A CHARGE-CONSERVATIVE FINITE ELEMENT METHOD FOR
INDUCTIONLESS MHD EQUATIONS. PART II: A ROBUST SOLVER
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Abstract. In [20], a charge-conservative finite element method is proposed for solving inductionless and incom-
pressible magnetohydrodynamic (MHD) equations. The purpose of this paper is to propose a robust solver for the
discrete problem. Using the framework of field-of-values-equivalence, we first study the preconditioned Krylov space
method for the continuous problem in the setting of Hilbert spaces. The algebraic preconditioner for the discrete
problem is then obtained by representing the preconditioner for the continuous problem in finite element spaces.
By three numerical examples, the optimality of the solver to the number of unknowns is demonstrated for both
stationary and time-dependent MHD problems.
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1. Introduction. The incompressible MHD equations describe the dynamic behavior of an
electrically conducting fluid under the influence of a magnetic field. They occur in models for,
fusion reactor blankets, liquid metal magnetic pumps, aluminum electrolysis among others (see
Refs. [1,25]). In the first part of this study [20], we proposed a charge-conservative finite element
method for solving the inductionless MHD model in a dimensionless form

atu—&—u-Vu—RiAu—i—Vp—ﬁJxB:f in Q, (1.1a)
e
J+Vop—uxB=0 inQ, (1.1b)
divu=0, divJ=0 1in{, (1.1c)
u(0) =wup in £, (1.1d)
u=g only, (1.1e)
1 ou _
Togn V=0 onTu=T\Ty, (1.1f)

J-n=0 onlj, (1.1g)
p=¢ onTl.=T\T, (1.1h)

where € is a bounded domain with Lipschitz-continuous boundary I' = 92, n the unit outer normal
to €, f the external force, R, the Reynolds number, and  the coupling number between the fluid
and the electric current density. Let L, tg, Bo, ug = L/to be the characteristic quantities of length,
time, magnetic induction, and fluid velocity of the system respectively. The Reynolds number and
the coupling number are given by R. = pLug/v and k = 0 LB2 /(pug) (see [20]). The initial condition
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uy € H 1((2) satisfies divug = 0. The unknowns are the velocity w, the pressure p, the current
density J, and the electric scalar potential ¢. Here 0;u denotes the partial derivative of u with
respect to t. For inductionless MHD equations, the magnetic induction B can be computed from
J by means of the Biot-Savart law. However, since the paper is focused on efficient preconditioner
for solving linearized discrete problems, we assume B is given without loss of generality.

Generally, I';, denotes the outflow boundary and I'y denotes the inflow boundary where the
velocity is specified. Particularly, the subset T'q N {g = 0} stands for fixed wall boundary or no-slip
boundary. Here we assume I'q # () and g € H Y 2(I'q). Since divu = 0, the compatibility of u with
the boundary condition requires

g€ {ylr,:ve H(Q)NH(div0,Q)},

where v: H 1((2) — H'Y? (T") denotes the trace operator. Moreover, T'; denotes insulating boundary
and T'. denotes conductive boundary where £ € HY/?(T.).

The inductionless MHD problem is the coupled system of four unknown functions (u,p, J, ¢).
The total number of degrees of freedom (DOFSs) could be larger than 108 for large Reynolds number
or large coupling number on fine meshes. It is very challenging to solve such a large, indefinite, and
nonlinear system. The study for efficient and robust preconditioners is an important research area. In
2014, Badia et al studied stabilized finite element method for (1.1). They proposed block recursive
preconditioners for solving the discrete MHD problem [2]. Their preconditioners are efficient for
relatively high Hartmann number. Since interior penalties are used, the discrete scheme is no longer
charge-conservative, namely, div J, # 0.

For fully-coupled AMG (algebraic multigrid) and approximate block factorization precondi-
tioners, we refer to the systematic study by Shadid and his collaborators in a series of papers for
finite element approximations of various MHD models [7,33-36]. Utilizing block factorization of
the stiffness matrix and proper approximation of the resulting Schur complement, they developed
a robust and scalable preconditioners for Newton-Krylov solver. Numerical experiments show that
their solvers also work well for stationary MHD problems (cf. e.g. [36]). In [39], Wathen, Greif, and
Schotzau discretized the magnetic field of stationary MHD problem with edge elements and pro-
posed a block preconditioner for solving the linearized discrete problem. Their preconditioner utilizes
the combinations of effective solvers for the mixed Maxwell and the Navier-Stokes sub-problems.
They also performed spectral analysis for the “ideal preconditioner” which uses the exact Schur
complement. Practically feasible preconditioners are designed by proper simplifications of the Schur
complement. Moreover, we refer to [32] for additive Schwarz methods for time-dependent resistive
hall MHD problem.

Another important class of preconditioners are developed from Krylov space methods in the
setting of Hilbert spaces. The main idea is that, once a proper preconditioner is obtained for
the continuous problem and if the discretization of the continuous problem is stable, a robust
preconditioner can be designed for the discrete problem by preserving the basic structure of the
continuous preconditioner [24]. Two types of preconditioners are developed from this perspective
and are called norm-equivalent preconditioner and field-of-values- (FOV-) equivalent preconditioner
respectively. The FOV of a matrix A is defined by W(A) := {v*Av : |v| = 1}. It is a useful tool
for proving the convergence of iterative solvers for systems of algebraic equations (see Loghin and
Wathen [22]). A right preconditioner P of A is said to be FOV-equivalent if W (AP) is bounded from
below and above by two positive constants Ciyg, Csyp respectively and the ratio Ciyr/Cosyp is uniform
to sensitive parameters of the problem. In [24], Mardal and Winther extend the norm-equivalence
and FOV-equivalence to linear operators on Hilbert spaces. They propose an abstract framework of
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preconditioned Krylov space methods. Following this framework, Ma et al proposed norm-equivalent
and FOV-equivalent preconditioners for structure-preserving finite element discretization of the full
MHD problem [23]. They also proved the robustness of preconditioners with respect to both physical
parameters and DOFs. The preconditioner for solving continuous problems can also be found in
Hiptmair [16] where it is called “operator preconditioning”.

