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Abstract. To deal with the divergence-free constraint in a double curl problem: curlµ−1curlu = f and div εu = 0
in Ω, where µ and ε represent the physical properties of the materials occupying Ω, we develop a δ-regularization method:
curlµ−1curluδ + δεuδ = f to completely ignore the divergence-free constraint div εu = 0. It is shown that uδ converges to u
in H(curl ; Ω) norm as δ → 0. The edge finite element method is then analyzed for solving uδ. With the finite element solution
uδ,h, quasi-optimal error bound in H(curl ; Ω) norm is obtained between u and uδ,h, including a uniform (with respect to δ)
stability of uδ,h in H(curl ; Ω) norm. All the theoretical analysis is done in a general setting, µ and ε may be discontinuous,
anisotropic and inhomogeneous, and the solution may have a very low piecewise regularity on each material subdomain Ωj with
u, curlu ∈ (Hr(Ωj))

3 for some 0 < r < 1, where r may be not greater than 1/2. To establish the uniform stability and the
error bound for r ≤ 1/2, we have respectively developed a new theory for the Kh ellipticity (related to mixed methods) and a
new theory for the Fortin interpolation operator. A series of numerical experiments are performed to illustrate the proposed
δ-regularization method.
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1. Introduction. Given a simply-connected Lipschitz polyhedron Ω ⊂ R3, with a connected boundary
∂Ω. Let µ, ε : Ω 7→ R3×3 be given matrix functions, representing the physical properties (such as permeability
and permittivity ) of the material occupying Ω. We assume that µ and ε are piecewise with respect to a finite
partition P of Ω, P = {Ωj , j = 1, 2, · · · , J}, where every Ωj is a simply-connected Lipschitz polyhedron
with connected boundary. Let Sint and Sext denote the collect of the faces of P contained in Ω and the
collect of the faces of P contained in ∂Ω, respectively. Let [q]|S denote the jump of q across S ∈ Sint. Given
f : Ω 7→ R3, satisfying div f = 0. Consider the double curl problem as follows:

curlµ−1curlu = f in Ωj , 1 ≤ j ≤ J, (1.1)

div εu = 0 in Ωj , 1 ≤ j ≤ J, (1.2)

[u× n]|S = 0, [µ−1curlu× n]|S = 0, [εu · n]|S = 0 ∀S ∈ Sint, (1.3)

u× n|S = 0 ∀S ∈ Sext. (1.4)

Problem (1.1)-(1.4) arises from computational electromagnetism [9][44][40][41]. An example is the vector
potential method [29] for some divergence-free unknown which may be expressed as the curl of u(the vector
potential), where the divergence-free constraint (1.2) is set up to ensure the uniqueness of the solution.
Otherwise, problem (1.1), (1.3) and (1.4) would have infinitely many solutions, due to the infinite dimensional
kernel of the curl operator consisting of the form ∇p where p ∈ H1

0 (Ω) = {v ∈ H1(Ω) : v|S = 0,∀S ∈ Sext}.
Another example [44] is from the stabilization of the time-harmonic Maxwell’s equation curlµ−1curlu−κ2u =
f with a very low frequency number κ, where the divergence-free constraint (1.2) may be introduced to play
the stabilization role so that even κ = 0 a unique solution can exist. By introducing Hilbert spaces

H(div ; Ω) = {v ∈ (L2(Ω))3 : div v ∈ L2(Ω)},

H(curl ; Ω) = {v ∈ (L2(Ω))3 : curl v ∈ (L2(Ω))3},

H0(curl ; Ω) = {v ∈ H(curl ; Ω) : u× n|S = 0 ∀S ∈ Sext},
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H(div ; ε; Ω) = {v ∈ (L2(Ω))3 : div εv ∈ L2(Ω)},

H(div 0; ε; Ω) = {v ∈ H(div ; ε; Ω) : div εv = 0}.

