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Abstract. The perfectly matched layer (PML) method is well-studied for acoustic scattering
problems, electromagnetic scattering problems, and more recently, elastic scattering problems, with
homogeneous background media. The purpose of this paper is to present the stability and exponential
convergence of the PML method for three-dimensional electromagnetic scattering problem in a two-
layer medium. The main contributions of this paper are threefold. Firstly, we establish the well-
posedness of the original scattering problem for any Dirichlet boundary value in H−1/2(Div,ΓD)
where ΓD stands for the boundary of the scatterer. Secondly, we propose a new weak formulation for
the original problem where the Dirichlet-to-Neumann operator is proposed on a truncation boundary
inside PML. This argument is favorable to the analysis for the PML Dirichlet-to-Neumann operator.
The inf-sup condition is proved for the bilinear form. Thirdly, we establish the well-posedness of the
PML problem and prove that the approximate solution converges to the original scattering solution
exponentially as either the PML absorbing coefficient or the thickness of the PML increases.
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1. Introduction. We propose and study the perfectly matched layer (PML)
method for solving the electromagnetic scattering problem in a two-layer medium:

curl curlE − k2E = 0 in Dc, (1.1a)

n×E = g on ΓD, (1.1b)

[n× curlE] = [n×E] = 0 on Σ, (1.1c)

lim
ρ→∞

∫
∂B(ρ)

|curlE × n− ikE|2 = 0, (1.1d)

where E is the electric field, g is determined by incoming wave, D ⊂ R3 is a bounded
domain with Lipschitz-continuous boundary ΓD, Dc = R3

± \ D̄ is the complement of
D, B(ρ) = {x ∈ R3 : |x| < ρ} is the open ball of radius ρ and centering at the origin,
and n stands for the unit outer normal to D and B(ρ) on their respective boundaries.
We assume that the wave number k is positive and piecewise constant, defined by

k(x) =

{
k+, if x ∈ R3

+,

k−, if x ∈ R3
−,

(1.2)

where R3
± = {(x1, x2, x3) ∈ R3 : ±x3 > 0}. Without loss of generality, we assume in

this paper that k− > k+ > 0. We remark that the boundary condition (1.1b) is not
essential for our results. In fact, (1.1b) can be replaced by other boundary conditions
such as Neumann or impedance boundary condition on ΓD. Furthermore, we scale
the system such that the diameter of the scatterer satisfies diam(D) ≥ 1.
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The basic idea of the PML method is to surround the computational domain by
a layer of specially designed model medium that absorbs all waves propagating from
inside the computational domain [1]. The convergence of the PML method for ho-
mogeneous background materials has drawn considerable attentions in the literature.
Lassas and Somersalo [27,28] and Hohage, Schmidt, and Zschiedrich [25] studied the
acoustic scattering problems for circular and smooth PMLs. It is proved that the PML
solution converges exponentially to the solution of the original scattering problem as
the thickness of the PML tends to infinity. We also refer to the work of Collino and
Monk for PML in curvilinear coordinates [21]. In 2003, Chen and Wu proposed the
adaptive PML finite element method for grating problems [15]. The adaptive PML
method provides a complete numerical strategy to solve the scattering problems in
the framework of finite element which produces automatically a coarse mesh size away
from the fixed domain and thus makes the total computational costs insensitive to the
thickness of the absorbing PMLs. Later on, the adaptive PML finite element method
was extended to accoustic scattering problems in [14, 16], to electromagnetic scatter-
ing problems in [12, 13], to multiple scattering problems in [26, 32], and to grating
problems in [2, 3]. In 2005, Bao and Wu first proved the exponential convergence of
PML method for Maxwell’s equations [4]. Bramble and Pasciak also studied the sta-
bility and exponential convergence of PML method for acoustic and electromagnetic
scattering problems in a series of papers [5–8]. They use both circular coordinates and
Cartesian coordinates in constructing wave-absorbing materials. We also refer to the
recent papers on PML methods for elastic scattering problems [9, 18] and to [11, 17]
for exponential convergence of time-domain PMLs.

The studies mentioned above assume homogeneous background materials, namely,
wave numbers are constant away from the scatterer. The analysis for scattering prob-
lem is very challenging for layered media since scattering waves usually consist of
both propagating modes and evanescent modes. For two-layer media, Chen and Zheng
proved the stability and exponential convergence of uniaxial PML method for two-
dimensional acoustic scattering problem [19]. Their proof is very technical and relies
on the Cagniard-de Hoop transform for Green’s function. Electromagnetic scattering
problems in two-layer media have broad applications in both scientific and engineer-
ing areas, such as, near-field imaging, detection of buried objects, and so on. The
convergence of PML method is an open issue. In 1998, Cutzach and Hazard proved
the existence and uniqueness for electromagnetic scattering problem in a two-layer
medium with incident plane waves or incident point source [23] (see also Monk’s
book [30, Chapter 12]). We also refer to Coyle and Monk [22] and Monk [30, Chapter
12] for the finite element approximation using transparent boundary condition and
to [29] for the coupling of finite element method and boundary element method.

For scattering problems in layered media, scattered field becomes much more
complicated and high-accuracy approximation of the radiation boundary condition
becomes much difficult [24]. It is well-known that numerical method using PML have
two advantages compared with that using the Dirichlet-to-Neumann (DtN) operator.
Firstly, it does not compute Green’s function which is very complicated for layered
medium, particularly, in three-dimensional case. Secondly, the numerical method using
PML usually yields an algebraic system with sparse matrix. It is favorable in designing
effective precondtioners. The purpose of this paper is to investigate the theoretical
aspect of the PML method for electromagnetic scattering problem in a two-layer
medium. The main theme is threefold.

• We prove the well-posedness of the scattering problem for any Dirichlet
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boundary data g ∈ H−1/2(Div,ΓD).
• We propose a new weak formulation for the scattering problem where the DtN
operator is defined on a truncation boundary inside PML. This formulation
is favorite in proving the stability of both the original DtN operator and the
PML DtN operator. We also prove the inf-sup condition of the bilinear form
which plays the key role in convergence analysis of the PML method.

• We introduce the Cagniard-de Hoop transform to the dyadic Green’s function
and prove that the Green’s function decays exponentially in PML. This is the
major novelty of this paper. We prove the well-posedness of the PML problem
and the exponential convergence of the PML solution as either the absorbing
coefficient or the thickness of the PML increases.

The layout of this paper is organized as follows. In section 2, we derive an ex-
plicit form of the dyadic Green’s function for the scattering problem in the two-layer
medium. The uniqueness and existence of the scattering solution for any Dirichlet
boundary data g ∈ H−1/2(Div,ΓD). In section 3, we derive the Cagniard-de Hoop
representation of the Green’s function. In section 4, we introduce the PML by means
of complex coordinate stretching and prove the exponential decay of the modified
Green’s function. In section 5, we study exterior problems of stretched Maxwell’s
equation. In section 6, we propose a new weak formulation for the stretched Maxwell
equation where the truncation boundary is located inside PML. The inf-sup condition
for the bilinear form is proved. In Section 7, we propose the PML approximation to
the exterior problem on the truncated domain. The well-posedness and exponential
convergence of the PML problem are also proved.

2. The well-posedness of the scattering problem. The purpose of this sec-
tion is to study the weak solution of (1.1). First we introduce some Sobolev spaces.

2.1. Sobolev spaces. For a domain Ω ⊂ R3 with Lipschitz continuous boundary
Γ = ∂Ω, let L2(Ω) be the space of square-integrable functions and H1(Ω) be the
subspace whose functions have square-integrable gradients, let H(curl,Ω) ⊂ L2(Ω)
be the subspace whose functions have square-integrable curls. Throughout the paper
we denote vector-valued quantities by boldface notations, such as L2(Ω) := L2(Ω)3.

From [10], we have the surjective mappings

γ : H1(Ω) → H1/2(Γ), γφ = φ on Γ,

γt : H(curl,Ω) → H−1/2(Div; Γ), γtu = n× u on Γ,

γT : H(curl,Ω) → H−1/2(Curl; Γ), γTu = n× (u× n) on Γ,

where Div, Curl stand for the surface divergence and surface scalar curl operators
respectively. For convenience, we define the equivalent norms on the respective surface
Sobolev spaces

∥λ∥H1/2(Γ) = inf
v∈H1(Ω)

γv=λ

∥v∥H1(Ω) ∀λ ∈ H1/2(Γ), (2.1)

∥λ∥H−1/2(Div;Γ) = inf
v∈H(curl,Ω)

γtv=λ

∥v∥H(curl,Ω) ∀λ ∈ H−1/2(Div; Γ), (2.2)

∥λ∥H−1/2(Curl;Γ) = inf
v∈H(curl,Ω)

γT v=λ

∥v∥H(curl,Ω) ∀λ ∈ H−1/2(Curl; Γ). (2.3)

For any u ∈ H(curl,Ω), it holds that

Div(γtu) = − curlu · n, Curl(γTu) = curlu · n on Γ.
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Moreover, the surface gradient operator is defined by, for any φ ∈ H1(Ω),

Grad(γtφ) = γT (∇φ) on Γ.

It is known that H−1/2(Div; Γ) and H−1/2(Curl; Γ) are dual spaces. For any λ ∈
H−1/2(Div; Γ) and ξ ∈ H−1/2(Curl; Γ), the duality paring is defined by

⟨λ, ξ⟩Γ :=

∫
Ω

(uλ · curluξ − curluλ · uξ) (2.4)

where uλ,uξ ∈ H(curl,Ω) satisfy λ = γtuλ and ξ = γTuξ on Γ.
For any S ⊂ Γ, the subspaces with zero trace and zero tangential trace on S are

denoted respectively by

H1
S(Ω) := {v ∈ H1(Ω) : γv = 0 on S},

HS(curl,Ω) := {v ∈ H(curl,Ω) : γtv = 0 on S}.

In particular, we use the conventional notations

H1
0 (Ω) := H1

Γ(Ω), H0(curl,Ω) := HΓ(curl,Ω).

2.2. The Dyadic Green’s function for the two-layer medium. The dyadic
Green’s function is the main tool in our analysis for the well-posedness of the scattering
problem and for the exponential convergence of the PML method. Throughout the
paper, we shall use the convention that for any z ∈ C, z1/2 is the branch of the square
root

√
z such that Re(z1/2) ≥ 0. This corresponds to the left half real axis as the

branch cut in the complex plane. Then we have, for z = z1 + iz2 with z1, z2 ∈ R,

z1/2 =

√
|z|+ z1

2
+ i sgn(z2)

√
|z| − z1

2
. (2.5)

Let g1,g2,g3 be column vectors of the dyadic Green’s function G. Each gj satisfies
an electromagnetic scattering problem with a polarized dipole source

curl curl gj(k;x, ·)− k2±gj(k;x, ·) = δxej in R3
±, (2.6a)

[n× curl gj(k;x, ·)] = [n× gj(k;x, ·)] = 0 on Σ, (2.6b)

lim
ρ→∞

∫
∂B(ρ)

|curl gj(k;x, ·)× n− ik gj(k;x, ·)|2 = 0, (2.6c)

where δx(y) = δ(|x1−y1|)δ(|x2−y2|)δ(|x3−y3|) stands for the Dirac source at x ∈ R3

and ej is the unit vector along the positive direction of the xj-axis, j = 1, 2, 3. Similar
to the scattering problem in free space, we write gj as

gj(k;x, ·) = Hj(k;x, ·) + k−2
± ∇divHj(k;x, ·) in R3

±, (2.7)

where Hj is the Hertz vector for the dipole source polarized in the ej direction.
From [30, Section 12.4.2], the Hertz vectors satisfy the Helmholtz equations

∆Hj(k;x, ·) + k2±Hj(k;x, ·) = −δxej in R3
±, (2.8a)

[Hj(k;x, ·)] = [n× curlHj(k;x, ·)] = 0,
[
k−2 divHj(k;x, ·)

]
= 0 on Σ, (2.8b)

lim
ρ→∞

∫
∂B(ρ)∩R3

±

∣∣∣∣∂Hj(k;x, ·)
∂n

− ik±Hj(k;x, ·)
∣∣∣∣2 = 0. (2.8c)
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We shall follow Monk [30, Section 12.4.2] to derive an explicit form of H1. The deriva-
tions for H2,H3 are parallel and omitted here.

Let the delta source be located at x ∈ R3
+ and write Π±(y) = H1(k;x,y) for

any y ∈ R3
±. From [30, Section 12.4.2], Π± = (Π±

1 , 0,Π
±
3 ) and it can be solved by the

coupled Helmholtz equations in the two-layer medium

∆Π±
1 + k±Π

±
1 = −δx, ∆Π±

3 + k±Π
±
3 = 0 in R3

±, (2.9a)

Π+ = Π−,
1

k2+
divΠ+ =

1

k2−
divΠ−,

∂Π+
1

∂y3
=
∂Π−

1

∂y3
on Σ, (2.9b)

lim
ρ→∞

∫
∂B(ρ)∩R3

±

∣∣∣∣∂Π±

∂n
− ik±Π

±
∣∣∣∣2 = 0. (2.9c)

Let Φ(ω;x,y) = eiω|x−y|

4π|x−y| be the fundamental solution of the three-dimensional

Helmholtz equation with constant number ω. Write

Π+
1 (y) = Π̂+

1 (y) + Φ(k+;x,y) ∀y ∈ R3
+.

