PML METHOD FOR ELECTROMAGNETIC SCATTERING
PROBLEM IN A TWO-LAYER MEDIUM*
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Abstract. The perfectly matched layer (PML) method is well-studied for acoustic scattering
problems, electromagnetic scattering problems, and more recently, elastic scattering problems, with
homogeneous background media. The purpose of this paper is to present the stability and exponential
convergence of the PML method for three-dimensional electromagnetic scattering problem in a two-
layer medium. The main contributions of this paper are threefold. Firstly, we establish the well-
posedness of the original scattering problem for any Dirichlet boundary value in H_I/Q(Div,I‘D)
where I'p stands for the boundary of the scatterer. Secondly, we propose a new weak formulation for
the original problem where the Dirichlet-to-Neumann operator is proposed on a truncation boundary
inside PML. This argument is favorable to the analysis for the PML Dirichlet-to-Neumann operator.
The inf-sup condition is proved for the bilinear form. Thirdly, we establish the well-posedness of the
PML problem and prove that the approximate solution converges to the original scattering solution
exponentially as either the PML absorbing coefficient or the thickness of the PML increases.
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1. Introduction. We propose and study the perfectly matched layer (PML)
method for solving the electromagnetic scattering problem in a two-layer medium:

curlcurlE — k*E =0 in D,, (1.1a)
nxE=g on I'p, (1.1b)
[nxcurlE|=[nx E]=0 on %, (1.1c)
lim lcurl E x n — ikE|* = 0, (1.1d)
P70 JoB(p)

where F is the electric field, g is determined by incoming wave, D C R? is a bounded
domain with Lipschitz-continuous boundary I'p, D, = R} \ D is the complement of
D, B(p) = {x € R®: |x| < p} is the open ball of radius p and centering at the origin,
and n stands for the unit outer normal to D and B(p) on their respective boundaries.
We assume that the wave number k is positive and piecewise constant, defined by

k'_;'_, if :CG]R:?;_,

k =
@)=Y b it zerd,

(1.2)

where RY = {(z1,72,23) € R3: £x3 > 0}. Without loss of generality, we assume in
this paper that k_ > ki > 0. We remark that the boundary condition (1.1b) is not
essential for our results. In fact, (1.1b) can be replaced by other boundary conditions
such as Neumann or impedance boundary condition on I'p. Furthermore, we scale
the system such that the diameter of the scatterer satisfies diam(D) > 1.
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The basic idea of the PML method is to surround the computational domain by
a layer of specially designed model medium that absorbs all waves propagating from
inside the computational domain [1]. The convergence of the PML method for ho-
mogeneous background materials has drawn considerable attentions in the literature.
Lassas and Somersalo [27,28] and Hohage, Schmidt, and Zschiedrich [25] studied the
acoustic scattering problems for circular and smooth PMLs. It is proved that the PML
solution converges exponentially to the solution of the original scattering problem as
the thickness of the PML tends to infinity. We also refer to the work of Collino and
Monk for PML in curvilinear coordinates [21]. In 2003, Chen and Wu proposed the
adaptive PML finite element method for grating problems [15]. The adaptive PML
method provides a complete numerical strategy to solve the scattering problems in
the framework of finite element which produces automatically a coarse mesh size away
from the fixed domain and thus makes the total computational costs insensitive to the
thickness of the absorbing PMLs. Later on, the adaptive PML finite element method
was extended to accoustic scattering problems in [14,16], to electromagnetic scatter-
ing problems in [12,13], to multiple scattering problems in [26,32], and to grating
problems in [2,3]. In 2005, Bao and Wu first proved the exponential convergence of
PML method for Maxwell’s equations [4]. Bramble and Pasciak also studied the sta-
bility and exponential convergence of PML method for acoustic and electromagnetic
scattering problems in a series of papers [5-8]. They use both circular coordinates and
Cartesian coordinates in constructing wave-absorbing materials. We also refer to the
recent papers on PML methods for elastic scattering problems [9,18] and to [11,17]
for exponential convergence of time-domain PMLs.

The studies mentioned above assume homogeneous background materials, namely,
wave numbers are constant away from the scatterer. The analysis for scattering prob-
lem is very challenging for layered media since scattering waves usually consist of
both propagating modes and evanescent modes. For two-layer media, Chen and Zheng
proved the stability and exponential convergence of uniaxial PML method for two-
dimensional acoustic scattering problem [19]. Their proof is very technical and relies
on the Cagniard-de Hoop transform for Green’s function. Electromagnetic scattering
problems in two-layer media have broad applications in both scientific and engineer-
ing areas, such as, near-field imaging, detection of buried objects, and so on. The
convergence of PML method is an open issue. In 1998, Cutzach and Hazard proved
the existence and uniqueness for electromagnetic scattering problem in a two-layer
medium with incident plane waves or incident point source [23] (see also Monk’s
book [30, Chapter 12]). We also refer to Coyle and Monk [22] and Monk [30, Chapter
12] for the finite element approximation using transparent boundary condition and
to [29] for the coupling of finite element method and boundary element method.

For scattering problems in layered media, scattered field becomes much more
complicated and high-accuracy approximation of the radiation boundary condition
becomes much difficult [24]. It is well-known that numerical method using PML have
two advantages compared with that using the Dirichlet-to-Neumann (DtN) operator.
Firstly, it does not compute Green’s function which is very complicated for layered
medium, particularly, in three-dimensional case. Secondly, the numerical method using
PML usually yields an algebraic system with sparse matrix. It is favorable in designing
effective precondtioners. The purpose of this paper is to investigate the theoretical
aspect of the PML method for electromagnetic scattering problem in a two-layer
medium. The main theme is threefold.

e We prove the well-posedness of the scattering problem for any Dirichlet
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boundary data g € H~/?(Div,Tp).

e We propose a new weak formulation for the scattering problem where the DtN
operator is defined on a truncation boundary inside PML. This formulation
is favorite in proving the stability of both the original DtN operator and the
PML DtN operator. We also prove the inf-sup condition of the bilinear form
which plays the key role in convergence analysis of the PML method.

e We introduce the Cagniard-de Hoop transform to the dyadic Green’s function
and prove that the Green’s function decays exponentially in PML. This is the
major novelty of this paper. We prove the well-posedness of the PML problem
and the exponential convergence of the PML solution as either the absorbing
coefficient or the thickness of the PML increases.

The layout of this paper is organized as follows. In section 2, we derive an ex-
plicit form of the dyadic Green’s function for the scattering problem in the two-layer
medium. The uniqueness and existence of the scattering solution for any Dirichlet
boundary data g € H_l/Z(DiV,FD). In section 3, we derive the Cagniard-de Hoop
representation of the Green’s function. In section 4, we introduce the PML by means
of complex coordinate stretching and prove the exponential decay of the modified
Green’s function. In section 5, we study exterior problems of stretched Maxwell’s
equation. In section 6, we propose a new weak formulation for the stretched Maxwell
equation where the truncation boundary is located inside PML. The inf-sup condition
for the bilinear form is proved. In Section 7, we propose the PML approximation to
the exterior problem on the truncated domain. The well-posedness and exponential
convergence of the PML problem are also proved.

2. The well-posedness of the scattering problem. The purpose of this sec-
tion is to study the weak solution of (1.1). First we introduce some Sobolev spaces.

2.1. Sobolev spaces. For a domain 2 C R? with Lipschitz continuous boundary
I = 09, let L?(Q2) be the space of square-integrable functions and H!(f2) be the
subspace whose functions have square-integrable gradients, let H(curl, Q) ¢ L*(Q)
be the subspace whose functions have square-integrable curls. Throughout the paper
we denote vector-valued quantities by boldface notations, such as L?(Q) := L?(Q)>.
From [10], we have the surjective mappings

v: HY(Q) = H'(T), vo=¢ onT,
v : H(curl, Q) —» H Y?(Div;T)), ~yu=mnxu on I,
yr : H(curl, Q) — H™Y?(Cwl;T"), ypu=mnx (uxn) on I,
where Div, Curl stand for the surface divergence and surface scalar curl operators

respectively. For convenience, we define the equivalent norms on the respective surface
Sobolev spaces

Al 172y = UEiHnlf(m Vil g1 () VA e HYAD), (2.1)
yu=X
”)‘”H*l/Q(Div;F) = ueHi<Icl.1fr1,m ||UHH(cur1,Q) VAe H_I/Q(Di‘ﬂr)v (2.2)
TEU=X

1l ey YA€ HY3(CurliT). (2.3)

||}‘||H—1/2(Curl;F) = vEH%Efﬂ,m
Yrpv=X

For any u € H(curl, Q), it holds that

Div(yu) = —curlu-n, Curl(yru)=curlu-n on T.
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Moreover, the surface gradient operator is defined by, for any ¢ € H(Q),
Grad(y:¢) = yr(Ve) on T.

It is known that H~/?(Div;T") and H/?(Curl;T") are dual spaces. For any A\ €
H_l/z(Div; I') and € € H_1/2(Curl; I'), the duality paring is defined by

NE)r = /Q(U)‘ -curlug — curluy - ug) (2.4)

where ux, ug € H(curl, Q) satisfy XA = yux and £ = ypug on T
For any S C T, the subspaces with zero trace and zero tangential trace on S are
denoted respectively by

HL(Q) :={ve H (Q):yv =0 on S},
Hg(curl,Q) :={v € H(curl,Q): v =0 on S}.

In particular, we use the conventional notations
H(Q) := HLA(Q), H(curl, Q) := Hr(curl, Q).