Corresponding to (1.1)-(1.4), we may state a variational problem as follows: Find u ∈ H0(curl ; Ω) ∩
H(div 0; ε; Ω) such that

(µ−1curlu, curl v) = (f, v) ∀v ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω), (1.5)

where (·, ·) stands for the L2-inner product, i.e., (u, v) =
∫
Ω
uv.

When discretized by a finite element method for solving problem (1.5), we would naturally seek the finite
element solution in a finite element subspace of H0(curl ; Ω)∩H(div 0; ε; Ω). However, as is well-known, it is
quite difficult to construct a finite element space consisting of lower-order piecewise polynomials to satisfy
the divergence-free constraint. With rather restrictive finite element triangulations (e.g., multiply-refined
composite elements) for lower-order (e.g., quadratic) elements or with higher-order (at least sextic) elements
together with some relatively less restrictive but still quite structured finite element triangulations, one could
construct divergence-free elements in the case where ε itself is piecewise polynomial [49].

In practice, the rule for dealing with the divergence-free constraint is to let it be satisfied weakly. This
could be done by including the divergence-free constraint directly into the variational formulation and by
seeking the solution in some bigger Hilbert space U without the divergence-free constraint other than the
restricted H0(curl ; Ω) ∩H(div 0; ε; Ω) with the divergence-free constraint. There are ways: the divergence-
regularization method and the mixed method. The former is to find u ∈ U such that

(µ−1curlu, curl v) + ⟨div εu, div εv⟩ = (f, v) ∀v ∈ U.

where ⟨·, ·⟩ may stand for the L2 inner product or the weighted L2 inner product or the L2-projected L2

inner product or the H−1 inner product of the dual Hilbert space H−1 (the dual of H1
0 (Ω)), and U may

be correspondingly taken as H0(curl ; Ω) ∩ H(div ; ε; Ω) or some weighted Hilbert space or H0(curl ; Ω) for
the latter two, see [33][23][27][10]. In the case where ⟨·, ·⟩ is simply taken as the L2 inner product, the
above is a second-order H0(curl ; Ω) ∩ H(div ; ε; Ω)-elliptic problem and the method is referred to as the
plain regularization (PR) method [33][22]. For smooth ε, one may consider the classical continuous finite
element method for the PR method. But, when the solution is not smooth and is only in Hr for some
r < 1, the continuous finite element method cannot give a correct solution [34][44][9][23][22]. On the other
hand, no finite element methods are immediately available for discontinuous ε when only based on the PR
formulation. To deal with the discontinuous ε, by the introduction of amounts of jumps into the above
formulation, one may consider the discontinuous Galerkin method with the use of discontinuous elements.
But, likewise, the discontinuous Galerkin method cannot accommodate the nonsmooth solution with a low-
regularity in Hr with r less than one [47]. Some of the combination of the nonconforming element method
and the discontinuous Galerkin method may lead to a correct approximation of the nonsmooth solution [13].
One may also still consider to use the continuous element if adopting the recently developed L2 projected
continuous finite element method [27][26] to solve the problem where ε may be discontinuous and the solution
may be nonsmooth. Both the H−1 method with ⟨·, ·⟩ being the H−1 inner product and the weighted method
with ⟨·, ·⟩ being the weighted L2 inner product can also allow the use of continuous elements for approximating
the nonsmooth solution [23][15][43]. All these methods involve sophisticated modifications.

The mixed method [44] for dealing with the divergence-free constraint is to find u ∈ H0(curl ; Ω) and
p ∈ H1

0 (Ω) such that

(µ−1curlu, curl v)+ (∇p, εv) = (f, v) ∀v ∈ H0(curl ; Ω),
(εu,∇q) = 0 ∀q ∈ H1

0 (Ω).
(1.6)

With the introduction of the Lagrange multiplier p, the solution is only required to belong to the Hilbert
space H0(curl ; Ω). The Lagrange multiplier p ∈ H1

0 (Ω) satisfies the following weak problem

(ε∇p,∇q) = (f,∇q) ∀q ∈ H1
0 (Ω). (1.7)