From (2.9), it is easy to see that Π̂+
1 satisfies

∆Π̂+
1 + k+Π̂

+
1 = 0 in R3

+, lim
ρ→∞

∫
∂B(ρ)∩R3

+

∣∣∣∣∣∂Π̂+
1

∂n
− ik+Π̂

+
1

∣∣∣∣∣
2

= 0. (2.10)

Applying Fourier transform to (2.10) with respect to y1 and y2, the solution can be
represented as follows

Π̂+
1 =

i

4π2

∫ +∞

−∞

∫ +∞

−∞
a+(λ1, λ2)e

i[(x1−y1)λ1+(x2−y2)λ2+(x3+y3)µ+]dλ1dλ2, (2.11)

where a+ is the Fourier coefficient which depends on x but is independent of y. Here
µ± are square roots defined by the limiting absorption principle

µ±(λ1, λ2) = lim
ε→0+

[
(k± + iε)2 − λ21 − λ22

]1/2 ∀ (λ1, λ2) ∈ R2. (2.12)

Similarly, we have

Π+
3 =

i

4π2

∫ +∞

−∞

∫ +∞

−∞
b+(λ1, λ2)e

i[(x1−y1)λ1+(x2−y2)λ2+(x3+y3)µ+]dλ1dλ2, (2.13)

Π−
1 =

i

4π2

∫ +∞

−∞

∫ +∞

−∞
a−(λ1, λ2)e

i[(x1−y1)λ1+(x2−y2)λ2+x3µ+−y3µ−]dλ1dλ2, (2.14)

Π−
3 =

i

4π2

∫ +∞

−∞

∫ +∞

−∞
b−(λ1, λ2)e

i[(x1−y1)λ1+(x2−y2)λ2+x3µ+−y3µ−]dλ1dλ2. (2.15)

From equation (2.2.26) of [20, Page 64], the fundamental solution has the form

Φ(k+;x,y) =
i

8π2

∫ ∞

−∞

∫ ∞

−∞

1

µ+
ei[(x1−y1)λ1+(x2−y2)λ2+|x3−y3|µ+]dλ1dλ2, (2.16)

Inserting (2.11)–(2.15) into (2.9b) and matching the Fourier modes at y3 = 0, we get

a− − a+ =
1

2µ+
, b+ = b−, a+µ+ + a−µ− =

1

2
,

1

k2+
(λ1a− − µ+b+) =

1

k2−
(λ1a− + µ−b−) .
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The Fourier coefficients are given by

a+ = h1 −
1

2µ+
, a− = h1, b+ = b− = λ1h3,

where we have used the notations

h1 =
1

µ+ + µ−
, h2 =

1

k2−µ+ + k2+µ−
, h3 =

k2− − k2+
k2−µ+ + k2+µ−

h1. (2.17)

The second and third Hertz vectors can be obtained similarly.
We split the Hertz tensor H = (H1,H2,H3) into H = S−P where S is the double

source tensor standing for the singular part and P is the perturbation tensor standing
for the regular part. The double source tensor is given by

S(k;x,y) = I×


Φ(k+;x,y)− Φ(k+;x

′,y) if x3 > 0, y3 > 0,

Φ(k−;x,y)− Φ(k−;x
′,y) if x3 < 0, y3 < 0,

0 elsewhere,

(2.18)

where I is the identity matrix and x′ = (x1, x2,−x3) is the image of x = (x1, x2, x3)
with respect to Σ. The perturbation tensor P has the form

P =

 P11 0 0
0 P22 0

P13 P23 P33

 . (2.19)

For given any function f , we define

J(f ;x,y) :=
i

4π2

∫ ∞

−∞

∫ ∞

−∞
f(λ1, λ2)e

i[(x1−y1)λ1+(x2−y2)λ2+(|x3|+|y3|)µ+]dλ1dλ2.

From (2.5), the above integral is convergent absolutely for any function satisfying

|f(λ1, λ2)| ≤ C(1 + λ21 + λ22)
m ∀m ∈ R.

The entries of P are defined respectively as follows: for j = 1, 2,

Pjj(k;x,y) =



J(h1;x,y), if x,y ∈ R3
+,

J(h1e
i(µ+−µ−)y3 ;x,y), if x ∈ R3

+, y ∈ R3
−,

J(h1e
i(µ+−µ−)x3 ;x,y), if x ∈ R3

−, y ∈ R3
+,

J(h1e
i(µ+−µ−)(x3+y3);x,y), if x,y ∈ R3

−,

(2.20)

Pj3(k;x,y) =



J(λjh3;x,y), if x,y ∈ R3
+,

J(λjh3e
i(µ+−µ−)y3 ;x,y), if x ∈ R3

+, y ∈ R3
−,

J(λjh3e
i(µ+−µ−)x3 ;x,y), if x ∈ R3

−, y ∈ R3
+,

J(λjh3e
i(µ+−µ−)(x3+y3);x,y), if x,y ∈ R3

−,

(2.21)

P33(k;x,y) =



J(k2−h2;x,y), if x,y ∈ R3
+,

J(k2−h2e
i(µ+−µ−)y3 ;x,y), if x ∈ R3

+, y ∈ R3
−,

J(k2+h2e
i(µ+−µ−)x3 ;x,y), if x ∈ R3

−, y ∈ R3
+,

J(k2+h2e
i(µ+−µ−)(x3+y3);x,y), if x,y ∈ R3

−.

(2.22)

6



To end this subsection, we study the singularity of the perturbation tensor.
Lemma 2.1. There exists a constant C > 0 depending only on k such that, for

any x,y ∈ R3
±, i = 0, 1, and j = 1, 2, 3,∣∣∣∣ ∂i∂xj

P(k;x,y)
∣∣∣∣+ ∣∣∣∣ ∂i∂yj P(k;x,y)

∣∣∣∣ ≤ C
(
1 + |x− y|−i−1

)
if x3y3 < 0, (2.23)∣∣∣∣ ∂i∂xj

P(k;x,y)
∣∣∣∣+ ∣∣∣∣ ∂i∂yj P(k;x,y)

∣∣∣∣ ≤ C
(
1 + |x− y′|−i−1

)
if x3y3 > 0. (2.24)

Proof. Without loss of generality, we only consider P33(k;x,y) for x ∈ R3
+ and

y ∈ R3
− and write ρ = |x− y| for convenience. The proofs for other cases are similar.

Write ξ =
√
λ21 + λ22 for convenience. Then (2.12) indicates Imµ± =

√
ξ2 − k2±

for ξ ≥ k± and Imµ± = 0 otherwise. We have Imµ+ ≥ Imµ−,
∣∣ei(µ+−µ−)y3

∣∣ ≤ 1, and

|µ+ − µ−| =
k2− − k2+
|µ− + µ+|

= O
(
ξ−1

)
as ξ → ∞. (2.25)

Write z = x3 − y3 for convenience. From (2.22), we deduce that∣∣∣∣ ∂i∂xj
P33(k;x,y)

∣∣∣∣ ≤ C

∫ ∞

−∞

∫ ∞

−∞
|µ+|i−1

e−z Imµ+dλ1dλ2 ≤ C(1 + z−1−i), (2.26)

for any i = 0, 1 and j = 1, 2, 3. It suffices to prove the lemma for z < 1.
Recall that P33(k;x,y) = k2−J(h2e

i(µ+−µ−)y3 ;x,y). By Taylor’s expansion,
ei(µ+−µ−)y3 = 1 + i(µ+ − µ−)y3 −

1

2
(µ+ − µ−)

2y23 +O
(
ξ−3

)
,

h2 =
1

(k2+ + k2−)µ+

[
1 +

k2+(µ+ − µ−)

(k2+ + k2−)µ+

]
+O(ξ−4),

as ξ → ∞.

We can write h2e
i(µ+−µ−)y3 =

∑3
j=1Rj where

R1 =
1

k2+ + k2−

1

µ+
, R2 =

i(k2+ − k2−)y3

2(k2+ + k2−)

1

µ2
+

,

R3 =
k2+ − k2−

(k2+ + k2−)
2

[
k2+
2

+
y23
8
(k4− − k4+)

]
1

µ3
+

+O
(
ξ−4

)
.

Then we have P33(k;x,y) = k2−
∑3

j=1 J(Rj ;x,y).
From (2.16), the fundamental solution has the Fourier integral form

Φ(k+;x,y) =
1

2
J(µ−1

+ ;x,y).

This shows that

J(R1;x,y) =
2

k2+ + k2−
Φ(k+;x,y), |J(R1;x,y)| ≤ Cρ−1. (2.27)

For the second term, since

∂

∂x3
J(R2;x,y) =

(k2− − k2+)y3

k2+ + k2−
Φ(k+;x,y), (2.28)
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this yields

|J(R2;x,y)| =
∣∣∣∣J(R1; (x1, x2, ρ),y)−

(k2− − k2+)y3

k2+ + k2−

∫ ρ

x3

Φ(k+; (x1, x2, t),y)dt

∣∣∣∣
≤ C(ρ− y3)

−1 + C(ρ− x3) max
x3≤t≤ρ

|Φ(k+; (x1, x2, t),y)|

≤ C
(
1 + ρ−1

)
. (2.29)

The third term is easy to be estimated as follows

|J(R3;x,y)| ≤ C

∫ ∞

−∞

∫ ∞

−∞
(λ21 + λ22)

−3/2dλ1dλ2 ≤ C.

Combining the above inequalities, we get

|P33(k;x,y)| ≤ C
(
1 + ρ−1

)
.

The derivatives of P33 can be estimated by using (2.27)–(2.28) and similar argu-
ments as in the proof of (2.29). We do not elaborate on the details here.

2.3. Existence and uniqueness of the scattering solution. Now we study
the well-posedness of the scattering problem. The idea is inspired by [23] and [30,
Chapter 12] where incident point sources and incident plane waves are considered. Let
B0 = B(R0), R0 ≥ 1, be an open ball of radius R0 such that D̄ ⊂ B0. Write Γ0 = ∂B0

and let Ω0 = B0\D̄ denote the domain where the scattering field is interested. Let
χ ∈ C∞

0 (R3) be the cut-off function satisfying supp(χ) ⊂ B0 and χ ≡ 1 on D̄.
We introduce the modified Green’s function Gχ(x,y) = χ(y)G(k;x,y) and define

the wave propagation operator by, for any u ∈ L1(Ω0),

P(u) :=

∫
Ω0

[
curly curly Gχ(·,y)− k2Gχ(·,y)

]⊤
u(y)dy . (2.30)

From [30, Section 12.4.3], the scattering solution E of (1.1) satisfies

E(x) = P(E)(x) ∀x ∈ R3
±\B0 .

Theorem 2.2. For any g ∈ H−1/2(Div,ΓD), (1.1) has a unique solution E.
Moreover, for any bounded domain Ω ⊂ Dc, there exists a constant C > 0 depending
only on k and Ω such that

∥E∥H(curl,Ω) ≤ C ∥g∥H−1/2(Div,ΓD) . (2.31)

Proof. The uniqueness of the solution is proved by Cutzach and Hazard in [23].
It is left to prove the existence. Let B1 = B(R1) be a ball containing B0 and write
Ω1 = B1\D̄ and Γ1 = ∂B1. Define

U =
{
v ∈ H(curl,Ω1) : γTv ∈ L2(Γ1)

}
, U0 = {v ∈ U : γtv = 0 on ΓD} .

By [30, Theorem 4.1], U forms a Hilbert space under the inner product and norm

(u,v)U =

∫
Ω1

(curlu · curl v̄ + u · v̄) +
∫
Γ1

γTu · γT v̄, ∥u∥U := (u,u)
1/2
U .
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By [30, Theorem 4.7], we have the direct-sum decomposition U0 = Û0 +∇S0 where

Û0 =
{
v ∈ U0 : div(k2v) = 0

}
, S0 =

{
v ∈ H1

ΓD
(Ω1) : v|Γ1 = Const.

}
. (2.32)

Moreover, Û0 is embedded compactly into L2(Ω1).
Let s+: U ×U → C be the sesquilinear form defined by

s+(u,v) =

∫
Ω1

(
curlu · curl v̄ + k2u · v̄

)
− i

∫
Γ1

γTu · γT v̄. (2.33)

Clearly s+ is continuous and coercive on U . There is a unique Eg ∈ U satisfying

s+(Eg,v) = 0 ∀v ∈ U0, γtEg = g on ΓD. (2.34)

Furthermore, there is a constant C > 0 depending only on k and Ω1 such that

∥Eg∥H(curl,Ω1)
≤ C ∥g∥H−1/2(Div,ΓD) . (2.35)

Therefore, a weak formulation for (1.1) can be proposed as follows: Find E1 := E −
Eg ∈ U0 such that

s(E1,v) + s1(E1,v) = −s(Eg,v)− s1(Eg,v) ∀v ∈ U0, (2.36)

where the sesquilinear forms are defined by

s(u,v) = s+(u,v)−
∫
Ω1

2k2u · v̄, s1(u,v) =

∫
Γ1

[γt curlP(u) + iγTP(u)] · γT v̄.