2.2. The Dyadic Green’s function for the two-layer medium. The dyadic
Green’s function is the main tool in our analysis for the well-posedness of the scattering
problem and for the exponential convergence of the PML method. Throughout the
paper, we shall use the convention that for any z € C, z!/2 is the branch of the square
root y/z such that Re(z'/2) > 0. This corresponds to the left half real axis as the
branch cut in the complex plane. Then we have, for z = z; + iz9 with 21,20 € R,

a2, A ~2 +isgn(za)y H=a 4 (2.5)

Let g1, g2, g3 be column vectors of the dyadic Green’s function G. Each g; satisfies
an electromagnetic scattering problem with a polarized dipole source

curlcurlg;(k;x, ) — kig;(k;x, ) = dge; in R3, (2.6a)
[n x curlg;(k;x,-)] = [n x gj(k;x,)] =0 on X, (2.6b)
lim |curlg;(k;x, ) x n —ikg;(k;x, J? =0, (2.6¢)
P JoB(p)

where 0, (y) = 6(Jz1 —y1|)0(|z2 —y2|)d(|z3 —y3|) stands for the Dirac source at € R?
and e; is the unit vector along the positive direction of the x;-axis, j = 1,2, 3. Similar
to the scattering problem in free space, we write g; as

gi(k;x, ) =H;(k;z,-) + kL >V divH;(k;z,-) in R3, (2.7)

where H; is the Hertz vector for the dipole source polarized in the e; direction.
From [30, Section 12.4.2], the Hertz vectors satisfy the Helmholtz equations

AH;(k;z,-) + k1H;(k;x, ) = —0ze; in RY, (2.8a)

[H;(k;z, )] = [n x curl Hj(k; &, )] =0, [k~ *divH;(k;z,-)] =0 on ¥, (2.8b)
. . 2

lim OH (k@) g Hy(ksa, )| =0 (2.8¢)

P JOB(p)NRYL on




We shall follow Monk [30, Section 12.4.2] to derive an explicit form of H;. The deriva-
tions for Hy, H3 are parallel and omitted here.

Let the delta source be located at * € R3 and write * (y) = Hy(k;z,y) for
any y € R%. From [30, Section 12.4.2], IT* = (Hli, 0,11F) and it can be solved by the
coupled Helmholtz equations in the two-layer medium

AT + koIl = —0,, AIF + ki IIF =0 in RY, (2.9a)
1 1 oI oIy
Or=I1", —divIl"=—divII™ L -1 ) 2.9b
e iv 2 ivII™, 993 993 on Y, ( )
152 ?
lim 0 — ik ITE| =0. (2.9¢)
r= Jop(prrs | ON
eiwlz—y|

be the fundamental solution of the three-dimensional

Let ®(w;x,y) = v oy
Helmholtz equation with constant number w. Write

If (y) =10 (y) + ®(ky;@,y) Yy RS

From (2.9), it is easy to see that T} satisfies
2

fit
0 =0.  (2.10)

o — ik, 1T

ATIf + k(I =0 in R3, lim
P20 JoB(p)NRE.

Applying Fourier transform to (2.10) with respect to y; and yo, the solution can be
represented as follows

R 1 —+o00 —+o00 .
I = o [m / a+(A1,)\2)61[(1’1*yl))\1+(I27y2))‘2+(z3+y3)ﬂ+]d)\1d>\2’ (2.11)

where a is the Fourier coefficient which depends on & but is independent of y. Here
-+ are square roots defined by the limiting absorption principle

1/2

pr (A, A2) = lim, (ks +i2)” — A7 — A3] YV (A1, A2) € RZE(2.12)
e—

Similarly, we have
i

+
5 = An2

—+oo +oo
/ LA, A)e i[(z1—y1) M +(z2—y2) A2+ (23 +y3) “+]d)\1d/\2, (2.13)
I = i +oo e (A1, A2) if(z1—y) M+ (@2—y2) Ao t@3pt —yan-] 1\, 4\ 214
1_47[_2 a_(A1,A2)e 14A2, ()

: +oo +oo
II; = %/ / b_(\ )\2)ei[($1_yl)A1+($2_y2))\2+$3ﬂ+_y3ﬂf]d)\1d)\2. (2.15)
dm2 J_ ’
From equation (2.2.26) of [20, Page 64], the fundamental solution has the form
k il —y) it @2 —y2) Ao Hes—uslut] 0, 216
Ok, y) 87r2/ / 1dA2, ( )

Inserting (2.11)—(2.15) into (2.9b) and matching the Fourier modes at y3 = 0, we get
1 1

by =b-, apprta-p-=g,

1
72 (Aae —piby) = o5 (ha- +p-bo).



The Fourier coefficients are given by

1
a —hl—i a_:hl, b :b_:)\lhg,
+ 20y +
where we have used the notations
1 1 k2 — k2
1= —, 9= 55— hy = _—+h1. 2.17
o+ k2 gy + k3 k2 gy + k3 217)

The second and third Hertz vectors can be obtained similarly.

We split the Hertz tensor H = (H;y, Hy, H3) into H = S — P where S is the double
source tensor standing for the singular part and P is the perturbation tensor standing
for the regular part. The double source tensor is given by

O(ky;x,y) — ks, y) if 23>0, y3 >0,
Sk, y) =1x < ®(k_;x,y) — P(k_;x',y) if 23 <0, y3 <O, (2.18)
0 elsewhere,

where I is the identity matrix and &’ = (z1, 22, —x3) is the image of = (x1, 22, x3)
with respect to ¥. The perturbation tensor P has the form

P11 0 0
P=( 0 Py 0 |. (2.19)
P13 Py Pss

For given any function f, we define
i o o
J(f;x,y) = —/ / F(Ar, Ag)ell@ =yt (@ —y2) Aot (lwsl+HusDutl g )| d .
g Ly 47‘(2 ) )

From (2.5), the above integral is convergent absolutely for any function satisfying
FOL ) S CL+AT+M)™  VmeR.

The entries of P are defined respectively as follows: for j =1, 2,

J(hi;z,y), if azyeRi,
J(hyellie—r=)vs: g 4, if xeR3, yeR3,
Pji(k;e,y) = _ s . (2.20)
J(hle‘“+ H=)Ts . g ,Y)s if zeR’, ycRy,
J(h i(pgy—p—)(z3+ys). ;T y) if T,y €< R:i’
J(Ajhs;x,y), if ¢,y € Ri,
J(N\jhgelt+—r=)vs: ), if zeR3, yecR3,
Pis(k;z,y) = _ s . (2.21)
J(\jhgellhr—n=)Ts g ), if ceR3, yeRy,
J()\ hael (k4 —p—)(@3+ys). cx,y), if xy € R3,
J(k% hosz,y), if z,y€R3,
J (k% hoelltt—1-)vs. o if zeR3, yeR3,
Pss(k; @, y) = =1z ) oY (2.22)
J (k2 hoellhs—1-)T3: 2 y), if zeR?, yeR3,
J (k2 hoellts—n-)(@atys) g 4 if z,y € R3.
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To end this subsection, we study the singularity of the perturbation tensor.
LEMMA 2.1. There exists a constant C' > 0 depending only on k such that, for
any x,y €RY, i=0,1, and j = 1,2,3,

%

ot 0 i
Pty + | Bl <0 (Lol Y) i waa<o, (229

Oz, Ay;

' o4 —ie1\

P(k; P(k; < 1 -y . 2.24
Ptk + | gy < (Ll -y i 0. 220

Proof. Without loss of generality, we only consider Pss(k;x,y) for & € R3 and
y € R and write p = |& — y/| for convenience. The proofs for other cases are similar.

Write §& = /A2 + A3 for convenience. Then (2.12) indicates Im puy = /&2 — k3
for € > ky and Im pg = 0 otherwise. We have Im py > Imp_, |el(#+=#-)¥| < 1, and
k2 — k%

T Tl =0 as £ — oo. (2.25)

g — p| =
Write z = 23 — y3 for convenience. From (2.22), we deduce that

(:)i o0 oo i .
‘MPgs(/ﬂ;w,y)‘ < C/ / g "t emF M AN ANy < C(1427177),  (2.26)
J —o00 J —00

for any ¢ = 0,1 and j = 1,2, 3. It suffices to prove the lemma for z < 1.
Recall that Pss(k;x,y) = k2 J(hgelt+—#-)¥3. & ). By Taylor’s expansion,

1

e = 1 (g — pJys = 5 (e = p-)"W5 + 0 (€7°)
— .
. 1 [1 ki(u+—u)] + O a0
TR AR s | R+ R s ’

. e — o )y 3
We can write hoel(t+—H-)vs = > j—1 Rj where

R, — 11 2:i(k:§r—k3)y3i
K2+ k2 g 2(kF + k%) pi’
k2—k2 k2 y2 1

Ro= —+ "= |2 4 Bpd 4| L0 (e74).

’ (k3r+k2)2{2+8(_ +) i (€)

Then we have Ps3(k; z,y) = k2 23:1 J(Rj;x,y).
From (2.16), the fundamental solution has the Fourier integral form

1
O(kysw,y) = =J(uy's 2, y).

2
This shows that
2
J(Ry;x,y) = k_gizq)(kur;wvy)a |J(Ri;z,y)| < Cp~ . (2.27)
For the second term, since
o0 (k‘g_ - /{33_):1/3
— : =Pk 2.2
61'3 J(R27may) k‘i ¥ k% ( +,;c,y), ( 8)
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this yields
k2= k2 )ys [*
|J(R2; 2, y)| = ‘J(Ru (71,22,p),Y) — (k2+2)y3/ O(ky; (21, w2,t),y)dt
+ + k2 T3
<C(p—y3)"' +Clp—3) max | (kg (21, 22,1),9)]
<C(1+p7"). (2.29)

The third term is easy to be estimated as follows
prszyl<c [ [ 0deap v <

Combining the above inequalities, we get
Pss(k;z,y)| <C(1+p71).

The derivatives of P33 can be estimated by using (2.27)—(2.28) and similar argu-
ments as in the proof of (2.29). We do not elaborate on the details here. O

2.3. Existence and uniqueness of the scattering solution. Now we study
the well-posedness of the scattering problem. The idea is inspired by [23] and [30,
Chapter 12] where incident point sources and incident plane waves are considered. Let
By = B(Ry), Ry > 1, be an open ball of radius Ry such that D C By. Write I'g = 0By
and let 9 = By\D denote the domain where the scattering field is interested. Let
X € C§°(R3) be the cut-off function satisfying supp(x) C By and x =1 on D.

We introduce the modified Green’s function G, (x,y) = x(y)G(k; =, y) and define
the wave propagation operator by, for any u € Ll(QO),

P(u) == /Q [curly, curly G, (-, y) — kQGX(~,y)]T u(y)dy . (2.30)

From [30, Section 12.4.3], the scattering solution E of (1.1) satisfies
E(z)=P(E)(x) VzeRI\B.