In this paper, we follow the framework of FOV-equivalence in [22-24] to propose a precon-
ditioner for solving the charge-conservative finite element problem. We first propose a right pre-
conditioner A~ for solving the linearized continuous problem by virtue of LU factorization of the
operator matrix A of the MHD problem. Using the framework of FOV-equivalence, we prove the
convergence rate of the GMRES method for solving the preconditioned problem (A/l_l)C = X
Moreover, we introduce a practically feasible preconditioner P by simplifying A and prove the
convergence rate of GMRES method for solving (/U’)E = ( under properly defined Hilbert norms.
Based on these observations, we propose to precondition the original differential operator A directly
by P. In the discrete setting, let A and P be, respectively, the Galerkin matrices of operators A and
‘P. The preconditioner of A is therefore chosen as P. Here we would like to specify the differences
between this paper and the most relevant references [2,23,39]:

e In [2], the authors studied the preconditioners for solving the discrete problem of stabilized
finite element method, while in this paper, we study a charge-conservative mixed finite element
method.

e In [23], the authors proposed norm-equivalent and FOV-equivalent preconditioners for solving
full MHD model. The linearized flow equations are of Stokes type and the matrix of differential
operators is self-adjoint and positive. In this paper, the linearized flow equations contain the
convection term and are of Navier-Stokes type.

e In [39], the authors proposed a block preconditioner for solving the full MHD problem and
performed spectral analysis for the ideal preconditioner with exact Schur complement. In this
paper, we proposed a preconditioner for solving inductionless MHD model which uses J as an
unknown instead of B. Moreover, the approximation between the ideal preconditioner and the
practical preconditioner with simplified Schur complement is also studied within the framework
of FOV-equivalence.

o We use augmented Lagrangian stabilization in the weak formulation. This helps us in analyzing
the approximation between the ideal preconditioner and the practical preconditioner.

We remark that finite element methods for the full MHD model are naturally charge-conservative,
since the discrete magnetic induction By, is a primitive variable and the discrete current density is
given by Jp, = curl By, (cf. [23,38,39] and the references therein). The inductionless MHD model
is also widely studied in the literature (cf. [2,11,27,28]). Since J} is a primitive variable in this
model, finite element method should be properly designed to insure the conservation of charges.

The paper is organized as follows: In Section 2, we present the mixed finite element method
for time-dependent MHD equations by using augmented Lagrangian stabilization. The discrete
problem is linearized with extrapolated solutions from previous time steps. In Section 3, we study
preconditioned GMRES method for solving the continuous MHD problem in the setting of Hilbert
spaces. Convergence rate is also proven by using the framework of FOV-equivalence. In Section
4, the algebraic preconditioner is designed by representing the continuous preconditioner in finite
element spaces while keeping its block structure. In Section 5, we present three numerical examples
for both stationary and time-dependent problems to demonstrate the competitive performance of
the solver. In Section 6, we conclude the main result of the paper. To make the paper focused on
designing robust preconditioner, we postpone all proofs to the appendices. Throughout the paper,
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let vector-valued quantities be denoted by boldface notations, such as L*(Q) := (L?(€2))?, and let
(-,-) denote the generic duality between a Sobolev space and its dual space.

2. A charge-conservative finite element method. First we introduce some sobolev spaces.
Let L2(2) be the space of square-integrable functions with the inner product and norm

(u,v) == /qu, lull p2(q) = (u,u)'/?,

Let H'(Q) (H(div,Q)) denote the subspace of L?(Q) (resp. L*(2)) whose functions have square-
integrable gradients (resp. divergences). Let Hg (€2), Ho(div, Q) denote their subspaces which have,
respectively, vanishing traces and vanishing normal traces on I' := 9. We refer to [13, page 26] for
their definitions and inner products. The subspaces of divergence-free functions are denoted by

H(div0,Q) := {v € H(div,Q) : diveo = 0}, H(div0,Q) := H(div0,Q) N H(div, ).

2.1. Semi-discrete weak formulation. We follow [20] to introduce the finite element ap-
proximation of (1.1). For convenience, let the function spaces be denoted, for velocity, by

V =HYQ), Vai={veV:v=0 onTy},

for pressure, by

Q=1L%Q) if Ty, #0; Q=1L3Q) if T, =0,
for current density, by

D = H(div, ), Di={veD:v-n=0 onl}},

and for electric scalar potential, by

S=L*Q) if Tc#0; S=L§Q) if Tc=0.

Let {t, =n7: n=0,1,--- N}, 7 =T/N, be an equidistant partition of [0, T]. For a sequence

{u,}, define the finite difference, the mean value, and the extrapolation of u,, by

1 .1
Oy, 1= - (up, —up_1), Uy, = 3 (up, +up—_1), u, = 3 (BUp—1 — Up_2).

Moreover, u), := u,, for n = 1. The time averages of given functions are defined by

1 [tn+1/2 1 [t

T tn_1/2 T Jtn_1
From the analysis in [20], ¥,, and g,, are second-order approximations to W(t,_1/2) and g(t,)
respectively if they are C2?-smooth in time.

A semi-discrete weak formulation of (1.1) reads: Find (w,,, pp, Jn,dn) € VX QX D;x S, n > 0,
such that yu, = g,, on I'q and

(O1Up,v) + O(U); Uy, V) + DAL (Un, V) — (P, dive) = (f,, + kJn X Bp,v) Vv eVy, (2.2a)
(Jn,d) — (én,divd) + (B, X @n,d) = (ynd, &), Vd e Dy, (2.2b)
(¢,diva,) =0 Vg€ Q, (2.2¢)
(p,divd,) =0 Voebs, (2.2d)



where the bilinear form 2751, and the trilinear form & are defined as follows:

DL (w,v) = Ri(Vw7 Vo) 4 a(divw, div v),
O(w;u,v) = % (w-Vu,v) — (w-Vo,u) —|—/ (vhw)(u - 'u)} ,
I'n

In /a1, the term a(divw, divv) stands for augmented Lagrangian (AL) stabilization and o > 0 is
the AlL-stabilization parameter. Since the exact solution satisfies divu = 0, it is easy to see

1
L (u,v) = R—(VU,VU) VveVy.

€

Moreover, 7w := max(w - n,0) stands for the outflow flux on the fixed boundary I'y.

2.2. Fully-discrete finite element scheme. Let 7, be a quasi-uniform and shape-regular

tetrahedral mesh of € with mesh size h = max hr. For any integer k > 0, let Py (K) be the space
€Tn

of polynomials of degree k and define Py (K) = P, (K)3. The finite element subspaces are defined
respectively as follows

h—{veV:vgePyK), YKeT},

h={qeQ: qlx € PI(K), VK € T,} N H(Q),
D":={deD: d|x € P\(K), VK €T},

hi={seS: s|lg € P(K), YK eTp}.

