.1 The function phgQuadInterfaceRuleApply

This function computes the integral of a given integrand using a quadrature rule obtained by the numerical
quadrature functions described later in this document. The integral to compute has the following form:

result ::/DP(u(X)),

where D denotes the integration domain matching the quadrature rule, which can be either ENQ~ (1),
ENQT (IT)or ENT (I%), and P denotes a projection operator with respect to the unit normal vector
of T (for I° only).

2.1.1 Prototype

int phgQuadInterfaceRuleApply(void *func, int dim, PROJ proj,
const FLOAT *rule, FLOAT *res);

The return value of the function is the number of points in the quadrature rule.

2.1.2 Arguments
e The integrand P(u(x)) is specified by the arguments func, dim and proj.

— dim = dim(P(u(x))), here dim(f) denotes the dimension, or number of components, of a
function f.

— proj specifies the projection with respect to the unit normal vector of I'. Valid values for proj
are given in the table below:

proj P(u(x)) dim(u(x))
PROJ_NONE |  u(x) dim
PROJ_DOT | u(x) i | dimxd

PROJ_CROSS | u(x) x ii dim X ¢

where i denotes the unit normal vector of I', d denotes the space dimension (2 or 3), and ¢ = d
(for d = 2) or 1 (for d = 3). Note that the values of proj other than PROJ_NONE can only be
used with 9.

— func points to the function for evaluating u(x). For 2D (triangle and rectangle) elements, the
function is of type FUNC_2D, defined as:

typedef void (*FUNC_2D) (FLOAT x, FLOAT y, FLOAT *u);
For 3D (tetrahedron and cuboid) elements, the function is of type FUNC_3D, defined as:
typedef void (*FUNC_3D) (FLOAT x, FLOAT y, FLOAT z, FLOAT *u);

The function should return the value(s) of u(x) at the given point in u.

e The argument rule points to the quadrature rule, computed by one of the functions presented later
in this document.

e The computed integral is returned in res, which points to a buffer of FLOATS of size dim.

2.2 The function phgQuadInterfaceRuleInfo

This function is used to retrieve information and data in a quadrature rule.



2.2.1 Prototype

int phgQuadInterfaceRuleInfo(const FLOAT *rule,
int *dim, FLOAT const **pw, FLOAT const **nv);

The return value of the function is the number of points in the quadrature rule.

2.2.2 Arguments

e The argument rule points to the quadrature rule.
e The argument *dim, if dim # NULL, will be set to the space dimension (2 or 3) of the rule.

e The argument *pw, if pw # NULL, will be set to point to the actual quadrature rule data, which is
an array of FLOATs consisting of {point, weight} pairs. Let n be the number of points in the rule
(the return value of this function), then the size of the array is n x (dim + 1), and we have:

*pw = {xlﬂylawlw‘ ~uxn7ynawn}
for dim = 2, and:
*pw = {xlvylazlvwlv .. wxnvynaznvwn}
for dim = 3.

e The argument *nv, if nv # NULL, will be set to point to the list of unit normal vectors of the
interface at the quadrature points, in the format:

N N - _
*nv = {nl,a:a ngy,...,Nn g, nn,y}7
for 2D elements (dim = 2), and:
*nv = {nl,m7 Ny, N 2.0,y g,y g, nn,z}~

for 3D elements (dim = 3). If the unit normal vectors for the quadrature rule are not available
(e.g., the integration domain is not on the interface, or the option “+qi_nv_flag” was used when
computing the quadrature rule), then *nv will be set to NULL. Note that storing normal vectors of
I" in the quadrature rule can be disabled by the command-line option “+qi_nv_flag” if the normal
vectors are not needed.

2.3 The function phgQuadInterfaceTetrahedron

This function is used to compute quadrature rules for the integrals listed in (1), where F is a tetrahedron.
An example code on using this function is provided in the program test/quad_test3.c.

2.3.1 Prototype

void phgQuadInterfaceTetrahedron(FUNC_3D 1ls, int ls_order, FUNC_3D ls_grad,
FLOAT const tet[4][3], int quad_order,
FLOAT **rule_m, FLOAT **rule_0, FLOAT **rule_p);

2.3.2 Arguments

e The level set function L(x) and its gradient VL(x) are specified by the arguments 1s, 1s_order
and 1s_grad.

— 1s and 1s_grad are pointers to functions of type FUNC_3D which compute respectively the
value of the level set function L(x) and its gradient VL(x) at a given point.