Note that p is actually equal to zero with a compatible f which satisfies div f = 0. For the mixed problem
(1.6) one may consider to use the edge element for u and the continuous element for p, or the discontinuous
Galerkin method [38]. The difficulty would be the verification of K -ellipticity in the classical theory for
saddle-point problems [14]. In the literature [3], the verification relies on the continuous embedding: there
exists some real number s which is greater than 1/2 such that the following continuous embedding holds:

H0(curl ; Ω) ∩H(div 0; Ω) ↪→ (Hs(Ω))3 where s > 1/2. (1.8)
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But, in some cases, such s > 1/2 does not exist for the above embedding to hold true, e.g., when Ω is
only Lipschitz, we can only find s = 1/2, see [21]. We will come back to this point again later. The most
difficult would be of course the saddle-point structure of the mixed problem, since the indefiniteness of the
saddle-point system would thwart many classical iterative algorithms, such as conjugate gradient algorithm.
The preconditioning is necessary to have a good iterative algorithm for solving the saddle-point system [5].

In our paper, we shall develop a new and much simpler method to deal with the divergence-free constraint.
We just completely neglect the divergence-free constraint and instead we consider a δ-perturbed problem:
with δ > 0 decreasing to zero, we are to find a family of uδ ∈ H0(curl ; Ω) such that

(µ−1curluδ, curl v) + δ(εuδ, v) = (f, v) ∀v ∈ H0(curl ; Ω). (1.9)

The δ-perturbed method will be called the δ-regularization method, since problem (1.9) is free of the
divergence-free constraint and since problem (1.9) is H0(curl ; Ω)-elliptic. In comparisons with previous
existing methods, there are several obvious features of the present method: a) it is no longer subject to
the divergence-free constraint; b) it is more suitable for discontinuous ε, since no div εv appears; c) it only
involves a space H0(curl ; Ω) which can be discretized by edge elements composing of lower-order piecewise
polynomials, since no Lagrange multiplier is introduced; d) it is always well-posed and results in a symmetric,
positive definite system in the finite element discretization, so the resultant algbraic system may be imple-
mented more readily. In fact, since it results in a symmetric, positive definite system, the δ-regularization
problem may be conveniently readily solved by any direct or iterative methods [31]. Moreover, nowadays
there are highly efficient multigrid methods and preconditioning techniques available for solving (1.9) where
multigrid convergence and preconditioned conditioning are uniform with respect to the parameter δ [4][35].

With the compatible source f satisfying div f = 0, for all δ > 0, we can verify that uδ satisfies the
divergence-free condition:

div εuδ = 0. (1.10)

We show that uδ converges to the original u in both the H(curl ; Ω)-norm and the H(curl ; Ω)∩H(div ; ε; Ω)-
norm, namely,

||u− uδ||0,curl ,div ,ε = ||u− uδ||0,curl ≤ Cδ||u||0, (1.11)

where ||v||20,curl := ||v||20 + ||curl v||20, ||v||20,curl ,div ,ε := ||v||20 + ||curl v||20 + ||div εv||20, and || · ||0 represents

the L2-norm. We then analyze the edge finite element method for the δ-regularization problem in the finite
element space Uh ⊂ H0(curl ; Ω), under the general setting where µ, ε may be discontinuous, anisotropic and

inhomogeneous and u, curlu are nonsmooth, which may also have very low regularity only in
∏J

j=1(H
r(Ωj))

3

for some 0 < r < 1. Assume that Uh allows the usual both L2 and H(curl )-orthogonal decomposition
[44]. For the lowest-order edge/Nédélec element of first-family [45][44][34], we establish the following error
estimates, which is optimal with respect to the regularity of the solution,

||u− uδ,h||0,curl ≤ C(δ + hr)||f ||0, (1.12)

where uδ,h is the finite element solution of the δ-regularization problem, f ∈ H(div 0; Ω) := H(div 0; 1; Ω),
and C does not depend on δ. From (1.12) we may choose δ ≤ hr to have the optimal error bound in the
usual sense. A ready choice is δ = h. Note that if the solution and its curl are more regular, higher-order
edge elements can be employed to result in higher-order error bounds. At the same time, a uniform stability
for any given compatible f ∈ H(div 0; Ω) is obtained where C does not depend on δ as follows:

||uδ,h||0,curl ≤ C||f ||0. (1.13)