The subspaces with homogeneous boundary conditions on I'y or I'; are denoted by
vVi=vsnv"  D!=D;nD"

Let ul € vh, gh € 'yVh be finite element approximations of uy and g,, respectively. Fol-
lowing [2()] we propose an extrapolated finite element approximation to (2.2) as follows: Find

( ul ph Jh Bl ) € V" x Q" x DI x §" such that yu = g" on I'y and

Seul v) + O(ul*; al v) + dar (@, v) — (p, dive) = (f,, + kJ" x B,,v) YveV: (23a
(

( )
(T3 @) = (¢, divd) + (By x Ty, d) = (ynd, v, Vd € DY, 2.3b)
(¢,dival) =0 VqgeQh (2.3¢)
(p,div Jh) =0 Voesh, (2.3d)
where @! := (u!+ul_|)/2and u* = 3ul_ —u_,)/2. We use u!"* = ul for n = 1in (2.3a) and

solve a nonlinear problem. For n > 1, a linear system of equations results from this approximation.

3. Preconditioned Krylov space method for linearized semi-discrete problem. Now
we are in the position of studying the preconditioner for solving the discrete problem (2.3). As
remarked previously, finite element methods for full resistive MHD model are charge-conservative
naturally since J; = curl By, is divergence-free. Here we mention two classes of efficient precondi-
tioners for finite element discretizations of full MHD model. The first class is based on the coupling
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of AMG and approximate block factorizations (cf. [7,33,34,39]). The second class is based on Krylov
space methods for solving continuous problems in Hilbert spaces. With this perspective, Mardal and
Winther present a framework of norm-equivalent and FOV-equivalent preconditioners for solving
systems of partial differential equations in [24]. Following this framework, Ma et al developed robust
norm-equivalent and FOV-equivalent preconditioners for full MHD model [23].

We are going to follow [22-24] to study FOV-equivalent preconditioner for solving (2.3). We also
use ideas from block factorizations [7,33,34,39]. The starting point is to study the linearized semi-
discrete problem (2.2) in the setting of Hilbert spaces. For simplicity, we only consider T'q =T'; =T.
This yields

Va=Vo:=H}Q), D; = Dy := H(div,Q), Q=2S=L3Q).

Let Z,,,1,, Ly, Iy be the identity operators on V', @, D, and S respectively. To prove the robustness
of preconditioners, we assume throughout this section that

w' € Von H(div0)NL®(Q), B, € L™(9).

3.1. Operator equation. First we rewrite (2.2) into an operator equation. Define the lin-
earized convection-diffusion operator F,: V — V| as follows

(Fu(v),w) =277 (v, w) + O(u}; v, w) + FaL(v, w) YVveV, weVy.
By integration by part, it can be represented by an explicit form
Fu: =277, +u}-V—RIA - aVdiv. (3.1)
Moreover, let K: V' — Dj be the multiplying operator which satisfies
K(v) =B, xv YvoeV. (3.2)

Let w,, € V be the lifting of the boundary condition g,, such that yw, = g, on I' and define
Uy = Uy, — w, € V. Using (3.1)—(3.2), we can write (2.2) into an equivalent operator form

kL; kV kK 0 Jn 0
—kdiv 0 0 0 bn _ 0

—wK* 0 F, V a | = & | (3.3)
0 0 —div 0 Dn 0

where K* is the dual operator of K and f, € V7, is defined by
(fu,v) = (Fn +27  uno1,0) + (Fywy, v) Yo e V.
Write X = Dy x S x V§ x Q. The coefficient matrix of (3.3) provides a linear operator

kZ;y kKV kK 0
—kdiv 0 0 0
—kK* 0 Fo V

0 0 —div 0

A= X - X
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3.2. Block preconditioners based on LU factorization. For convenience, we introduce
some notations for linear operators. Define D := Z; — V div. It is easy to see that D;: Dy — Dy,
is a self-adjoint, continuous, and positive operator. For any v, w € Hy(div, ),

(Djv,w) = (v,w) + (divw, divw)

provides a coercive bilinear form on H(div, ©2). The Lax-Milgram lemma shows that D;': Dj —
D, exists and is a bounded operator. Define

Iy = —div D}lY, I, =D;' + (D;'V)I, ' (divD; "), A 5.4
Fro = Fu + kK*L;K, F1:=27"17, — R;'A — oV div +kK*Z, K.
Clearly f¢: S — S, Iy D{ — Dy, and F,, F1: V§ — V| are linear mappings. Moreover, we define
L, =0T, — 27_1A;1, oy i=a+RY (3.5)
where Ay HY(Q)/R — (H'(2)/R)’ is the pressure Laplacian operator satisfying
(Apé,m) = —(VE, V) VéEne HY(Q)/R.

By Friedrichs inequality, A, is continuous and invertible.
Now we consider the factorizations of A. It is easy to see A = £1.4; where

Zy =V 0 O Dy kV kK 0
0 Z, 0 0 | —mdiv 0 0 0
a=1 9 o Z, 0 |’ A= -kK* 0  F, V
0 0 0 I, 0 0 —div 0

With the notations in (3.4) and (3.5), A; can be further factorized into A; = £3.A2 where

KDy kV e 0
| 0 —kZy kdivD;'K 0
Az = 0 0 F., v ’
0 0 0 div F7'V
7, 0 0 0
e | —div D! Iy 0 0
7| kot —kD;'VI! Z. 0
0 0 —divF;' T,
This shows AA™1 = 515251_1 where
KDy kV(I,+1y) (2Z;—D;HKK 0
; 0 —kT, kdivD7IK 0
=& = ¢ J 3.6
A=bdz 0 0 F. v (36)
0 0 0 div F; v

Since £1E2E, ! only has unit eigenvalues, this inspires us to use Aasa right preconditioner of A.
7



Since A is complicated, we need to approximate its entries by simple operators. Let C},, > 1 be
the Poincaré constant which satisfies, for all 2 < r < 6 and all v € H'(Q)/R,

[0l - ) < Colvl gy (3.7)
By Lemma A.1, f(z, is self-adjoint and positive on S and satisfies

(1+C2) 716 < (1,6,6) < (6,6  VEeS

From [24], @, is spectrally equivalent to the identity operator Zy on S. This inspires us to approxi-

mate Zy by Z,. Furthermore, the commutator argument implies that div F, 1V can be approximated
by =L, (cf. e.g. [9,14]). The theoretical justification for this approximation is given in Lemma A.4
when the stabilization parameter « is large enough and the time step size 7 is small enough.

Now for solving the semi-discrete problem (2.2), we choose the preconditioner of A as follows
-1

kDy 2xkV 2K

0
P = 8 _’BI¢ ]:OK g (3.8)
0 0 0 —L!
It suffices to study the GMRES method for solving the operator equation, for given xy € X',
(AP = . (3.9)
Actually, (3.9) can be written equivalently into the system of equations
(AA DY =x, (AP)t=C. (3.10)

It is difficult to prove the convergence rate of the GMRES method for solving (3.9). Instead, we are
going to study the convergence rates of GMRES methods for solving both equations in (3.10).