Clearly s, s1 are continuous on U . It suffices to show that (2.36) has a solution.
From (1.1a) and (1.1c), we have curlE ∈ H(curl,Ω1) and div(k2E) = 0 in Ω1.

Taking v = ∇φ, φ ∈ S0 in (2.34), we also have div(k2Eg) = 0 in Ω1. This implies

E1 ∈ Û0. Using (2.34), E1 can be solved in the subspace: Find E1 ∈ Û0 such that

s(E1,v) + s1(E1,v) = 2(k2Eg,v)Ω1 − s1(Eg,v) ∀v ∈ Û0. (2.37)

Let K1,K2: L
2(Ω1) → Û0 be the linear operators defined by

s+(K1(u),v) = 2(k2u,v)Ω1 , s+(K2(u),v) = s1(u,v) ∀v ∈ Û0. (2.38)

Since s+ is coercive, K1,K2 are well-defined and ∥K1(u)∥U ≤ C ∥u∥L2(Ω1)
. By the

compact embedding of Û0 into L2(Ω1), K1 is a compact operator.
By Lemma 2.1, G and its partial derivatives are bounded as follows

∥∇xG(k;x, ·)∥W 2,∞(B0)
+ ∥G(k;x, ·)∥W 2,∞(B0)

≤ C ∀x ∈ R3
±\B1, y ∈ B̄0.

By the definition of P and the Cauchy-Schwarz inequality, we have

∥K2(u)∥U ≤ C ∥n× curlP(u) + iγTP(u)∥L2(Γ1)
≤ C ∥u∥L2(Ω1)

.

Therefore, K2 is also a compact mapping from Û0 to L2(Ω1).
Now we can write (2.37) into an operator equation

E1 −K1(E1) +K2(E1) = K1(Eg)−K2(Eg) . (2.39)
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This is a Fredholm equation on L2(Ω1). Since the scattering solution E is unique, the
solution E1 of (2.37) is also unique. By the Fredholm alternative, we conclude that

(2.39) attains a unique solution E1 ∈ L2(Ω1). From (2.39) we know that E1 ∈ Û0.
Therefore, the weak problem (2.37) or (2.36) has a unique solution.

For the stability of the solution, from (2.39) and (2.35) we know that

∥E1∥L2(Ω1)
=

∥∥(I −K1 +K2)
−1(K1 −K2)Eg

∥∥
L2(Ω1)

≤ C ∥Eg∥L2(Ω1)
.

By (2.35), this shows ∥E∥L2(Ω1)
≤ C ∥Eg∥L2(Ω1)

≤ C ∥g∥H−1/2(Div,ΓD). Finally, tak-

ing v = E1 in (2.36) leads to

∥curlE1∥2L2(Ω1)
≤ k2− |(E,E1)Ω1 |+ |s1(E,E1)|+ |(curlEg, curlE1)Ω1 | .

We conclude that ∥curlE1∥L2(Ω1)
≤ C ∥g∥H−1/2(Div,ΓD). By (2.35), this yields

∥E∥H(curl,Ω1)
≤ C ∥g∥H−1/2(Div,ΓD) .

Finally, for any bounded domain Ω, we need only choose R1 large enough such that
Ω ⊂ Ω1. Then (2.31) follows clearly from the above estimate.

3. The Cagniard-de Hoop transform. In this section, we shall derive a new
integral form of P by the Cagniard de-Hoop transform [20, Page 215]. It plays the
key role in proving the exponential decay of the solution in PML. Without loss of
generality, we only consider P33 for x ∈ R3

+ and y ∈ R3
−. The results can be extended

straightforwardly to other cases of x,y and to other entries of P.
Lemma 3.1. For any x3 ∈ R3

+ and y ∈ R3
−, write x1 − y1 = r cosϕ, x2 − y2 =

r sinϕ with r =
√
(x1 − y1)2 + (x2 − y2)2 and ϕ ∈ [0, 2π]. Then, for any ε > 0,

∂l+m+nP33(k;x,y)

∂xl1∂x
m
2 ∂x

n
3

= il+m+n 1 + iε

2π2

∫ ∞

0

∫ ∞

−∞

λl1λ
m
2 µ

n
+e

i(rξ+x3µ+−y3µ−)

µ+ + k−2
− k2+µ−

dξdq,

for any integers l,m, n ≥ 0, where µ± = µ±(ξ, (ε− i)q) and

λ1 = ξ cosϕ+ (ε− i)q sinϕ, λ2 = ξ sinϕ− (ε− i)q cosϕ.

Proof. We consider the rotational transform ξ = λ1 cosϕ+λ2 sinϕ, η = λ1 sinϕ−
λ2 cosϕ. The definitions of µ± indicate

µ±(λ1, λ2) =
(
k2± − λ21 − λ22

)1/2
=

(
k2± − ξ2 − η2

)1/2
= µ±(ξ, η).

Write N = l +m+ n. Then from (2.22) we have

∂NP33(k;x,y)

∂xl1∂x
m
2 ∂x

n
3

=
iN+1

2π2

∫ ∞

0

F (η)dη, F (η) =

∫ ∞

−∞

λl1λ
m
2 µ

n
+e

i(rξ+x3µ+−y3µ−)

µ+ + k−2
− k2+µ−

dξ.

For any fixed η ∈ C, when |ξ| ≫ k− + |η|, we have

Imµ±(ξ, η) =

√
|µ±(ξ, η)2| − Reµ±(ξ, η)2

2
≥

√
ξ2 − k2± − |η|2 ≥ 1

2
|ξ| .
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Fig. 3.1. The deformation of integral path from the real axis to Lε.

Thus the dξ-integration in F (η) converges for any |x3|+ |y3| > 0. Since Reµ± > 0 and
(Imµ+)(Imµ−) > 0, we have µ+ + k−2

− k2+µ− ̸= 0. Therefore, F defines an analytic
function of η.

Now we define a half line in the fourth quadrant of the complex η-plane

Lε = {(ε− i)q : q ≥ 0} =
{
te−iθε : t ≥ 0

}
, θε = arcsin

1√
1 + ε2

.

Let CR = {Reiθ : 0 < θ < θε} be the arc of radius R which is bounded by Lε and the
real axis (See Fig. 3.1). We orient Lε to the downward direction. Suppose that

lim
R→∞

∫
CR

F (η)dη = 0. (3.1)

Then the result follows from Cauchy’s theorem and the fact that

i

∫ ∞

0

F (η)dη = i

∫
Lε

F (η)dη = (1 + iε)

∫ ∞

0

∫ ∞

−∞

λl1λ
m
2 µ

n
+e

i(rξ+x3µ+−y3µ−)

µ+ + k−2
− k2+µ−

dξdq.

It is left to show (3.1). Assume R≫ 2(1 + k−) and recall

Imµ2
± = Im

(
k2± − ξ2 −R2e−2iθ

)
= R2 sin 2θ ≥ 0 ∀ θ ∈ (0, θε).

We have Reµ± ≥ 0, Imµ± ≥ 0. There is a constant C independent of ξ, η such that∣∣F (Reiθ)∣∣ ≤ CRN

∫ ∞

0

(1 + ξ)Ne−x3 Imµ+dξ = CRN [F1(R, θ) + F2(R, θ)], (3.2)

where

F1(R, θ) =

∫ 2R

0

(1 + ξ)Ne−x3 Imµ+dξ, F2(R, θ) =

∫ ∞

2R

(1 + ξ)Ne−x3 Imµ+dξ.

We consider F1(R, θ) first. For any 0 ≤ θ ≤ θε/2, we have

Imµ± ≥ 1

2

√∣∣µ2
±
∣∣− Reµ2

± ≥ 1

2

√∣∣µ2
±
∣∣+ ξ2 +R2 cos 2θ − k2± ≥ εR

4
− k−.

For any θε/2 < θ < θε, from (2.5) we know that

Imµ+ =
Imµ2

+

2Reµ+
≥ R2 sin 2θ

2(|ξ|+ k− +R)
≥ R

8
min(sin 2θε, sin θε).
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This shows

lim
R→∞

RN+1

∫ θε

0

F1(R, θ) = 0. (3.3)

As for F2(R, θ), since ξ ≥ 2R, we deduce that

(Imµ±)
2 ≥ 1

2

(∣∣µ2
±
∣∣+ ξ2 +R2 cos 2θ − k2±

)
≥ ξ2 +R2 cos 2θ − k2± ≥ 1

4
ξ2.

This indicates

F2(R, θ) ≤
∫ +∞

2R

(1 + ξ)Ne−
1
2x3ξdξ ≤ Cx−N−1

3 e−x3R.

We conclude that

lim
R→∞

RN+1

∫ θε

0

F2(R, θ) = 0. (3.4)

Finally, the proof is finished by combining (3.3)–(3.4) with (3.2).
The integral form in Lemma 3.1 is still unfavorable to the PML analysis. We are

going to derive the Cagniard-de Hoop representation of P. This will be fulfilled by
deforming the dξ-integration from the real axis to a hyperbolic integral path.

For convenience in notation, we write

κ±(ε, q) :=
[
k2± − (ε− i)2q2

]1/2
=

[
k2± + (1 + iε)2q2

]1/2 ∀ q > 0.

We shall always abbreviate the notations to κ± := κ±(ε, q) without specifying their
dependency on ε and q in this and next sections. From (2.5), we know that Reκ±,
Imκ± are positive and satisfy

Imκ− ≤ Imκ+ ≤ εq2√
k2+ + (1− ε2)q2

, (3.5)

Reκ− ≥ Reκ+ ≥
√
k2+ + (1− ε2)q2. (3.6)

For convenience, we also use

µ1(ξ) =
(
κ2+ − ξ2

)1/2
= µ+(ξ, (ε− i)q), µ2(ξ) =

(
κ2− − ξ2

)1/2
= µ−(ξ, (ε− i)q),

without specifying their dependency on ε and q. By (2.5), the branch cuts for the

square roots µ1,2 = (κ± + ξ)
1/2

(κ± − ξ)
1/2

are given by four half-lines

CR
± = {ξ : ξ = κ± + t, t ≥ 0} , CL

± = {ξ : ξ = −κ± − t, t ≥ 0} .

For any fixed q ≥ 0, µ1, µ2 are analytic functions of ξ in C\(CL
+∪CR

+) and C\(CL
−∪CR

−)
respectively.

Given a function h in the complex ξ-plane, define

I(h; r, z) =

∫ +∞

−∞
h(ξ)ei(rξ+zµ1)dξ ∀ r > 0, z > 0.
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We shall rewrite the integral by the Cagniard-de Hoop transform. The theory will be
applied to the Perturbation tensor later.

Lemma 3.2. For any q > 0 and 0 < ε ≪ 1, let h be an analytic function in
C\(CL

+ ∪ CR
+ ∪ CL

− ∪ CR
−) and satisfy |h(ξ)| ≤ C(1 + |ξ|)m for some integer m and

some constant C > 0. Then for any r, z satisfying z ≥ 2εr > 0,

I(h; r, z) = −i

∫ ∞

1

[h(ξ+(t))Λ+(t) + h(ξ−(t))Λ−(t)]
eiκ+ρt

√
t2 − 1

dt, (3.7)

where ρ =
√
r2 + z2 and ξ±,Λ± are defined by the Cagniard-de Hoop transform

ξ±(t) =
κ+
ρ

(
rt± iz

√
t2 − 1

)
, Λ±(t) =

κ+
ρ

(
zt∓ ir

√
t2 − 1

)
. (3.8)

Proof. First we define a hyperbolic integral path Γ = Γ+ ∪ Γ− where

Γ± = {ξ±(t) : t ≥ 1} .

Notice that Λ2
±(t) = κ2+ − ξ2±(t) for any ξ±(t) ∈ Γ. From (3.5)–(3.6), we have

ρReΛ±(t) ≥ ztReκ+ − r
√
t2 − 1 Imκ+ ≥ εrt

Reκ+

[
2(1− ε2)q2 − q2

]
≥ 0.

By the convention in (2.5), we have Λ±(t) = µ1(ξ±(t)).
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0
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Γ
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−

O
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+

Re(ξ)

Im(ξ)

0

Γ
−

Fig. 3.2. The Cagniard-de Hoop transform from the real axis to Γ+ ∪ Γ−.

For any R > 0, let O+
R , O

−
R be the parts of the circle {ξ : |ξ| = R} that are

bounded by the real axis and Γ± respectively (see Fig. 3.2). Suppose that

lim
R→∞

F±(R) = 0, F±(R) :=

∫
O±

R

h(ξ)ei(rξ+zµ1)dξ. (3.9)

By Cauchy’s theorem, (3.7) follows from the fact that

I(h; r, z) =

∫
Γ

h(ξ)ei(rξ+zµ1)dξ.

