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The VEM’s gang of four

The VEM results presented here are form joint works with

Lourenço Beirão da Veiga - Bicocca

Luisa Donatella Marini - Pavia

Alessandro Russo - Bicocca

Cour
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Pure and Applied Mathematics

As Henri Poincaré once remarked, “solution of a
mathematical problem” is a phrase of indefinite meaning.
Pure mathematicians sometimes are satisfied with
showing that “the non-existence of a solution implies a
logical contradiction”, while engineers might consider a
“numerical result” as the only reasonable goal. Such one
sided views seem to reflect human limitations rather than
objective values. In itself mathematics is an indivisible
organism uniting theoretical contemplation and active
application. (R. Courant)

MSO
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Scientific Computing from a Mathematical point of view

The practical interest of Scientific Computing is
known to (almost) everybody.

Here I will discuss a (minor) part of the role of
Mathematics in Scientific Computation

Within the M.S.O. (Modelization, Simulation,
Optimization) paradigm, I will focus on the ”S” part.

In particular, I will deal with ”basic instruments to
compute an approximate solution (as accurate as
needed) to a (system of) PDE’s”.

I apologize to Numerical Analysts for the first part of
this lecture. I hope it will not be too boring.

Eq.s
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Maxwell Equations

Basic physical laws

∇ ·D = ρ ∇ · B = 0

∂B

∂t
+∇∧ E = 0

∂D

∂t
−∇ ∧H = J

Phenomenological laws (material dependent)

D = εE B = µH

Compatibility of the right-hand sides

∂ρ

∂t
+∇ · J = 0

NS
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Incompressible Navier-Stokes Equations

ε =
1

2
(∇+∇T ) u σ = (2µε+ Iidp)

ρ
∂u

∂t
+ u · ∇u +∇ · σ = −f

∇ · u = 0

elast
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Linear Elasticity

u= displacements, ε= strains, σ= stresses, f= forces,

ε =
1

2
(∇+∇T ) u σ = 2µε+ Iidtrace(ε)

∇ · σ = −f

Then one could (should) introduce geometric (u→ ε)
and constitutive (ε→ σ) nonlinearities.

VF Darcy
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Variational formulations

Let us consider the simplest possible problem (e.g. :
Darcy’s flow): Given a polygon Ω and f ∈ L2(Ω):

find u ∈ V such that −∆u = f in Ω,

where V ≡ H1
0 (Ω) ≡ {v | v ∈ L2(Ω), gradv ∈ (L2(Ω))2

such that v = 0 on ∂Ω}.
The variational form of this problem consists in looking
for a function u ∈ V such that:∫

Ω

gradu · gradvdx =

∫
Ω

f vdx ∀ v ∈ V .

Ga

Franco Brezzi (IMATI-CNR) VEM Beijing, May 2017 9 / 84



Galerkin approximations

The Galerkin method consists in choosing a finite
dimensional Vh ⊂ V and looking for uh ∈ Vh such that∫

Ω

graduh · gradvhdx =

∫
Ω

f vhdx ∀ vh ∈ Vh.

It is an easy exercise to show that such a uh exists and is
unique in Vh, and satisfies the estimate∫

Ω

|grad(u − uh)|2dx ≤ C inf
vh∈Vh

∫
Ω

|grad(u − vh)|2dx

bounding the error ‖u − uh‖ with the best approximation
that could be given of u within the subspace Vh. Math Appr

Franco Brezzi (IMATI-CNR) VEM Beijing, May 2017 10 / 84



Sequences of approximations

More generally, the analysis, from the mathematical point
of view, of these procedures assumes that we are given a
sequence of subspaces {Vh}h and proves, under suitable
assumptions on the subspaces, that the sequence of
solutions {uh}h converges to the exact solution u when h
tends to 0.
As far as possible, one also tries to connect the speed of
this convergence with suitable properties of u and of the
sequence {Vh}h, and hence to find what are the sequences
of subspaces that would provide the best speed, plus
possibly other convenient properties (e.g.computability,
positivity, conservation of physical quantities, etc.). FE
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Finite Element Methods (FEM)

In the FEM’s one decomposes the domain Ω in small
pieces and takes Vh as the space of functions that are
piece-wise polynomials. The most classical case is that of
decompositions in triangles

Figure: Triangulations of a square domain: non-uniform or uniform

taking then Vh as the space of functions that are
polynomials of degree ≤ 1 in each triangle. ho-fe
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Higher order Finite Element methods

Instead of p.w. polynomials of degree ≤ 1 one can take
piecewise polynomials of degree ≤ k (k = 2, 3, ...).