REMARK 3.1. By Lemma A.2, the operator KK*I;K appearing in F is self-adjoint and positive.
It describes the braking of an external magnetic field for the conducting fluid. A similar term, BK*KC
for some 8 > 0, also appears in preconditioners for full resistive MHD model (cf. e.g. [21, 39]).
Therefore, the inductionles MHD model represents the essential coupling of the magnetic field to
the force in the fluid. However, the analysis for the inductionless MHD model is easier than that
for the full MHD model since the external field B can be a reqular function.

3.3. Convergence rates of GMRES methods for solving (3.10). We use the abstract
framework of FOV-equivalence to prove the convergence rates of GMRES methods for solving (3.10)
(see [22-24]). For any Hilbert space X, let £: X — X' be a self-adjoint and positive operator. We
define an inner product and its induced norm on X as follows

(@y)e = (L=)y), 2l = V(e 2)e, VeyelX (3.11)

Let X :=1+24rR.(1+ C2)? ||Bn||ioo(ﬂ) be a parameter-dependent constant and define

Ho = diag (I{'D 7y KTy, AF1, Azp) L H =& HE (3.12)
8



Let ¢,, be the approximate solution from the m iteration of GMRES method for solving the first
equation of (3.10). Using the framework in [23, Section 4.2], we get the convergence rate

[ = 6|, < V1 - e/ Cp |44 (6 = G|, - (3.13)
where Ciyt, Csyp are positive constants such that
(&, (AA™)E) 3 Jaane],.
e A

The estimates for Cins and Cgyp, will be given in the following theorem.

THEOREM 3.2. Suppose the stabilization parameter in (3.1) satisfies o > 1. Then (3.14) holds
with Cing = 1/4 and Csyp = 2+ C2.
Proof. The proof is provided in Appendix B. O

Let ¢, be the approximate solution from the m* iteration of GMRES method for solving the
second equation of (3.10). Define

H = diag (4kAC2Dy, KXIy, F1, L)

P

Similarly we have the convergence rate
[[APe—en)||, < 1-cacz, ||[APe—tan)]|, . (3.15)

where Ciys and Cgyp are constants satisfing

G AP lame],. .
{;WE in 53) Wécsup. (3.16)

THEOREM 3.3. Define M := C;/2Re (Hu;HLw(Q) + KkC) ||BnH2L°°(Q)) and let o > 1. Assume

T—l—afl < 8M~2 for time-dependent problem or oy > M? for stationary problem. Then (3.16) holds
with Cipe = 1/(4 4 405) and Cgyp = 3.
Proof. The proof is provided in Appendix C. O

REMARK 3.4. We point out that the convergence in both (3.13) and (3.15) is not uniform with
respect to the coupling number k. In fact, since the two operators Hg and H depend on k, the norms
-1 and |||l ,4-1 also depend on k. Therefore, the performance of using P to precondition A
may be influenced by the variance of k. We will show this statement numerically by Fxample 5.1
and FExample 5.3.

REMARK 3.5. The assumptions for a and T in Theorem 8.3 are not necessary in practical
computations. Our numerical experiments show that the preconditioner works well for a = 1 and
moderate T.



4. Algebraic preconditioner for the discrete problem. The purpose of this section is
to propose a preconditioner for solving the linearized discrete problem (2.3) in each time step.
The main idea is that, once a proper preconditioner is obtained for the continuous problem and
if the discretization of the continuous problem is stable, a robust preconditioner can be designed
for the discrete problem by preserving the basic structure of the continuous preconditioner [23,24].
To employ the continuous preconditioner in the previous section, we only consider the case of
I'. = 'y = 0 here. The preconditioner will be used directly to the cases of I'c # @ or I';, # ) in
numerical computations.

The linear problem (2.3) can be written equivalently into an algebraic form

Ax =b, (4.1)

where A is the stiffness matrix, x is the vector of DOFs, and b is the load vector. In block forms,
they can be written as follows

kM; kGT kKT 0 X b

. HG 0 0 0 o X¢ o b¢
A=l ik o F, BT | *|x |” PT| b, (4.2)

o 0 B 0 X, b,

Here x5, Xy, X4, X, are vectors of DOFs belonging to Jy,, %, ¢n, pn respectively and by, by, bg, b,
are the corresponding load vectors. The sub-matrices M ;, G, F,,, B, K are Galerkin matrices for
the electric current term, the electric potential term, the fluid terms, the pressure term, and the
coupling between u,, and J,, namely,

M; « (d,d), G < —(divd, ), K <« (d,B, xv'),
2

F, < =(v,v)+ O(ul;v,v") + Far(v,v'), B + —(divw,q),
T

foralld,d € DyNn D" v.v' e Von V", @€ 8" and ¢ € QM.

By (3.9), the direct preconditioner of A is the algebraic representation of P. However, in view
of (3.4), the term kK*I;K makes the computation of F, complicated. To save computations, we
replace KK*Z;K with KKC*K in F, and define matrix F,; by the bilinear form (F,v,v") 4+ x(Kv, Kv'),
namely,

2
F. < =(v,0) 4+ O(ul;v,0") + dan(v,v') + k(Kv,Kv')  Yo,0' e VonV"
T

This is reasonable. By Lemma A.2, Iy is self-adjoint and positive and is bounded by the identity
operator Zj, namely,

2
tud
H(div,Q)

= (d.2,d) < |ldl72(q) -

Therefore, the right preconditioner for A is given by

kD; 25GT 2xKT 0 -1

0 —xkM 0 0
P= 0 0 ¢ F. BT , (4.3)
0 0 0 -L!
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where the sub-matrices of P~! are defined by
Dy« (d,d)+ (divd,divd’), M, < (¢,¢),
2
L, alM;1 + ;8517 M, < (q,q"), S, < (Vq, V),

for all d,d' € DoN D", p, o' € S, and ¢,¢' € Q".
The preconditioning step needs to solve a system of algebraic equations

Py =r. (4.4)

We present the algorithm for solving an approximate solution of (4.4). Write y = (y.7, ¥, Yu, ¥p) "
and r = (7,1, Ty, Tp) |

ALGORITHM 4.1.
1. Compute y, = —L,r, = —a1£ — 1 where &, 1 are solved in two steps [14]:
e solve M,§ = r, by 10 iterations of CG solver with diagonal preconditioner,

e solve S,m =r, by 2 iterations of algebraic multigrid solver (see [15]).

2. Solve Myyy = —ry by 10 iterations of CG solver with diagonal preconditioner.

3. Solve Fy, =r, — IBTyp by GMRES solver with additive Schwarz preconditioner. The tolerance
for relative residuals is set by 1073.