It is left to show (3.9). We only prove the limit for F+(R). The proof for F−(R)
is similar and omitted here. Let ξR = ReiθR be the intersection of O+

R and Γ+. Then
F+(R) can be written into

F+(R) = i

∫ π

θR

h(Reiθ)e−rR sin θei(rR cos θ+µ1z)Reiθdθ,
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where µ1 = µ1(Re
iθ). Since

∣∣h(Reiθ)∣∣ ≤ C(1 +R)m, we have

|F+(R)| ≤ CRm+1

∫ π

θR

e−(rR sin θ+z Imµ1)dθ . (3.10)

Without loss of generality, we assume that R≫ 2(k− + q) and define

θ0 :=
π

2
− 1

2
arcsin

2εq2

R2
. (3.11)

Clearly π/4 < θ0 < π/2. Since Imµ2
1 = 2εq2 −R2 sin 2θ, by (2.5), we have

Imµ1 > 0 ∀ θ ∈ (θ0, π); Imµ1 < 0 ∀ θ ∈ (θR, θ0). (3.12)

From (2.5), we also have Imµ1 ≥ R/8 for any 5π/6 ≤ θ ≤ π. Then∫ π

θ0

e−(rR sin θ+z Imµ1)dθ ≤
∫ 5π

6

θ0

e−rR sin θdθ +

∫ π

5π
6

e−z Imµ1dθ ≤ πe−
rR
4 + πe−

zR
8 .

This shows that

lim
R→∞

Rm+1

∫ π

θ0

e−(rR sin θ+z Imµ1)dθ = 0. (3.13)

Now we consider the case of θ ∈ (θR, θ0). For R≫
∣∣κ2+∣∣, careful calculations yield

∂

∂θ
Im

(
κ2+ −R2e2iθ

)1/2 ≥ 0 ∀ θ ∈ (θR, θ0).

Thus Imµ1(Re
iθ) is increasing with respect to θ ∈ (θR, θ0). Let r = ρ cosϕ, z = ρ sinϕ

with ϕ ∈ (0, π/2). Since ξR = ξ+(tR) for some tR ≥ 1, we have

ξR = κ+

(
cosϕ tR + i sinϕ

√
t2R − 1

)
, µ1(ξR) = κ+

(
sinϕ tR − i cosϕ

√
t2R − 1

)
.

Note that R = |κ+|
√
t2R cos2 ϕ+ (t2R − 1) sin2 ϕ ≤ |κ+| tR. We get

rR sin θ + z Imµ1 ≥ r Im ξR + z Imµ1(ξR) = ρtR Imκ+ ≥ Imκ+
|κ+|

ρR .

This yields

lim
R→∞

Rm+1

∫ θ0

θR

e−(rR sin θ+z Imµ1)dθ = 0. (3.14)

Finally, we obtain (3.9) by substituting (3.13) and (3.14) into (3.10).

Now we apply Lemma 3.2 to the perturbation tensor and its derivatives. For
convenience, we write r =

√
(x1 − y1)2 + (x2 − y2)2, z = |x3|+|y3|, and ρ =

√
r2 + z2.

Let the Cagniard-de Hoop transform be defined in (3.8). Since ReΛ± ≥ 0, it is easy
to see that

µ1(ξ±) = Λ±, µ2(ξ±) =
(
k2− − k2+ + Λ2

±
)1/2

.
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For a function f(ξ), we define

Jcdh(f ;x,y) =
ε− i

2π2

∫ ∞

0

∫ ∞

1

[Λ+(t)f(ξ+(t)) + Λ−(t)f(ξ−(t))]
eiκ+ρt

√
t2 − 1

dtdq.

Let h1, h2, h3 be defined by (2.17) with µ+, µ− replaced by µ1, µ2 respectively. The
diagonal entries of the perturbation tensor P are given by, for j = 1, 2 and z ≥ 2εr,

Pjj(k;x,y) =



Jcdh(h1;x,y), if x,y ∈ R3
+,

Jcdh(h1e
i(µ1−µ2)y3 ;x,y), if x ∈ R3

+, y ∈ R3
−,

Jcdh(h1e
i(µ1−µ2)x3 ;x,y), if x ∈ R3

−, y ∈ R3
+,

Jcdh(h1e
i(µ1−µ2)(x3+y3);x,y), if x,y ∈ R3

−,

(3.15)

P33(k;x,y) =



k2−Jcdh(h2;x,y), if x,y ∈ R3
+,

k2−Jcdh(h2e
i(µ1−µ2)y3 ;x,y), if x ∈ R3

+, y ∈ R3
−,

k2+Jcdh(h2e
i(µ1−µ2)x3 ;x,y), if x ∈ R3

−, y ∈ R3
+,

k2+Jcdh(h2e
i(µ1−µ2)(x3+y3);x,y), if x,y ∈ R3

−.

(3.16)

Write x1 − y1 = r cosϕ, x2 − y2 = r sinϕ. Then P23 = tanϕP13 where

P13(k;x,y)

cosϕ
=



Jcdh(ξh3;x,y), if x,y ∈ R3
+,

Jcdh(ξh3e
i(µ1−µ2)y3 ;x,y), if x ∈ R3

+, y ∈ R3
−,

Jcdh(ξh3e
i(µ1−µ2)x3 ;x,y), if x ∈ R3

−, y ∈ R3
+,

Jcdh(ξh3e
i(µ1−µ2)(x3+y3);x,y), if x,y ∈ R3

−.

(3.17)

Similarly, we can obtain the Cagniard-de Hoop representations for derivatives of
P. We only give the derivatives of P33(k;x,y) for x ∈ R3

+ and y ∈ R3
−. The other

cases are similar. By Lemma 3.2, we have, for any z ≥ 2εr,

∂l+m+nP33(k;x,y)

∂xl1∂x
m
2 ∂x

n
3

= il+m+nk2−Jcdh(λ
l
1λ

m
2 µ

n
1h2e

i(µ1−µ2)y3 ;x,y), (3.18)

∂l+m+nP33(k;x,y)

∂yl1∂y
m
2 ∂y

n
3

= (−i)l+m+nk2−Jcdh(λ
l
1λ

m
2 µ

n
2h2e

i(µ1−µ2)y3 ;x,y), (3.19)

where λ1 = ξ cosϕ+ (ε− i)q sinϕ and λ2 = ξ sinϕ− (ε− i)q cosϕ.

4. Perfectly matched layer. Now we introduce the wave-absorbing material,
or, the perfectly matched layer. To make the main theme more focused on the layered
medium, we only consider spherical PML in this paper.

4.1. Complex coordinate stretching. Let B0 := B(R0) be the ball of radius
R0 ≥ 1 which contains D and where the scattering field is interested. For any x ∈ R3,
let ρ = |x| and x̂ = x/ρ. The complex stretching is defined by x̃ = ρ̃x̂ where

ρ̃ = ρα(ρ), α(ρ) = 1 +
i

ρ

∫ ρ

0

σ(t)dt. (4.1)

The PML medium property σ is defined piecewise by

σ(R0 + sR0/2) = σ0σ̂(s), σ̂(s) =


0 if s ≤ 0,

6s2 − 4s3 if 0 < s < 1,

2 if s ≥ 1.

(4.2)
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Clearly σ is C1-smooth and satisfies σ(t) = 0 for all t ≤ R0 and σ(t) = 2σ0 for all
t ≥ 1.5R0. Here σ0 ≥ 1 is the medium property parameter. It is well-known that larger
value of σ0 means faster decay of the scattering solution in the PML. For theoretical
analysis, we assume σ0 ≥ 4 in the rest of the paper. The theory allows more general
definitions of σ. Here we do not elaborate on the details (see [6, 12]).

Write the complex stretching by F (x) := x̃. Then F is C2-smooth. In the rest,
both F (x) and x̃ will denote the same complex vector. It is easy to see that the Jacobi
matrix of F is given by

B := DF = α(ρ)I+ ρα′(ρ)x̂x̂⊤. (4.3)

Clearly B is symmetric and C1-smooth. Its determinant is given by

J = det(B) = α2(α+ ρα′). (4.4)

The analytic continuations of 2D and 3D distance functions are defined by

r(x̃, ỹ) =
[
(x̃1 − ỹ2)

2 + (x̃2 − ỹ2)
2
]1/2

, d(x̃, ỹ) = [(x̃− ỹ) · (x̃− ỹ)]
1/2

.

By direct calculations, we have Im r(x̃, ỹ) ≥ 0 and

|x− y| ≤ |d(x̃, ỹ)| ≤
√
1 + 16σ2

0 |x− y| , (4.5)

|r(x,y)| ≤ |r(x̃, ỹ)| ≤
√

1 + 16σ2
0 |r(x,y)| . (4.6)

Moreover, if max(|x| , |y|) ≥ 2R0, we also have

Im d(x̃, ỹ) ≥ 1

2
σ0 |x− y| . (4.7)

Lemma 4.1. For any x ∈ R3
+ and y ∈ R3

−, suppose max(|x| , |y|) ≥ 2R0 and
Im(x̃3 − ỹ3) ≥ x3 − y3. Then

|d(x̃, ỹ)| ≥ |r(x̃, ỹ)| .

Proof. For convenience, we write r̃ = r(x̃, ỹ) = r1 + ir2, z̃ = x̃3 − ỹ3 = z1 + iz2
with r1, r2 ≥ 0 and z2 ≥ z1 ≥ 0. If r2 ≥ r1, we find that

|d(x̃, ỹ)|4 = |r̃|4 + |z̃|4 + 8r1r2z1z2 + 2(z22 − z21)(r
2
2 − r21) ≥ |r̃|4 + |z̃|4 .

If r2 < r1, we have Re r̃2 ≥ 0 and |r̃|2 ≤ 2 |x− y|2. The proof is finished by (4.7).

4.2. PML extension of the Cagniard de-Hoop transform. For any x,y ∈
R3

±, let x̃, ỹ be their complex stretching respectively. The analytic continuation of the
dyadic Green’s function is defined by

G(k; x̃, ỹ) = H(k; x̃, ỹ) +
1

k2
∇ỹ divỹ H(k; x̃, ỹ), x̃ ̸= ỹ.

where H(k; x̃, ỹ) = S(k; x̃, ỹ)−P(k; x̃, ỹ) is the analytic continuation of the Hertz ten-
sor for x̃ ̸= ỹ, S(k; x̃, ỹ) is defined by replacing x,y with x̃, ỹ in (2.18), and P(k; x̃, ỹ)
is defined by replacing x,y with x̃, ỹ in (3.15)–(3.17). We extend the Cagniard-de

16



Hoop transform from real coordinates to complex coordinates and prove some useful
estimates.

Lemma 4.2. For any x ∈ R3
+ and y ∈ R3

−, let r̃ = r(x̃, ỹ), z̃ = x̃3 − ỹ3, and

d̃ = d(x̃, ỹ). Assume max(|x| , |y|) ≥ 2R0 and Im z̃ ≥ Re z̃. For any κ > 0, if ξ±(t) =
κd̃−1

(
r̃t± iz̃

√
t2 − 1

)
, then(

κ2 − ξ2±(t)
)1/2

= κd̃−1
(
z̃t∓ ir̃

√
t2 − 1

)
∀ t ≥ 1.

Proof. Write Λ± = κd̃−1 (z̃t∓ ir̃t1) with t1 =
√
t2 − 1. It is clear that Λ2

± + ξ2± =
κ2. By the convention in (2.5), it suffices to show ReΛ± ≥ 0. We only prove ReΛ+ ≥ 0
here. The proof for ReΛ− ≥ 0 is similar.

Without loss of generality, we assume |x| ≥ |y|. Let r̃ = r1 + ir2, z̃ = z1 + iz2,
d̃ = d1 + id2 with ri, di ≥ 0 and z2 ≥ z1 ≥ 0. Then

κ−1
∣∣d̃∣∣2 ReΛ+ = d1(z1t+ r2t1) + d2(z2t− r1t1) ≥ t1(M −N),

where M = d1z1 + d1r2 + d2z2 and N = d2r1. Using Lemma 4.1 and z2 ≥ z1, we
know that Re z̃2 ≤ 0 and

∣∣d̃∣∣ ≥ |r̃|. From (4.5) and (4.7), we have Re d̃2 ≤ 0. Then the
convention in (2.5) shows that

1

2

(
M2 −N2

)
≥ 1

2

(
d21z

2
1 + d22z

2
2 + d21r

2
2 − d22r

2
1

)
=

∣∣d̃2∣∣ ∣∣z̃2∣∣+Re d̃2 Re z̃2 +Re d̃2
∣∣r̃2∣∣− ∣∣d̃2∣∣Re r̃2

≥
∣∣d̃2∣∣( ∣∣z̃2∣∣+Re z̃2

)
+Re d̃2

( ∣∣r̃2∣∣− ∣∣d̃2∣∣) ≥ ∣∣d̃2∣∣( ∣∣z̃2∣∣+Re z̃2
)
.