For the analysis we consider a sequence of decompositions
{Th}h, and piecewise polynomials of degree ≤ k , and try
to express the speed of convergence (of uh to u) in terms
of k , of h (= biggest diameter among the elements in Th),
and of some additional geometric property θ (e.g. the
minimum angle of all triangles of all decompositions):

‖grad(u − uh)‖L2(Ω) ≤ Cθ,k h
k ‖Dk+1u‖L2(Ω).

DOF
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Lagrange FEM’s - Degrees of freedom

k=1 k=2

k=3 k=4

Triangular elements and their degrees of freedom
(=parameters used to identify elements of Vh in each T )

Oth Sp
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Typical Functional Spaces

Here are the functional spaces most commonly used in
variational formulations of PDE problems

L2(Ω) (ex. pressures, densities)

H(div; Ω) (ex. fluxes, D, B)

H(curl; Ω) (ex. vector potentials, E, H )

H(grad; Ω) (H1) (ex. displacements, velocities)

H(D2; Ω) (H2) (ex. in K-L plates, Cahn-Hilliard)

Cont R
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Continuity requirements

For a piecewise smooth vector valued function, at the
common boundary between two elements,

in order to belong to you need to match

L2(Ω) nothing

H(div; Ω) normal component

H(curl; Ω) tangential components

H(grad; Ω) C 0

H(D2; Ω) C 1

Note that the freedom you gain by relaxing the continuity
properties can be used to satisfy other properties Eleg
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Elegance of FEM spaces: 0-forms

P1 := {v = a + c · x} with a ∈ R and c ∈ R3

(d.o.f. = nodal values)
H(grad; Ω) ∼ {v ∈ H(grad; Ω) s.t. v |T ∈ P1 ∀T ∈ Th}.
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Elegance of FEM spaces: 1-forms

N0 := {ϕ = a + c ∧ x} with a ∈ R3 and c ∈ R3

(d.o.f. = edge integrals of tangential component)
H(curl; Ω) ∼ {ϕ ∈ H(curl; Ω) s.t. ϕ|T ∈ N0 ∀T ∈ Th}.
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Elegance of FEM spaces: 2-forms

RT0 := {τ = a + cx} with a ∈ R3 and c ∈ R
(d.o.f. face integrals of normal component)

H(div; Ω) ∼ {τ ∈ H(div; Ω) s.t. τ |T ∈ ∀T ∈ Th}.
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Elegance of FEM spaces: 3-forms

P0 := {constants} (d.o.f. = volume integral)

L2(Ω) ∼ {q ∈ L2(Ω) such that q|T ∈ P0 ∀T ∈ Th}.
Dist Quad
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Difficulties with FEM’s: distorted elements

Distorted quads can degenerate in many ways:

YES

NO

NO

NO

Loss B
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Loss of beauty of FEM

Here is the most elegant choice of polynomial spaces
for edge elements of degree k on cubes

span{yz(w2(x , z)− w3(x , y)),

zx(w3(x , y)− w1(y , z)),

xy(w1(y , z)− w2(x , z))}
+ (Pk)3 + grad s(x , y , z)

where each wi (i = 1, 2, 3) ranges over all polynomials
(of 2 variables) of degree ≤ k and s ranges over all
polynomials of super linear degree ≤ k + 1.

N.B. Super linear degree: ”ordinary degree ignoring
variables that appear linearly”. C1
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More difficulties: FE approximations of H2(Ω)

There are relatively few C 1 Finite Elements on the
market. Here are some:

Bell

HCT reduced HCT

Argyris
Ofm
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Programming C 1 elements

Cod liver oil
(Olio di fegato di merluzzo, Huile de foie de morue

Aceite de h́ıgado de bacalao, Dorschlebertran)
VEM
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A flavor of VEM’s

For a decomposition in general sub-polygons, FEM’s
encounter considerable difficulties.
With VEM, instead, you can take a decomposition like

having four elements with 8 12 14, and 41 nodes!
Can we work in 3D as well?