4. Solve Dyyy=ry — QGTy¢ — 2K Ty, by 5 CG iterations with the HX preconditioner [17].

In step 3 of Algorithm 4.1, each sub-domain problem of the additive Schwarz method is solved
by the MUMPS solver [26]. We also recommend to use ILU solvers for sub-domain problems [33, Sec-
tion 5]. For stationary fluid problem with large Reynolds number, it is known that Newton’s method
converges faster than Picard’s method (cf. [21]). However, by Newton’s method, the linearized prob-
lem becomes more complicated and it is difficult to prove the convergence rate of the preconditioned
GMRES method. In [21], the authors studied the stationary problem of full MHD equations and
obtained a robust preconditioner for Newton’s method. They replace the linearized terms of Pi-
card’s method simply with those of Newton’s method in preconditioning. We only consider Picard’s
method in this section. The results can be extended to Newton’s method similarly as done in [21].

REMARK 4.2. For enclosed flow where Ty, = 0, assembling S,, does not need Dirichlet boundary
condition of p. However, for outflow boundary where I'y, # 0 and the pressure is undetermined, S,
should be assembled on the subspace {qh ceQ: ¢ =0 on Fn}.

5. Numerical results. In this section, we report three numerical experiments to show the
quasi-optimality of the solver with respect to the number of DOFs. The finite element method and
the discrete solver are implemented on the adaptive finite element package “Parallel Hierarchical
Grid” (PHG) [40]. The objectives of these experiments are as follows:

e Example 5.1 shows the quasi-optimality of the stationary solver by computing a driven cavity
flow with J -n=0o0nT.

e Example 5.2 shows the quasi-optimality of the stationary solver by computing the driven cavity
flow with ¢ = 0 on I". We also investigate the sensitivity of the solver to the AL-stabilization
parameter o and to the Reynolds number.
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e Example 5.3 investigates the performance of time-dependent MHD solver by computing a pipe
flow, namely, T, # 0.
Throughout this section, we use Picard’s method to solve stationary MHD problems and use the
linearized finite element scheme (2.3) to solve time-dependent MHD problems.

Given the approximate solution x(*) at the k' step, the residual of (4.1) is defined by r(*) =
b — Ax®) . The restart of the GMRES solver is set to 5. The iterations stop whenever the relative
residual is less than a given tolerance €, namely,

e <@ (5.1)

Throughout this section, we set the AL-stabilization parameter by o = 1 except for those examples
which test the sensitivity of the solver to a.

EXAMPLE 5.1 (Stationary problem with insulating wall). This example tests the efficiency of
preconditioner for solving stationary problem. The cavity region is Q = (0,1)% and the external force
is set to f = 0. The applied magnetic field is B = (0,0,1)". The boundary condition for velocity
reads u = (v,0,0)" on T where

veCH ), v(z,y,1)=1, and v(z,y,2)=0 Vzel0,1—h]
The boundary condition for current density reads J -m =0 on T.

TABLE 5.1
Meshes and number of DOF's. (Example 5.1)

Mesh h DOFs of (Jp,¢n) | DOFs of (up, pp)
T1 0.217 22,656 15,468
T2 0.108 176,640 112,724
T3 0.054 1,394,688 859,812
Ta 0.027 11,083,776 6,714,692

We set by R, = 10, 100, and 500 the Reynolds number, by £ = 10 and 103 the coupling number,
by 107° the relative tolerance for Picard’s iterations, and by ¢ = 10~ the relative tolerance for
solving linear systems. The meshes are refined successively and uniformly such that the meshsize
of 7; is given by

hy =3 x 27172, 1=1,2,3,4.

The numbers of DOFs for all unknowns are listed in Table 5.1.

TABLE 5.2
Quasi-optimality of the discrete solver for k = 10 : Ngmres (Npicara). (Example 5.1)

Grid | R.=10| R.=100] R. =500
Ti 29 (3) 40 (6) 71 (10)
Tz 30 (3) 42 (6) 77 (12)
T3 30 (3) 43 (6) 80 (12)
Ta 30 (3) 43 (6) 82 (12)
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TABLE 5.3
Quasi-optimality of the discrete solver for k = 10% : Ngmres (Npicard). (Example 5.1)

Grid | R,=10| R,=100]| R, =500
T 133 (3) 160 (3) 239 (3)
T2 133 (2) 178 (3) 251 (4)
T3 129 (2) 187 (3) 245 (5)
Ta 128 (2) | 192 (3) 248 (5)

Table 5.2 shows the number of Picard’s iterations (denoted by Npicara) and the average number
of GMRES iterations (denoted by Ngmres) for solving the linear system (4.1) with £ = 10. For fixed
Reynolds number R, Ngmres is quasi-uniform with respect to A and implies the quasi-optimality
of the block preconditioner. When Re increases from 10 to 500, the number of GMRES iterations
also increases mildly.

Table 5.3 shows the values of Ngmres and Npicara for k£ = 10%. We find that the Negmres for
%k = 102 is about 3-4 times the Ngmres for £ = 10. As stated in Remark 3.4, the performance of
the preconditioner can be 1nﬂuenced by k. In view of (3.6) and (3.8), we have simply neglected the
(2,3)—entry of A, that is, kdivD} 1K, to precondition A with P. So the preconditioner does not
embody the strong coupling between fluid and current density sufficiently for large k. Including
K div D;llC in Algorithm 4.1 needs to solve a coupled problem for y4 and y; in steps 2 and 4 and
is more time-consuming. When R, increases from 10 to 500, the number of GMRES iterations also
increases mildly. However, for fixed R. and &, Ngmres is still quasi-uniform with respect to h and
implies the quasi-optimality of the block preconditioner.

EXAMPLE 5.2 (Stationary problem with conducting wall). This example investigates the robust-
ness of preconditioner to Reynolds number R, and the sensitivity to the AL-stabilization parameter
a. The setting is same to that of Example 5.1 except that B = (1,0,0)7 and ¢|r = 0 are used.

The tolerance for Picard’s method is set to 10~° and the tolerance for the GMRES solver is set
to e = 10719, From Table 5.4, we find that the GMRES solver is robust to R. and quasi-optimal
to h. Particularly, for R, = 800 and x = 1, although Picard’s method does not converge within 100
iterations due to strong convection, we can still obtain the quasi-optimality of the GMRES solver.

