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Abstract. In this paper, we propose an approximate eddy current model for nondestructive
evaluation. Interior cracks of large steel structures are very thin compared with the characteristic
length of the system. Numerical methods usually necessitate very fine meshes to characterize the small
thickness of cracks, and thus yield very large number of degrees of freedom. The proposed model
neglects the thickness of cracks and treats them as interior surfaces. The existence and uniqueness are
established for the approximate solution upon introducing proper gauge conditions. The convergence
of the approximate solution to the solution of the original eddy current problem is proved as the
thickness of cracks tends to zero. And an error estimate is presented for homogeneous conducting
materials. A coupled finite element method is proposed to solve the approximate problem. The well-
posedness and the error estimate are proved for the discrete solution. Numerical experiments are
carried out for engineering benchmark problems to validate the approximate eddy current model and
to demonstrate the efficiency of the finite element method.
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1. Introduction. In electrical engineering, the detection of interior cracks or
flaws is vital for large metallic structures, such as airfoils, railway tracks of high-speed
trains, high-pressure boilers, and so on. Nondestructive evaluation (NDE) of durable
devices is active in both scientific research and engineering applications. Among oth-
ers, eddy current method is one of most popular approaches in NDE and usually yields
accurate identification of cracks. In a large metallic structure, the thickness of a crack
can be very thin, less than one millimeter in many cases. It makes the numerical so-
lution of Maxwell’s equations very difficult and usually necessitates large number of
degrees of freedom. The inverse problem for identification of interior cracks appears to
be difficult but very interesting. The main task for NDE is to solve the eddy current
problem efficiently to locate the cracks and to reconstruct their two-dimensional pro-
files. In this paper, we study the forward problem for NDE and are going to address
the inverse problem in a forthcoming paper.

We propose to study the time-harmonic eddy current problem

iωµ0H + curlE = 0 in R3, (Farady’s law) (1.1a)

curlH = J in R3, (Ampere’s law) (1.1b)

where E is the electric field, H is the magnetic field, ω is the angular frequency, and
J is the current density defined by:

J = σE + Js in R3. (1.2)
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Here σ ≥ 0 is the electric conductivity, µ0 is the magnetic permeability in the empty
space, and Js ∈ L2(Ω) is the source current density carried by some coils. The source
current density usually satisfies

div Js = 0 in R3.

The eddy current problem is a quasi-static approximation to Maxwell’s equations at
very low frequency by neglecting the displacement currents in Ampere’s law (see [2]).
For linear eddy current problems, there are many interesting works in the literature
on numerical methods (cf. e.g. [1,7,10,18,21,29]) and on the regularity of the solution
(cf. e.g. [13]). In [5], Bachinger et al studied the numerical analysis of nonlinear eddy
current problem in isotropic materials. Recently, Zheng et al studied the nonlinear
eddy current problem for grain-oriented silicon steel laminations in large power trans-
formers [19,22,30]. In [24], Nédélec and Wolf presented the first homogenization result
for linear time-harmonic eddy current problem in a transformer core. In [20], Jiang
and Zheng studied the homogenization of time-dependent eddy current problem for
nonlinear permeability and derived the homogenized Maxwell’s equations.

Recently, eddy current model based NDE attracts more and more attentions in
numerical analysis and scientific computing. There are plenty of papers arising from
the engineering community. In [26], using finite element method, Palanisamy com-
puted remote-field eddy current problems for the nondestructive testing of metal tube.
In [27], Philipp et al investigated systematically the finite element method for eddy
current NDE, such as the variational formulation, finite element discretization, and
boundary conditions for coil-in-air. Rachek et al studied the finite element simulation
for eddy current NDE for rotationally symmetric problem [25]. Hamia proposed a
finite element analysis for eddy current NDE with an improved giant magnetoresis-
tance magnetometer and a simple single wire as inducer [17]. The thin crack is treated
approximately as a nonconducting surface in [6, 11, 14]. In [6], the authors adopt a
mixed formulation for A and φ, the vector magnetic potential and the scalar electric
potential. But the normal component of A · n must be set to zero on the surface.
In [11], Choua et al also use A and φ as unknown functions. The normal component
of the current density is set to zero by duplicating the degrees of freedom of φ on the
surface. In [14], Dular and Geuzaine proposed a clever decomposition of the magnetic
vector potential into a continuous function plus a discontinuous function. The ap-
proximate model only solves the discontinuous function on the insulating surface and
guarantees that the normal component of the current density vanishes on the surface.

However, rigorous mathematical theories are relatively rare for eddy current NDE.
For inverse problem of eddy current model, Ammari et al provided a mathematical
analysis and a numerical framework for simulating the imaging of arbitrarily shaped
small-volume conductive inclusions from electromagnetic induction data [3]. They
derived a small-volume expansion of the eddy current data measured away from the
conductive inclusion and proposed a location search algorithm based on the new
formula.

In this paper, we study the forward problem of eddy current NDE for large steel
structures which comprise interior defects or cracks. To solve the eddy current problem
numerically, one has to seek for very fine meshes to characterize the small thickness of
crack. But the solution of the inverse problem for NDE requires to solve the forward
problem efficiently and accurately. Starting from the conservation of charges, we derive
an approximate eddy current model in the variational framework. This model replaces
the crack with an interior interface so that the finite element mesh size only needs to
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be comparable with the width of crack. Since the thickness of crack is usually about
one percent of its width, the approximate model is much superior to the original model
in terms of computational complexity. It can be shown that the approximate model
is equivalent mathematically to the model in [14].

In the theoretical aspects, the paper presents the following results:
1. the existence and uniqueness of the approximate solution,
2. the stability of the solution with respect to the source current,
3. the strong convergence of the approximate solution to the solution of the

original problem as the thickness of cracks tends to zero,
4. the error estimate between the approximate solution and the true solution

for homogeneous conducting materials.
Our theory can be extended directly to the case when the magnetic permeability is
inhomogeneous but linear. For nonlinear eddy current problems, we can still prove the
convergence of the approximate solution, but the error estimate will be much more
difficult due to the low-regularity of the solution. For simplicity, we only consider the
linear and time-harmonic eddy current problem.

The second objective of the paper is to propose a coupled finite element method
to solve the approximate problem. We adopt the hybrid of the lowest order edge
element method and the lowest nodal element method. By introducing discrete gauge
conditions, we proved the well-posedness of the discrete problem. The optimal error
estimate is also presented in the sense that the approximation error is bounded by the
the interpolation error of the solution. To validate the approximate model, we choose
two engineering benchmark problems from the International Compumag Society. The
first one is the Team Workshop Problem 21a-2 whose experimental data are provided
[9] and the second one is the Team Workshop Problem 15 for NDE [8]. We carry out
numerical experiments for both the original model and the approximate model. The
numerical results from the two models agree with each other.