3D
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A flavor of VEM’s

WE CAN !! These are three possible 3D elements

Sp PoligE
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Polygonal and Polyhedral elements

There is a wide literature on Polygonal and Polyhedral
Elements (Polytopes)

Rational Polynomials (Wachspress, 1975, 2010)

Voronoi tassellations (Sibson, 1980; Hiyoshi-Sugihara,
1999; Sukumar et als, 2001)

Mean Value Coordinates (Floater, 2003)

Metric Coordinates (Malsch-Lin-Dasgupta, 2005)

Maximum Entropy (Arroyo-Ortiz, 2006;
Hormann-Sukumar, 2008)

Harmonic Coordinates (Joshi et als 2007; Martin et
als, 2008; Bishop 2013)

App
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Why Polygonal/Polyhedral Elements?

There are several types of problems where Polygonal and
Polyhedral elements are used:

Crack propagation and Fractured materials (e.g. T.
Belytschko, N. Sukumar)

Topology Optimization (e.g. O. Sigmund, G.H.
Paulino)

Computer Graphics (e.g. M.S. Floater)

Fluid-Structure Interaction (e.g. W.A. Wall)

Complex Micro structures (e.g. N. Moes)

Two-phase flows (e.g. J. Chessa)

Contact Problems (e.g. P. Wriggers, B.D. Reddy)

Usf Deco
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Boundary layers

The ”interface” elements are treated as epta-gons. Mov Ob
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Moving Objects

At each time step, the mesh is adapted to the object Loc Ref
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Local Refinement

Combining a fine mesh with a coarse one Cut
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Something going on there...

A fracture, or a 1-d intrusion Vor
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Voronoi Meshes
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LL
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Lloyd Meshes

FEM P1
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Example: piecewise linear FEMs

Given a triangulation Th of Ω, with N internal nodes, we
set Vh = continuous piecewise linear functions vanishing
on ∂Ω, and we look for uh in Vh such that

a(uh, vh) :=

∫
Ω

∇uh · ∇vh dΩ =

∫
Ω

f vh dΩ ∀ vh ∈ Vh.

In practice, the N × N matrix associated to a(uh, vh) is
computed as the sum of the contributions of the single
elements:∫

Ω

∇uh · ∇vh dΩ =
∑
E∈Th

aE (uh, vh) ≡
∑
E∈Th

∫
E

∇uh · ∇vh dE .

Gen Idea VEM
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General Idea of VEMs

Vh := {v ∈ V : v linear on each edge,−∆v = 0 in E ∀E}
On a single element E

E

E

P
1

1

x

y

V

if u is in P1(E ), then aE (u, v) can be computed exactly.

aE (p1, v) =
∫
E ∇p1 · ∇v dE =

∫
∂E

∂p1
∂n v d`=: aEh (p1, v)

But we cannot compute a(uh, vh) for general uh and vh.
Hence we must look for some approximate form ah(uh, vh)

Rob Surg

Franco Brezzi (IMATI-CNR) VEM Beijing, May 2017 36 / 84



Manipulating VEM’s

When dealing with VEM, we cannot manipulate them as
we please. As we don’t want to use approximate solutions
of the PDE problems in each element, we have to use only
the degrees of freedom and all the information that you
can deduce exactly from the degrees of freedom.

In a sense, is like doing Robotic Surgery Approx Pb
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Guidelines for choosing ah

We consider again the continuous model problem:
Find u ∈ V ≡ H1

0 (Ω) such that

a(u, v) ≡
∫

Ω

∇u · ∇v dΩ =

∫
Ω

f v dΩ ∀ v ∈ V .

Given Vh ⊂ V we want to construct a discretized version:

Find uh ∈ Vh such that

ah(uh, vh) = (fh , vh) ∀ vh ∈ Vh.

We look for sufficient conditions on ah (and on fh) that
ensure all the good properties that you would have with
standard Finite Elements.