TABLE 5.4
Average Ngmres required for reducing relative residual below 1010, Here “x” means no convergence within 100
Picard’s iterations. (Example 5.2)

R. | Mesh | k=1 k=10 R. | Mesh | k=1 k=10
T 22 (10) | 35 (6) T 28 (32) | 47 (8)
100 T 23 (9) 37 (6) 400 T 29 (53) | 50 (8)
T3 24 (8) 38 (5) T3 30 (58) | 52 (8)
Ta 24 (7) 39 (5) T4 29 (59) | 52 (8)
T 25 (16) | 40 (7) Ti 36 (x) | 53 (10)
200 T> 25 (17) | 42 (7) 800 Ts 39 (x) | 58 (12)
T3 27 (16) | 45 (6) T3 40 (x) | 62 (12)
Ta 28 (15) | 45 (6) Ta 40 (x) | 63 (11)
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Next we investigate the sensitivity of GMRES solver to AL-stabilization parameter a. Here we
fix the Reynolds number R, = 400 and the coupling number £ = 10. Table 5.5 shows that the
discrete solver is robust and quasi-optimal for a > 0.1.

TABLE 5.5
The sensitivity of the discrete solver to a (Re = 400, x = 10). (Example 5.2)
Meshes | a =0 a=001 ]| a=01|a=05| a= a=10
i 185 (12) | 83(9) | 49(8) | 47 (8) | 47 (8) | 45 (8)
To 120209 | 85(8) | 53(8) | 50(8) | 50 (8) | 50 (8)
To 240 (8) | 90(8) | 56(8) | 52(8) | 52(8) | 51(8)

Now we show the streamlines of discrete solutions generated by a line segment source
{(0.5,0.5,2) T :0< 2 <1},

Fig. 5.1 shows the streamlines of u;, for Kk = 1 and R, = 100, 200,400 respectively. Fig. 5.2 shows
the streamlines of u;, for k = 10 and R, = 100, 200,400 respectively. The streamlines of both wuy,
and Jp are depicted in Fig. 5.3 for kK = 10 and R, = 800. As the coupling number increases, the
fluid yields more large vertices and tends to be stratified.

Fi1c. 5.2. Streamlines of up, for k = 10 and R = 100,200,400 from left to right. (Example 5.2)
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F1G. 5.3. Streamlines of Jyp (left) and streamlines of up (right) for k = 10, Re = 800. (Example 5.2)

EXAMPLE 5.3 (Pipe flow). This example investigates the performance of the GMRES solver for
time-dependent MHD problem by computing a pipe flow with inflow and outflow boundaries. The
pipe occupies a cuboid = (0,1) x (0,4) x (0,1). On the outflow boundary, we impose

1 Ou

F%:pn on Fout:Fn = {($74’Z):0<£C,Z<1}.

On inflow boundary and on fixed walls, Dirichlet boundary conditions are imposed
w=(0,0,0)" on Ty :={(2,0,2):0<z,2<1},
w=(0,0,0)" on Dya:=TI\(Tin UTou),

where g = 10(1 — =) (22 — z)(2? — 2). Insulating boundary condition is imposed

J-n=0 onT.

Moreover, the applied magnetic field is given by B = (b,0,0)" with

bly) = 0 if y<1l or y>3,
! (y-1)B-y) if1<y<3.

The relative tolerance for the GMRES solver is set to ¢ = 1075, Let M, -, My be four
successively refined meshes whose mesh sizes are h; ~ 0.433/4, j = 1,--- ,4 (see Fig. 5.4 for M).
The numbers of DOFs of discrete solutions are listed in Table 5.6. At ¢,, = 1, the maximal material
velocity is given by umax & [|9(tn) | Lo () & 0.625. So the CFL for the material velocity requires

T < hjugs, ~16h;  on M;, j=1,--- 4.

max

For inductionless MHD model is essentially parabolic, we only consider the characteristic time for
magnetic braking for the fluid. For x = 103, this requires

-1
r< <,<; ||B(tn)||2Lm(Q)) ~1/9000 ~ 1.1 x 10,
15



To test the robustness of the preconditioner, we only investigate the cases of 7 = 0.1 and 7 = 0.01
which are much larger than the two criterions for time steps. From Table 5.7, we find that the
discrete solver is not optimal when both x and 7 are large, say, x = 103 and 7 = 0.1. This also
happens in Example 5.1 for large « and is mainly due to neglecting the (2, 3)—entry of A in designing
the preconditioner. However, Table 5.8 shows that, if we reduce the timestep to 7 = 0.01, the quasi-
optimality of the solver is obtained. Moreover, for fixed x and 7, the solver is robust to Reynolds
number and quasi-optimal to the number of DOF's.

F1c. 5.4. Tetrahedral mesh M of the pipe. (Example 5.3)

TABLE 5.6
Numbers of DOFs of discrete solutions. (Example 5.3)

Mesh h (T, &n) (Un, pn)
M 0.433 11,616 8,444
Mo 0.217 89,472 59,028

M | 0108 | 701,952 | 440,228
My | 0.054 | 5,560,320 | 3,397,956

TABLE 5.7
The number of GMRES iterations for 7 = 0.1 and t, = 1.0. (Example 5.3)

R, | Mesh | k =10% | kK =103
My 34 95
103 Mo 32 105
Ms 32 131
My 30 148
My 34 95
104 Mo 36 110
Ms 34 163
My 32 > 200
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TABLE 5.8
The number of GMRES iterations for 7 = 0.01 and t, = 1.0. (Example 5.3)

R, | Mesh | k =10% | kK =103
My 19 37

103 Mo 17 37
Ms 17 39
My 18 39
My 18 35

104 Mo 17 37
Ms 17 40
My 18 45

Next we fix the mesh M, and investigate how the coupling number x influences the fluid. The
parameters are set by

Re = 103, x =0, 10, 100, 7 =0.01, tn =T =5.5, a=1,

The distributions of |u x| are plotted in Fig. 5.5. When magnetic field is applied and is perpendicular
to the direction of the pipe, the middle and lower figures show that the conducting fluid tends to be
slowed down in the middle of the pipe and to flow out near the wall, compared with nonconducting
fluid (the top figure).

Fig. 5.6 shows the parallel component of the velocity in the direction of the pipe. It shows clearly
that the parallel velocity decreases in the middle of the pipe as the coupling number increases.

Fig. 5.7 shows that the magnetic field also leads to inhomogeneous pressure of the conducting
fluid. Higher pressure is concentrated in the middle region of the pipe where the fluid is forced to
change flowing directions by the magnetic field. Conversely, electric currents are influenced by the
fluid dynamics. Fig. 5.8 and 5.9 show that the current density becomes larger near the pipe wall
where the fluid flows faster.