Very interesting, the theory for the uniform stability (1.13) is closely related to the well-posedness of
the mixed problem (1.6). In fact, (1.13) is essentially the consequence of the Kh-ellipticity (which, together
with the Inf-Sup condition, ensures the well-posedness of the mixed problem (1.6)). In the literature [44][3],
the Kh-ellipticity was only shown under the assumption (1.8) with s > 1/2. In this paper, we shall establish
the Kh-ellipticity using Assumption A3) (regular-singular decomposition) in section 4, instead of (1.8). The
Assumption A3) is much weaker than (1.8), because the former can generally hold but the latter may not
hold.

In addition, the error bound in H(curl )-norm in (1.12) is obtained with the help of the Fortin operator
[8]. Likewise, in the literature, the well-posedness and the error estimate of the Fortin operator rely on the
assumption (1.8) with s > 1/2. Under the much weaker Assumption A3) again, in this paper we shall provide
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a theory for the well-posedness and the error estimate for the Fortin operator, so that we can establish the
error estimate (1.12) in H(curl ; Ω) norm for very low regular solution, i.e., r in (1.12) can be not greater
than 1/2. Note that for interface problem, not only the global regularity of the solution is very low (this is
a well-known fact), but also its piecewise regularity over each material subdomain Ωj may be still possibly
very low, see [24]. Since the method and the theory of this paper are valid to the solution with a very low

piecewise regularity, i.e., u, curlu ∈
∏J

j=1(H
r(Ωj))

3, where r may be less than 1/2 and even close to zero,
the theory is also applicable to the edge finite element methods and the related discontinuous methods in
computational electromagnetism. This is in sharp contrast to the numerous existing literature, where r and
s are usually assumed to be greater than 1/2, e.g., see [2] [8] [17] [36] [44] [37], [38], just to name a few.

Before closing this section, we also remark that the method and theory developed here also cover the
following more general model which is widely employed in computational electromagnetism: given f, g, α
and a third material matrix ε1, to find the solution pair u and p such that

curlµ−1curlu+ αεu+ ε1∇p = f in Ω, (1.14)

div εu = g in Ω, (1.15)

u× n|S = 0, p|S = 0 ∀S ∈ Sext, (1.16)

In fact, we can first solve in parallel, simultaneously the two second-order elliptic interface problems in
H1

0 (Ω) space for p and some p∗ which solves div ε∇p∗ = g, and then we are left with a problem, similar to
(1.1)-(1.4), which the δ-regularization method can be applied to.

The rest of this paper is arranged as follows: In section 2, we obtain the convergence of the solution of
problem (1.9) to the solution of problem (1.5). In section 3, the edge finite element method is defined and
the uniform stability (1.13) is obtained under the assumption (1.8). In section 4, a general Kh ellipticity is
established without the assumption (1.8), instead under Assumption A3) the regular-singular decomposition.
As a result of the Kh ellipticity, the uniform stability (1.13) holds. In section 5, for a concrete choice of
the edge element in [45], the error estimates of the finite element solution of problem (1.9) is established,
especially the error bound in H(curl )-norm is obtained with the help of the Fortin operator. In section
6, under Assumption A3) we present the general theory for the Fortin operator without the assumption
(1.8). In section 7, some numerical experiments are performed to illustrate the proposed method. In the
last section, a conclusion remark is given and how to extend the proposed method to solve (1.14)-(1.16) is
briefly discussed.

2. Convergence for continuous problem. Throughout the paper, we shall use the standard Hilbert
and Sobolev spaces Hs(Ω) for any s ∈ R and Lp(Ω) for any p ≥ 2, see [1][32].