H1 H2
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The two basic properties

H1 aEh (p1, v) = aE (p1, v) ∀E , ∀v ∈ V E , ∀p1 ∈ P1(E ).

H2 ∃ α∗, α∗ > 0 such that ∀E , ∀ v ∈ V E :

α∗ a
E (v , v) ≤ aEh (v , v) ≤ α∗ aE (v , v).

Under Assumptions H1 and H2 the discrete problem has
a unique solution. Moreover the Patch Test of order 1 is
satisfied: on any patch of elements, if the exact solution
is a global polynomial of degree 1, then the exact solution
and the approximate solution coincide.

‖u−uh‖1 ≤ C
(
‖u−uI‖1+‖u−uπ‖1,h+‖f −fh‖V ′

h

)
≤ Ch.

how
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How to satisfy H1 and H2

We saw already that knowing v on ∂E we can compute
aE (v , p1) for every p1 in P1(E ). This allows to construct
in each E a computable projection operator Π∇1 from
V E into P1(E ) defined by

aE (v − Π∇1 v , p1) = 0 ∀ p1 and
∫
∂E (v − Π∇1 v) d`.

Note that Π∇1 p1 = p1 for all p1 in P1(E ).

Then we set, for all u and v in V E

aEh (u, v) := aE (Π∇1 u,Π
∇
1 v) + S(u − Π∇1 u, v − Π∇1 v)

where the stabilizing bilinear form S is (for instance) the
Euclidean inner product in R5.

Loc Mat
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Structure of the Local Matrix in a different basis

S

o l y n o mi a l s

a  = ah

a  = ah

a  = ah

O t h e r s

O
t

e
r
s

h

P
o
l
y
n
o
m
i
a
l
s

P

Exp Incl
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Does it work?
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512 polygons, 2849 vertices

1 square
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General elements

Note that the pink element is a polygon with 9 edges,
while the blue element is a polygon (not simply
connected) with 13 edges. We are exact on linears... Sol
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The exact solution of the PDE

0
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max |u−uh| = 0.008783

For reasons of ”glastnost”, we take as exact solution

w = x(x − 0.3)3(2− y)2 sin(2πx) sin(2πy) + sin(10xy)

ris 512
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It works!

0

0.2

0.4

0.6

0.8

1

0
0.2

0.4

0.6
0.8

1

−2

−1

0

1

2

max |u−uh| = 0.074424

Mesh of 512 (16× 16× 2) elements. Max-Err=0.074
ris 2048
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Finer grids
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max |u−uh| = 0.019380

Mesh of 2048 (32× 32× 2) elements. Max-Err=0.019
ris 8192
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An even finer grid
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max |u−uh| = 0.005035

Mesh of 8192 (64× 64× 2) elements. Max-Err=0.005
Note the O(h2) convergence in L∞ !!. Esch
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The next steps? (by M.C. Escher)

What about a mesh like that? cavalli
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The next steps? (by M.C. Escher)

Or possibly like this one? 1p
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Going berserk
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The first step: a pegasus-shaped polygon with 82 edges.
num
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Going berserk
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The second step: local numbering of the 82 nodes.
4
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Going berserk
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The third step: a mesh of 2× 2 pegasus.
20X20
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Going totally berserk
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A mesh of 20× 20 pegasus. sol
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Going totally berserk
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max |u−uh| = 0.077167

Solution on a 20× 20-pegasus mesh. Max-Err=0.077
mesh 40
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Going totally berserk
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A mesh of 40× 40 pegasus.
sol 40
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Going totally berserk !!
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max |u−uh| = 0.026436

Solution on a 40× 40-pegasus mesh. Max-Err=0.026
summ
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Summarizing the main features of VEM

As for other methods on polytopal elements

the trial and test functions inside each element are
rather complicated (e.g. solutions of suitable PDE’s or
systems of PDE’s).

Contrary to other methods on polytopal elements,

they do not require the approximate evaluation of
trial and test functions at the integration points.

In most cases they satisfy the patch test exactly (up
to the computer accuracy).

We have now a full family of spaces.

gen ph
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The general philosophy

In every element, to define the generic (scalar or vector
valued) element v of our VEM space:

You start from the boundary d.o.f. and use a 1D
edge-by edge reconstruction

Then you define v inside as the solution of a (system
of) PDE’s, typically with a polynomial right-hand side.