Therefore, M ≥ N , that is, ReΛ+ ≥ 0.

Lemma 4.3. Let ξ± and the assumptions be same to those in Lemma 4.2. For

either ξ = ξ+ or ξ = ξ−, define µj =
(
κ2j − ξ2

)1/2
, j = 1, 2 with κ2 ≥ κ1 = κ. Then

Im [(µ1 − µ2)(a+ ib)] ≤ 0 ∀ b ≥ a ≥ 0.

Proof. We only prove the lemma for ξ = κ1d̃
−1 (r̃t+ iz̃t1) where t1 =

√
t2 − 1.

The proof for ξ = κ1d̃
−1 (r̃t− iz̃t1) is similar and omitted here.

Write µj = αj + iβj with αj , βj ∈ R, j = 1, 2. Since µ2
2 − µ2

1 = κ22 − κ21, we have

α2
2 − β2

2 = κ22 − κ21 + α2
1 − β2

1 , α1β1 = α2β2.

We recall (2.5) and deduce that

√
2α2 =

[√
(κ22 − κ21 + α2

1 − β2
1)

2
+ 4α2

1β
2
1 +

(
κ22 − κ21 + α2

1 − β2
1

)]1/2
, (4.8)

√
2 |β2| =

[√
(κ22 − κ21 + α2

1 − β2
1)

2
+ 4α2

1β
2
1 −

(
κ22 − κ21 + α2

1 − β2
1

)]1/2
. (4.9)

Since α1 ≥ 0 by (2.5), direct calculations show that

α2 ≥ α1 ≥ 0, |β2| ≤ |β1|, sign(β1) = sign(β2). (4.10)
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Since

Im [(µ1 − µ2)(a+ ib)] = a(β1 − β2) + b(α1 − α2), (4.11)

the lemma now follows obviously for β1 ≤ 0.
Now we assume β1 > 0. By Lemma 4.2, we have µ1 = κ1d̃

−1 (z̃t− ir̃t1). Similar
to the proof of Lemma 4.2, we write d̃ = d1 + id2, r̃ = r1 + ir2, z̃ = z1 + iz2 with
r1, r2 ≥ 0, d2 ≥ d1 ≥ 0, and z2 ≥ z1 ≥ 0. Then

κ−1
1 |d̃|2α1 = t(d1z1 + d2z2) + t1(d1r2 − d2r1),

κ−1
1 |d̃|2β1 = t(d1z2 − d2z1)− t1(d1r1 + d2r2).

We deduce that

κ−1
1 |d̃|2(α1 − β1) ≥ (d2 − d1)(z1 + z2 + r2 − r1) ≥ 0.

This means α2 ≥ α1 ≥ β1. Since β1 > 0 and α1β1 = α2β2, by (4.11), we have

Im [(µ1 − µ2)(a+ ib)] =
1

β1
(β2 − β1)(bα2 − aβ1) ≤

a

β1
(β2 − β1)(α2 − β1) ≤ 0,

where we have used 0 ≤ a ≤ b and (4.10). The proof is completed.

4.3. Exponential decay of the Green’s function in PML. Now we prove
the exponential decay of G(k; x̃, ỹ) as |x− y| → +∞. It depends greatly on the
estimate in (4.7). Therefore, we assume through this subsection that

max(|x| , |y|) ≥ 2R0 .

From Lemma 3.2 and (3.15)–(3.19), we know that P and its derivatives are defined
with an arbitrary parameter 0 < ε≪ 1 through

κ±(ε, q) =
[
k2± + (1 + iε)2q2

]1/2 ∀ q ≥ 0.

Lemma 4.4. Suppose |x− y| ≥ 1 and max(|x| , |y|) ≥ 2R0. Then P(k; x̃, ỹ) and
its derivatives are given by setting ε = 0 and replacing x,y with x̃, ỹ in (3.15)–(3.19).

Proof. Without loss of generality, we only prove the lemma for ∂mP33

∂x̃m
1

(k; x̃, ỹ) and

for the case of x ∈ R3
+ and y ∈ R3

−. The results can be extended straightforwardly
to other cases of x,y, to other entries of P, and to other derivatives of P. The details
are omitted here.

From (3.18)–(3.19), P33 and its derivatives depend on the parameter ε > 0. We
write P33(k, ε; x̃, ỹ) := P33(k; x̃, ỹ) to specify the dependency of P33 on ε. It suffices
to show

∂mP33

∂x̃m1
(k, 0; x̃, ỹ) = lim

ε→0+

∂mP33

∂x̃m1
(k, ε; x̃, ỹ), m ≥ 0, (4.12)

where ∂mP33

∂x̃m
1

(k, 0; x̃, ỹ) is given by setting ε = 0 and replacing x,y with x̃, ỹ in (3.18).

For convenience, we write r̃ = r(x̃, ỹ), z̃ = x̃3 − ỹ3, and d̃ = d(x̃, ỹ). The PML
extension of the Cagniard-de Hoop transform in (3.8) is defined by

ξ±(t) =
κ+(ε, q)

d̃

(
r̃t± iz̃

√
t2 − 1

)
, Λ±(t) =

κ+(ε, q)

d̃

(
z̃t∓ ir̃

√
t2 − 1

)
∀ t ≥ 1.
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Let C denote the generic constant which is independent of x̃, ỹ, ε, q, and t. By
Lemma 4.1, we have

|ξ±(t)|+ |Λ±(t)| ≤ C
|r̃|+ |z̃|

|d̃|
(k+ + q)t ≤ C(k+ + q)t. (4.13)

Define µ1(ξ±) =
[
κ+(ε, q)

2 − ξ2±
]1/2

and µ2(ξ±) =
[
κ−(ε, q)

2 − ξ2±
]1/2

. From (2.5),
we have

Reµ1 ≥ 0, Reµ2 ≥ 0, sign(Imµ1) = sign(Imµ2).

This shows |µ1 − µ2| ≤ |µ1 + µ2|. Since µ2
1 − µ2

2 = k2+ − k2−, we have∣∣k2−µ1 + k2+µ2

∣∣ ≥ k2+ |µ1 + µ2| ≥ k2+
∣∣µ2

1 − µ2
2

∣∣1/2 ≥ k2+(k− − k+). (4.14)

Let z = x3 − y3, r =
√
(x1 − y1)2 + (x2 − y2)2, and d = |x− y|. Replacing x,y

with x̃, ỹ in (3.18), we find that, for any z ≥ εr,

∣∣∣∣∂mP33

∂x̃m1
(k, ε; x̃, ỹ)

∣∣∣∣ ≤ Cek−|y3|
∫ ∞

0

∫ ∞

1

[(k+ + q)t]m+1

∣∣∣eiκ+(ε,q)d̃t
∣∣∣

√
t2 − 1

dtdq. (4.15)

From (4.5) and (4.7), we have Im d̃ ≥ 1
2σ0d ≥ 2d. This indicates Re d̃2 ≤ 0 and

Im d̃ ≥ Re d̃. Then using (3.5)–(3.6), we have
∣∣∣eiκ+(ε,q)d̃t

∣∣∣ ≤ e−
1
8σ0d(k++q)t. Inserting

the estimates into (4.15), we get∣∣∣∣∂mP33

∂x̃m1
(k, ε; x̃, ỹ)

∣∣∣∣ ≤ Cek−|y3|
∫ ∞

0

∫ ∞

1

[(k+ + q)t]m+1

√
t2 − 1

e−
1
8σ0d(k++q)tdtdq.

The integral on the righthand side is convergent and independent of ε. Then (4.12) is
obtained by using the dominated convergence theorem.

Lemma 4.5. Let x̃, ỹ be the complex stretching of x,y and write ζ =
(x̃1, x̃2, x̃3, ỹ1, ỹ2, ỹ3). There is a constant C depending only on k such that∣∣∣∣∣ ∂m+n

∂ζmi ∂ζ
n
j

S(k; x̃, ỹ)

∣∣∣∣∣ ≤ C ×

{
|x− y|−m−n−1

, if max(|x| , |y|) < 2R0, |x− y| ≤ 1,

e−
1
2k+σ0|x−y|, otherwise,

for any 1 ≤ i, j ≤ 6 and m,n ≥ 0.
Proof. Since Φ(k±; x̃, ỹ) = [4πd(x̃, ỹ)]−1eik±d(x̃,ỹ), the lemma comes directly from

(2.18), (4.5), and (4.7).

Lemma 4.6. For any x,y ∈ R3
±, let x̃, ỹ be their complex stretching and assume

max(|x| , |y|) ≥ 2R0, (x1 − y1)
2 + (x2 − y3)

2 + (|x3|+ |y3|)2 ≥ 1.

Write ζ = (x̃1, x̃2, x̃3, ỹ1, ỹ2, ỹ3). There is a constant C depending only on k such that∣∣∣∣∣ ∂m+n

∂ζmi ∂ζ
n
j

P(k; x̃, ỹ)

∣∣∣∣∣ ≤ Ce−
1
2k+σ0|x−y|, 1 ≤ i, j ≤ 6, m, n ≥ 0.

Proof. Without loss of generality, we assume x ∈ R3
+, y ∈ R3

− and only con-
sider the derivatives of P33(k; x̃, ỹ) with respect to x̃. The results can be extended
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straightforwardly to other entries of P, to other derivatives, and to other cases of x,y.
Furthermore, by Lemma 4.4, it suffices to consider the case of ε = 0. This means

κ± = κ±(0, q) = (k2± + q2)1/2 > 0.

Write r̃ = r(x̃, ỹ), z̃ = x̃3 − ỹ3, and d̃ = d(x̃, ỹ) for convenience. Define the PML
extension of the Cagniard-de Hoop transform by

ξ±(t) = κ+d̃
−1

(
r̃t± iz̃

√
t2 − 1

)
, Λ±(t) = κ+d̃

−1
(
z̃t∓ ir̃

√
t2 − 1

)
, ∀ t ≥ 1.

Write µ1(ξ) =
(
κ2+ − ξ2

)1/2
and µ2(ξ) =

(
κ2− − ξ2

)1/2
. From Lemma 4.2 we have

µ1(ξ±) = Λ±, µ2(ξ±) =
(
k2− − k2+ + Λ2

±
)1/2

.

Replacing x,y with x̃, ỹ and setting ε = 0 in (3.18), we find that

∂l+m+nP33(k; x̃, ỹ)

∂x̃l1∂x̃
m
2 ∂x̃

n
3

= il+m+n−1 k
2
−

2π2
[F+(x̃, ỹ) + F−(x̃, ỹ)] , (4.16)

where

F±(x̃, ỹ) =

∫ ∞

0

∫ ∞

1

λl1(ξ±)λ
m
2 (ξ±)Λ

n+1
±

ei[µ1(ξ±)−µ2(ξ±)]ỹ3

k2−µ1(ξ±) + k2+µ2(ξ±)

eiκ+d̃t

√
t2 − 1

dtdq.

Here λ1(ξ) = ξ cosϕ− iq sinϕ, λ2(ξ) = ξ sinϕ+ iq cosϕ, and the polar angle satisfies

x1 − y1 = r cosϕ, x2 − y2 = r sinϕ, r =
√
(x1 − y1)2 + (x2 − y2)2.

It suffices to estimate F±(x̃, ỹ). Similar to (4.13), there is a generic constant C
independent of x̃, ỹ such that

|λ1(ξ±)|+ |λ2(ξ±)|+ |ξ±|+ |Λ±| ≤ C(k+ + q)t,

By Lemma 4.3 and (4.14), we have
∣∣∣ ei[µ1(ξ±)−µ2(ξ±)]ỹ3

k2
−µ1(ξ±)+k2

+µ2(ξ±)

∣∣∣ ≤ C. Together with (4.7), this

shows |F±(x̃, ỹ)| ≤ Ce−
1
2k+σ0|x−y|. The proof is completed by using (4.16).

Lemma 4.7. Let x̃, ỹ be given in Lemma 4.6 and ζ = (x̃1, x̃2, x̃3, ỹ1, ỹ2, ỹ3). Then
there is a constant C depending only on k such that∣∣∣∣∣ ∂m+n

∂ζmi ∂ζ
n
j

G(k; x̃, ỹ)

∣∣∣∣∣ ≤ Ce−
1
2k+σ0|x−y|, 1 ≤ i, j ≤ 6, m, n ≥ 0.

Proof. Since G = H + k−2
± ∇ỹ divỹ H and H = S − P, the lemma is a direct

consequence of Lemma 4.5 and Lemma 4.6.

4.4. Exponential decay of the scattering solution in PML. We present
the main result of this section, that is, the exponential decay of the scattering solu-
tion in PML. From [30, Section 12.4.3], the solution E of (1.1) admits the integral
representation

E = ΨSL(µ) +ΨDL(g) in Dc, (4.17)

20



where g = γtE and µ = γt(curlE) are the Dirichlet trace and the Neumann trace of
the solution on ΓD. The Maxwell single and double layer potentials are defined by

ΨSL(µ) =

∫
ΓD

G⊤(k;x,y)µ(y)dSy, ΨDL(g) =

∫
ΓD

(curly G)⊤(k;x,y) g(y)dSy.