Assume that µ and ε are symmetric, positive definite, satisfying

ξ′µ(x)ξ, ξ′ε(x)ξ ≥ C|ξ|2 ∀ξ ∈ R3 almost everywhere over Ω̄,

µ, ε ∈ (L∞(Ω))3×3, µ|Ωj , ε|Ωj ∈ (W 1,∞(Ωj))
3×3, 1 ≤ j ≤ J,

where µ, ε are required to be piecewise smooth so that we could obtain the regularity of the solution of
problem (1.1)-(1.4). Let ||v||20,µ−1 := (µ−1v, v) and ||v||20,ε := (εv, v) be the µ−1-weighted and ε-weighted L2

norm respectively.
We first give a lemma about the divergence of uδ.
Lemma 2.1 Let uδ ∈ H0(curl ; Ω) denote the solution of problem (1.9). For the compatible f ∈

H(div 0; Ω), then uδ ∈ H0(curl ; Ω) ∩H(div ; ε; Ω) satisfies

div εuδ = 0. (2.1)

Proof. Since (C∞
0 (Ω))3 is dense in H0(curl ; Ω), and taking v ∈ (C∞

0 (Ωj))
3, 1 ≤ j ≤ J , from (1.9) we

find that

curlµ−1curluδ + δεuδ = f in Ωj , 1 ≤ j ≤ J, (2.2)

holds in the distributional sense. But, f, uδ ∈ (L2(Ωj))
3, (2.2) also holds in (L2(Ωj))

3. We then take
v ∈ (C∞

0 (Ω))3 in (1.9) to have [µ−1curlu × n]|S = 0 for all S ∈ Sint. Hence, (2.2) is in fact valid globally
in Ω. Since f ∈ H(div 0; Ω), by applying the divergence operator to both sides of (2.2) we immediately
conclude the proof of the lemma. 2
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We next recall a Poincaré-Friedrichs’ inequality over H0(curl ; Ω)∩H(div 0; ε; Ω) by stating it in a propo-
sition as follows.

Proposition 2.1 [28] For any Lipschitz domain Ω and for any ε as assumed earlier, we have

||v||0 ≤ C||curl v||0 ∀v ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω). (2.3)

We are now in a position to investigate the existence and uniqueness and the convergence of uδ.
Theorem 2.1 For any given δ > 0 and for any f ∈ (L2(Ω))3 problem (1.9) has a unique solution uδ.

And, for the compatible f ∈ H(div 0; Ω), there exists a constant C > 0, independent of δ, such that

||uδ||0,curl ≤ C||f ||0. (2.4)

Proof. Let

Aδ(u, v) := (µ−1curlu, curl v) + δ(εu, v). (2.5)

We find that Aδ(u, v) is a bilinear form from H0(curl ; Ω)×H0(curl ; Ω) → R, satisfying

|Aδ(u, v)| ≤ Cmax(1, δ)||u||0,curl ||v||0,curl ∀u, v ∈ H0(curl ; Ω) (2.6)

and

Aδ(v, v) = ||curl v||20,µ−1 + δ||v||20,ε ≥ Cmin(1, δ)||v||20,curl ∀v ∈ H0(curl ; Ω). (2.7)

We also see that

|(f, v)| ≤ ||f ||0||v||0 ≤ ||f ||0||v||0,curl ∀v ∈ H0(curl ; Ω). (2.8)

Thus, from the classical Lax-Milgram lemma [12], we conclude that problem (1.9) admits a unique solution
uδ ∈ H0(curl ; Ω) for any given δ > 0 and for any given f ∈ (L2(Ω))3. From Lemma 2.1 uδ is in fact in
H0(curl ; Ω) ∩H(div 0; ε; Ω), and from (2.3) in Proposition 2.1 we have

||uδ||0 ≤ C||curluδ||0 ≤ C||curluδ||0,µ−1 , (2.9)

and we take v = uδ in (1.9) to have

(µ−1curluδ, curluδ) + δ(εuδ, uδ) = (f, uδ) ≤ C||f ||0||curluδ||0,µ−1 . (2.10)