The layout of the paper is as follows. In section 2 we present some notation and
Sobolev spaces used in this paper and study the A-formulation of (1.1). In section
3 we propose an approximate eddy current model for thin cracks. The uniqueness,
existence, and stability of the approximate solution are also presented. In section
4, we prove that the approximate solution converges to the solution of the original
eddy current problem as the thickness of crack tends to zero. The error estimate
is also proved for homogeneous conducting materials . In section 5, a coupled finite
element method is proposed to solve the approximate eddy current model. A Céa-type
lemma is proved for the error estimate between the finite element solution and the
continuous solution. In this sense, the approximation error of the discrete solution is
bounded by the interpolation error of the continuous solution. In section 6 we present
two numerical experiments to validate the approximate eddy current model and to
demonstrate the efficiency of the finite element method. They are two benchmark
problems from the International Compumag Society.

2. The A-formulation of the eddy current problem. Let the truncation
domain Ω be a cube which encloses all inhomogeneities, such as coils and conductors.
We also denote by Ωc the conducting region and by Ωnc the nonconducting region,
that is,

Ωc = supp(σ), Ωnc = Ω\Ωc .

For convenience, we only consider one conductor and assume that Ωc is connected.
Our theory can be extend to multiple conductors straightforwardly. Since we are
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considering interior cracks of Ωc, the nonconducting region is assumed to be the
combination of M + 1 connected components

Ωnc = Ω0 ∪ Ω1 ∪ · · · ∪ ΩM , Ωi ∩ Ωj = ∅,
for any 0 ≤ i, j ≤ M and i 6= j, where Ω1, · · · ,ΩM stand for simply-connected cracks
and the open domain Ω0 stands for the exterior of Ωc ∪ Ω̄1 ∪ · · · ∪ Ω̄M (see Fig. 2.1):

Ω0 = Ω\ (
Ω̄c ∪ Ω̄1 ∪ · · · ∪ Ω̄M

)
.

Fig. 2.1. The conductor Ωc, the thin cracks Ω1, · · · , ΩM , and the exterior domain Ω0.

Let L2(Ω) be the usual Hilbert space of square integrable functions equipped with
the following inner product and norm:

(u, v) :=
∫

Ω

u v̄ and ‖u‖L2(Ω) := (u, v)1/2,

where v̄ stands for the complex conjugate of v. Let ξ denote any non-negative triple
index and define

Hm(Ω) := {v ∈ L2(Ω) : Dξv ∈ L2(Ω), |ξ| ≤ m}
Let H1

0 (Ω) be the subspace of H1(Ω) whose functions have zero traces on ∂Ω.
Throughout the paper we denote vector-valued quantities by boldface notation, such
as L2(Ω) := (L2(Ω))3.

We define the spaces of functions having square integrable curl by

H(curl,Ω) := {v ∈ L2(Ω) : curlv ∈ L2(Ω)},
H0(curl,Ω) := {v ∈ H(curl,Ω) : n× v = 0 on ∂Ω},

which are equipped with the following inner product and norm

(v,w)H(curl,Ω) := (v,w) + (curlv, curlw), ‖v‖H(curl,Ω) := (v,v)1/2
H(curl,Ω) .

Here n denotes the unit outer normal to ∂Ω. We shall also use the spaces of functions
having square integrable divergence

H(div,Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)},
H0(div,Ω) := {v ∈ H(div,Ω) : n · v = 0 on ∂Ω},
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which are equipped with the following inner product and norm

(v,w)H(div,Ω) := (v,w) + (div v,div w), ‖v‖H(div,Ω) := (v,v)1/2
H(div,Ω) .

Denote the boundary of Ω by Γ = ∂Ω. We impose an approximate boundary
condition on Γ as follows

B · n = 0 on Γ, (2.1)

where B = µ0H stands for the magnetic flux density. We remark that the boundary
condition is physically reasonable and easy to satisfy by means of vector magnetic
potential.

Notice that (1.1a) indicates div H = 0 in Ω. There exists a magnetic vector
potential a such that

µ0H = curla in Ω.

Then (1.1a) turns into

curl(iωa + E) = 0 in Ω.

Thus there is a scalar electric potential p such that

iωa + E = −∇p in Ω.

Set A = a− i∇p/ω. It follows that

E = −iω
(
a− i∇p/ω

)
= −iωA and µ0H = curla = curlA.

Let DivΓ be the surface divergence operator defined on Γ. It is easy to see that

µ0H · n = curlA · n = DivΓ(A× n) on Γ.

Therefore, (2.1) is easily satisfied by imposing homogeneous Dirichlet boundary con-
dition for the magnetic vector potential

A× n = 0 on Γ.

Finally, substituting µ0H = curlA into (1.1b), we obtain the following boundary
value problem

iωσA + ν0 curl curlA = Js in Ω, (2.2a)
A× n = 0 on Γ, (2.2b)

where ν0 = µ−1
0 stands for the magnetic reluctivity.

A weak formulation equivalent to (2.2) reads: Find A ∈ H0(curl,Ω) such that

(iωσA, v) + ν0 (curlA, curlv) = (Js, v) ∀v ∈ H0(curl,Ω). (2.3)

It is obvious that the solution of (2.3) is not unique in the insulating region Ωnc. In
fact, if A solves (2.3), then A + ∇φ also solves (2.3) for any φ ∈ H1

0 (Ω) satisfying
supp(φ) ⊂ Ωnc.
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To study the wellposedness of the weak solution, we shall impose some gauge
condition on the test function space. Define

H1
c (Ωnc) :=

{
φ ∈ H1(Ωnc) : φ = 0 on ∂Ω, φ = αi on ∂Ωi, 1 ≤ i ≤ M

}
,

where α1, · · · , αM are arbitrary constants. It is easy to see that

∇H1
c (Ωnc) ⊂ H0(curl,Ωnc) .

We extend each function in ∇H1
c (Ωnc) by zero to the interior of Ωc and denote the

extension space by

W (Ω;Ωnc) :=
{
v ∈ L2(Ω) : v|Ωnc ∈ ∇H1

c (Ωnc) and v = 0 in Ωc

}
.

For any φ ∈ H1
c (Ωnc) and each 1 ≤ i ≤ M , since φ = Const. on ∂Ωi, we have

∇φ× n = 0 on ∂Ωi. Therefore, W (Ω;Ωnc) ⊂ H0(curl,Ω).
Define

X =
{
v ∈ H0(curl,Ω) : (v,w) = 0 ∀w ∈ W (Ω;Ωnc)

}
. (2.4)

Then H0(curl,Ω) admits the orthogonal decomposition

H0(curl,Ω) = X ⊕W (Ω;Ωnc). (2.5)

The following lemma will play an important role in our analysis.
Lemma 2.1. X is a Hilbert space endowed with the inner product and norm

(v,w)X =
∫

Ωc

v · w̄ +
∫

Ω

curlv · curl w̄, ‖v‖X =
√

(v,v)X . (2.6)

And there is a constant C depending only on the diameters of Ω0, · · · ,ΩM such that

‖v‖H(curl,Ω) ≤ C ‖v‖X ∀v ∈ X . (2.7)

Proof. We need only prove (2.7). For any v ∈ X, we consider the orthogonal
decomposition

v = w +∇ψ, ψ ∈ H1
0 (Ω), w ∈ H0(curl,Ω) satisfying div w = 0 . (2.8)

The well-known Friedrichs’ inequality on H0(curl,Ω)∩H(div,Ω) shows that (cf. [4])

‖w‖H(curl,Ω) ≤ C ‖curlw‖L2(Ω) = C ‖curlv‖L2(Ω) ≤ C ‖v‖X , (2.9)

where C > 0 is a constant depending only on Ω.
Furthermore, the definition of X implies that

∆ψ = 0 in Ωnc .