— 1s_order, if nonnegative, specifies the polynomial order of L(x), which is used by the roots
finding algorithm. If 1s_order < 0, then L(x) is non polynomial, in this case the roots finding
algorithm will first use an interpolating polynomial of order |1s_order| to get initial guesses
of the roots, and then apply Newton iterations or bisections to refine the roots.



e The argument tet gives the coordinates of the four vertices of the tetrahedron.

e The order of the 1D Gaussian quadrature rule used in the function is specified by the argument
quad_order. Since Gaussian rules have odd orders, the Gaussian rule of order quad_order + 1
will be used if quad_order is even. In some cases, for examples, if the interface is planar, or
quad_order < 1, or the element is very small, the integral may be approximated using a planar
approximation of the interface, and in this case quadrature rules for triangles and tetrahedra of
order quad_order presented in [3] are used.

e The computed quadrature rules for I—, I° and It are returned by the arguments *rule_m, *rule_0
and *rule_p, respectively. They will be set to point to the corresponding quadrature rule. One (or
more) of rule_m, rule_0 and rule_p can be NULL, then the corresponding quadrature rule(s) are
not computed. Buffers for the computed quadrature rules are dynamically allocated and are to be
freed by the calling function when no longer needed.

The data format for a quadrature rule is an array of FLOATs consisting of a header followed by a
list of quadrature points and weights, and optionally a list of unit normal vectors of the interface
at the quadrature points (for I° only). It is ensured that in the computed quadrature rules, the
points are strictly inside the integration domain and the weights are all positive. The functions
phgQuadInterfaceRuleInfo or phgQuadInterfaceRuleApply can be used to retrieve data from a
quadrature rule, or apply it to specific integrands.

For convenience, and as a special convention, the argument 1s can be a NULL pointer, in this case
a quadrature rule for the integral over the whole element will be computed and returned in rule_m, or
rule_p if rule_m == NULL.

2.4 The function phgQuadInterfaceTriangle

This function is used to compute quadrature rules for the integrals listed in (1), where E is a triangle.
A test program, test/quad_test3-triangle.c, is available which can serve as a sample code on
using this function.

2.4.1 Prototype

void phgQuadInterfaceTriangle(FUNC_2D 1s, int ls_order, FUNC_2D 1ls_grad,
FLOAT const triangle([3][2], int quad_order,
FLOAT **rule_m, FLOAT **rule_0, FLOAT **rle_p);

2.4.2 Arguments

e The element E is specified by the argument triangle, which gives the coordinates of the three
vertices of the triangle.

e See the function phgQuadInterfaceTetrahedron for the meanings of the other arguments.

2.5 The function phgQuadInterfaceCuboid

This function is used to compute the integrals listed in (1), where E is a cuboid.
A test program, test/quad_test3-cuboid.c, is available which can serve as a sample code on using
this function.

2.5.1 Prototype

void phgQuadInterfaceCuboid(FUNC_3D 1s, int ls_order, FUNC_3D ls_grad,
FLOAT const cuboid[2][3], int quad_order,
FLOAT **rule_m, FLOAT **rule_0, FLOAT **rule_p);



2.5.2 Arguments

e The element E is specified by the argument cuboid, which gives the coordinates of lower-left-front
and upper-right-back corners of the cuboid.

e See the function phgQuadInterfaceTetrahedron for the meanings of the other arguments.

2.6 The function phgQuadInterfaceRectangle

This function is used to compute quadrature rules for the integrals listed in (1), where E is a rectangle.
A test program, test/quad_test3-cuboid.c, is available which can serve as a sample code on using
this function.

2.6.1 Prototype

void phgQuadInterfaceRectangle(FUNC_2D ls, int 1ls_order, FUNC_2D 1ls_grad,
FLOAT const rectangle[2][2], int quad_order,
FLOAT **rule_m, FLOAT **rule_0, FLOAT **rule_p);

2.6.2 Arguments

e The element E is specified by the argument rectangle, which gives the coordinates of lower-left
and upper-right corners of the rectangle.

e See the function phgQuadInterfaceTetrahedron for the meanings of the other arguments.

2.7 The function phgQuadInterfaceMarkElement

This function returns an integer indicating the relative position of the given element with respect to the
interface: —1 if the element is entirely contained in 97, 1 if the element is entirely contained in QF, and
0 if the element might intersect the interface.

Note that this function requires that the element is not too big w.r.t. the interface. It may return
wrong results if, for example, the interface is entirely contained in the element.

2.7.1 Prototype
int phgQuadInterfaceMarkElement(void *1s, int ls_order, void *1ls_grad,
ELEMENT_TYPE elem_type, void *E);

2.7.2 Arguments

e The arguments ls, 1s_order and ls_grad specify the level set function and its gradient. 1s
and 1s_grad are of type FUNC_2D for 2D elements, and of type FUNC_3D for 3D elements, see
phgQuadInterfaceRuleApply for more information about these types.

e eclem_type specifies the type of the element. Available types are: ET_TRIANGLE, ET_RECTANGLE,
ET_TETRAHEDRON and ET_CUBOID.

e E points to the element, in the same format as in the corresponding numerical quadrature functions,
in the form “FLOAT const E[v] [d]”, where d is the space dimension (2 or 3) and v is the number
of vertices in the element (3 for triangle, 4 for rectangle and tetrahedron, and 8 for cuboid).