We thus have

||curluδ||0,µ−1 ≤ C||f ||0. (2.11)

It follows from (2.9) and (2.11) that (2.4) holds. 2

Remark 2.1 With the compatible f ∈ H(div 0; Ω), from Proposition 2.1 we have a stability for the
original u, the solution to problem (1.5), as follows:

||u||0,curl ≤ C||f ||0. (2.12)

Theorem 2.2 Let u and uδ denote the solutions of problem (1.5) and problem (1.9), respectively.
Assuming a compatible f ∈ H(div 0; Ω), we have the convergence

||u− uδ||0,curl = ||u− uδ||0,curl ,div ,ε ≤ Cδ||u||0, (2.13)

where C does not depend on δ.
Proof. From Lemma 2.1 and (1.2) we observe that ||u − uδ||0,curl ,div ,ε = ||u − uδ||0,curl . Taking v :=

u− uδ ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω), from (1.5) and (1.9) we have

||curl (u− uδ)||20,µ−1 + δ||u− uδ||20,ε = δ(εu, u− uδ). (2.14)

Hence, from (2.3) in Proposition 2.1 with u− uδ ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω), we have

||u− uδ||20,curl ≤ C||curl (u− uδ)||20,µ−1 ≤ C|δ(εu, u− uδ)| ≤ Cδ||u||0||curl (u− uδ)||0,µ−1 , (2.15)

where we used ||u− uδ||0 ≤ C||curl (u− uδ)||0 ≤ C||curl (u− uδ)||0,µ−1 , and we have (2.13). 2

Remark 2.2 From (2.4) and (2.13) we have the convergence

||u− uδ||0,curl = ||u− uδ||0,curl ,div ,ε ≤ Cδ||f ||0. (2.16)
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3. Edge finite element method. For any given h > 0, let Th denote the shape-regular conforming
triangulation of Ω into tetrahedra [18][12], where h := maxT∈Th

hT , and hT denotes the diameter of T . We
assume that Th is also conforming along every interface S ∈ Sint and every boundary face S ∈ Sext. Let

Uh ⊂ H0(curl ; Ω) (3.1)

denote the finite element subspace, which is usually composed of piecewise polynomials with respect to Th.
We then state the finite element problem corresponding to problem (1.9): To find uδ,h ∈ Uh such that

(µ−1curluδ,h, curl v) + δ(εuδ,h, v) = (f, v) ∀v ∈ Uh. (3.2)

Theorem 3.1 For any f ∈ (L2(Ω))3, for any δ > 0 and for any h, problem (3.2) is well-posed.
Proof. Thanks to the conformity of Uh in H0(curl ; Ω), from the coercivity (2.7) we easily infer that

problem (3.2) has a unique solution uδ,h ∈ Uh and ||uδ,h||0,curl ≤ Cδ−1||f ||0. 2

As seen earlier, from the coercivity (2.7), we cannot obtain a uniform stability on uδ,h with respect to
the parameter δ. In order to have a uniform stability like (2.4) for the finite element solution uδ,h, we are to
make the following very useful decomposition assumption about Uh.

Assumption A1) Let (·, ·)0,ε = (ε·, ·) denote the ε-weighted L2 inner product. We assume that Uh

admits an L2-orthogonal decomposition with respect to the ε-weighted L2 inner product (·, ·)0,ε:

Uh = Zh(ε) +∇Qh, (3.3)

where Zh(ε),∇Qh are closed subspaces of Uh, defined by

Zh(ε) = {v ∈ Uh : (εv,∇q) = 0, ∀q ∈ Qh}, (3.4)

Qh ⊂ H1
0 (Ω). (3.5)

Clearly, the above decomposition is also an ε-and µ−1-weighted H0(curl ; Ω) orthogonal, i.e., for all z ∈ Zh(ε)
and for all q ∈ Qh,

(z,∇q)H0(curl ;Ω),ε,µ−1 := (εz,∇q) + (µ−1curl z, curl∇q) = 0.