Let ψ̄ ∈ H1
0 (Ω) be defined by harmonic extension as follows

∆ψ̄ = 0 in Ωnc and ψ̄ =
1
|Ωc|

∫

Ωc

ψ in Ωc .
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Then ψ̃ = ψ − ψ̄ ∈ H1
0 (Ω) also satisfies

∆ψ̃ = 0 in Ωnc .

Then the stability estimate of elliptic equations shows that
∥∥∥ψ̃

∥∥∥
H1(Ωnc)

≤ C
∥∥∥ψ̃

∥∥∥
H1/2(∂Ωnc)

= C
∥∥∥ψ̃

∥∥∥
H1/2(∂Ωc)

≤ C
∥∥∥ψ̃

∥∥∥
H1(Ωc)

,

where we have used the trace theorem in the last inequality and the constant C > 0
only depends on Ωc. An application of Friedrich’s inequality yields

∥∥∥ψ̃
∥∥∥

H1(Ω)
≤ C

∥∥∥ψ̃
∥∥∥

H1(Ωc)
≤ C|ψ|H1(Ωc)

. (2.10)

Since ∇ψ̄ ∈ W (Ω;Ωnc), we deduce that

(∇ψ̄,∇ψ̄) = (∇ψ,∇ψ̄)− (∇ψ̃,∇ψ̄) = (v,∇ψ̄)− (∇ψ̃,∇ψ̄) = −(∇ψ̃,∇ψ̄) .

From (2.10) we obtain
∣∣ψ̄

∣∣
H1(Ω)

≤
∣∣∣ψ̃

∣∣∣
H1(Ω)

≤ C|ψ|H1(Ωc)
. (2.11)

Combining (2.10) and (2.11) shows that

|ψ|H1(Ω) ≤
∣∣∣ψ̃

∣∣∣
H1(Ω)

+
∣∣ψ̄∣∣

H1(Ω)
≤ C|ψ|H1(Ωc)

≤ C ‖v −w‖L2(Ωc)
. (2.12)

Finally using (2.9) and (2.12), we conclude that

‖v‖H(curl,Ω) ≤ C ‖v‖L2(Ωc)
+ C ‖w‖H(curl,Ω) ≤ C ‖v‖X .

This completes the proof.
We end this section with a modified weak formulation on the subspace: Find

u ∈ X such that

(iωσu, v) + ν0 (curlu, curlv) = (Js, v) ∀v ∈ X. (2.13)

From (2.5), it is easy to see that u also satisfies

(iωσu, v) + ν0 (curlu, curlv) = (Js, v) ∀v ∈ H0(curl,Ω). (2.14)

Here we used the assumption that Js · n = 0 on ∂Ωnc, which is usually satisfied in
engineering. This means that u is one solution of (2.3). Although the solution A of
(2.3) is not unique, the eddy current density and the magnetic flux density are unique,
namely,

iωσA = iωσu, curlA = curlu in Ω.

Therefore, we are only interested in σu and curlu throughout this paper.

Theorem 2.2. Assume Js ∈ L2(Ω), div Js = 0, and supp(Js) ⊂ Ω0. Then
(2.13) has a unique solution and there exists a constant C > 0 depending only on Ω,
σ, and ν0 such that

‖u‖X ≤ C ‖Js‖L2(Ω) .

Proof. The theorem is a direct consequence of Lemma 2.1.
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3. An approximate eddy current model for interior cracks. In this sec-
tion, we shall propose an approximate weak formulation of the eddy current problem
which omits the thickness of thin cracks. Denote the union of the conducting region
and thin cracks by Dc , whose closure satisfies

D̄c = Ω̄c ∪ Ω̄1 ∪ · · · ∪ Ω̄M = Ω\Ω0 .

To simplify the setting, we assume

Dc := (X0, X1)× (Y0, Y1)× (Z0, Z1), Ωi := (xi, xi + d)× (y0, y1)× (z0, z1),

where Y0 ≤ y0 < y1 ≤ Y1, Z0 ≤ z0 < z1 ≤ Z1, and d denotes the thickness of
thin cracks (see Fig. 3.1 (left)). Write x0 = X0 and xM+1 = X1. For non-destructive
evaluation, we usually have

0 < d ¿ min
0≤i≤M

(xi+1 − xi, y1 − y0, z1 − z0).

We remark that our theory also applies to more general cases when Ω0, · · · ,ΩM

are simply-connected and have Lipschitz continuous boundaries. To avoid tedious
descriptions, we do not elaborate on the details.

Fig. 3.1. Left: original conductor with thin cracks Ω1, · · · , ΩM . Right: extended conductor where
the think cracks are replaced by interfaces S1, · · · , SM .

3.1. An approximate eddy current model. Recall that div Js = 0 in Ω.
Taking v = ∇ϕ in (2.3), we find that

iω
∫

Ωc

σA · ∇ϕ = 0 ∀ϕ ∈ H1
0 (Ω). (3.1)

This implies the conservation of charges in Ωc, namely, the eddy current density
J = iωσA satisfies

div J = 0 in Ωc and J · n = 0 on ∂Ωc . (3.2)

Now we consider the case that the thickness of cracks tends to zero. As d → 0, each
Ωi will degenerate to the surface (see Fig. 3.1 (right))

Si = xi × (y0, y1)× (z0, z1), 1 ≤ i ≤ M.
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We shall propose an eddy current model which does not allow the eddy current flowing
across each surface Si.

First we define the modified conductivity σ̃ by extending σ|Ωc
continuously to the

cracks such that σ̃ = σ in Ω0 ∪ Ωc, σ̃ > 0 in Dc, and

‖σ̃‖L∞(Dc)
≤ ‖σ‖L∞(Ωc)

. (3.3)

For d = 0, the modified current density J̃ , which will be defined later, should satisfy
the conservation of charges, that is,

div J̃ = 0 in Dc and J̃ · n = 0 on ∂Dc ∪ S, (3.4)

where S = ∪M
i=1Si.

To realize (3.4), we are going to introduce a local domain Di with Si being a part
of its boundary. Let H > 0 be the thickness parameter satisfying

d ¿ H <
1
2

min
1≤i≤M

(xi − xi−1) .