The analytic continuation of the scattering solution is defined by

E(x̃) = ΨSL(µ)(x̃) +ΨDL(g)(x̃) (4.18)

Theorem 4.8. There is a constant C > 0 depending only on k and R0 such that,
for any x ∈ R3

± satisfying |x| ≥ 2R0,

|E(x̃)|+ |curlx̃ E(x̃)| ≤ Ce−
1
2k+σ0|x| ∥g∥H−1/2(Div,ΓD) .

Proof. Since γt, γT are bounded operators, using (1.1a) and Theorem 2.2, we have

|ΨSL(µ)(x̃)| ≤ ∥µ∥H−1/2(Div,ΓD) ∥γTG(x̃, ·)∥H−1/2(Curl,ΓD)

≤ ∥curlE∥H(curl,Ω0)
∥G(x̃, ·)∥H(curl,Ω0)

≤ C ∥E∥H(curl,Ω0)
∥G(x̃, ·)∥H(curl,Ω0)

≤ Ce−
1
2k+σ0|x| ∥g∥H−1/2(Div,ΓD) ,

where we have used ỹ = y in Ω0 = B0\D̄. Similarly, the double layer potential can
be estimated as follows

|ΨDL(g)(x̃)| ≤ ∥g∥H−1/2(Div,ΓD) ∥γT (curlG)(x̃, ·)∥H−1/2(Curl,ΓD)

≤ ∥g∥H−1/2(Div,ΓD) ∥curlG(x̃, ·)∥H(curl,Ω0)

≤ Ce−
1
2k+σ0|x| ∥g∥H−1/2(Div,ΓD) .

This yields |E(x̃)| ≤ Ce−
1
2k+σ0|x| ∥g∥H−1/2(Div,ΓD). The estimate for curlx̃ E(x̃) is

similar and omitted here.

5. Exterior Maxwell problems. In this section, we shall study exterior prob-
lems of the stretched Maxwell’s equation on unbounded domains. It is a key step for
proving the stability of the truncated PML problem. Without specifications, C > 0
denotes the generic constant which depends only on k, R0, D in the rest of the paper.

We introduce the stretched gradient, curl, divergence, and Laplace operators

∇̃v := B−⊤∇v, ∇̃ × u := J−1B curl(B⊤u),

∇̃ · u := J−1 div(JB−1u), ∆̃v := J−1 div(A−1∇v),
(5.1)

where A = J−1BB⊤. It is easy to see

∇̃ × ∇̃ × u = J−1B curl
[
A curl(B⊤u)

]
. (5.2)

We define the stretched dyadic Green’s function by

G̃(x̃,y) = B⊤(y)G(k; x̃, ỹ).
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Using (2.6) and the argument in the proof of [28, Theorem 2.8], we have

curl
[
A curl G̃(x̃, ·)

]
− k2±A−1G̃(x̃, ·) = δxB−1 in R3

±. (5.3)

Since the complex stretching F is C2-smooth, from (2.6b) we have[
A curl G̃(x̃, ·)× n

]
=

[
G̃(x̃, ·)× n

]
= 0 on Σ. (5.4)

Lemma 5.1. Let f ∈ L2(R3). The function

u(x) =

∫
R3

H(k; ỹ, x̃)f(y)J(y)dy. (5.5)

satisfies the stretched Helmholtz equation and the stability estimate

∆̃u+ k2±u = −f in R3
±, ∥u∥H1(R3) ≤ Cσ4

0 ∥f∥L2(R3) . (5.6)

Proof. By (2.8a) and using the argument in the proof of [28, Theorem 2.8], we get
the stretched Helmholtz equation for the Hertz tensor

∆̃xH(k; ỹ, x̃) + k2±H(k; ỹ, x̃) = −J−1(x)δy(x)I in R3
±. (5.7)

Combining (5.5) and (5.7) yields the stretched Helmholtz equation in (5.6). It is left
to prove the stability.

From (2.8b), H(k;y,x) is continuous with respect to x when x ̸= y. So (5.5)
implies that u is also continuous across Σ. From (5.1), we find that

∇u(x) = B⊤(x)

∫
R3

∇x̃H(k; ỹ, x̃)f(y)J(y)dy.

From Lemma 4.5 and Lemma 4.6, the stretched Hertz tensor satisfies

|H(k; ỹ, x̃)|+ |∇x̃H(k; ỹ, x̃)| ≤ Ce−
1
2k+σ0|x−y| for |x− y| ≥ 2R0.

From Lemma 2.1 and Lemma 4.5, we know that

|H(k; ỹ, x̃)|+ |∇x̃H(k; ỹ, x̃)| ≤ C
(
1 + |x− y|−2

)
for |x− y| < 2R0.

So in general, the stretched Hertz tensor satisfies

|H(k; ỹ, x̃)|+ |∇x̃H(k; ỹ, x̃)| ≤ C
(
1 + |x− y|−2

)
e−

1
2k+σ0|x−y| ∀x,y ∈ R3

±.

Write w(x,y) = (1 + |x− y|−2
)e−

1
4k+σ0|x−y| for convenience. We find that

∥u∥2H1(R3) ≤ Cσ8
0

∫
R3

[∫
R3

w(x,y) |f(y)|2 dy
] [∫

R3

w(x,y)dy

]
dx

≤ Cσ8
0

∫
R3

∫
R3

w(x,y) |f(y)|2 dydx ≤ Cσ8
0 ∥f∥

2
L2(R3) .

The proof is completed.
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Lemma 5.2. For any f ∈ L2(R3) satisfying div f = 0, there exists a function
u ∈ H(curl,R3) which satisfies the stretched Maxwell’s equation

curl(A curlu)− k2±A−1u = f in R3
±, (5.8a)[

A curlu× n
]
=

[
u× n

]
= 0 on Σ, (5.8b)

and the stability estimate

∥u∥H(curl,R3) ≤ Cσ4
0 ∥f∥L2(R3) .

Proof. Let w(x) =

∫
R3

H(k; ỹ, x̃)B(y)f(y)dy. From Lemma 5.1,

∆̃w + k2±w = −J−1Bf .

Since H(k; ỹ, x̃) is continuous with respect to x, w is also a continuous function.
Similar to the proof of Lemma 5.1, we can prove

∥w∥H1(R3) ≤ Cσ2
0 ∥f∥L2(R3) . (5.9)

Define the weighted Sobolev space for exterior elliptic problem by

W1(R3) =
{
u : u(1 + r2)−1/2 ∈ L2(R3), ∇u ∈ L2(R3)

}
.

From [31, Theorem 2.5.13], ∥∇u∥L2(R3) provides an equivalent norm onW1(R3). Write

w̃ = B⊤w and consider the weak formulation: Find ψ ∈W1(R3) such that∫
R3

A−1∇ψ · ∇φ = −
∫
R3

A−1w̃ · ∇φ ∀φ ∈W1(R3). (5.10)

From (4.4), we have Re(A−1∇φ · ∇φ̄) ≥ |∇φ|2 /4. The Lax-Milgram lemma shows
that (5.10) has a unique solution which satisfies

∇̃ · (∇̃ψ +w) = 0, ∥∇ψ∥L2(R3) ≤ Cσ0 ∥w̃∥L2(R3) . (5.11)

Since div f = 0, we find that ϕ := k−2∇̃ ·w ∈ L2(R3) satisfies

∆̃ϕ = k−2
± ∇̃ · (∆̃w) = −k−2

± ∇̃ · (J−1Bf + k2±w) = −∇̃ ·w = −k2±ϕ in R3
±. (5.12)

Combining (5.11) and (5.12) yields ∆̃ψ = ∆̃ϕ in R3
±.

For any bounded convex domain Ω ⊂ R3
± and any v ∈ C∞

0 (Ω), let θ ∈ H1
0 (Ω) be

the unique solution of the problem∫
Ω

J∇̃θ · ∇̃φ =

∫
Ω

Jv · ∇̃φ ∀φ ∈ H1
0 (Ω).

This shows that ∇̃ ·(v−∇̃θ) = 0. We have v−∇̃θ = ∇̃×Θ where Θ ∈ L2(Ω) satisfies
∇̃ × Θ ∈ L2(Ω) and Θ × ñ = 0 on ∂Ω. Here ñ = B−⊤n and n is the unit outer
normal to Ω. By the boundary conditions of θ and Θ, we also know that

∇̃θ × ñ = 0, (∇̃ ×Θ) · ñ = 0 on ∂Ω.
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Since v = 0 on ∂Ω, we conclude that ∇̃θ = 0, (∇̃ ×Θ) · ñ = 0 on ∂Ω.
Since ψ − ϕ ∈ L2(Ω), ∇̃(ψ − ϕ) provides a linear functional on the subspace

{v ∈ L2(Ω) : ∇̃ · v ∈ L2(Ω), ∇̃ × v ∈ L2(Ω), v = 0 on ∂Ω}.

Therefore, for any v ∈ C∞
0 (Ω), we have∫

Ω

J∇̃(ψ − ϕ) · v =

∫
Ω

J∇̃(ψ − ϕ) · (∇̃θ + ∇̃ ×Θ) =

∫
Ω

J∇̃(ψ − ϕ) · ∇̃θ

=

∫
Ω

J∆̃(ψ − ϕ) θ = 0.

This implies ∇̃ψ = ∇̃ϕ in Ω. By the arbitrariness of Ω, we have ∇̃ϕ ∈ L2(R3).
Moreover, since ϕ ∈ L2(R3) and ψ(1 + r2)−1/2 ∈ L2(R3), ψ − ϕ can not be constant.
We conclude that ψ = ϕ and ψ satisfies (5.12).

Define u1 = w+∇̃ψ. Clearly (5.11) shows ∇̃ ·u1 = 0 in R3. Together with (5.12),
the well-known identity −∆̃ = ∇̃ × ∇̃ × −∇̃∇̃· yields

∇̃ × ∇̃ × u1 = −∆̃u1 = J−1Bf + k2±w + k2±∇̃ψ = J−1Bf + k2±u1 in R3
±.

Define u = B⊤u1 = w̃ +∇ψ. We obtain

curl(A curlu) = f + k2±A−1u in R3
±.

The stability of u follows from (5.9) and (5.11).
For the continuities in (5.8b), we recall (5.4) and get[

A curl(B⊤H)(k; ỹ,F (·))× n
]
=

[
A curl G̃(ỹ, ·)× n

]
= 0.

This shows
[
A curlu× n

]
=

[
A curlw × n

]
= 0 on Σ. Moreover, since both w and

ψ are continuous across Σ, we conclude that

[u× n] = [B⊤w × n] + [∇ψ × n] = 0 on Σ.

The proof is completed.
Lemma 5.3. For any f ∈ L2(R3), there exists a function u ∈ H(curl,R3) which

satisfies the stretched Maxwell’s equation

curl(A curlu)− k2±A−1u = f in R3
±, (5.13a)[

A curlu× n
]
=

[
u× n

]
= 0 on Σ, (5.13b)

and the stability estimate

∥u∥H(curl,R3) ≤ Cσ5
0 ∥f∥L2(R3) . (5.14)

Proof. First we consider the weak formulation: Find ψ ∈W1(R3) such that∫
R3

k2A−1∇ψ · ∇v = −
∫
R3

f · ∇v ∀ v ∈W1(R3).

Similar to (5.10), the problem has a unique solution which satisfies∥∥∇ψ∥∥
L2(R3)

≤ C ∥f∥L2(R3) , (5.15)
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So f1 := f + k2A−1∇ψ satisfies div f1 = 0. By Lemma 5.2, there is a solution to

curl(A curlu1)− k2±A−1u1 = f1 in R3
±,[

A curlu1 × n
]
=

[
u1 × n

]
= 0 on Σ,

and there is a constant C > 0 depending only on k,R0 such that

∥u1∥H(curl,R3) ≤ Cσ4
0 ∥f1∥L2(R3) ≤ Cσ5

0 ∥f∥L2(R3) . (5.17)

Define u = u1 +∇ψ. Then (5.13a) is deduced as follows

curl(A curlu) = curl(A curlu1) = f1 + k2±A−1u1 = f + k2±A−1u in R3
±.

Furthermore, (5.14) comes from (5.15) and (5.17). Finally, we have

[A curlu1 × n] = [A curlu× n] = 0, [u× n] = [u1 × n] + [∇ψ × n] = 0.

This completes the proof.
Lemma 5.4. Suppose f ∈ L2(Dc). There exists a function u ∈ HΓD

(curl, Dc)
which satisfies

curl(A curlu)− k2±A−1u = f in R3
± ∩Dc, (5.18a)

[A curlu× n] = [u× n] = 0 on Σ, (5.18b)

and the stability estimate

∥u∥H(curl,Dc)
≤ Cσ5

0 ∥f∥L2(Dc)
.