3 Functions for PHG users

The functions in this section are intended for PHG users only, in which the element is specified using
PHG’s ELEMENT type, and the level set function and its gradient are specified using PHG’s DOF type.



3.1 The function phgQuadInterface

This function is used to compute quadrature rules for the integrals listed in (1), where F is a tetrahedral
element.

A test program, test/quad_test2.c, is available which can serve as a sample code on using this
function.

3.1.1 Prototype
void phgQuadInterface(DOF #*ls, DOF *ls_grad, ELEMENT *e, int quad_order,
FLOAT **rule_m, FLOAT #**rules_O, FLOAT **rule_p);

3.1.2 Arguments

e The level set function L(x) and its gradient VL(x) are specified by the arguments 1s and 1s_grad.
1s can represent a finite element function (usually a piecewise polynomial) or an analytic function
(with the type DOF_ANALYTIC). 1s_grad is optional and can be set to NULL if 1s is an ordinary
finite element function, since in this case VL(x) can be computed using 1s.

e The element E is specified by the argument e.

e See the function phgQuadInterfaceTetrahedron for the meanings of the other arguments.

For convenience, and as a special convention, the argument 1s can be set to NULL and then a
quadrature rule for the integral over the whole element will be computed and returned in rule_m, or
rule_p if rule_m is NULL. In this case 1s_grad must not be NULL, and can point to any DOF such that
1ls_grad->g is valid.

3.2 The function phgQuadInterfaceMarkGrid

This function sets the “mark” member of all elements in the mesh 1s->g to 0 if the element might intersect
the interface, —1 if the element is entirely contained in {27, and 1 if the element is entirely contained in
Qt. It helps to determine for which elements the functions presented in this document, which are much
more expensive then ordinary numerical quadrature functions, need to be used.

Note that this function requires that the interface elements are relatively small w.r.t. the interface.
It may produce wrong results otherwise.
3.2.1 Prototype

INT phgQuadInterfaceMarkGrid(DOF *1s);
The return value of the function is the number of elements marked with 0.

3.2.2 Arguments

e The level set function L(x) is given by the argument 1s.

4 Command-line options

A set of command-line options, in the category “quad_interface”, are available for setting internal
parameters or debugging the algorithms. They are prefixed with “-qi_”, and can be used either in the
command-line, or at run-time by using the phgOptionsSet* functions in the program, for example:

phgOptionsPush() ; /* save current settings */
phgOptionsSetOptions("-qi_threshold=0.9 -qi_subdiv_type=regular");
phgQuadInterfaceTetrahedron(... ...);

phgOptionsPop(); /* restore saved settings */



The default values for these options have been fine-tuned, the underlying algorithms are sensitive to
some of them, and improper values may lead to poor precision or even program failure. So please don’t
change them unless you know what you are doing.

The full list of options available in this category can be obtained by running any program linked to the
PHG library, and in which phgInit is called, with the command-line option “~help quad_interface”.

Note that for the command-line options to be effective, the phgInit function must be called by the
user program.

All (or most) options in this category are effective for the tetrahedron element type. For other
element types, only a subset of them are effective. Below is an incomplete list of the options which are
effective for the triangle, rectangle and cuboid element types:

-gqi_eps, —-qi_threshold, -qi_nv_flag, -qi_subdiv_limit,
-gqi_newton_maxits, -qi_newton_porder, -qi_newton,
-qi_dbg_elem, -qi_show_recursions, -qi_show_directions, -qi_dbg_vtk

5 Acknowledgements

The code for the triangle element type was originally written by LIU Ziyang (XI]¥4%).
The code for the rectangle and cuboid element types was originally written by WEN Yundi (i &J1H).

References

[1] Tao Cui, Wei Leng, Huaging Liu, Linbo Zhang and Weiying Zheng, High-order numerical quadratures
in a tetrahedron with an implicitly defined curved interface, ACM Transactions on Mathematical
Software, 46, 1, Article 3 (March 2020), 18 pages. https://doi.org/10.1145/3372144

[2] R. I. Saye, High-order quadrature methods for implicitly defined surfaces and volumes in hyperrect-
angles, SIAM J. Sci. Comput., Vol. 37, No. 2, pp. A993-A1019, 2015

[3] Linbo Zhang, Tao Cui and Hui Liu, A set of symmetric quadrature rules on triangles and tetrahedra,
Journal of Computational Mathematics, 27, 1, 2009, 89-96.



	Introduction
	Functions for general users
	The function phgQuadInterfaceRuleApply
	The function phgQuadInterfaceRuleInfo
	The function phgQuadInterfaceTetrahedron
	The function phgQuadInterfaceTriangle
	The function phgQuadInterfaceCuboid
	The function phgQuadInterfaceRectangle
	The function phgQuadInterfaceMarkElement

	Functions for PHG users
	The function phgQuadInterface
	The function phgQuadInterfaceMarkGrid

	Command-line options
	Acknowledgements