Define

Di = (xi −H, xi)× (y0, y1)× (z0, z1), 1 ≤ i ≤ M.

Clearly Ωi and Di share Si as the common boundary and are located at its opposite
sides respectively (see Fig. 3.2). Then (3.4) can be equivalently written as follows

∫

Dc

J̃ · ∇ϕ = 0 ∀ϕ ∈ H1
0 (Ω), (3.5)

∫

Di

J̃ · ∇ϕ = 0 ∀ϕ ∈ H1
∂Di\S̄i

(Di), 1 ≤ i ≤ M, (3.6)

where

H1
∂Di\S̄i

(Di) :=
{
ϕ ∈ H1(Di) : ϕ = 0 on ∂Di\Si

}
.

Fig. 3.2. The illustration for Ωi and Di sharing the interface Si, and Oi = Ωi ∪ Si ∪Di.

A comparison of (3.5)–(3.6) with (3.1) inspires us to enlarge the test function
space from H0(curl,Ω) to H0(curl,Ω) +

∑M
i=1 U i where U i consists of zero exten-

sions of functions in ∇H1
∂Di\S̄i

(Di), namely,

U i :=
{

v ∈ L2(Ω) : v|Di
∈ ∇H1

∂Di\S̄i
(Di) and v = 0 in Ω\D̄i

}
.
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We define a modified curl operator by

cũrl (v + ξ) := curlv ∀v ∈ H(curl,Ω), ξ ∈
M∑

i=1

U i. (3.7)

It is clear that cũrl is just the normal curl operator on H(curl,Ω):

cũrlv = curlv ∀v ∈ H(curl,Ω). (3.8)

An approximate problem to (2.3) reads: Find Ã ∈ H0(curl,Ω) +
∑M

i=1 U i such that

a(Ã,v) = (Js,v) ∀v ∈ H0(curl,Ω) +
M∑

i=1

U i. (3.9)

where a(·, ·) is a sesquilinear form defined as follows

a(v,w) = iω(σ̃v,w) + ν0(cũrlv, cũrlw). (3.10)

Similar to (2.3), the solution of (3.9) is not unique.
To study the wellposedness of (3.9), we define

U :=
{
v ∈ H0(curl,Ω) : (v,∇ϕ) = 0 ∀ϕ ∈ H1

0 (Ω), ϕ = Const. in Dc

}
. (3.11)

The modified text function space is defined as follows

X̃ := U +
M∑

i=1

U i. (3.12)

A modified problem of (3.9) reads: Find ũ ∈ X̃ such that

a(ũ,v) = (Js,v) ∀v ∈ X̃. (3.13)

Lemma 3.1. The space X̃ admits the decomposition in a direct sum

X̃ = Ũ +
M∑

i=1

U i, Ũ = {v ∈ U : div v = 0 in D1 ∪ · · · ∪DM} .

Proof. Clearly Ũ +
∑M

i=1 U i ⊂ X̃. The inverse inclusion only necessitates to show
U ⊂ Ũ +

∑M
i=1 U i. For any v ∈ U and any 1 ≤ i ≤ M , let φi ∈ H1

0 (Di) solve the
elliptic problem

∫

Di

∇φi · ∇ϕ =
∫

Di

v · ∇ϕ ∀ϕ ∈ H1
0 (Di).

We extend φi by zero to the exterior of Di. Since
⋃M

i=1 Di ⊂ Dc, we have ṽ =
v −∑M

i=1∇φi ∈ Ũ and thus v ∈ Ũ +
∑M

i=1 U i.
To prove the direct sum, we take any ṽ ∈ Ũ and vi ∈ U i, 1 ≤ i ≤ M satisfying

ṽ +
M∑

i=1

vi = 0.
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Then for each 1 ≤ i ≤ M , there exists a φi ∈ H1
∂Di\Si

(Di) such that

ṽ = 0 in Ω\ (
D1 ∪ · · · ∪DM

)
and ṽ = ∇φi in Di .

Since ṽ ∈ H0(curl,Ω), the second equality implies that

∇φi × n = 0 in ∂Di.

This shows φi ∈ H1
0 (Di) for each 1 ≤ i ≤ M . And the definition of Ũ implies ∆φi = 0

in Di and thus φi = 0 in Di. Therefore, ṽ ≡ 0 in Ω. So (3.11) is a direct sum.

Lemma 3.2. The space X̃ is a Hilbert space under the inner product and norm

‖v‖X̃ :=
√

(v,v)X̃ ,

(v,w)X̃ :=
∫

Dc

v ·w +
∫

Ω

cũrlv · cũrlw ∀v,w ∈ X̃.

Proof. First we prove the completeness of X̃. It is clear that U i is complete by
the isomorphism to ∇H1

∂Di\Si
(Di). By similar arguments as in Lemma 2.1, ‖·‖X̃ is

an equivalent norm to ‖·‖H(curl,Ω) on U . Let {vn}∞n=1 ⊂ U be a Cauchy sequence
under ‖·‖X̃ . Then there exists a v ∈ H0(curl,Ω) such that

lim
n→∞

‖vn − v‖X̃ = 0,

(v,∇ϕ) = lim
n→∞

(vn,∇ϕ) = 0 ∀ϕ ∈ H1
0 (Ω) satisfying ϕ = Const. in Dc .

Thus v ∈ U . Then U is complete, and so does X̃.
Next we prove that ‖·‖X̃ is a norm. It is sufficient to show that v ∈ X̃ and

‖v‖X̃ = 0 yield v = 0. Write v = ṽ +
∑M

i=1 vi with ṽ ∈ Ũ and vi ∈ U i, 1 ≤ i ≤ M .
Then from (3.7) we have

curl ṽ = 0 in Ω, ṽ = 0 in Dc\
(
D1 ∪ · · · ∪DM

)
, ṽ + vi = 0 in Di .

The first equality indicates that ṽ = ∇φ for some φ ∈ H1
0 (Ω). From Lemma 3.1, the

decomposition of v is a direct sum. Then ṽ ≡ 0 in Dc and thus φ = Const. in Dc. The
definition of Ũ shows ṽ ≡ 0 in Ω. Therefore, ‖·‖X̃ is a norm on X̃. And equipped
with this norm, X̃ is a Hilbert space.

Remark 3.3. The choice of {Di, 1 ≤ i ≤ M} is not essential. Actually Di ⊂ Dc

can be any Lipschitz domain satisfying ∂Di ⊃ Si and Di ∩ Sj = ∅ for i 6= j.

We end up this section with the following theorem on the well-posedness of prob-
lem (3.13).