THEOREM 2.2. For any g € H™Y*(Div,I'p), (1.1) has a unique solution E.
Moreover, for any bounded domain Q) C D., there exists a constant C > 0 depending
only on k and Q such that

1B e (curr,0) < C g Er-172miv,rp) - (2.31)

Proof. The uniqueness of the solution is proved by Cutzach and Hazard in [23].
It is left to prove the existence. Let By = B(R;) be a ball containing By and write
Oy = B;1\D and I'y = 0By. Define

U = {v e H(curl,Q) : yrv € L2(I‘1)}7 Uy={veU:nwv=0onTp}.
By [30, Theorem 4.1], U forms a Hilbert space under the inner product and norm

(u,v)U:/ (curlu-curlf)—l—u~f))+/ e s, ully = (w)l2.
Ql F1
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By [30, Theorem 4.7], we have the direct-sum decomposition Uy = Uo + V.Sy where
U= {veUy: div(k’v) =0}, So={veH (Q): vlr, =Const.}. (2.32)

Moreover, Uy is embedded compactly into LQ(Ql).
Let s4: U x U — C be the sesquilinear form defined by

sy(u,v) = /Q (curlu - curl v + k*u - 9) — i/F YU - y7o. (2.33)
1

1

Clearly s is continuous and coercive on U. There is a unique E, € U satisfying
sy(Eg,v) =0 VYveU,, wEys=¢g on I'p. (2.34)
Furthermore, there is a constant C' > 0 depending only on k£ and 2; such that
HEQHH(CUTI,QI) <C ||g||H*1/2(Div,1"D) : (2:35)

Therefore, a weak formulation for (1.1) can be proposed as follows: Find E; := E —
E, € Uy such that

s(Eq1,v) + s1(Eq,v) = —s(Eg,v) — s1(Eg4,v) Vv e Uy, (2.36)

where the sesquilinear forms are defined by

s(w.v) = s (w0) - [

2k%u -0, s1(u,v) = / [y: curl P(u) + iypP(u)] - vro.
Ql l—‘1

Clearly s, s are continuous on U. It suffices to show that (2.36) has a solution.
From (1.1a) and (1.1c), we have curl E € H(curl, ;) and div(k*E) = 0 in ;.

Taking v = Vi, ¢ € Sp in (2.34), we also have div(k?E,) = 0 in ;. This implies

E, € U,. Using (2.34), E1 can be solved in the subspace: Find E; € U, such that

s(E1,v) + s1(E1,v) = 2(k*E,,v)q, — s1(E,,v)  Yov e U,. (2.37)
Let K1, Ko: L? () — U, be the linear operators defined by
sy (K1(u),v) = 2(k*u,v)q,, si(K2(u),v)=s1(u,v) Vo e U,. (2.38)

Since sy is coercive, K1, Ky are well-defined and [[K1(u)llyy < C'[[ul[z2(q,- By the

compact embedding of Uy into L?(Q), K is a compact operator.
By Lemma 2.1, G and its partial derivatives are bounded as follows

IV2G(k; x, ')||W2=°°(BO) + |G (k; , ‘)HW?»o(BO) <C Va e Ri\Bla y € Bo.
By the definition of P and the Cauchy-Schwarz inequality, we have

[K2(u)[ly < Clln x curl P(u) + iyrP(u)l| g2,y < Cllullpzg,) -

Therefore, K5 is also a compact mapping from U, to L? ().
Now we can write (2.37) into an operator equation

Ey — K((E1) + Ky (Ey) = K\ (E,) — Ko(E,) . (2.39)
9



This is a Fredholm equation on L?(€;). Since the scattering solution E is unique, the
solution E; of (2.37) is also unique. By the Fredholm alternative, we conclude that
(2.39) attains a unique solution E; € L*(Q;). From (2.39) we know that E; € U,.
Therefore, the weak problem (2.37) or (2.36) has a unique solution.

For the stability of the solution, from (2.39) and (2.35) we know that

1Bl p20y) = (T = K1+ K2) " (KL = K2) Ey| 1o,y < ClEgll L2,y -

(Q1)

By (2.35), this shows [|[El|p2q,) < C | Egll12q,) < Clgllg-1/2iv,r,)- Finally, tak-
ing v = FE; in (2.36) leads to

lcurl Er[|72(q,) < k2 [(E, E1)q, | + [51(E, E1)| + |(curl Ey, curl Ey)g, .

We conclude that [[curl E1||2(q,) < Cllgll g-1/2(piy,rp)- By (2.35), this yields

||E||H(cur1,91) <C ||QHH—1/2(Div,FD) :

Finally, for any bounded domain 2, we need only choose R; large enough such that
Q C Q4. Then (2.31) follows clearly from the above estimate. O

3. The Cagniard-de Hoop transform. In this section, we shall derive a new
integral form of P by the Cagniard de-Hoop transform [20, Page 215]. It plays the
key role in proving the exponential decay of the solution in PML. Without loss of
generality, we only consider P33 for € R and y € R? . The results can be extended
straightforwardly to other cases of @,y and to other entries of P.

LEMMA 3.1. For any x3 € Ri and y € R3 | write £1 —y1 = 1COS P, Ta — Yo =
rsin¢ with r = \/(xl —41)2 + (22 — y2)? and ¢ € [0,27]. Then, for any e > 0,

OFmMINPas (ks y) _ il+m+n1+i5 /°° /°° )\ll)én#iei(’“&“M*yW*)dqu,

0zt 0z Oz T e AT
for any integers l,m,n > 0, where py = py (&, (e —i)q) and
=¢cosd + (¢ —i)gsin ¢, A2 =€sing — (e — i)gcos @.

Proof. We consider the rotational transform & = A\j cos¢+ Agsing, n = Ay sing —
Ao cos ¢. The definitions of 4 indicate

1/2 1/2
pe O de) = (K2 = N2 = 03)"% = (k2 - & =)' = g,
Write N =1+ m + n. Then from (2.22) we have

8NP k N+1 oo )\l PNL i(rétzsptr—ysp—)
33(m$ y _ . / F d777 F(77) — / 12 By € —— df
Oz Oz Oz 2w oo Py +E Rk

For any fixed € C, when [¢] > k_ + ||, we have

s (€.1) \/|Mi £,1m)? |_2Re/i:|:(f P S e P s % €.
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Im(n)

F1a. 3.1. The deformation of integral path from the real axis to Le.

Thus the d¢-integration in F'(n) converges for any |x3|+|ys| > 0. Since Re py > 0 and
(Im gy )(Impu—) > 0, we have py + k=°k2p_ # 0. Therefore, I defines an analytic
function of 7.

Now we define a half line in the fourth quadrant of the complex n-plane

1
Vi+e?

Let Cr = {Rel? : 0 < # < 6.} be the arc of radius R which is bounded by L. and the
real axis (See Fig. 3.1). We orient L. to the downward direction. Suppose that

L.={(c—1)g:q>0} = {te % :t >0}, 6. = arcsin

lim F(n)dn = 0. (3.1
R—o0 Cr

Then the result follows from Cauchy’s theorem and the fact that

oo SIS )\l )\mun ei(r§+m3,u+—y3p_)
i Fndn:i/Fndnzl—i-is/ / L Hat d¢dq.
| e [ Fopan = [ AR

It is left to show (3.1). Assume R > 2(1 + k_) and recall
Impi =Im (k3 — € — R%e %) = R?sin20 >0 V0 € (0,0.).

We have Re u+ > 0, Im 4 > 0. There is a constant C' independent of £, such that
|F(Re'’)| < CRY / (1+¢&Ne msmirdg = CRN[Fy(R,0) + F>(R,0)],  (3.2)
0

where

2R 00
F](R7 9) — ‘/O (1 + £)N€_I3 Inlﬂ+d€7 1:’2(_R7 9) — /;R (1 + é—)Ne—wg ImMerg.

We consider F;(R,0) first. For any 0 < 6 < 6./2, we have

1 1 R
Impy > 5\/|Hi| —Repd > 5\/|ui|+§2+R2cos29—k2i > % —k_.

For any 6./2 < 0 < 0., from (2.5) we know that

Im 2. R?sin 26 - R
2Repy — 2(|§|+k-+R) — 8
11

Impy = min(sin 26,, sin 6.).



This shows
05
lim RN+ / Fi(R,6) =0. (3.3)
R—o00 0
As for F5(R,0), since £ > 2R, we deduce that

1
(Im g ) > (|ui] + &2+ R%cos 260 — ki) > €2+ R*cos20 — k2 > 152,

| —

This indicates

+oo
F2(R, 0) < / (1 +€)Ne—%$3fd§ < Cx?ijle—st-
2R
We conclude that
0
Rli_{n RN+1/ Fy(R,0) =0. (3.4)
o 0

Finally, the proof is finished by combining (3.3)—(3.4) with (3.2). 0

The integral form in Lemma 3.1 is still unfavorable to the PML analysis. We are
going to derive the Cagniard-de Hoop representation of P. This will be fulfilled by
deforming the dé-integration from the real axis to a hyperbolic integral path.

For convenience in notation, we write

. 1/2 . 1/2
rile,q) = K2 — (e — @] = B2+ (1 +ie)%P] vg>o.

We shall always abbreviate the notations to k1 := k4 (g, q) without specifying their
dependency on ¢ and ¢ in this and next sections. From (2.5), we know that Re s,
Im k4 are positive and satisfy
£q?
Imk_ <Imks < ) (3.5)
k2 + (1 —e?)q?

Rek_ > Rery > /kL 4+ (1 —€2)¢% (3.6)
For convenience, we also use

(€)= (12 =) = i (6 e = D)a), pa(€) = (82 =€) = p_(&, (e — D)),

without specifying their dependency on e and ¢. By (2.5), the branch cuts for the
square roots p12 = (k+ + 5)1/2 (kt — 5)1/2 are given by four half-lines

CR={¢:¢=rp+t, t>0}, CL={6:€6=—ry—t t>0}.

For any fixed g > 0, p11, 12 are analytic functions of £ in C\(CZUCHE) and C\(CEUCE)
respectively.
Given a function h in the complex £-plane, define

“+o00
I(hir,z) = / h(€)elreT=rlde V>0, 2> 0.