The construction is such that all polynomials of a
certain degree belong to the local space. In general
the local space also contains some additional elements.

Let us see some examples.
vem nod sp k
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Nodal 2D elements

We take, for every integer k ≥ 1

V E
h = {v | v|e ∈ Pk(e)∀ edge e and ∆v ∈ Pk−2(E )}

It is easy to see that the local space will contain all Pk .
As degrees of freedom we take:

the values of v at the vertices,

the moments
∫
e v pk−2de on each edge,

the moments
∫
E v pk−2dE inside.

It is easy to see that these d.o.f. are unisolvent.
3 Card M
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The L2-projection

A fantastic trick (sometimes called The Three Card
Monte trick), often allows the exact computation of the
moments of order k − 1 and k of every v ∈ V E

h .

This is very useful for dealing with the 3D case.
Yoda
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The Three Card Monte Trick is hard to believe

Ex dofVEM
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Example: Degrees of freedom of nodal VEM’s in 2D

k=4

k=1 k=2

k=3

+Gen Geo
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More general geometries k = 1

Franco Brezzi (IMATI-CNR) VEM Beijing, May 2017 63 / 84



More general geometries k = 2

3Dim
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Approximations of H1(Ω) in 3D

For a given integer k ≥ 1, and for every element E , we set

V E
h = {v ∈ H1(E )| v|e ∈ Pk(e)∀ edge e, }
{v|f ∈ V f

h ∀ face f , and ∆v ∈ Pk−2(E )}
with the degrees of freedom:
• values of v at the vertices,
• moments

∫
e v pk−2 (e) on each edge e,

• moments
∫
f v pk−2 (f ) on each face f , and

• moments
∫
E v pk−2 (E ) on E .

Ex: for k = 3 the number of degrees of freedom would
be: the number of vertices, plus 2× the number of edges,
plus 3× the number of faces, plus 4. On a cube this
makes 8 + 24 + 18 + 4 = 54 against 64 for Q3. Oth Sp
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Approximation of other spaces

Along the same lines (more or less...), one can build
approximations of the other spaces discussed above, and
thus have

• VEM , nodal ⊆ H1(Ω)

• VEM , edge ⊆ H(curl; Ω)

• VEM , face ⊆ H(div; Ω)

• VEM , volume ⊆ L2(Ω)

• VEM , nodal−C 1 ⊆ H2(Ω)

obviously with different degrees of accuracy k . Seq Ex
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A very useful property

Moreover, the classical differential operators grad , curl ,
and div send these VEM spaces one into the other (up to
the obvious adjustments for the polynomial degrees).
Indeed:

grad(VEM , nodal) ⊆ VEM , edge

curl(VEM , edge) ⊆ VEM , face

div(VEM , face) ⊆ VEM , volume

R
i
−→ V nod

k (Ω)
grad
−−−−→ V edg

k−1(Ω)
curl
−−−→ V fac

k−2(Ω)
div
−−−→ V vol

k−3(Ω)
o
−→ 0

and the corresponding d.o.f.s are computable. Scal Pr 1
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The crucial feature

The crucial feature common to all these choices is the
possibility to construct (starting from the degrees of
freedom, and without solving approximate problems in the
element) a symmetric bilinear form [u, v]h such that,
on each element E , we have

[pk , v]Eh =

∫
E

pk ·vdE ∀pk ∈ (Pk(E ))d , ∀v in the VEM space

and ∃α∗ ≥ α∗ > 0 independent of h such that

α∗‖v‖2
L2(E ) ≤ [v, v]Eh ≤ α∗‖v‖2

L2(E ), ∀v in the VEM space

Scal Pr 2
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The crucial feature - 2

In other words: In each VEM space (nodal, edge, face,
volume) we have a corresponding inner product[
· , ·
]
VEM,nodal

,
[
· , ·
]
VEM,edge

,
[
· , ·
]
VEM,face

,
[
· , ·
]
VEM,volume

that scales properly, and reproduces exactly the L2

inner product when at least one of the two entries is a
polynomial of degree ≤ k .