Theorem 3.4. Assume Js ∈ L2(Ω), div Js = 0, and supp(Js) ∩Dc = ∅. Then
problem (3.13) has a unique solution ũ ∈ X̃, and there exists a constant C only
depending on Ω, σ̃, and ν0 such that

‖ũ‖X̃ ≤ C ‖Js‖L2(Ω) . (3.14)

Proof. The theorem is a direct consequence of Lemma 2.1 and Lemma 3.2.
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Theorem 3.5. Assume Js ∈ L2(Ω), div Js = 0, and supp(Js) ∩Dc = ∅. Then
the solution of problem (3.13) satisfies

div(σ̃ũ) = 0 in Dc, σ̃ũ · n = 0 on ∂Dc ∪ S1 ∪ · · · ∪ SM .

Proof. From (3.11), any v ∈ H0(curl,Ω) admits an orthogonal decomposition

v = v⊥ +∇ϕ,

where v⊥ ∈ U and ϕ ∈ H1
0 (Ω) satisfying ϕ = Const in Dc . Since supp(Js) ∩Dc = ∅

and supp(σ̃) = Dc, we have

iω(σ̃ũ,∇ϕ) + ν0(cũrl ũ, cũrl∇ϕ) = (Js,∇ϕ) .

Thanks to (3.13) and v⊥ ∈ X̃, we have

iω(σ̃ũ,v⊥) + ν0(cũrl ũ, cũrlv⊥) = (Js,v⊥).

Adding up the above two equalities yields

iω(σ̃ũ,v) + ν0(cũrl ũ, cũrlv) = (Js,v) ∀v ∈ H0(curl,Ω) .

It implies that (3.13) holds for a larger test function space, namely,

iω(σ̃ũ,v) + ν0(cũrl ũ, cũrlv) = (Js,v) ∀v ∈ H0(curl,Ω) +
M∑

i=1

U i . (3.15)

Now taking v = ∇ϕ for all ϕ ∈ H1
0 (Ω) shows that

div(σ̃ũ) = 0 in Dc, σ̃ũ · n = 0 on ∂Dc .

And it follows that [σ̃ũ · n]Si = 0 for 1 ≤ i ≤ M . Furthermore, since (3.15) holds for
all v ∈ U i, we also have

(σ̃ũ)Di
· n = 0 on Si ,

where (σ̃ũ)Di
is understood to take limit of σ̃ũ from inside Di. This means σ̃ũ ·n = 0

on Si for all 1 ≤ i ≤ M .

4. Convergence of the approximate solution. The purpose of this section
is to study the convergence of the exact solution as d → 0, where d denotes the thick-
ness of cracks. For convenience in notation, we append the solution of (2.13) with a
subscript d, namely, ud ∈ X denotes the solution of (2.13). We are actually inter-
ested in the current density iωσud and the magnetic flux curlud that are important
in non-destructive evaluation. Throughout this section we shall make the following
assumption

Js ∈ L2(Ω), supp(Js) ∩Dc = ∅, div Js = 0 in Ω . (4.1)
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4.1. Convergence for general conductivities. First we present the conver-
gence of the solution for general conductivities. Remember that Di and Ωi share
the common boundary Si. Their union constructs a Lipschitz domain (a rectangular
domain here, see Fig. 3.2):

Oi := Di ∪ Si ∪ Ωi = (xi −H, xi + d)× (y0, y1)× (z0, z1), 1 ≤ i ≤ M.

Theorem 4.1. Let ud ∈ X and ũ ∈ X̃ be the solutions of (2.13) and (3.13)
respectively. Then

lim
d→0

{
ω

∥∥∥σ
1
2 (ud − ũ)

∥∥∥
2

L2(Ω)
+ ν0 ‖cũrl (ud − ũ)‖2L2(Ω)

}
= 0. (4.2)

Proof. For any ϕ ∈ H1
∂Di\Si

(Di), by the extension theorem [16, Theorem 1.4.3.1,

p.25], there exists an extension of ϕ denoted by ϕ̃ ∈ H1
0 (Oi) such that

ϕ̃ = ϕ in Di, ‖ϕ̃‖H1(Oi)
≤ C‖ϕ‖H1(Di)

,

where the constant C > 0 only depends on Di and Ωi. Then we extend ϕ̃ by zero to
the exterior of Oi such that the extension ϕ̃ ∈ H1

0 (Ω). Since supp(Js) ∩Dc = ∅ and
σ = 0 in Ωi, taking v = ∇ϕ̃ in (2.14) leads to

∫

Di

σud · ∇ϕ =
∫

Ω

σud · ∇ϕ̃ = 0 ∀ϕ ∈ H1
∂Di\Si

(Di). (4.3)

Adding (4.3) to (2.14) for all 1 ≤ i ≤ M , we have

iω(σud,v) + ν0(cũrlud, cũrlv) = (Js,v) ∀v ∈ H0(curl,Ω) +
M∑

i=1

U i, (4.4)

where we have used the fact that curlud = cũrlud.

Subtracting (4.4) from (3.15) shows that, for all v ∈ H0(curl,Ω) +
M∑

i=1

U i,

iω
∫

Ωc

σ(ũ− ud) · v + ν0

∫

Ω

cũrl (ũ− ud) · cũrlv = −iω
M∑

i=1

∫

Ωi

σ̃ũ · v .

Taking v = ũ− ud and using supp(σ) = Ωc, we find that

∥∥∥σ
1
2 (ũ− ud)

∥∥∥
2

L2(Ω)
+

ν0

ω
‖cũrl (ũ− ud)‖2L2(Ω) ≤

M∑

i=1

∣∣∣∣
∫

Ωi

σ̃ũ · (ũ− ud)
∣∣∣∣ . (4.5)

By Theorem 2.2 and 3.4, both ‖ud‖L2(Ω) and ‖ũ‖L2(Ω) are uniformly bounded with
respect to d. Thus

lim
d→0

∫

Ωi

σ̃ũ · (ũ− ud) = lim
|Ωi|→0

∫

Ωi

σ̃ũ · (ũ− ud) = 0,

where |Ωi| stands for the volume of Ωi for any 1 ≤ i ≤ M . This proves (4.2).
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4.2. Error estimate for constant conductivity. Theorem 4.1 only gives the
convergence of the solution ud. Since we can not expect d → 0 in practice, an error
estimate for ũ−ud in terms of d will help to evaluate the approximate solution better.
The proof for the error estimate depends on the assumption that σ ≡ σ0 in Ωc. In
this case, the modified conductivity is defined as follows

σ̃ = σ0 in Dc , σ̃ = 0 elsewhere .

For convenience in notation, we write

Oc = Dc\
(
Ō1 ∪ · · · ∪ ŌM

)
, Onc = Ω0 ∪O1 ∪ · · · ∪OM .

Clearly Oc and Onc are Lipschitz domains and satisfy

Oc ⊂ Ωc ⊂ Dc, Ωnc ⊂ Onc .