6. Conclusions. In this paper, we propose a robust preconditioner for solving the finite ele-
ment discretization of inductionless MHD equations. The preconditioner is designed by using the
framework of FOV-equivalence and block factorization of coefficient matrix. By three numerical
examples, we show that the preconditioner is robust to relatively large Reynolds number and quasi-
optimal to the mesh size. There are still two important issues to be studied in future work:

e The solution of fluid convection-diffusion equation, that is, step 3 of Algorithm 4.1, is still not
scalable in our code.

e The present preconditioner is not robust with respect to large coupling number . Better ap-
proximation to the (2,3)-entry of A should be studied in designing the preconditioner.

Acknowledgement. The authors are very grateful to the anonymous referees of the paper for
their constructive comments that improve the paper essentially.
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Appendix A. Useful estimates for linear operators.
The purpose of this appendix is to prove some useful results which will be used in the proofs
of Theorem 3.2 and Theorem 3.3.

LEMMA A.1. The operator f¢ = —div D;lv is self-adjoint and positive on S. For £ € S,
2\ —1 -
(14 G el < 2], ) < 1601200y (A1)
1 ~
(1+C2) 7 1€l < (Z6€:6) < 1€l 720 (A.2)

where C), is the the Poincaré constant in (3.7).
Proof. 1t is easy to see that Z, is a self-adjoint operator on S. The formula of integration by
part implies that W := D' (V) satisfies

(w,a) + (divw,diva) = (V€,a) = —(£,diva) Va € Dy. (A.3)

Clearly (i¢§,§) = ||u“}||i,(div,ﬂ). So 7, is also positive.
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Let u € H'(Q)/R be the solution of the elliptic equation
(Vu, Vo) = (&,v) Vv e HY(Q)/R.

This indicates that w := Vu € H(div, Q) and divw = —¢ € S. Taking a = @ in (A.3) yields

|74

ey NV Pllzo) < €lle2o) -

Taking a = —w in (A.3) and using divaw = ffqbf lead to

IE[17 2 () = — (1, w) + (div i, &) = (divad, u + &) < (1+C2)

¢

o) €0 2 () -

This proves (A.1)..
From (3.11), Z4 provides an inner product (-, ~)f¢ and a norm ||||||I¢ on S. Using Schwarz’s
inequality and (A.1), we find that

(€6 = 3766z, < |7, Vellz, = E16.0" ez, < @+ el ez, -
It follows that

(14 C2) 7 el oy < NEN3, = (Zot.€) < 2o

2
oy Wl < N2

This proves (A.2). The proof is completed. O
LEMMA A.2. The operator Ly is self-adjoint and satisfies

- 2 P _ 2 S T /
IJdH’DJ - (d,IJd) = [ldll3-+ - H‘V(% div D; d)‘HD;l vd e D).

Proof. Define ¢ = f(;l div(D;'d). From (3.4), we have I;d= D (d+ Vi) and

(D71 (V) V) = (Zyw,6) = (div(D;'d), ) = — (D;'d, V),
’]‘ijd]‘jij — (D7N(d+ Vo), d + V) = (D7 'd,d) — (D3 (V), Vab),
(d.2,d) = (D7'd,d) + (D;'d, Vo) = (D} 'd,d) — (D} (V), Vo).

The proof is completed. O
LEMMA A.3. Assume divu) = 0. Then for any v € Vi and £ € V7,

(Fov,0) = loll% . (155 < 17l 5 -

Proof. Since divu} = 0, integration by part implies (u - Vv,v) = 0 for any v € V. This
shows (F,v,v) = (Fiv,v) = |HU|H§_—1 Moreover,

17 €M, = € 7 '6) < el zo 17 €l s, = 117 €l 17 el
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The proof is completed. O
LEMMA A.4. Let M be defined in Theorem 3.8 and let the assumptions of Theorem 3.3 be
satisfied. Then for any q € Q,

(7’ + al_l)l/z time-dependent case,

[(div FZV + £,1) <ML ]l o g

ql| _
LA 3oy 1/2 stationary case.

Proof. Since q = (T, — 277 A1) (L, q), we find that
lgll 20y < @ ’|‘C;1qHL2(Q) +2r7 ’|A;1(£;1q)HL2(Q) < (o1 +2C,771) HE;QHB(Q) - (A4

Note that A, £, are commutative and div F, = —L£,A,, div + div(u, - V + K*Z;K). Multiplying
the equality by !V from right and by L, 1A; ! from left, we get

ni=(divF 'V + L) g= LA div(u, - V + K*TK)F (V). (A.5)
Write w = F;'(Vq) and € = (u?, - V + kK*Z;K)w. By Lemma A.3, we have
H|w|||.2r1 = (w, Fryw) = —(divw, q) < ||divw||L2(Q) HQHL2(Q) ‘
By Lemma A.2, £ can be estimated as follows

* * * 2
€0l 2@y < ek - Vool gy + w1 Kawll 2y < (Il ey +£Cs I Ballie @) ) 10l 0

_ _ . 1/2 1/2
<M w5, < C,M2M |dive|| g, llal g, (A.6)

Now we prove the lemma for time-dependent case and for stationary case respectively.

Case 1: time-dependent case. Assume 0 < 7 < 1 without loss of generality. By (A.5), we
have 27~ — a1 Apn = — div €. This implies
2 Il + ol = (€. V) < 1 [€12a0y + bl
7 Miez@) T AlMim@) = 18 VI = 3 mlisliez @) T Al @)

Using (A.4), (A.6), and the fact that divw = n — £, (q), we get

1 _ _ -
||77||2L2(Q) < 8%41 ||€||2LZ(Q) < ZMQ(OQ L) (||77HL2(Q) + HLp 1qHL2(Q)) ||£p 1qHL2(Q)

IA

1 1 _ _ _
3 HUHQLZ(Q) + 3*2M2(041 L) [84 M (et + )] ||, 1‘1Hiz(m :

Since M2(7 + a; ') < 8 by the assumptions of Theorem 3.3, this leads to

Illzaey < M (r+ 0 ) 1252 ] g -

Case 2: stationary case. In this case, we have 7 = 400 and £, = a1Z,. Using (A.6) and
the stability of the solution of Poisson’s equation, we have

_ . _ . 1/2 1/2
A, @V ) 1 ) < 1€l 20y < O V2M [ldiven]| [T, llall e, -
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Together with (A.4) and divw =17 — £, *(qg), this shows
11320y = 012 A7 (divE) [} ) < 07 2C; M2 |[div o] [l
L2(Q) 1 L2(Q) 1 L2 14l L2(0)
2 - _ _
< 5 91720y +2M2art (1+ M2art) ||£, quL2(Q) :

Since M2a; ! < 1 by the assumptions of Theorem 3.3, we get [0l 2@y < 3Ma;'/? ||/3;1q||L2(Q). 0

Appendix B. The proof of Theorem 3.2.
Proof. For any &€ € X', write ¥ = (Hy &, 1)¢ and @ = (Hy 'E2H) ¥ for convenience. Since

AT = (6)H T 88 = (67) T Hy 6t (B.1)
it is easy to see
R . 2
(6 AAT Oy = (0 EHT) el = 1015, ||| (A4 e]| =il (B:2)
For convenience, we write

{\1/ = (U, Ty, Uy, 0,), U;€Dy, VeS8, U,V ¥,cQqQ, B3)

Uy =0, +D;(VT,), U, = F 1 FU

The proof consists of two parts. Part I proves the inf-condition, that is, the first inequality of (3.14),
and Part II proves the sup-condition, that is, the second inequality.