Proof. First we extend f by zero to the interior of D and denote the extension
still by f . By Lemma 5.3, there exists a u0 ∈ H(curl,R3) satisfying

curl(A curlu0)− k2±A−1u0 = f in R3
±,

[A curlu0 × n] = [u0 × n] = 0 on Σ.

Furthermore, there exists a constant C > 0 depending only on k,R0 such that

∥u0∥H(curl,R3) ≤ Cσ5
0 ∥f∥L2(R3) = Cσ5

0 ∥f∥L2(Dc)
.

From Theorem 2.2, the scattering problem

curl curlu1 − k2±u1 = 0 in R3
±\D̄,

[ curlu1 × n] = [u1 × n] = 0 on Σ,

γtu1 = γtu0 on ΓD,

lim
ρ→∞

∫
∂B(ρ)

|curlu1 × n− iku1|2 = 0,

has a unique solution which satisfies

∥u1∥H(curl,Ω0)
≤ C ∥γtu0∥H−1/2(Div,ΓD) ≤ C ∥u0∥H(curl,Ω0)

≤ Cσ5
0 ∥f∥L2(Dc)

.

Similar to (4.17)–(4.18), we define the analytic continuation of u1 by

u1(x̃) = ΨSL(γt curlu1)(x̃) +ΨDL(γtu1)(x̃) ∀x ∈ Dc.
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By (4.18), ũ1(x) = B⊤(x)u1(x̃) decays exponentially as |x| → ∞ so that

∥ũ1∥H(curl,Dc)
≤ C ∥u1∥H(curl,Ω0)

≤ Cσ5
0 ∥f∥L2(Dc)

,

and satisfies the exterior problem

curl(A curl ũ1)− k2±A−1ũ1 = 0 in R3
±\D̄,

[A curl ũ1 × n] = [ũ1 × n] = 0 on Σ,

γtũ1 = γtu0 on ΓD.

Clearly u = u0 − ũ1 ∈ HΓD
(curl, Dc) and satisfies (5.18).

6. The weak solution of the stretched Maxwell equation. The purpose
of this section is to study the weak formulation for the analytic continuation of the
scattering solution. Let E(x̃) be given in (4.18) and define

Ẽ(x) = B⊤(x)E(x̃) ∀x ∈ Dc . (6.1)

By arguments similar to (5.3)–(5.4), we know that

curl(A curl Ẽ)− k2A−1Ẽ = 0 in Dc, (6.2a)[
A curl Ẽ × n

]
=

[
Ẽ × n

]
= 0 on Σ, (6.2b)

γtẼ = g on ΓD. (6.2c)

To introduce the Dirichlet-to-Neumann (DtN) operator, we define B1 = B(R1),
Ω1 = B1\D̄, and Γ1 = ∂B1, where R1 = R0 + s1R0/2 and 0 < s1 < 1 is the solution
of the equation

s4 − 2s3 + 3/σ0 = 0.

From (4.1)–(4.2), it is easy to see

α(R1) = 1 +
i

R1

∫ R1

0

σ(t)dt = 1 + i
σ0R0

2R1

∫ s1

0

(6s2 − 4s3)ds = 1 + i
3R0

2R1
.

This means that

1 < Imα(R1) < 1.5, |α(R1)| < 2. (6.3)

Moreover, let s2 ∈ (s1, 1) solve the algebraic equation

s42 − 2s32 + 6/σ0 = 0.

Let B̂1 = B(R0 + s2R0/2) be a larger ball containing B1 and define

Ω̂1 = B̂1\B̄1. (6.4)

Similar to (6.3), we have

1 < Imα(|x|) < 3, |α(|x|)| < 4 ∀x ∈ Ω̂1. (6.5)
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6.1. The Dirichlet-to-Neumann operator. For any λ ∈ H−1/2(Div,Γ1), the

DtN operator G: H−1/2(Div,Γ1) → H−1/2(Div,Γ1) is defined by

G(λ) := γt(A curlu) on Γ1, (6.6)

where u ∈ H(curl,R3\B̄1) is the solution of the exterior problem

curl(A curlu)− k2A−1u = 0 in R3
± \ B̄1, (6.7a)[

A curlu× n
]
=

[
u× n

]
= 0 on Σ, (6.7b)

γtu = λ on Γ1. (6.7c)

Lemma 6.1. The exterior problem (6.7) has a unique solution which satisfies

∥u∥H(curl,R3\B̄1)
≤ Cσ0 ∥λ∥H−1/2(Div,Γ1)

.

Moreover, u admits the integral representation, for any x ∈ R3\B̄1,

u(x) = B(x)
∫
Γ1

[
G̃⊤(x̃, ·)γt(A curlu) + (A curl G̃)⊤(x̃, ·)γtu

]
. (6.8)

Proof. Similar to (6.20), we have an equivalent weak formulation of (6.7): Find
u ∈ H(curl,R3\B̄1) such that γtu = λ on Γ1 and

A1(u,v) = 0 ∀v ∈ HΓ(curl,R3\B̄1), (6.9)

where the bilinear form A1: H(curl,R3\B̄1)×H(curl,R3\B̄1) → C is defined by

A1(u,v) =

∫
R3\B̄1

(
A curlu · curlv − k2A−1u · v

)
.

It is easy to calculate the eigenvalues of B which are

λ1 = λ2 = α, λ3 = α+ ρα′. (6.10)

Write x = ρ(cos θ cosϕ, sin θ cosϕ, sinϕ)⊤ with θ ∈ [0, 2π] and ϕ ∈ [−π/2, π/2]. The
associated eigenvectors are real and read as follows

ξ1 = (− sin θ, cos θ, 0)⊤,

ξ2 = (cos θ sinϕ, sin θ sinϕ,− cosϕ)⊤,

ξ3 = (cos θ cosϕ, sin θ cosϕ, sinϕ)⊤.

(6.11)

Clearly ξ1, ξ2, ξ3 are also eigenvectors of A and belong respectively to the eigenvalues

ν1 = ν2 = (α+ ρα′)−1, ν3 = (α+ ρα′)α−2. (6.12)

For any ξ =
∑3

i=1 tiξi with t1, t2, t3 ∈ C, we find that

Aξ · ξ̄ =

3∑
i=1

tiνiξi ·
3∑

j=1

t̄jξj =

3∑
i=1

νi |ti|2 , A−1ξ · ξ̄ =

3∑
i=1

ν−1
i |ti|2 . (6.13)

By (4.1)–(4.2) and (6.3), there is a constant C > 0 independent of σ0 such that

Im(Aξ · ξ̄) ≤ −Cσ−1
0 |ξ|2 , Im(A−1ξ · ξ̄) ≥ C |ξ|2 in R3\B̄1, ∀ ξ ∈ R3.
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Therefore, the bilinear form A1 is coercive on HΓ1(curl,R3\B̄1)

|A1(v, v̄)| ≥ − ImA1(v, v̄) ≥ Cσ−1
0 min(1, k1) ∥v∥2H(curl,R3\B̄1)

. (6.14)

So problem (6.9) attains a unique solution.

Let Ω̂1 be defined in (6.4). Since γt:H(curl, Ω̂1) → H−1/2(Div, ∂Ω̂1) is surjective,
there is a u0 ∈ H(curl, Ω̂1) such that γtu0 = λ on Γ1, γtu0 = 0 on ∂B̂1, and

∥u0∥H(curl,Ω̂1)
≤ C ∥λ∥H−1/2(Div,Γ1)

. (6.15)

Extend u0 by zero to the exterior of B̂1. From (6.5), we deduce that

∥u− u0∥2H(curl,R3\B̄1)
≤ Cσ0 |A1(u− u0, ū− ū0)| = Cσ0 |A1(u0, ū− ū0)|
≤ Cσ0 ∥u0∥H(curl,Ω̂1)

∥u− u0∥H(curl,Ω̂1)
.

Together with (6.15), this yields ∥u∥H(curl,R3\B̄1)
≤ Cσ0 ∥λ∥H−1/2(Div,Γ1)

.

It is left to show the integral representation of u. For any x ∈ R3
±\B̄1, let B(ρ)

be a sufficiently large ball which contains x. Write Ωρ = B(ρ)\B̄1 and Γρ = ∂B(ρ).
Using (5.3), (6.7), and the formula of integration by part, we have

B−1(x)u(x) =

∫
Ωρ∩R3

±

[
curl

(
A curl G̃(x̃, ·)

)
− k2±A−1G̃(x̃, ·)

]⊤
u

=

∫
Γ1

[
G̃⊤(x̃, ·)γt(A curlu) + (A curl G̃)⊤(x̃, ·)γtu

]
− I(ρ),

where the second term is defined by

I(ρ) =

∫
∂B(ρ)

[
G̃⊤(x̃, ·)γt(A curlu) + (A curl G̃)⊤(x̃, ·)γtu

]
.

By Lemma 4.7, there is a constant C > 0 independent of ρ such that

|I(ρ)| ≤ Ce−
1
2k+σ0ρ

[
∥A curlu∥H(curl,R3\B̄1)

+ ∥u∥H(curl,R3\B̄1)

]
≤ Ce−

1
2k+σ0ρ ∥u∥H(curl,R3\B̄1)

, as ρ→ ∞.

This shows limρ→∞ I(ρ) = 0. The proof is complete.
Lemma 6.2. There exists a constant C > 0 depending only on k,R0 such that

∥G(λ)∥H−1/2(Div,Γ1)
≤ Cσ0 ∥λ∥H−1/2(Div,Γ1)

∀λ ∈ H−1/2(Div,Γ1),

Proof. Let u be the solution of (6.7). By Lemma 6.1, we have

∥u∥H(curl,R3\B̄1)
≤ Cσ0 ∥λ∥H−1/2(Div,Γ1)

.

Let Ω̂1 be given in (6.4). Using (6.7a) and (6.5), we deduce that

∥G(λ)∥H−1/2(Div,Γ1)
= ∥γt(A curlu)∥H−1/2(Div,Γ1)

≤ C ∥A curlu∥H(curl,Ω̂1)

≤ C
{
∥A curlu∥L2(Ω̂1)

+
∥∥k2A−1u

∥∥
L2(Ω̂1)

}
≤ C ∥u∥H(curl,Ω̂1)

≤ Cσ0 ∥λ∥H−1/2(Div,Γ1)
.

The proof is complete.
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6.2. A weak formulation of (6.2). Based on the DtN operator, we define a
bilinear form on H(curl,Ω1) as follows

a(u,v) =

∫
Ω1

(
A curlu · curlv − k2A−1u · v

)
+ ⟨G(γtu), γTv⟩Γ1

. (6.16)

An equivalent weak formulation of (6.2) reads: Find Ẽ ∈ H(curl,Ω1) such that
γtẼ = g on ΓD and

a(Ẽ,v) = 0 ∀v ∈ HΓD
(curl,Ω1). (6.17)

We are going to prove the inf-sup condition of a and the well-posedness of (6.17).
Following [7], we define a bilinear form on the unbounded domain Dc by

A(u,v) =

∫
Dc

(
A curlu · curlv − k2A−1u · v

)
∀u,v ∈ H(curl, Dc).

Lemma 6.3. There exists a constant C > 0 depending only on k,R0 such that

∥u∥H(curl,Dc)
≤ Cσ7

0 sup
v∈HΓD

(curl,Dc)

|A(u,v)|
∥v∥H(curl,Dc)

∀u ∈ HΓD(curl, Dc).

Proof. For given u, we define the linear functional l ∈ HΓD
(curl, Dc)

′ by

l(v) =

∫
Dc

(curlu · curl v̄ + u · v̄) ∀v ∈ HΓD (curl, Dc).

It is clear that

l(u) = ∥u∥2H(curl,Dc)
, |l(v)| ≤ ∥u∥H(curl,Dc)

∥v∥H(curl,Dc)
.

We consider the weak formulation: Find u+ ∈ HΓD
(curl, Dc) such that

A+(u+,v) = l(v) ∀v ∈ HΓD
(curl, Dc), (6.18)

where A+: H(curl, Dc)×H(curl, Dc) → C is the bilinear form defined by

A+(u,v) =

∫
Dc

(
A curlu · curlv + k2A−1u · v

)
.

By virtue of (4.1)–(4.2) and (6.12)–(6.13), direct calculations show that

|A+(v, v̄)| ≥ ReA+(v, v̄) ≥ βσ−1
0 ∥v∥2H(curl,Dc)

,

for some constant β > 0 depending only on k. This means that A+ is coercive on
H(curl, Dc). So problem (6.18) has a unique solution which satisfies

∥u+∥H(curl,Dc)
≤ Cσ0 ∥l∥H(curl,Dc)′

≤ Cσ0 ∥u∥H(curl,Dc)
. (6.19)

Let u1 ∈ HΓD
(curl, Dc) be the solution of (5.18) where the righthand side is

given by f = 2k2A−1u+. Multiplying both sides of (5.18a) with v ∈ C∞
0 (Dc) and

using integration by part, we find that

A(u1,v) =

∫
Dc

f · v = l(v)−A(u+,v) ∀v ∈ C∞
0 (Dc).
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The density of C∞
0 (Dc) in HΓD (curl, Dc) indicates

A(u1,v) =

∫
Dc

f · v = l(v)−A(u+,v) ∀v ∈ HΓD (curl, Dc). (6.20)

Using Lemma 5.4 and (6.19), we have

∥u1∥H(curl,Dc)
≤ Cσ5

0 ∥f∥L2(Dc)
≤ Cσ7

0 ∥u∥H(curl,Dc)
. (6.21)

Clearly w = u1 + u+ ∈ HΓD (curl, Dc) and satisfies

A(w,v) = l(v) ∀v ∈ HΓD
(curl, Dc).