And similar to (2.4), we define

H1
c (Onc) :=

{
φ ∈ H1(Onc) : φ = 0 on ∂Ω, φ = αi on ∂Oi, 1 ≤ i ≤ M

}
,

where α1, · · · , αM are arbitrary constants. Since ∇H1
c (Onc) ⊂ H0(curl, Onc), the

extension space

W (Ω;Onc) :=
{
v ∈ L2(Ω) : v|Onc ∈ ∇H1

c (Onc) and v = 0 in Oc

}

is a subspace of H0(curl,Ω). Let the orthogonal complement of W (Ω;Onc) in
H0(curl,Ω) be denoted by

X1 := {v ∈ H0(curl,Ω) : (v,w) = 0 ∀w ∈ W (Ω; Onc)} .

By similar arguments as in the proof of Lemma 2.1, X1 is a Hilbert subspace equipped
with the inner product and norm

(v,w)X1 =
∫

Oc

v · w̄ +
∫

Ω

curlv · curl w̄, ‖v‖X1
=

√
(v,v)X1 . (4.6)

And there is a constant C depending on the diameters of O1, · · · , OM , but independent
of d, such that

‖v‖H(curl,Ω) ≤ C ‖v‖X1
∀v ∈ X1 . (4.7)

Lemma 4.2. There exists a constant C > 0 independent of d such that

M∑

i=1

∣∣∣∣
∫

Ωi

ũ · (ũ− ud)
∣∣∣∣ ≤ C ‖ũ‖L2(Ω1∪···∪ΩM ) ‖ũ− ud‖X1

Proof. First we consider the decomposition of the approximate solution

ũ = û +
M∑

i=1

ui, û ∈ U , ui ∈ U i .

We further split û− ud orthogonally into

û− ud = û⊥ + w, û⊥ ∈ X1, w ∈ W (Ω;Onc).
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And (4.7) shows that

‖û⊥‖H(curl,Ω) ≤ C ‖û⊥‖X1
= C ‖û− ud‖X1

= C ‖ũ− ud‖X1
.

Let w = ∇φ in Onc for some φ ∈ H1
c (Onc). Then there exists a constant αi such that

φ = αi on ∂Oi. And the conservation property in Theorem 3.5 yields

div ũ = 0 in Ωi, ũ · n = 0 on Si, 1 ≤ i ≤ M .

We deduce that∫

Ωi

ũ ·w =
∫

Ωi

ũ · ∇φ =
∫

∂Ωi

(ũ · n)φ = αi

∫

∂Ωi\Si

ũ · n = αi

∫

∂Ωi

ũ · n = 0 .

An application of the Cauchy-Schwarz inequality leads to

M∑

i=1

∣∣∣∣
∫

Ωi

ũ · (ũ− ud)
∣∣∣∣ =

M∑

i=1

∣∣∣∣
∫

Ωi

ũ · û⊥
∣∣∣∣ ≤ ‖ũ‖L2(Ω1∪···∪ΩM ) ‖û⊥‖H(curl,Ω)

≤ C ‖ũ‖L2(Ω1∪···∪ΩM ) ‖ũ− ud‖X1
.

The proof is completed.
Theorem 4.3. Assume ũ ∈ H1(Dc\ ∪M

i=1 Di). Then there exists a constant C >
0 depending on ω, σ0, and ν0, but independent of d such that

‖ud − ũ‖L2(Ωc)
+ ‖cũrl (ud − ũ)‖L2(Ω) ≤ Cd

1
3 .

Proof. From (4.5) we know that

‖ũ− ud‖2L2(Ωc)
+

ν0

ωσ0
‖cũrl (ũ− ud)‖2L2(Ω) ≤

M∑

i=1

∣∣∣∣
∫

Ωi

ũ · (ũ− ud)
∣∣∣∣ . (4.8)

Since Oc ⊂ Ωc, it is clear that

‖ũ− ud‖X1
≤

(
‖ũ− ud‖2L2(Ωc)

+ ‖cũrl (ũ− ud)‖2L2(Ω)

) 1
2

.

Recall the imbedding L6(D) ⊂ H1(D) for any Lipschitz domain D. There exists a
constant C independent of d such that

‖ũ‖L2(Ωi)
≤ |Ωi| 13 ‖ũ‖L6(Dc\∪M

i=1Di)
≤ Cd

1
3 ‖ũ‖L6(Dc\∪M

i=1Di)

≤ Cd
1
3 ‖ũ‖H1(Dc\∪M

i=1Di)
≤ Cd

1
3 .

An application of Lemma 4.2 shows that

M∑

i=1

∣∣∣∣
∫

Ωi

ũ · (ũ− u)
∣∣∣∣ ≤ Cd

1
3

(
‖ũ− ud‖2L2(Ωc)

+ ‖cũrl (ũ− ud)‖2L2(Ω)

) 1
2

. (4.9)

The proof is completed upon combining (4.8) and (4.9).

Remark 4.4. The assumption ũ ∈ H1(Dc\ ∪M
i=1 Di) in Theorem 4.3 is about

the regularity of the approximate solution. We are not able to prove the assumption
at present. It seems reasonable since ũ ∈ H(curl, Dc\ ∪M

i=1 Di) and

div u = 0 in Dc, u · n = 0 on ∂Dc ∪ S1 ∪ · · · ∪ SM .
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5. Finite element approximation. The purpose of this section is to study the
finite element approximation to problem (3.13). Let Th be a tetrahedral triangulation
of Ω which also subdivides Dc and Di, 1 ≤ i ≤ M into the union of tetrahedra. Now
we introduce the lowest-order Lagrange finite element space [12] and Nédélec’s edge
element space of the first class [23] as follows

H(gradh,Ω) =
{
v ∈ H1(Ω) : v|K = a · x + b with a ∈ R3, b ∈ R1 for any K ∈ Th

}
,

H(curlh,Ω) =
{
v ∈ H(curl,Ω) : v|K = a× x + b with a, b ∈ R3 for any K ∈ Th

}
.

The finite element spaces satisfying homogeneous boundary conditions are defined by

H0(gradh,Ω) = H(gradh,Ω) ∩H1
0 (Ω),

H0(curlh,Ω) = H(curlh,Ω) ∩H0(curl,Ω) .

Similar to (3.12) and (3.11), we define the finite element spaces

Uh =
{
v ∈ H0(curlh,Ω) : (v,∇ϕ) = 0 ∀ϕ ∈ H0(gradh,Ω), ϕ|Dc

≡ Const.
}

,

Xh = Uh +
M∑

i=1

U i,h, U i,h = {v ∈ U i : v|Di
∈ ∇H(gradh, Di)} .

Lemma 5.1. The space Xh admits the decomposition in a direct sum

Xh = Ũh +
M∑

i=1

U i,h, Ũh =

{
v ∈ Uh : (v, ξ) = 0 ∀ ξ ∈

M∑

i=1

U i,h

}
. (5.1)

And ‖·‖X̃ is a norm on Xh.

Proof. We first prove Xh = Ũh +
∑M

i=1 U i,h. It suffices to prove

Uh ⊂ Ũh +
M∑

i=1

U i,h .

Define

H∂Di\Si
(gradh, Di) :=

{
v ∈ H(gradh, Di) : v = 0 on ∂Di\Si

}
.