Remark 3.1 In fact, for any given v ∈ Uh, we first let ph ∈ Qh uniquely solve (ε∇ph,∇q) = (εv,∇q)
for all q ∈ Qh. We have (ε(v − ∇ph),∇q) = 0 for all q ∈ Qh. Putting zh := v − ∇ph ∈ Uh, we see that
v = zh +∇ph is the desired, with zh ∈ Zh(ε). 2

We next make an assumption about the regularity of H0(curl ; Ω) ∩H(div 0; Ω).
Assumption A2) We assume that there exists a s > 0 such that

H0(curl ; Ω) ∩H(div 0; Ω) ↪→ (Hs(Ω))3 (3.6)

is a continuously embedding, satisfying for all v ∈ H0(curl ; Ω) ∩H(div 0; Ω)

||v||s ≤ C||curl v||0. (3.7)

Remark 3.2 When s > 1/2, Assumption A2) is (1.8). For Ω being Lipschitz polyhedron, we have
s > 1/2, see [3]. For general Lipschitz domains, s = 1/2, see [21]. Possibly, s < 1/2, e.g., for non-Lipschitz,
non-simply-connected domains with screening parts [22].

Proposition 3.1 Assume that s > 1/2 in Assumption A2). We have the Kh-ellipticity as follows:

||v||0 ≤ C||curl v||0 ∀v ∈ Kh := Zh(ε). (3.8)

Proof. For ε = 1, (3.8) is proven in [3]. For a general ε, (3.8) is essentially proven in [44]. 2

Remark 3.3 Note that s > 1/2 of Assumption A2) is used in the literature [3][44]. As we mentioned
earlier, s may not be greater than 1/2, i.e., s ≤ 1/2 possibly. We have not been aware of any work in the
literature in which the Kh ellipticity (3.8) was shown without this requirement, so we will show (3.8) in a
different way but not using Assumption A2) in the next section.

Remark 3.4 We refer (3.8) to as the Kh-ellipticity using the terminology in the classical theory for
the mixed problem (1.6) where Kh = Zh(ε), since there is some relationship between the δ-regularization
problem and the mixed problem (1.6). Nevertheless, problem (3.2) does not need the Kh-ellipticity to ensure
the well-posedness, but problem (1.6) does.
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With (3.8) in Proposition 3.1 at hand, we can establish the uniform stability of uδ,h below.
Theorem 3.2 Let uδ,h ∈ Uh be the solution to problem (3.2). Assume Assumption A1) and the

Kh-ellipticity (3.8), we have the following uniform stability for the compatible f ∈ H(div 0; Ω)

||uδ,h||0,curl ≤ C||f ||0, (3.9)

where C does not depend on δ.
Before proving (3.9), we give a lemma for what the true space is for the finite element solution uδ,h of

problem (3.2).
Lemma 3.1 Let uδ,h ∈ Uh be the solution of problem (3.2). Then, under Assumption A1), for a

compatible f ∈ H(div 0; Ω), we have uδ,h ∈ Zh(ε).
Proof. From Assumption A1), we have the following ε-weighted L2-orthogonal decomposition

uδ,h = zδ,h +∇pδ,h, (3.10)

where zδ,h ∈ Zh(ε) and pδ,h ∈ Qh. From Assumption A1) again, problem (3.2) may re-cast into a mixed
problem (in fact, two decoupled subproblems): Find zδ,h ∈ Zh(ε) and pδ,h ∈ Qh such that

(µ−1curl zδ,h, curl z) + δ(εzδ,h, z) = (f, z) ∀z ∈ Zh(ε), (3.11)

δ(ε∇pδ,h,∇q) = (f,∇q) ∀q ∈ Qh. (3.12)

But, f ∈ H(div 0; Ω), we find that pδ,h is equally zero, and we conclude that uδ,h = zδ,h ∈ Zh(ε), solving
(3.11). 2

Proof of Theorem 3.2 From Lemma 3.1, (3.8) and (3.11) it immediately follows that (3.9) holds. 2

4. A general verification of Kh-ellipticity. In order to establish the Kh-ellipticity (3.8) without
using Assumption A2), we make the following assumption instead of Assumption A2).