— 00

12



We shall rewrite the integral by the Cagniard-de Hoop transform. The theory will be
applied to the Perturbation tensor later.

LEMMA 3.2. For any ¢ > 0 and 0 < ¢ < 1, let h be an analytic function in
C\(CtucCcRuCEuUCE) and satisfy |h(&)| < C(1+ [])™ for some integer m and
some constant C > 0. Then for any r,z satisfying z > 2er > 0,

ei/-mrpt
Viz -1
where p = V12 + 22 and £+, A+ are defined by the Cagniard-de Hoop transform

£L(t) = %*(rt +in/2 1),  As(t) = %*(zt Firye —1). (3.8)

I(h;r,z) = —i/loo [2(&4+(0) A+ (1) + R(E-(1)A- (D)) dt, (3.7)

Proof. First we define a hyperbolic integral path I' = T'y UT'_ where
Fi = {fi(t) : tZ 1} .
Notice that A3 (t) = k3 — &4 (t) for any &4 (t) € . From (3.5)—(3.6), we have

t
pReAL(t) > 2ztRery — V2 — 1Imky > RET

2y 2 2
. [2(1 —€%)¢” — ¢*] > 0.

By the convention in (2.5), we have Ay (t) = p1(€x(t)).

FiG. 3.2. The Cagniard-de Hoop transform from the real axis to 1+ UT'_.
For any R > 0, let O;,O;i be the parts of the circle {£ : |{§|] = R} that are
bounded by the real axis and '+ respectively (see Fig. 3.2). Suppose that

R—o0

lim FL(R)=0,  Fi(R):= /O N h(€)elrstzm) e, (3.9)
R
By Cauchy’s theorem, (3.7) follows from the fact that
I(hr,z) = /F h(€)elret=mge.
It is left to show (3.9). We only prove the limit for F (R). The proof for F_(R)

is similar and omitted here. Let {g = Rel’? be the intersection of O}, and I'y. Then
F. (R) can be written into

F+ (R) =i h(ReiH)e—rRsin Qei(rR cos 9+[L12)Rei9d97
Or
13



where 1 = pu1(Re'?). Since |h(Re'?)| < C(1+ R)™, we have

|F+(R)| < CRm+1/0 ef(rRsin0+zIm,u1)d0 ) (310)
R

Without loss of generality, we assume that R > 2(k_ + ¢) and define

1 2eq?
- garcsinﬂ. (3.11)

90 = R2

vl 3

Clearly 7/4 < 6y < m/2. Since Im p? = 2e¢®> — R?sin 26, by (2.5), we have
Imup; >0 V€ (bp,m); Imp; <0 V60 e€ (Or,00). (3.12)

From (2.5), we also have Im 1 > R/8 for any 57/6 < 6 < . Then

5m

/ﬂ- 6*(TRSin9+ZImIL1)d0 < ° eersinGde + /ﬂ- 6lemu1d0 < ﬂ'ei% +7T67%
0o 0o 2z
This shows that
™
L R e (3.13)
R—o0 0o

Now we consider the case of § € (0g, 6p). For R > |/<;i |, careful calculations yield

% Im (2 — R2%9)2 >0 V0 € (0n, 00).

Thus Im p; (Re'?) is increasing with respect to 6 € (6r, 0). Let r = pcos ¢, z = psin ¢
with ¢ € (0,7/2). Since £g = &4 (tr) for some tg > 1, we have

Er = Ky (cosqbtR+isin¢ t%—l), u1(€r) = Ky (sin¢tR—icos¢ t%—l).

Note that R = |k | \/tQR cos2 ¢+ (13 — 1)sin® ¢ < |r4 | tr. We get

I
rRsind + zImpy > rImér + zImpy (€r) = ptrIm kg > %lﬂ%
K
This yields
00 )
lim R7rz+1 / e—(rRsm O+2z Im/tl)da = 0. (314)
R—o00 0n

Finally, we obtain (3.9) by substituting (3.13) and (3.14) into (3.10). O

Now we apply Lemma 3.2 to the perturbation tensor and its derivatives. For
convenience, we write r = /(21 — y1)% + (2 — y2)2, 2 = |23|+|ys|, and p = V7% + 22.
Let the Cagniard-de Hoop transform be defined in (3.8). Since Re Ay > 0, it is easy
to see that

p1(s) = A, pa(€x) = (K2 — k3 + Ai)1/2~
14



For a function f(§), we define
einert

e—i [ [
1= [T s o) + A0 0)]

Let hq, ha, hs be defined by (2.17) with u4, u— replaced by 1, po respectively. The
diagonal entries of the perturbation tensor PP are given by, for j = 1,2 and z > 2er,

chh(f; T,y dtdq

Jean(h1;z,y), if ¢,y eR?,
hyellmi—h2)ys; g if zcR3, ycR3,
Pji(kz,y) = Jean(h ) oY (3.15)
Jedn (hpeltt1=#2)2s 00 4, if eR3, ye R:L
Jean(hpeilm—m)estvs) g y) - if z,y € RS,
k% Jean(hos z, y), if z,y€R3,
k% Jean (hoelmi—r2)vs: g0 4)) if eR3, yecR2,
Pas(kiwy)=q . N . (316)
k+chh(h2€ H1—B2)Ts. g qy), if zeR’, yecRy,
k2 Joan(hoelt—n2)(@stus) g 4y if @,y € R3.
Write 1 — y1 = rcos ¢, o — yo = rsin¢. Then Poz = tan ¢ P13 where
chh(€h3;w7y>7 if wvyeRia
Pi3(k;z,y) Jedn(Ehge M —r2vs; 1, y), if x€RY, yeR?, (3.17)
cos ¢ B chh(Ehgei(‘“_‘“)‘”?’; z,y), if teR3, ye Ri, .

Jean (Ehgeltr—m2)(@stys) g0 ) - if @,y € R3.

Similarly, we can obtain the Cagniard-de Hoop representations for derivatives of
P. We only give the derivatives of P33(k;x,y) for £ € R} and y € R3. The other
cases are similar. By Lemma 3.2, we have, for any z > 2er,

MNPy (ks x, y)

2 D Oah = il+m+nk2 th()\ )\2 u?hgei(#r‘”)ys;az,y), (3.18)
1 2 3
QHHmtnp. . (k- .
ayl a;i(al’lf’ y) = (7i)l+m+nkz chh(AaA?Nghzel(”17“2)93;m, y), (3.19)
1 2 3

where Ay = £cosd + (¢ —i)gsing and Ay = Esing — (e — i)g cos ¢.

4. Perfectly matched layer. Now we introduce the wave-absorbing material,
or, the perfectly matched layer. To make the main theme more focused on the layered
medium, we only consider spherical PML in this paper.

4.1. Complex coordinate stretching. Let By := B(Ry) be the ball of radius
Ro > 1 which contains D and where the scattering field is interested. For any & € R3,
let p = |x| and & = x/p. The complex stretching is defined by & = p& where

p=pap) al) =1+ [ ol (4.1)

The PML medium property o is defined piecewise by

0 if s<0,
o(Ro + sRy/2) = 0¢6(s), G(s) =< 652 —4s% if 0<s<1, (4.2)
2 if s>1.

15



Clearly o is C'-smooth and satisfies o(t) = 0 for all t < Ry and o(t) = 20¢ for all
t > 1.5Ry. Here 0¢ > 1 is the medium property parameter. It is well-known that larger
value of oy means faster decay of the scattering solution in the PML. For theoretical
analysis, we assume og > 4 in the rest of the paper. The theory allows more general
definitions of 0. Here we do not elaborate on the details (see [6,12]).

Write the complex stretching by F(z) := @. Then F is C?-smooth. In the rest,
both F(z) and & will denote the same complex vector. It is easy to see that the Jacobi
matrix of F is given by

B := DF = a(p)l + pa’(p)za " . (4.3)
Clearly B is symmetric and C''-smooth. Its determinant is given by
J = det(B) = a?(a + pa’). (4.4)

The analytic continuations of 2D and 3D distance functions are defined by

L L o \971/2 L N
r@9) = (@ -5 + (@ -0, d@p=(@-9)-@-9)]"
By direct calculations, we have Imr(&, ) > 0 and
|z —y| < |d(Z,9)] < /1 + 1603 |z —y|, (4.5)
r(@,y)| < [r(@ g)| < \/1+ 1607 |r(z,y)]. (4.6)
Moreover, if max(|z|, |y|) > 2Ry, we also have

Imd(z,y) > zoo |z —y|. (4.7

N |

LEMMA 4.1. For any € R and y € R?, suppose max(|z|,|y|) > 2Ry and
Im(Z3 — g3) > 3 — y3. Then

d(z,9)| = |r(z,9)].

Proof. For convenience, we write 7 = r(Z,y) =11 +ire, 2 = &3 — §3 = 21 + 122
with 71,79 > 0 and z9 > 21 > 0. If 7o > r{, we find that

(@, §)[* = 17" + 2" + 8rirozize +2(25 — 20)(r3 — r]) = |7|* + 12"

If ry < 1, we have Re72 > 0 and |7|* < 2|z — y|*. The proof is finished by (4.7). O

4.2. PML extension of the Cagniard de-Hoop transform. For any x,y €
R, let &,y be their complex stretching respectively. The analytic continuation of the
dyadic Green’s function is defined by

1

Gk;2,9) = Hk; 2, 9) + 13

Vydivyg H(k; 2, 9), & # 9.

where H(k; &,9y) = S(k; &, y) —P(k; &, 9y) is the analytic continuation of the Hertz ten-
sor for & # g, S(k; &,y) is defined by replacing «, y with &,y in (2.18), and P(k; &, )
is defined by replacing x,y with &,y in (3.15)—(3.17). We extend the Cagniard-de
16



Hoop transform from real coordinates to complex coordinates and prove some useful
estimates.

LEMMA 4.2. For any @ € R} and y € R?, let 7 = r(2,9), Z = T3 — 3, and
J~: d(@,y). Assume max(|x|,|y|) > 2Ry and ImZ > Re Z. For any k > 0, if () =

rkd 7 (7t £12V12 — 1), then
(k? — §i(t))l/2 = kd ! (275 T if\/ﬁj) V> 1.