Since A(·, ·) is symmetric, combining (6.19)-(6.21) yields the desired inf-sup condition

sup
v∈HΓD

(curl,Dc)

|A(u,v)|
∥v∥H(curl,Dc)

≥ |A(u,w)|
∥w∥H(curl,Dc)

=
|l(u)|

∥w∥H(curl,Dc)

≥
∥u∥H(curl,Dc)

Cσ7
0

.

This completes the proof.
Lemma 6.4. For any u ∈ HΓD (curl,Ω1), there is a constant Cinf depending only

on k,R0, D such that

sup
v∈HΓD

(curl,Ω1)

|a(u,v)|
∥v∥H(curl,Ω1)

≥ Cinfσ
−7
0 ∥u∥H(curl,Ω1)

. (6.22)

Proof. Remember that G(γtu) = n×A curl ξ where ξ ∈ H(curl,R3\B̄1) satisfies

curl(A curl ξ)− k2A−1ξ = 0 in R3
± \ B̄1,[

A curl ξ × n
]
=

[
ξ × n

]
= 0 on Σ,

γtξ = γtu on Γ1,

where n is the outer normal to B1. Using integration by part, we have

⟨G(γtu), γTv⟩Γ1
=

∫
Γ1

(n× A curl ξ) · γTv =

∫
Γ1

(n× A curl ξ) · v

=

∫
R3\B̄1

[A curl ξ · curlv − curl(A curl ξ) · v]

=

∫
R3\B̄1

[
A curl ξ · curlv − k2A−1ξ · v

]
∀v ∈ HΓD

(curl, Dc).

Let ũ be the extension of u defined by

ũ =

{
u in Ω1,

ξ in R3\B̄1.

Then inserting the last equality into (6.16), we find that

a(u,v) = A(ũ,v) ∀v ∈ HΓD(curl, Dc).

We conclude the inf-sup condition from Lemma 6.3 as follows

∥u∥H(curl,Ω1)
≤ ∥ũ∥H(curl,Dc)

≤ Cσ7
0 sup
v∈HΓD

(curl,Dc)

|A(ũ,v)|
∥v∥H(curl,Dc)

≤ Cσ7
0 sup
v∈HΓD

(curl,Ω1)

|a(u,v)|
∥v∥H(curl,Ω1)

.

30



The proof is completed.
Theorem 6.5. For any g ∈ H−1/2(Div,ΓD), let E be the solution of (1.1) and

let Ẽ be defined in (6.1). Then Ẽ is the unique solution of (6.17) and satisfies∥∥∥Ẽ∥∥∥
H(curl,Ω1)

≤ C ∥g∥H(curl,Ω0)
.

Proof. By Lemma 6.2 and Lemma 6.4, we know that a(·, ·) provides a continuous
and coercive bilinear form on HΓD (curl,Ω1). So Ẽ is the unique solution of (6.17).
The stability is a direct consequence of Theorem 2.2 and (6.3).

7. The PML problem. The purpose of this section is to study the PML ap-
proximation to the scattering problem (1.1) or to the exterior problem (6.2). Let
R2 ≥ 2R0 and define B2 = B(R2), Ω2 = B2\D̄, and Γ2 = ∂B2. For convenience, let
the wave-absorbing layer and its thickness be denoted respectively by

ΩPML := B2\B̄1, d = distance(Γ1,Γ2) = R2 −R1.

We consider the PML problem with homogeneous boundary condition on the trunca-
tion boundary:

curl(A curl Ê)− k2A−1Ê = 0 in Ω2, (7.1a)[
A curl Ê × n

]
=

[
Ê × n

]
= 0 on Σ, (7.1b)

γtÊ = g on ΓD, γtÊ = 0 on Γ2. (7.1c)

We first introduce the PML Dirichlet-to-Neumann operator Ĝ: H−1/2(Div,Γ1) →
H−1/2(Div,Γ1) as follows: for any λ ∈ H−1/2(Div,Γ1), let Ĝ(λ) = n × A curl û on
Γ1 where û solves the Dirichlet boundary value problem

curl(A curl û)− k2±A−1û = 0 in ΩPML ∩ R3
±, (7.2a)[

A curl û× n
]
=

[
û× n

]
= 0 on Σ, (7.2b)

γtû = λ on Γ1, γtû = 0 on Γ2. (7.2c)

By arguments similar the proofs of Lemma 6.1–6.2, we have the lemma on the stability
of Ĝ. The proof is omitted here for simplicity.

Lemma 7.1. There exists a constant C > 0 depending only on k,R0 such that∥∥∥Ĝ(λ)∥∥∥
H−1/2(Div,Γ1)

≤ Cσ0 ∥λ∥H−1/2(Div,Γ1)
.

Lemma 7.2. Assume R2 ≥ 2R0 and σ0 ≥ 4. There is a constant C depending
only on k,R0 such that, for any λ ∈ H−1/2(Div,Γ1),∥∥∥G(λ)− Ĝ(λ)

∥∥∥
H−1/2(Div,Γ1)

≤ Cσ5
0de

− 1
2k+σ0d ∥λ∥H−1/2(Div,Γ1)

.

Proof. Given λ ∈ H−1/2(Div,Γ1), let u be the solution of problem (6.7). By
Lemma 6.1, u admits the integral representation

u(x) = B(x)
∫
Γ1

[
γT G̃⊤(x̃, ·)G(λ) + γT

(
A curl G̃

)⊤
(x̃, ·)λ

]
∀x ∈ R3\B̄1.
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By Lemma 6.2, we have

|u(x)| ≤ Cσ2
0

[∥∥∥G̃(x̃, ·)
∥∥∥
H(curl,B1)

+
∥∥∥A curl G̃(x̃, ·)

∥∥∥
H(curl,B1)

]
∥λ∥H−1/2(Div,Γ1)

≤ Cσ2
0e

− 1
2k+σ0d ∥λ∥H−1/2(Div,Γ1)

∀x ∈ R3\B2.

Moreover, it is easy to see that

curlu(x) = J(x)B−1(x)∇̃ ×
∫
Γ1

[
G̃⊤(k; x̃, ·)G(λ) +

(
A curl G̃

)⊤
(k; x̃, ·)λ

]
.

Similarly, from Lemma 4.7 we have

|curlu(x)| ≤ Cσ3
0e

− 1
2k+σ0d ∥λ∥H−1/2(Div,Γ1)

∀x ∈ R3\B2.

By (6.6) and (7.2), G(λ) − Ĝ(λ) = n × A curl ξ where ξ solves the Dirichlet
boundary value problem in the layer

curl(A curl ξ)− k2±A−1ξ = 0 in ΩPML ∩ R3
±, (7.3)[

A curl ξ × n
]
=

[
ξ × n

]
= 0 on Σ,

γtξ = 0 on Γ1, γtξ = γtu on Γ2.

A weak formulation reads: Find ξ ∈ HΓ1(curl,ΩPML) such that γtξ = γtu on Γ2 and

APML(ξ,v) = 0 ∀v ∈ H0(curl,ΩPML),

where APML: H(curl,ΩPML)×H(curl,ΩPML) → C is defined by

APML(ξ,v) =

∫
Ω1

(
A curl ξ · curlv − k2A−1ξ · v

)
.

Similar to (6.14), APML is coercive on H(curl,ΩPML), namely,

∥v∥2H(curl,ΩPML)
≤ Cσ0 |APML(v, v̄)| ∀v ∈ H(curl,ΩPML). (7.4)

Therefore, the weak problem has a unique solution.
Multiplying both sides of (7.3) with ξ̄ and using integration by part, we have

APML(ξ, ξ̄) = −
∫
Γ2

γt(A curl ξ) · γT ξ̄ = −
∫
Γ2

γt(A curl ξ) · γT ū. (7.5)

Define O− = B2\B(R2 −R0/8) and O+ = B(R2 + R0/8)\B2. Clearly O+ and O−
share the boundary Γ2. Combining (7.4) and (7.5), we deduce that

∥ξ∥2H(curl,ΩPML)
≤ Cσ0 ∥γt(A curl ξ)∥

H− 1
2 (Div,Γ2)

∥γTu∥
H− 1

2 (Curl,Γ2)

≤ Cσ0 ∥A curl ξ∥H(curl,O−) ∥u∥H(curl,O+)

≤ Cσ2
0 ∥ξ∥H(curl,O−) ∥u∥H(curl,O+) .

This shows that

∥ξ∥H(curl,ΩPML)
≤ Cσ2

0 ∥u∥H(curl,O+) ≤ Cσ5
0de

− 1
2k+σ0d ∥λ∥H−1/2(Div,Γ1)

.

32



Let Ω̂1 be defined in (6.4). Using (7.3) and (6.5), we conclude that∥∥∥G(λ)− Ĝ(λ)
∥∥∥
H−1/2(Div,Γ1)

≤ ∥A curl ξ∥H(curl,Ω̂1)
≤ C ∥ξ∥H(curl,Ω̂1)

≤ Cσ5
0de

− 1
2k+σ0d ∥λ∥H−1/2(Div,Γ1)

.

The proof is complete.
Based on the PML DtN operator, we define the bilinear form â: H(curl,Ω1) ×

H(curl,Ω1) → C by

â(u,v) =

∫
Ω1

(
A curlu · curlv − k2A−1u · v

)
+ ⟨Ĝ(γtu), γTv⟩Γ1 .

Then an equivalent weak formulation of (7.1) reads as follows: Find Ê ∈ H(curl,Ω1)
such that γtÊ = g on ΓD and

â(Ê,v) = 0 ∀v ∈ HΓD (curl,Ω1). (7.6)

Theorem 7.3. Assume σ0 ≥ 4 and R2 is large enough. The bilinear form â
satisfies the inf-sup condition

sup
v∈HΓD

(curl,Ω1)

|â(w,v)|
∥v∥H(curl,Ω1)

≥ Cinf

2σ7
0

∥w∥H(curl,Ω1)
∀w ∈ HΓD

(curl,Ω1),

where Cinf is the constant for the inf-sup condition in (6.22). Moreover, the PML
problem (7.1) has a unique solution Ê ∈ H(curl,Ω1).

Proof. For any v,w ∈ HΓD (curl,Ω1), Lemma 7.2 shows that

|â(w,v)| ≥ |a(w,v)| −
∥∥∥G(γtw)− Ĝ(γtw)

∥∥∥
H−1/2(Div,Γ1)

∥γTv∥H−1/2(Curl,Γ1)

≥ |a(w,v)| − Cσ5
0de

− 1
2k+σ0d ∥γtw∥H−1/2(Div,Γ1)

∥γTv∥H−1/2(Curl,Γ1)

≥ |a(w,v)| − Cσ5
0de

− 1
2k+σ0d ∥w∥H(curl,Ω1)

∥v∥H(curl,Ω1)
.

Let d be so large that 2Cσ12
0 de

− 1
2k+σ0d ≤ Cinf . Then the inf-sup condition comes from

Lemma 6.4. So problem (7.1) has a unique solution.
Finally, we arrive at the main theorem of this paper.
Theorem 7.4. Assume σ0 ≥ 4 and R2 is large enough. Let E, Ê be the solutions

of (1.1) and (7.1) respectively. There exists a constant C > 0 depending only on k,
R0, and D such that∥∥∥E − Ê

∥∥∥
H(curl,Ω0)

≤ Cdσ12
0 e

− 1
2k+σ0d ∥g∥H−1/2(Div,ΓD) .

Proof. Write Ẽ = BE ◦ F . By Theorem 6.5, Ẽ is the unique solution of problem
(6.17). From (6.17) and (7.6), we have

â(Ê − Ẽ,v) = ⟨G(γtẼ)− Ĝ(γtẼ), γTv⟩Γ1 ∀v ∈ HΓD
(curl,Ω1).

By Lemma 7.2 and Lemma 7.3, we have∥∥∥Ẽ − Ê
∥∥∥
H(curl,Ω1)

≤ Cσ7
0 sup
v∈HΓD

(curl,Ω1)

∣∣∣â(Ẽ − Ê,v)
∣∣∣

∥v∥H(curl,Ω1)

≤ Cσ7
0

∥∥∥Ĝ(γtẼ)− G(γtẼ)
∥∥∥
H−1/2(Div,Γ1)

≤ Cdσ12
0 e

− 1
2k+σ0d

∥∥∥Ẽ∥∥∥
H(curl,Ω1)

.

33



The proof is completed by using Theorem 6.5.
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