This can be applied to the discretization of PDE

Darcy
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Strong formulation of Darcy’s law

p = pressure

u = velocities (volumetric flow per unit area)

f = source

K = material-depending (full) tensor

u = −K∇p (Constitutive Equation)

div u = f (Conservation Equation)

−div(K∇p) = f in Ω,

BBBBBBBBBBBBBBBp = 0 on ∂ Ω, for simplicity.

D Prim For
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Variational formulation and VEM approximation

The variational formulation of Darcy problem is:
find p ∈ H1

0 (Ω) such that∫
Ω

K∇p · ∇q dx =

∫
Ω

f qdx ∀q ∈ H1
0 (Ω).

and as VEM approximate problem we can take:
find ph ∈ VEM,nodal such that:

[K∇ph,∇qh]VEM,edge = [f , qh]VEM,nodal ∀qh ∈ VEM,nodal

D Mix F
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Variational formulation - Mixed

Darcy problem, in mixed form, is instead:
find p ∈ L2(Ω) and u ∈ H(div; Ω) such that:∫

Ω

K−1u · vdV =

∫
Ω

p divvdV ∀v ∈ H(div; Ω)

and ∫
Ω

divu qdV =

∫
Ω

f q dV ∀q ∈ L2(Ω).
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Approximation of Darcy - Mixed

The approximate mixed formulation can be written as:

find ph ∈ VEM , volume and uh ∈ VEM , face such that

[K−1uh, vh]VEM,face = [ph, divvh]VEM,volume ∀vh ∈VEM,face

and

[divuh, qh]VEM,volume = [f , qh]VEM,volume ∀qh ∈VEM,volume.

Magn
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Strong formulation of Magnetostatic problem

j = divergence free current density

µ = magnetic permeability

B = magnetic induction

H = µ−1B =magnetic field

curl H = j

The classical magnetostatic equations become now

curl H = j and div(µH) = 0 in Ω,

H× n = 0 on ∂Ω.

Magn VF Dis
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Variational formulation of the magnetostatic problem

A variational formulation of the magnetostatic problem is:
Find H ∈ H0(curl,Ω) and p ∈ H1

0 (Ω) such that :

(curl H, curl v)−(∇p, µv) = (j, curlH)∀ v ∈ H0(curl; Ω)

(µH,∇q) = 0 ∀ q ∈ H1
0 (Ω),

and the VEM approximation can be chosen as:
Find Hh∈Ve :=VEM,edges and ph∈Vn :=VEM,nodal s.t.

[curlHh, curl v]h,f −[gradph, v]h,e =[j, curlv]h,f ∀v∈Ve ,

[Hh, gradq]h,e = 0 ∀ q ∈ Vn.

Ris Mix
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Numerical results for MIXED Formulations

Mesh of squares 4x4, 8x8, ...,64x64
Exact solution p=sin(2x)cos(3y)
Here below the pw constant approximate solution
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Numerical results-Squares
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Numerical results-Voronoi Meshes

Voronoi polygons 88,...,7921
Exact solution p=sin(2x)cos(3y)
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Numerical results-Voronoi
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Numerical results-Distorted Quads meshes

Mesh of distorted quads: 10x10; 20x20; 40x40
Exact solution: p = sin(2x) cos(3y)
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Numerical results–Distorted Quads
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Numerical results-Winged horses meshes

Mesh of horses: 4x4; 8x8; 10x10; 16x16
Exact solution: p = sin(2x) cos(3y)
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Numerical results–Winged horses

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

 h
1

 h
2

||p−p
h
|| in L

2

10
−2

10
−1

10
0

10
−3

10
−2

10
−1

 h
1

 h
2

||σ−Π
a
σ

h
|| in L

2

Conc

Franco Brezzi (IMATI-CNR) VEM Beijing, May 2017 83 / 84



Conclusions

Virtual Elements are a new method, and a lot of work
is needed to assess their pros and cons.

Their major interest is on polygonal and polyhedral
elements, but their use on distorted quads, hexa, and
the like, is also quite promising.

For triangles and tetrahedra the interest seems to be
concentrated in higher order continuity (e.g. plates).

The use of VEM mixed methods seems to be quite
interesting, in particular for their connections with
other methods for polygonal/polyhedral elements.
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