Proof. Write Ay = rd? (3t Fifty) with t; = /t2 — 1. It is clear that A2 +£2 =
k2. By the convention in (2.5), it suffices to show Re A+ > 0. We only prove Re A > 0
here. The proof for Re A_ > 0 is similar.

Without loss of generality, we assume |x| > |y|. Let # = r1 + irq, 2 = 21 + iz,
CZ: dy + idy with r;,d; > 0 and zo > z; > 0. Then

Ii_l‘CZ|2 ReA+ = dl(th + ’I“gtl) + dQ(ZQt - Tltl) > tl(M — N),
where M = dyz1 4+ dyra + dazo and N = dar;. Using Lemma 4.1 and 2o > 21, we

know that Re 22 < 0 and |(f| > |7|. From (4.5) and (4.7), we have Red? < 0. Then the
convention in (2.5) shows that

Y

(M? = N?) > (B2 + B33+ dirk — d3r?)

N | =

= |c§2| |22‘ +Red?Re 3% + Red? |f2| — }cmRefQ
> (2] + Re ) + Re @ ([72] - ) > ][] + Re ).
Therefore, M > N, that is, ReA; > 0.0

LEMMA 4.3. Let £+ and the assumptions be same to those in Lemma 4.2. For
either £ = &4 or & =&, define u; = (m? — 52)1/2, j=1,2 with ke > k1 = k. Then

Im[(1 — pz)(a+i)] <0 Vb>a>0,

Proof. We only prove the lemma for § = kid 1 (7t 4 i%t;) where t; = V2 — 1.
The proof for & = kyd~! (7t — iZt;) is similar and omitted here.
Write p; = o +i8; with o, 8 € R, j = 1, 2. Since u3 — uf = k3 — k3, we have

2 2 2 2., 2
ay — B3 =Ky — K] + a7 — B, a1 = .

We recall (2.5) and deduce that

1/2
Vo= [\ st ot - ot + (- ntrat- )] L G

1/2
Valinl = |V — it o 97 ol - (- et - )| @
Since ay > 0 by (2.5), direct calculations show that

ag > aq > 0, |B2] < |54l sign(B1) = sign(pa). (4.10)
17



Since

Im [(u1 — p2)(a+1ib)] = a(B1 — B2) + b1 — aa), (4.11)

the lemma now follows obviously for 5; < 0.

Now we assume (3; > 0. By Lemma 4.2, we have pu; = rkyd ! (2t — irty). Similar
to the proof of Lemma 4.2, we write d=d + idy, 7 = r1 +ire, Z = 21 + iz9 with
1,72 > O7 d2 > d1 > 0, and 292 > 21 > 0. Then

H;1|d~|20l1 = t(dlzl —+ dQZQ) —+ tl(leQ — d27’1),
Hl_l|d‘2ﬂl = t(dlzg — dgzl) — tl(dlrl —+ dQT‘Q).

We deduce that
k1 d? (a1 = Br) > (do — dy) (21 + 22 + 12— 11) > 0.

This means ag > ;1 > 1. Since 1 > 0 and a1 81 = asfs, by (4.11), we have
Im [(p1 — p2)(a +1ib)] = é(@ — B1)(baz — afy) < %(52 —B1)(a2 — B1) <0,

where we have used 0 < a < b and (4.10). The proof is completed. O

4.3. Exponential decay of the Green’s function in PML. Now we prove
the exponential decay of G(k;&,y) as | — y| — +oo. It depends greatly on the
estimate in (4.7). Therefore, we assume through this subsection that

max(|x|, |y|) > 2Ry .

From Lemma 3.2 and (3.15)—(3.19), we know that P and its derivatives are defined
with an arbitrary parameter 0 < € < 1 through

rile,q) = K2+ (1 +i2%%)"?  Vgzo.

LEMMA 4.4. Suppose |x —y| > 1 and max(|z|, |y|) > 2Ry. Then P(k; &, y) and
its derivatives are given by setting e = 0 and replacing x,y with &, Y y in (3 15)—(3.19).
Proof. Without loss of generality, we only prove the lemma, for 2-Las (k; &,9y) and

for the case of € R3 and y € R®. The results can be extended stralghtforwardly
to other cases of x,y, to other entries of P, and to other derivatives of P. The details
are omitted here.

From (3.18)—(3.19), P33 and its derivatives depend on the parameter ¢ > 0. We
write Pss(k,&;&,4) := Pss(k; &, Y) to specify the dependency of P33 on e. It suffices
to show

0™ P33 o . 0MP33
k,0; =1
g (R 0:%,9) = lim “m

(k,e;%,9), m>0, (4.12)

P33

where 2 (k,0; Z,g) is given by setting ¢ = 0 and replacing x, y with &, in (3.18).

For convemence, we write 7 = r(&,9), Z = T3 — ¥3, and d= d(z,y). The PML
extension of the Cagniard-de Hoop transform in (3.8) is defined by

E(t) = %‘f’q) (fti i3/12 — 1) ALt = %‘f’q) (2t¢ i7y/12 — 1) V> 1.

18



Let C' denote the generic constant which is independent of x, ¥y, €, ¢, and ¢. By
Lemma 4.1, we have

eno))+ s < B G g < ey a0 (413

Define 1 (6+) = [k (e,9)2 — €2]"% and pa(€x) = [r-(e,q)” — €2]"*. From (2.5),
we have

Rep >0, Re ps > 0, sign(Im py) = sign(Im ps).
This shows |1 — pa| < |p1 + po|. Since pf — p3 = k2 — k2, we have

1/2

K21 + K po| > K2 a4 po| > K2 [} — 3| " > KL (k- —ky). (4.14)

Let 2 = 23 —y3, 7 = \/(¥1 — y1)2 + (v2 — y2)?, and d = |z — y|. Replacing z,y
with &, ¢ in (3.18), we find that, for any z > er,

ei"@+ (5aQ)CZt ‘

k,e; &, <C’L|93|/oo/oo ky + @)t ——dedg. 4.15
e A B R e

From (4.5) and (4.7), we have Imd > 100d > 2d. This indicates Re d?> < 0 and
Imd > Red. Then using (3.5)-(3.6), we have
the estimates into (4.15), we get

m e e] o] m—+1
0" Pas (k,e;@,§)| < Cek-lusl (s + ™" e~ ood(ke )t gy
8:10{” 0 1 t2 -1

PR

et (E0)dt| < o—Food(kita)t, Inserting

The integral on the righthand side is convergent and independent of €. Then (4.12) is
obtained by using the dominated convergence theorem. O
LEMMA 4.5. Let x,y be the complex stretching of x,y and write { =
(Z1,%2,23,91,72,U3). There is a constant C depending only on k such that
—m—-—-n—1 .
— 2R -yl <1
S(ki £.5)| < C x {|w y . if max(fal, Jy)) < 2Ro, |& —y| <1,

8m+n
—3kyoolz—y| i
e~ 2% , otherwise,

a¢"a¢}

forany 1 <i,5 <6 and m,n > 0. o
Proof. Since ®(k+; &, ) = [4rd(x, §)]~ Le?+4®¥) the lemma comes directly from
(2.18), (4.5), and (4.7). O

LEMMA 4.6. For any x,y € R3, let &,y be their complex stretching and assume
max(|z|,[y) > 2Ro, (21— 1) + (22 —y3)? + (|zs] + [y3)* > 1.

Write ¢ = (1, %2, &3, 71,2, 3). There is a constant C' depending only on k such that

< Ce zhroolz—ul 1 < i<6, m,n>0.

8m+n o
‘ (k;2,9)

—P
acracy

Proof. Without loss of generality, we assume x € Ri, y € R? and only con-
sider the derivatives of P33(k; &, y) with respect to &. The results can be extended
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straightforwardly to other entries of IP, to other derivatives, and to other cases of x, y.
Furthermore, by Lemma 4.4, it suffices to consider the case of € = 0. This means

ke = kt(0,q) = (lcgﬂE +q2)1/2 > 0.

Write 7 = r(&,9), 2 = Z3 — ¥3, and d= d(z,y) for convenience. Define the PML
extension of the Cagniard-de Hoop transform by

E(t) = kod ! (ft +i5V/E2 = 1) . AL(t) =k d ! (Zt T iFV/12 — 1) Vi1
Write p1(£) = (k3 — §2)1/2 and fi2(€) = (k% — 52)1/2. From Lemma 4.2 we have

1/2
p(ée) = Ae,  po(ée) = (K2 — K3 + A%) 2.
Replacing x,y with &, § and setting e = 0 in (3.18), we find that

O Pag (s 2, 9) _ i1 K2
Ot 0Ty 0Ty 272

[Fy(2,9) + F-(z,9)], (4.16)

where

el () —p2(8+)]0s eir+dt

Fi(2,9) = / / N (E2) AT (E2) ATH dtdg.

TR () + R pa(s) VI — 1
Here A\ (§) = £cos ¢ — igsin ¢, A2(€) = £sin ¢ + ig cos ¢, and the polar angle satisfies

1 — Y1 =TCosP, T — Y2 =rsing, r=/(z1—y1)2+ (x2 — y2)%

It suffices to estimate Fy(&,¥). Similar to (4.13), there is a generic constant C
independent of &,y such that

IAL(Ex)| + [Aa(Ex)| + [€x] + [Ax] < Ck4 + q)t,

eilr1(€)—n2(64)193

By Lemma 4.3 and (4.14), we have CENTY (I RNy < C'. Together with (4.7), this

shows |Fy (&, §)| < Ce~2k+o0l2=l_ The proof is completed by using (4.16). O
LEMMA 4.7. Let &,y be given in Lemma 4.6 and { = (%1, %2, 23,1, 72, Us). Then
there is a constant C' depending only on k such that

am+n

— G < Qe th+oolz—ul 1< i<6  m,n>0.
a¢racy = =hl= =

(k; &, 9)

Proof. Since G = H + k{°VzdivgH and H = S — P, the lemma is a direct
consequence of Lemma 4.5 and Lemma 4.6. O

4.4. Exponential decay of the scattering solution in PML. We present
the main result of this section, that is, the exponential decay of the scattering solu-
tion in PML. From [30, Section 12.4.3], the solution E of (1.1) admits the integral
representation

FE = ‘I’SL(N) + ‘I’DL(Q) in D, (4.17)
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where g = 1 E and p = y;(curl E) are the Dirichlet trace and the Neumann trace of
the solution on I'p. The Maxwell single and double layer potentials are defined by

W, () = A G (k; @, y)u(y)dSy, ‘I’DL(g)Z/F (curly G) " (k;z, y) g(y)dS,y.