Part I: the inf-condition. Direct calculations show that
(W, EHoW) — |93, = —r(div Wy, W) = (Fy, KT, ) = A(div b, W), (B.4)
By Schwarz’s inequality, the first term on the righthand side of (B.4) satisfies
(v W, )| < 5 div W gy sl gy < 5 (Idiv Wallfao + 1alFa) )
By the definition of K and Poincaré’s inequality, we have
Tl L2y < Cp 1Bl [Pul i@y < CoRe’* |1 Bnllpee ¥ ulll 7 - (B.5)
The second term satisfies

N K 2 )\ 2
k|0, w) 1Kl < 5 IS, + 5 1€l 3oy + 35 112l -

¥

L*(Q)

Moreover, Lemma A.3 implies < |[[[Wyll[ £,- So the third term satisfies
F1

A 2 A 2
‘)‘(dw Yo, \I/ 7 ||\I'p||L2(Q) < % H|\IjuH|}‘1 + D) ”\I/p”[ﬁ(g)
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Combining the above estimates yields an upper bound for the righthand side of (B.4)
k(div ¥, \p¢) + (b, ;c\m + A\(div ¥, ¥ )‘

>\
< 2Dl + 3 19520y + 2 (12113, + 1212200

Remembering o > 1 from the assumption, we get

. - R 3
R(div Wy, Uy) + k(¥ 5, K,) + A(div ¥, \pr)’ < 2w, -
Substituting (B.6) into (B.4) yields, for any ¢ € X',
A1 1 2 1 2
(€ AAT € = (0, E:Ho¥) > | I1¥I1Z, = § el

Part II: the sup-condition. Direct calculations show that
@2, — I1W]I2, = — 2r(Wy, div ) — 2k </c\pu, xifJ> — 2\(T,,, div ¥,,)

K2 .
i @ 3 +)\‘ TH"C*%

L2()

2
< |||\I/u\||§_-17 the fourth and fifth terms satisfy
F1

A

2 A
. 2 2 2
[l o TF lldiv @5z < = M¥allF +r(1+ o) s, -

By the definition of F;, we find that

- 2 A
el < 1Bl [[2]
]:1

|

< CpRY Bl gy [0, g (167241

L*(Q) L*(Q)

v

This yields

. HQC’Z%R
)IC*\IJJ !

e 2
1Bl o |9,

K
5 ey < 73 (195115, + ¥l ) -

Finally, substituting the above estimates into (B.8) and using (B.6), we get
2 2 2
121lI%, < 2+ Co) ¥, -
The proof is completed upon using (B.2). 0

Appendix C. The proof of Theorem 3.3.
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Proof. Write Ay = 403)\ for convenience. Direct calculations show that

kTID;Y 27DV 2D 'KFSY 2D 'KFSIVE,
0

P— 0 7/&711;5 0
- 0 0 Fl Fve, ’
0 0 0 L,
kMDy KAV(Zs —1s) —wDKF'F —wD;'KF;'V
iy 0 DV kdivD ' KFVF kdivD ' KF IV
APH 0 0 Fi 0
0 0 0 —divF; 'V

For any £ € X', write U = H~'¢, © = AP¢ = APHY, and ® = H'0O. It is easy to see that
AP, = w.0), il =l ||4rg|,  =@e)  ©)

Using notations similar to (B.3), we have

@J = Ii)\lpj\lfj + Iﬂl()\v\i]qﬁ - \i]J)7 ®u = ]:1\1]

N . C.2
(")¢ = H)\I¢\I/¢+HdiV\I/J, @p = —divf;l(V\I/p), ( )

where \iIJ = D;”C]:,:l (f1\11u + V\pr) and \i/¢ = \If¢ — j¢\If¢.
_ 2 . _
By Lemma A4, [||F;! p)m}_l = — (divF; 1 (VT,),T,) < %H|\pr|||i;1 By arguments
similar to (B.5) and using Lemma A.3, we find that

I, < VRCE 1Bl oy (117 Erull 5, + 17 O,

< \/3RC2/21Bull ey (IWalllz, + 1191 ) - (C.3)

The estimate for ¥, follows directly from Lemma A.1
i

Using (C.2), Lemma A.4, and the assumptions of the theorem, we have

(C.4)

<H‘II¢HL2(Q) (1+C HI¢\I’¢‘

L2(Q) L2(Q)
©pllZ, = (L5 " Wp, Tp) + ((div Fi 'V = £,1) Wy, £,(L, " +div F V)W) < 20|87 . (C-5)
Using (C.3)—(C.4) and Lemma A.4, we find that
(0,0) = kML [T 115, + A NTIIZ, + 1Pull%, — (¥, (div F V)T,

—Ii/\(diV \I/J, \i/¢) — K}(‘ilj, \I/J + V\I’¢)

3/<c)\1 KA
D, + 57 ——ay
7201+ C2)

Y 1/2
- (lﬁmc)) (I9ll5, + 1000 ) (19l + 120

1 2
> — ||| .

| \/

2 2 1 2
ollre ) + I1¥ulllz + 5 Ml
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Similarly, the upper bound for (®,©) can be estimated as follows

2

. 2 o
(®,0) = kA 12,3, + A HI¢‘I’¢HL2(Q> + 1wl + 10,017 + ]dw%\

E’
A

. .2 . R o
+ )/f ’HAV\I% B \IIJ‘HD—I +26(U 7, AV — U ;) + 26(div¥ y, Ty Uy)
1 J

L2(Q)

2 2 2 2 26|, = |7
<2 [0 1, + 20 [ 2 oy 13, 20,12+ 25 v,

L2(9)
2K A N 2
A awi —@‘H
* A1 H‘ ¢ J D!
<200 (1013, + 36A [l 2o + 2 12l + 310,15

2
<3l -

By virtue of (C.1), the two constants can be set by Cins = 1/(4 + 4C?) and Cop = 3.0
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