For any v ∈ Uh and 1 ≤ i ≤ M , let φi ∈ H∂Di\Si
(gradh, Di) be the unique solution

of the discrete problem
∫

Di

∇φi · ∇ϕ =
∫

Di

v · ∇ϕ ∀ϕ ∈ H∂Di\Si
(gradh, Di).

We extend ∇φi by zero to the exterior of Di and denote the extension by vi. Then
vi ∈ U i,h and v̂ = v − ∑M

i=1 vi ∈ Ũh. This indicates v ∈ Ũh +
∑M

i=1 U i,h. So
Uh ⊂ Ũh +

∑M
i=1 U i,h.

Now we prove that ‖·‖X̃ is a norm on Xh. Take any v ∈ Xh satisfying ‖v‖X̃ = 0.
Write v = v̂ +

∑M
i=1 vi with v̂ ∈ Ũh and vi ∈ U i,h. Then (3.7) and the definition of

Ũh show that

curl v̂ = 0 in Ω, v̂ + vi = 0 in Di , v̂ = 0 in Dc\
(
D1 ∪ · · · ∪DM

)
.
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The first equality indicates that v̂ = ∇φ for some φ ∈ H0(gradh,Ω). The second
equality and the definition of Ũh yield

‖v̂‖2L2(Di)
= −

∫

Di

v̂ · vi = 0, 1 ≤ i ≤ M.

Together with the third equality, it yields v̂ = 0 in Dc. Thus φ = Const. in Dc. The
definition of Uh shows that

(v̂, v̂) = (v̂,∇φ) = 0.

This shows v̂ ≡ 0 and thus vi ≡ 0 for all 1 ≤ i ≤ M . And ‖·‖X̃ is a norm on Xh.
To prove the direct sum, we assume that v̂ +

∑M
i=1 vi = 0 with v̂ ∈ Ũh and

vi ∈ U i,h. By the arguments in the previous paragraph, we know that v̂ ≡ 0 and
vi ≡ 0 for all 1 ≤ i ≤ M . So (5.1) is a direct sum.

The finite element approximation to (3.13) reads: Find uh ∈ Xh such that

a(uh,v) = (Js,v) ∀v ∈ Xh. (5.2)

Remark 5.2. The orthogonality in Ũh and Uh is only used in theoretical analysis,
not in practical computations. Notice that

Xh = Ũh +
M∑

i=1

U i,h = H0(curlh,Ω) +
M∑

i=1

U i,h .

We only solve an ah ∈ H0(curlh,Ω) and a φi,h ∈ H∂Di\S̄i
(gradh, Di) locally in

each Di such that uh = ah +
∑M

i=1∇φi,h by alternating iteration method (see Algo-
rithm 5.3). Although ah and φi,h are not unique, the sum ah +

∑M
i=1∇φi,h is unique.

Thus the magnetic flux Bh = cũrluh = curlah and the current density Jh = σ̃uh

are unique.
Algorithm 5.3 (Alternating Iteration Method). Given the tolerance ε = 10−4

and the maximal iteration number N > 0. Set the initial guess by a(0) = 0 and φ
(0)
1 = 0,

φ
(0)
2 = 0, · · · , φ

(0)
M = 0. Set k = 0 and r = 1.

While (r > ε and k < N) do
1. Solve the Maxwell equation: Find a(k+1) ∈ H0(curlh,Ω) such that

a
(
a(k+1),v

)
= (Js,v)− iω

M∑

i=1

∫

Di

σ̃∇φ
(k)
i · v ∀v ∈ H0(curlh,Ω).

2. Solve the Poisson equations: Find φ
(k+1)
i ∈ H∂Di\S̄i

(gradh, Di) such that
∫

Di

σ̃∇φ
(k+1)
i · ∇ϕ = −

∫

Di

σ̃a(k+1) · ∇ϕ ∀ϕ ∈ H∂Di\S̄i
(gradh, Di),

for all i = 1, 2, · · · ,M .
3. Compute the relative error

r =
∥∥∥a(k)

∥∥∥
−1

H(curl,Ω)

∥∥∥a(k+1) − a(k)
∥∥∥

H(curl,Ω)

+
M∑

i=1

∥∥∥φ
(k)
i

∥∥∥
−1

H1(Di)

∥∥∥φ
(k+1)
i − φ

(k)
i

∥∥∥
H1(Di)

.
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End while.

Theorem 5.4. The discrete problem (5.2) has a unique solution uh ∈ Uh and
there exists a generic constant C > 0 independent of Th and d such that

‖uh‖X̃ ≤ C ‖Js‖L2(Ω) . (5.3)

Let ũ be the solution of (3.13). Then

‖ũ− uh‖X̃ ≤ C inf
vh∈H0(curlh,Ω)+

PM
i=1 Ui,h

‖ũ− vh‖X̃ . (5.4)

Proof. First we write uh = ûh +
∑

i=1 ui,h with û ∈ Ũh and ui,h ∈ U i,h. The
Helmholtz decomposition of ûh yields

ûh = ∇φ + û⊥, φ ∈ H1
0 (Ω), û⊥ ∈ H0(curl,Ω) satisfying div û⊥ = 0.

By the imbedding theorem in [4], there is a constant C depending only on Ω such
that

‖û⊥‖H1(Ω) ≤ C
[
‖curl û⊥‖L2(Ω) + ‖div û⊥‖L2(Ω)

]
= C ‖curl û⊥‖L2(Ω)

= C ‖curl ûh‖L2(Ω) = C ‖cũrluh‖L2(Ω) ≤ C ‖uh‖X̃ .

Recall that supp(Js) ∩Dc = ∅ and div Js = 0. Then for any v ∈ Xh,

|(Js,uh)| = |(Js, û⊥)| ≤ ‖Js‖L2(Ω) ‖û⊥‖L2(Ω) ≤ C ‖Js‖L2(Ω) ‖uh‖X̃ .

Then (5.3) is proved upon taking vh = uh in (5.2) and using the coercivity of a with
respect to ‖·‖X̃ . The uniqueness and existence of uh also follows.

Now we are going to prove the error estimate. Remember from (3.15) that

a(ũ,v) = (Js,v) ∀v ∈ H0(curl,Ω) +
M∑

i=1

U i .

By the definitions of Xh and similar arguments as in deriving (3.15), it is easy to
verify that

a(uh,vh) = (Js,vh) ∀vh ∈ H0(curlh,Ω) +
M∑

i=1

U i,h .

Since H0(curlh,Ω) ⊂ H0(curl,Ω) and U i,h ⊂ U i, the above two equalities yield the
Galerkin orthogonality:

a(ũ− uh,vh) = 0 ∀vh ∈ H0(curlh,Ω) +
M∑

i=1

U i,h . (5.5)

Then for any vh ∈ H0(curlh,Ω) +
∑M

i=1 U i,h , it follows that

|a(ũ− uh, ũ− uh)| = |a(ũ− uh, ũ− vh)| ≤ C ‖ũ− uh‖X̃ ‖ũ− vh‖X̃ .