The analytic continuation of the scattering solution is defined by
E(z) = W1 (p)(2) + ¥pL(g)(Z) (4.18)

THEOREM 4.8. There is a constant C > 0 depending only on k and Rqy such that,
for any x € R3. satisfying |x| > 2Ry,

|E(&)| + |curly E(&)| < Ce™ 2"+ lg[| groyo iy ppy -

Proof. Since 7, yr are bounded operators, using (1.1a) and Theorem 2.2, we have

1WsL() (@) < |1l gr—1/2Div,r ) TG, ) gr-172(Curt,r )
< chrlE”H(curl,Qo) ||G(i5 ')HH(curl,Qg)
<C ||E||H(curl,Qo) 1G(, ')HH(curl,Qo)

1
< Cem2h+oola] ||g||H—1/2(Div,FD)’

where we have used ¥ = y in Qg = Bo\D. Similarly, the double layer potential can
be estimated as follows

1®oL(9)(@)| < |9l 172 iv,rp) 177 (curl G)(@, )| gr-1/2 (Curt T )
< ||g||H*1/2(Div,FD) [curl G(z, ‘)HH(curl,Qo)

< Ce—%k+00|m‘ ||gHH71/2(Div,FD) ’

This yields |E(&)] < Cezk+oolzl 9|l gr-1/2(Div,r,p)- The estimate for curlz E(&) is
similar and omitted here. O

5. Exterior Maxwell problems. In this section, we shall study exterior prob-
lems of the stretched Maxwell’s equation on unbounded domains. It is a key step for
proving the stability of the truncated PML problem. Without specifications, C' > 0
denotes the generic constant which depends only on k, Ry, D in the rest of the paper.

We introduce the stretched gradient, curl, divergence, and Laplace operators

Vo =BV, V xu:=J "Beurl(B u), (5.1)
V-u:=Jtdiv(JB 'u), Av:=J 1div(A~'Vv), '
where A = J7'BB . It is easy to see
VxVxu=J 'Bcurl [Acurl(ETu)} . (5.2)

We define the stretched dyadic Green’s function by

G(&,y) =B (y)G(k; &, 9).
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Using (2.6) and the argument in the proof of [28, Theorem 2.8], we have
curl {Acurl@(i’,-)} —K2AG(#,) = 0,B"! i R3. (5.3)
Since the complex stretching F is C2-smooth, from (2.6b) we have
[Acurl@(ﬁ:, -) X n} = [@(5},) X n} =0 on X. (5.4)
LEMMA 5.1. Let f € L*(R®). The function

u(z) = . H(k; g, ) f(y)J (y)dy. (5.5)

satisfies the stretched Helmholtz equation and the stability estimate
Au + kiu=—f in R, ||u||H1(R3) < Coy ||f||L2(R3) ‘ (5.6)
Proof. By (2.8a) and using the argument in the proof of [28, Theorem 2.8], we get
the stretched Helmholtz equation for the Hertz tensor
A H(k; 9, &) + K2 H(k; §,2) = —J )5y (z)[ in RY. (5.7)

Combining (5.5) and (5.7) yields the stretched Helmholtz equation in (5.6). It is left
to prove the stability.

From (2.8b), H(k;y,x) is continuous with respect to & when = # y. So (5.5)
implies that w is also continuous across ¥. From (5.1), we find that

Vu(e) =B'(2) | VaH(k5,2)f()J(6)dy.

From Lemma 4.5 and Lemma 4.6, the stretched Hertz tensor satisfies
H(k; g, &)| + |VaH(k; §, &)| < Ce™zF+o0l2=4l for |z — y| > 2R,.
From Lemma 2.1 and Lemma 4.5, we know that
[H(k: §,8)| + [VaH(k; §,8) < C (1+]e—y[7*)  for |z —y| < 2Ro.
So in general, the stretched Hertz tensor satisfies
H(k; §, )| + |VaH(k; g, &) < C (1 + |z - y|‘2) emskroolemyl vy g e RY

Write w(e, y) = (1+ |z —y| *)e~1F+70l2=vl for convenience. We find that

fuli < Cot [ | [ wtewirwiay) | [ uewiy] ae
< Cot / / w(@, y) |F ) dyde < Co8 | £ qms, -
R3 JR3

The proof is completed. O
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LEMMA 5.2. For any f € L*(R3) satisfying div f = 0, there exists a function
u € H(curl,R?) which satisfies the stretched Mazwell’s equation

curl(Acurlu) — k3A 'u = f in RY, (5.8a)
[Acurlu x n] =[uxn] =0 on %, (5.8b)

and the stability estimate
HUHH(curl,RB) < CU% HfHLZ(RS) :
Proof. Let w(x) = H(k; g, 2)B(y) f(y)dy. From Lemma 5.1,
R3
Aw + Kw = —J 'Bf.

Since H(k; ¢, &) is continuous with respect to @, w is also a continuous function.
Similar to the proof of Lemma 5.1, we can prove

Hw||H1(R3) < CUS HfHL2(R3) : (5.9)
Define the weighted Sobolev space for exterior elliptic problem by
Wy (R3) = {u cu(l+12)7Y2 € LA(R?), Vu e LQ(R3)}.

From [31, Theorem 2.5.13], | V|| 12(gs) provides an equivalent norm on W; (R3). Write
w = BT w and consider the weak formulation: Find ¢ € W;(R?) such that

/ A*VWV@:—/ A -Vo Ve Wi (R?). (5.10)
R3 R3

From (4.4), we have Re(A~'Vy - V@) > |Vi|? /4. The Lax-Milgram lemma shows
that (5.10) has a unique solution which satisfies
V-(Vo+w) =0, VY] gaggs) < Cooll@] 2 g - (5.11)
Since div f = 0, we find that ¢ := k~2V - w € L*(R?) satisfies
Ap =ki*V - (Aw) = —k°V - (J'Bf + Kiw) = -V -w=—k3¢ inR}. (5.12)

Combining (5.11) and (5.12) yields Ay = A¢ in R3.
For any bounded convex domain Q2 C R3 and any v € C°(Q), let 6 € H(2) be
the unique solution of the problem

/JW-W:/JU-W Ve HH(DQ).
Q Q

This shows that V- (v—V6) = 0. We have v — V8 = V x @ where © € L*(Q) satisfies
Vx0O L) and ® x 7 = 0 on 9. Here 7 = B~ "n and n is the unit outer
normal to (2. By the boundary conditions of # and ®, we also know that

VOxn=0, (VxO)-n=0 on 0.
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Since v = 0 on 09, we conclude that VO =0, (Vx0)-f=0 on o
Since 1 — ¢ € L%(Q), V(1) — ¢) provides a linear functional on the subspace

{fveL*(Q): V-ve L*(Q), VxveL*Q), v=0 ondQ}.

Therefore, for any v € C°(2), we have
/J@(¢—¢)-v=/N(¢-¢)-(W+@x@)=/N(z/)—qs)-w
Q Q Q
:/JA(¢—¢)9:0.
Q

This implies Vi) = V¢ in Q. By the arbitrariness of €, we have V¢ € L?*(R®).
Moreover, since ¢ € L*(R?) and (1 + r2)~/2 € L?(R?), 1) — ¢ can not be constant.
We conclude that 1» = ¢ and ¢ satisfies (5.12).

Define u; = w + V. Clearly (5.11) shows V-u; = 0 in R3. Together with (5.12),
the well-known identity —A=VxVx-VV. yields

VXxVxu =—Au =J Bf +klw+ 2V = J'Bf + k2u; in R3.
Define u = B u; = @ + V1. We obtain
curl(Acurlu) = f +k2A 'u in RY.

The stability of u follows from (5.9) and (5.11).
For the continuities in (5.8b), we recall (5.4) and get

[A curl(BTH)(k; §, F(-) x n] = {Acurl@(@, ) x n] = 0.

This shows [A curlu x n] = [A curlw x n] = 0 on X. Moreover, since both w and
1) are continuous across X, we conclude that

[uxn]=B"wxn]+[Vyxn]=0 on .

The proof is completed. O
LEMMA 5.3. For any f € L*(R®), there exists a function w € H(curl, R?) which
satisfies the stretched Mazwell’s equation

curl(Acurlu) — E2A 'u = f in R3, (5.13a)
[Acurlu x n] =[uxn] =0 on %, (5.13Db)

and the stability estimate

el sy < C0F £l - (5.14)
Proof. First we consider the weak formulation: Find ¢ € W;(R?) such that
/ EATIVY - Vo=~ [ f-Vv  VYveW(R?.
R3 R3

Similar to (5.10), the problem has a unique solution which satisfies

H;w”B ey < Ol L2 esy (5.15)
(R3)
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So £, := f + k2A~1V satisfies div f; = 0. By Lemma 5.2, there is a solution to

curl(Acurlu,) — k2A  'u; = f; in RY,

[Acurlul X n] = [ul X n] =0 on X,
and there is a constant C' > 0 depending only on k, Ry such that
H“1||H(cur1,JR3) = CJS‘ ||f1||L2(R3) < CUS Hf”L?(Rs) : (5.17)
Define u = u; + V). Then (5.13a) is deduced as follows
curl(Acurlu) = curl(Acurlu,) = f; + k1A uy = f + k1A 'u in R3.
Furthermore, (5.14) comes from (5.15) and (5.17). Finally, we have
[Acurlu; x n] = [Acurlu x n] =0, [uxn]=[u; xn]+ [V xn]=0.

This completes the proof. O
LEMMA 5.4. Suppose f € L*(D,). There exists a function w € Hr, (curl, D)
which satisfies

curl(Acurlu) — k3A 'u = f in R N D,, (5.18a)
[Acurlu xn]=[uxn]=0 on X, (5.18b)

and the stability estimate

||u||H(curl,DC) < CGS H‘fHL2(Dc) '

Proof. First we extend f by zero to the interior of D and denote the extension
still by f. By Lemma 5.3, there exists a ug € H (curl, R?) satisfying

curl(Acurlug) — k2A 'ug = f in RY,

[Acurlug xn]|=[up xn]=0 on X.
Furthermore, there exists a constant C' > 0 depending only on k, Ry such that
||u0||H(cur1,]R3) < Coy ||f||L2(R3) = Coy Hf||L2(DC) ‘
From Theorem 2.2, the scattering problem

curlcurlu; — kiu; =0 in R3\D,
[curlu; xn]=[u; xn]=0 on X,

Yeu1 = yug on I'p,

: o2
lim |curlu; x n —ikuq|” =0,
P JaB(p)

has a unique solution which satisfies
||u1HH(curl,Q0) S C nytu0||H*1/2(Div,FD) S C ||u0||H(curl7QD) S CUS ||fHL2(DL) .
Similar to (4.17)—(4.18), we define the analytic continuation of u; by

u1(2) = Pgr, (1 curl uy ) (&) + Tpr, (yrur) (Z) Vx e D,.
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By (4.18), @1 (x) = B' (x)u; (&) decays exponentially as |z| — oo so that

11| r(eurt, ) < C 1wt preurt.an) < €6 I FllL2(p,) -

and satisfies the exterior problem

curl(Acurla;) — k1A 'a; =0 in R3\D,
[Acurla; xn]=[t; xn]=0 on X,
Y1 =Yug on I'p.
Clearly u = ug — w1 € Hr,(curl, D.) and satisfies (5.18). 0

6. The weak solution of the stretched Maxwell equation. The purpose
of this section is to study the weak formulation for the analytic continuation of the
scattering solution. Let E(&) be given in (4.18) and define

E(x)=B"(x)E(&) VYxecD,. (6.1)

By arguments similar to (5.3)-(5.4), we know that

curl(AcurlE) — E’A™*E=0 in D,, (6.2a)
[AcurlE xn| = [E xn|=0 on X, (6.2b)
wE=g on I'p. (6.2¢)

To introduce the Dirichlet-to-Neumann (DtN) operator, we define By = B(R1),
0y = B1\D, and 'y = 9By, where Ry = Ry + s1Rp/2 and 0 < s; < 1 is the solution
of the equation

st =253 +3/09 = 0.

From (4.1)—(4.2), it is easy to see

s Ry s1
i .00 9 3 .3y
=14+ — =1 —4 =1 20
a(Ry) + R /0 o(t)dt +i 2R, /0 (6s s%)ds +12R1

This means that
1 <Ima(Ry) < 1.5, |a(Ry)| < 2. (6.3)
Moreover, let so € (s1,1) solve the algebraic equation
55 — 255 +6/09 = 0.
Let By = B(Rg + s2Ro/2) be a larger ball containing B; and define
Oy = B\By. (6.4)
Similar to (6.3), we have

1<Ima(z)) <3, |a(z))|<4 Vae. (6.5)
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6.1. The Dirichlet-to-Neumann operator. For any A € H'/? (Div,T'q), the
DtN operator G: H™*?(Div,T';) — H~*?(Div,T;) is defined by

G(A) :=v(Acurlu) on Iy, (6.6)

where u € H(curl, R?\ By) is the solution of the exterior problem

curl(Acurlu) — k’A™'u =0 in R3\ By, (6.7a)
[Acurlu x n] =[uxn] =0 on X, (6.7b)
mwu=A on I'y. (6.7¢)

LEMMA 6.1. The exterior problem (6.7) has a unique solution which satisfies

||u||H(curl,R3\Bl) < Coy ”)‘HH*V?(Div,Fl) :

Moreover, u admits the integral representation, for any x € R3\ By,

u(x) = ]B(:v)/ [@T(:i, Iy (Acurlu) + (AcurlG) T (&, -)yu | . (6.8)
Iy
Proof. Similar to (6.20), we have an equivalent weak formulation of (6.7): Find
u € H(curl,R3\ B;) such that y,u = X on I'; and
Aij(u,v) =0 Yo € Hr(curl,R*\By), (6.9)

where the bilinear form A;: H(curl,R*\B;) x H(curl,R3\B;) — C is defined by
Ai(u,v) :/ (Acurlu - curlv — k*A™'u - v).
R\ B,

It is easy to calculate the eigenvalues of B which are
A=A =a, A3 = a+ pa. (6.10)

Write & = p(cos 6 cos ¢, sin § cos ¢,sin¢) ' with § € [0,27] and ¢ € [-7/2,7/2]. The
associated eigenvectors are real and read as follows

&€, = (—sind,cos0,0) ",
€, = (cosfsin ¢, sin @ sin ¢, — cos ) T, (6.11)
€, = (cos f cos ¢, sin  cos ¢, sin ¢) T

Clearly &, &5, &5 are also eigenvectors of A and belong respectively to the eigenvalues
vy =1y = (a+pa’)7L, vz = (a+ pa)a~2. (6.12)
For any &€ = 3%, t,€, with t1,ts,t3 € C, we find that

3 3 3 3
AE-E=) twi& > L& =Y vltl*,  ATE-E=> vt (6.13)
i=1 j=1 i=1 i=1

By (4.1)-(4.2) and (6.3), there is a constant C' > 0 independent of o such that

Im(AE- &) < —Cop ' €7, Im(A'¢-€)>Cl¢)? in RN\By, VEeR’
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Therefore, the bilinear form A; is coercive on Hr, (curl, R?\ B;)
_ _ — . 2
|A;(v,9)| > —Im A (v, ) > Coy ' min(1, k) V] & (curt R\ By) - (6.14)

So problem (6.9) attains a unique solution.
Let €21 be defined in (6.4). Since v;: H (curl, Q) — H~%(Div, 08)y) is surjective,
there is a ug € H(curl, {1) such that yyug = X on I'y, y3ug = 0 on 9By, and

HuOHH(curLQl) <C ||)‘||H—1/2(Div,l“1) : (6-15)
Extend wug by zero to the exterior of B;. From (6.5), we deduce that
[t = 0[5 (eurr o ) < Coo0 [ A1(u — ug, % — )| = Cog | Ay (o, @ — o)
< Coy ||u0HH(curl,Q1) H’LL - uo”H(curl,Ql) .

Together with (6.15), this yields |[u|| gr(curir\ 51) < C00 1A gr-1/2(Div.1y)-

It is left to show the integral representation of w. For any & € R3\ By, let B(p)
be a sufficiently large ball which contains z. Write 2, = B(p)\B; and ', = dB(p).
Using (5.3), (6.7), and the formula of integration by part, we have

B! (z)u(z) = /Q - [curl (Acurl@(a?, )) — K2ATIG(, )}T U

= / [@T(ic7 Y (Acurlu) + (AcurlG) T (&, -)%u} —I(p),
Iy
where the second term is defined by
I(p) = / [@T(ﬁz, Yye(Acurlu) 4 (AcurlG) ' (&, o)fytu} .

0B(p)
By Lemma 4.7, there is a constant C' > 0 independent of p such that

Clko

[1(p)| < Ce 2k o0p [HACUI'IUHH(curLRS\Bl) + HUHH(curl,R?’\Bl)}
< C’e*%maop ||u||H(cur1,]R3\Bl) , as p — oo.

This shows lim,_,o I(p) = 0. The proof is complete. O
LEMMA 6.2. There exists a constant C > 0 depending only on k, Ry such that

||g(A)||H*1/2(DiV7F1) S CO'O ||)‘||H*1/2(Div,1"1) VA S H71/2(Div, Fl),

Proof. Let u be the solution of (6.7). By Lemma 6.1, we have

||u||H(curl,R3\Bl) < Coo ”AHH*IQ(Div,Fl) :
Let € be given in (6.4). Using (6.7a) and (6.5), we deduce that
||g(>\)||H—1/2(Div,r1) = [|+(A curl u)||H*1/2(Div,F1) <C HACUI'IUHH(cml,Ql)
<C {HACUI‘IU||L2(01) + ||k2A_luHL2(Ql)}
<C ||U||H(cur1,§21) < Coo ||)‘||H—1/2(Div,l“1) :

The proof is complete. O
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6.2. A weak formulation of (6.2). Based on the DtN operator, we define a
bilinear form on H (curl, ;) as follows

a(u,v) = / (Acurlu - curlv — kK*A™'u - v) + (G(nu),yrv)p, - (6.16)
1951
An_equivalent weak formulation of (6.2) reads: Find E € H(curl, Q) such that
vE =g onI'p and
a(E,v) =0 Vv € Hr,(curl, Q). (6.17)

We are going to prove the inf-sup condition of a and the well-posedness of (6.17).
Following [7], we define a bilinear form on the unbounded domain D, by

A(u,v) = / (Acurlu - curlv — k*A™'u - v) Vu,v € H(curl, D,).
D

c

LEMMA 6.3. There exists a constant C > 0 depending only on k, Ry such that

A
u < 00.7 su ‘ (’LL, ’U)|
| ”H(curl,Dc) 0 p

AW yue Hrp (curl, D).
vEHr [, (curl,D.) ||v||H(cur],Dc)

Proof. For given u, we define the linear functional [ € Hr,(curl, D.)" by
l(v):/ (curlu - curlo + u - v) Vv € Hr,(curl, D.).
D.