The proof is completed by the coercivity of a(·, ·) with respect to ‖·‖X̃ .
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In the next theorem, we shall assume that ũ is smooth enough to obtain the
optimal error estimate. The assumption may be too strong to hold for singular sources.
But nevertheless, the theorem justifies the space approximation of Xh to X̃.

Theorem 5.5. Let ũ, uh be the solution of (3.13) and (5.2) respectively. Suppose
there exists a decomposition of ũ such that

ũ = u⊥ +
M∑

i=1

ui, u⊥ ∈ H2(Ω) ∩H0(curl,Ω), ui ∈ H1(Di) ∩U i.

Then with a constant C independent of h and d, the error estimate holds

‖ũ− uh‖X̃ ≤ Ch. (5.6)

Proof. Let Πh: H2(Ω) 7→ H(curlh,Ω) be the interpolation operator of Nédélec’s
edge elements [23] and let πi,h: H2(Di) 7→ H(gradh, Di) be the interpolation operator
of Lagrange nodal elements [12]. Suppose ui = ∇ψi in Di for some ψi ∈ H2(Di) ∩
H1

∂Di\Si
(Di). It follows that

Πhu⊥ +
M∑

i=1

∇(πi,hψi) ∈ H0(curlh,Ω) +
M∑

i=1

U i,h .

By the Galerkin orthogonality in (5.5) we deduce that

‖ũ− uh‖X̃ ≤ C ‖u⊥ −Πhu⊥‖H(curl,Ω) + C
M∑

i=1

|ψi − πi,hψi|H1(Di)

≤ Ch

[
|u⊥|H2(Ω) +

M∑

i=1

|ui|H1(Di)

]
.

The proof is completed.

6. Numerical experiments. The purpose of this section is to validate the
approximation of the approximate eddy current model (3.13) to the original eddy
current problem (2.13) numerically.

example 6.1. We consider the TEAM Workshop Problem 21a-2 which is one
benchmark problem from the International Compumag Society. The system consists
of one nonmagnetic plate with two narrow slits and two coils which carry the source
currents in opposite directions. The source current is 3000 Ampere/Turn and its fre-
quency is ω = 50 Hertz. The geometry of the model is illustrated in Fig. 6.1. We refer
to [9] for more details of this benchmark problem.

Our implement is based on the adaptive finite element package “Parallel Hierar-
chical Grid” (PHG) [28] and the computations are carried out on the cluster LSEC-
III of the State Key Laboratory on Scientific and Engineering Computing, Chinese
Academy of Sciences.

Fig. 6.2 shows the values of Bx along the line

{(x, y, z) : x = 5.76mm, y = 0 mm}.
The three curves stand for the calculated values using the original model (2.3), the
calculated values using the approximate model (3.13), and the experimental values.
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Fig. 6.1. Schematic diagram of Team Workshop Problem 21a-2.

It is clear that the calculated magnetic flux density using both eddy current models
agree very well with the measured data. Thus we conclude that the approximate model
(3.13) provides an accurate approximation to the original problem (2.3).
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Original model
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Fig. 6.2. Magnetic flux density Bx evaluated along the line {(x, y, z) : x = 5.76mm, y =
0mm}. The three curves represent respectively: (1) calculated values using the original model (2.3);
(2) calculated values using the approximate model (3.13); (3) experimental values.
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Fig. 6.3 shows the distributions of the eddy current density on a parallel intersec-
tion of the steel plate. The left figure represents the eddy current density calculated
from the original problem (2.3). It shows that the eddy currents are prevented by the
slits and do not flow across them. While the right one represents the eddy current
density calculated from the approximate problem (3.13). In this case, the two slits Ω1,
Ω2 are replaced by two interfaces S1 and S2. Clearly the eddy currents do not flow
across the two interfaces. This validates the conservation property of approximate
solution (see Lemma 3.5)

ũ · n = 0 on S1 ∪ S2 .

Fig. 6.3. Eddy current distributions. Left: the original eddy current problem. Right: the approx-
imate eddy current problem.

example 6.2. We consider the TEAM Workshop Problem 15 from the Interna-
tional Compumag Society. The system consists of one thick conducting plate with a
rectangular slot in the plate and a single air-cored AC coil. The source current is 1
Ampere/Turn and the frequency is ω = 50 Hertz. The geometry of the model is il-
lustrated in Fig. 6.4. The parameters for this test experiment are listed in Table 6.1.
This problem is completely described in [8].

This benchmark problem is used to test numerical methods for nondestructive
evaluation. Here we just use the setting of the problem and validate the approximation
of the approximate model (3.13) to the original model (2.3). Fig. 6.5 shows the values
of Bz along the line

{(x, y, z) : y = 0 mm, z = 0.5mm}.

The two curves stand for the calculated values using the original model (2.3) and
the approximate model (3.13). We find that the values computed by the approximate
model agree with those computed by the original model.

Fig. 6.6 shows the distribution of the eddy current density on the intersection, z =
−2.5mm, of the steel plate. Clearly the intersection plane is orthogonal to the crack
whose normal direction is parallel to the y-direction. Fig. 6.7 shows the distribution of
Jy which is the component of the current density in the normal direction to the crack.
The left figures of Fig. 6.6 and Fig. 6.7 represent the eddy current density calculated
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Fig. 6.4. Schematic diagram of Team Workshop Problem 15.

Table 6.1
Geometric and physical parameters for Example 6.2. (see Fig. 6.4)

The coil
Inner radius a2 = 6.15 mm
Outer radius a1 = 12.4 mm
Length b = 6.15 mm
Number of turns N = 3790
Lift-off l = 0.88 mm

The test specimen
Conductivity σ = 3.06× 107 S/m
Thickness 12.22 mm

The defect
Length 2c = 12.60 mm
Depth h = 5.00 mm
Width w = 0.34 mm
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Fig. 6.5. The values of Bz at a series of points on the line y = 0mm, z = 0.5mm.
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with the original problem (2.3). We find that the eddy currents are prevented by
the crack. While the right figures of Fig. 6.6 and Fig. 6.7 represent the eddy current
density calculated with the approximate problem (3.13). In this case, the crack is
replaced by an interface. Clearly the eddy currents do not flow across the interface.
This validates the conservation property of the approximate solution, that is, ũ·n = 0
on the interface.

Fig. 6.6. The illustrations of the current density on the cross-section z = −2.5mm. Left:
computed with the original model. Right: computed with the approximate model.

Fig. 6.7. The distribution of Jy, the component of the current density in the direction per-
pendicular to the crack, on the cross-section z = −2.5 mm. Left: computed with the original model.
Right: computed with the approximate model.
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[1] R. Acevedo, S. Meddahi, R. Rodŕıguez, An E-based mixed formulation for a time-dependent
eddy current problem, Math. Comp. 78 (2009), pp. 1929-1949.
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