It is clear that
w) = [l ey s @) < [l griew, oy 19 ewrp,) -
We consider the weak formulation: Find wy € Hr,, (curl, D.) such that
Ay(ug,v) =1(v) Vv e Hyp,(curl,D,), (6.18)

where Ay: H(curl, D.) x H(curl,D.) — C is the bilinear form defined by

Ay (u,v) :/ (Acurlu - curlv + k*A™ u - v).
D

c

By virtue of (4.1)-(4.2) and (6.12)—(6.13), direct calculations show that
A4 (v,9)| > Re Ay (v,9) > 805 [0l 5 (ur,p.)

for some constant S > 0 depending only on k. This means that A, is coercive on
H (curl, D.). So problem (6.18) has a unique solution which satisfies

||u+HH(cur1,Dc) < Coy HlHH(curl,Dc)/ < Coy ”uHH(curl,DC) : (6.19)

Let u; € Hr,(curl,D.) be the solution of (5.18) where the righthand side is
given by f = 2k*A~1u,. Multiplying both sides of (5.18a) with v € C°(D..) and
using integration by part, we find that

A, v) = / Fov=Iiv)— A(ur,v)  Yoc CP(D).
D.
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The density of Cy°(D.) in Hr,, (curl, D.) indicates
A(uq,v / f-v=1I0wv)— A(us,v) Vv € Hr,(curl,D.).  (6.20)

Using Lemma 5.4 and (6.19), we have
w1l g (urt, 0.y < Co0 1 Fllz2p.y < CoG 1] g (eun, b, - (6.21)
Clearly w = uy +uy € Hrp,(curl, D.) and satisfies
A(w,v) = 1(v) Vv € Hr,(curl, D.).
Since A(+, ) is symmetric, combining (6.19)-(6.21) yields the desired inf-sup condition

wp Aol Al @) lsewnny

veHr [, (curl,D.) ||’U||H(curl,Dc) N ||wHH(cur1,Dc) Hw”H(curl,Dc) - Co§

This completes the proof. 0
LEMMA 6.4. For any u € Hr,(curl,Q), there is a constant Cin¢ depending only

on k, Ry, D such that
wp | latwv)

-7
T = Cintog ||u||H(curl,Ql) : (6.22)
‘UEHFD (curl,©q) ||’U||H(curl7ﬂl)

Proof. Remember that G(y;u) = n x A curl € where & € H (curl, R?\ B;) satisfies
curl(Acurlg) — k*A~'¢ =0 in R3\ By,
[Acurl£ X n] = [5 X n] =0 on X%,
%€ =vu on Iy,

where m is the outer normal to B;. Using integration by part, we have

(Gyw),yrv)p, = /

(n x Acurlg) - vypv = / (n x Acurlf)-v
|1

I

= / [Acurl€ - curlv — curl(A curl€) - v]
R3\Bl

:/ [Acurlé - curlv — k*°A™"'¢-v] Vv e Hrp,(curl,D,).
RS\Bl

Let w be the extension of u defined by

. u in Qq,
u = _
¢ in R3\B.
Then inserting the last equality into (6.16), we find that
a(u,v) = A(u,v) Vv € Hr,(curl,D.).
We conclude the inf-sup condition from Lemma 6.3 as follows
. |A(w, v)|
||u||H(curl,Q1) < HuHH(curl,Dc) < CUS sup
vEHr , (curl,D.) HvHH(curl,Dc)
e R — C0) B
vEHT [, (curl,Qy) HUHH(curl,Ql)
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The proof is completed. O
THEOREM 6.5. For any g €~H71/2(Div,FD), let E be the solution of (1.1) and
let E be defined in (6.1). Then E is the unique solution of (6.17) and satisfies

E| <cC ,
H H(curl,Qy) — HgH]’?’(curlaQo)

Proof. By Lemma 6.2 and Lemma 6.4, we know that a(:,-) provides a continuous
and coercive bilinear form on Hr,(curl, Q). So E is the unique solution of (6.17).
The stability is a direct consequence of Theorem 2.2 and (6.3). O

7. The PML problem. The purpose of this section is to study the PML ap-
proximation to the scattering problem (1.1) or to the exterior problem (6.2). Let
Ry > 2Ry and define By = B(Ry), Q2 = By\D, and I'; = 9B,. For convenience, let
the wave-absorbing layer and its thickness be denoted respectively by

QPML = Bg\Bl, d= diStaHCB(F1, Fg) = R2 — Rl.

We consider the PML problem with homogeneous boundary condition on the trunca-
tion boundary:

curl(Acurl E) — E?°A7'E =0 in Q, (7.1a)
[AcurlE xn] = [E xn]=0 on X, (7.1b)
wE=g on I'p, wE =0 on I's. (7.1c)

We first introduce the PML Dirichlet-to-Neumann operator G: H_I/Q(Div7 ) —
H~Y%(Div,Ty) as follows: for any A € H~Y/?(Div,T}), let G(A) = n x Acurl@ on
I'; where @ solves the Dirichlet boundary value problem

curl(Acurla) —k3A ' =0 in Qpyp NRE, (7.2a)
[Acurla x n] = [axn] =0 on X, (7.2b)
Yt =A on I'y, vt =0 on Is. (7.2¢)

By arguments similar the proofs of Lemma 6.1-6.2, we have the lemma on the stability
of G. The proof is omitted here for simplicity.
LEMMA 7.1. There exists a constant C > 0 depending only on k, Ry such that

oo |

a2 i) S O IMer272 ey -

LEMMA 7.2. Assume Ry > 2Ry and o9 > 4. There is a constant C depending
only on k, Ry such that, for any X € H_l/Q(Div,Fl),

o )

1
< 005d675k+00d A —1/2(Dj .
H-1/2(Divry) — IMEr=2r20iv,ra)

Proof. Given A € H_1/2(D1V,I‘1), let uw be the solution of problem (6.7). By
Lemma 6.1, u admits the integral representation

u(x) =JB%(ac)/F [VTGT(:&,-)Q(A) —I—WT(Acurl@)T(:i,-)/\} Vo e R3\B,.
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By Lemma 6.2, we have

lu(x)| < Co? {HG(&:,)H + HAcurl@(i } A &r-1/2(Div,ry)

H(curl,B) ’ )HH(curl,Bl)

< Coge” U N g2, Y €R\By.

Moreover, it is easy to see that
-1 = ~T ~ “N\ T ~
curlu(z) = J(x)B™ (x)V x / [G' (k;&,-)G(A) + (AcurlG)  (k;&,-) A].
I

Similarly, from Lemma 4.7 we have

eurlu()| < Cofe™ ¥+ [N g opier,) V& € RO\By.

By (6.6) and (7.2), G(A) — G(A) = n x Acurl¢ where £ solves the Dirichlet
boundary value problem in the layer

curl(Acurlé) —k3A ¢ =0 in Qpup NRI, (7.3)
[Acurl&xn} :[éxn]:o on X,
1#E=0 on I', m€&=mnu on I's.

A weak formulation reads: Find & € Hr, (curl, Qpyy,) such that 1€ = 3w on I's and
APML(£7 v) =0 Vo e I‘I(J(Cl.ll‘l7 QPML),

where Apyy: H(curl, Qpyr,) x H(curl, Qpyg,) — C is defined by
Apy (€,0) :/ (Acurlé-curlv — K°A'¢ - v).
Q1

Similar to (6.14), Apwmy, is coercive on H (curl, Qpyr,), namely,
1915 (curt.or) < CoolApuL(v,8)] Yo € H(curl, Qpy). (7.4)

Therefore, the weak problem has a unique solution.
Multiplying both sides of (7.3) with & and using integration by part, we have

ApmL(€,€) = */

wlhourle) €= [ wlhoul) yra.  (75)
I

Iy
Define O_ = By\B(Ry — Ro/8) and O, = B(Ry + Ry/8)\Bs. Clearly O, and O_
share the boundary I';. Combining (7.4) and (7.5), we deduce that
1€ 2 (curt @onee) < Coollve(AeurtO) oy oo vrul g o)
< Cog ||Acurlé]| g curo.) 1%l m(eurr,o)
< Coj 1€l £z (curt,o ) 1l Er(curto)) -
This shows that

_1
€1l 1 (curt,0pnr) < Cop Il greurto,) < Cogde™ 27701 Al zz-172(Div,ry) -
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Let Qy be defined in (6.4). Using (7.3) and (6.5), we conclude that

lan - g < |14 curl€] g eurna) < C 1€l preu )

H-'/2(Div,I'7)
5 1,—3kt00d
< Cofde™3 M =12 (Div,ry) -

The proof is complete. O
Based on the PML DtN operator, we define the bilinear form a: H (curl, ;) x
H(curl,Q;) — C by

a(u,v) = / (Acurlu - curlv — k*A™'u - v) + (G(veu),yro)r, .
1951

Then an equivalent weak formulation of (7.1) reads as follows: Find E € H(curl, Q)
such that wFE =g on I'p and

a(E,v)=0 VYwve Hp,(curl Q). (7.6)
THEOREM 7.3. Assume og > 4 and Ry is large enough. The bilinear form a
satisfies the inf-sup condition

|la(w, v)| Cing

sup z 207 ”wHH(curl,Ql) Vw e HFD(CUI‘I,Ql)7
0

vEHT, (curl,©21) ||UHH(cur1,Ql)
where Cine 1s the constant for the inf-sup condition in (6.22). Moreover, the PML
problem (7.1) has a unique solution E € H(curl, ;).

Proof. For any v,w € Hr,(curl, ), Lemma 7.2 shows that

A ) B I

57, —Lkiood
> |a(w,v)| — Cogde™ 2"+ ”’Vtw”H*l/?(Div,I‘l) ”’VTUHH*I/?(CurLI‘l)
57, —Lkiood
> la(w, v)| — Cogde™2"+7° ”wHH(curl,Ql) HUHH(curl,Ql) :
Let d be so large that 20062d6_%k+00d < Cint. Then the inf-sup condition comes from
Lemma 6.4. So problem (7.1) has a unique solution. O
Finally, we arrive at the main theorem of this paper.
THEOREM 7.4. Assume og > 4 and Ry is large enough. Let E, E be the solutions

of (1.1) and (7.1) respectively. There exists a constant C > 0 depending only on k,
Ry, and D such that

N 1
E — EH < Cdoj2e2k+o0d 9l gr-1/2(Di .
H H(curl,Qo) 0 || ||H (Div,I'p)

Proof. Write E=BEoF. By Theorem 6.5, E is the unique solution of problem
(6.17). From (6.17) and (7.6), we have
&(E - E,'U) = <g(’ytE) - gA(’YtE)77Tv>F1 Vv S HFD (Cur17 Ql)

By Lemma 7.2 and Lemma 7.3, we have

o ‘a(E _B, v)‘
E-E < Co} sup NP TE———
H(curl,©2) vEHT [, (curl,Qy) HUHH(curl,Ql)
< Col ||G(E) — G(wE H
=% g(’}/t ) g(’)/t ) H~1/2(Div,I'1)

< Cdofe vt | B '
- H(curl,Q;)
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The proof is completed by using Theorem 6.5. O
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