Assumption A3) We assume that for any v ∈ H0(curl ; Ω) ∩H(div 0; Ω) it admits a regular-singular
decomposition in the following:

v = z0 +∇p0, (4.1)

where z0 ∈ H0(curl ; Ω) ∩ (Ht(Ω))3 for some t > 1/2 and p0 ∈ H1
0 (Ω), satisfying

||z0||t + ||p0||1 ≤ C||curl v||0. (4.2)

Remark 4.1 For Lipschitz domains, in [7] it is shown that t = 1. In this paper, we need only t > 1/2.
Lemma 4.1 Assuming Assumption A3) we have the Kh ellipticity (3.8), i.e.

||v||0 ≤ C||curl v||0 ∀v ∈ Zh(ε). (4.3)

Before proving Lemma 4.1, we recall the L2 orthogonal decomposition for (L2(Ω))3 and recall the finite
element interpolation theory of Uh.

Proposition 4.1 [28] For any v ∈ (L2(Ω))3 and for any Lipschitz domain Ω, it can be written as the
following L2-orthogonal decomposition:

v = v1 +∇p1, (4.4)

where v1 ∈ H(div 0; Ω), p1 ∈ H1
0 (Ω).

For proving Lemma 4.1 we need to specify Uh. We use the first family of edge/Nédélec elements in [45],

see also [44] [30] for a unified description. Over every T ∈ Th, let Pl(T ) and P̃l(T ) denote the space of
polynomials of total degree not greater than the integer l ≥ 0 and the subspace of homogeneous polynomials
of total degree l, respectively. On every T ∈ Th, for l ≥ 1 putting the Nédélec element of order l as follows:

Nl(T ) := span{a+ b, a ∈ (Pl−1(T ))
3, b ∈ (P̃l(T ))

3, b · x = 0}, (4.5)

we define Uh by

Uh = {v ∈ H0(curl ; Ω) : v|T ∈ Nl(T ), ∀T ∈ Th}. (4.6)
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The degrees of freedom for any function v ∈ Nl(T ) on each T ∈ Th, with the tangential vector τ along the
edge e and the normal vector n to the face F , are as follows:∫

e

v · τq ∀q ∈ Pl−1(e),

∫
F

(v × n) · q ∀q ∈ (Pl−2(F ))2,

∫
T

v · q ∀q ∈ (Pl−3(T ))
3.

For any given u with suitable regularity (see Remark 4.3 below) we can define a unique ΠTu ∈ Nl(T ) using
the above degrees of freedom, i.e.,∫

e

ΠTu · τq =

∫
e

u · τq ∀q ∈ Pl−1(e), ∀e ∈ ∂F, ∀F ∈ ∂T,

∫
F

(ΠTu× n) · q =

∫
F

(u× n) · q ∀q ∈ (Pl−2(F ))2, ∀F ∈ ∂T,

∫
T

ΠTu · q =

∫
T

u · q ∀q ∈ (Pl−3(T ))
3.

Remark 4.2 For Uh defined as above, Assumption A1) holds, where

Qh = {q ∈ H1
0 (Ω) : q|T ∈ Pl(T ), ∀T ∈ Th}.

Throughout this paper, we shall focus on the lowest-order edge element method, namely, l = 1, since we
are interested in the low regular solution of Hr function for some r ≤ 1. It is of course straightforward to
consider higher-order elements if the solution is more regular.

We also need the auxiliary Raviart-Thomas finite element space of H0(div ; Ω), denoted by Xh, which is
closely related to Uh, see [45][44][14][30]. On each T ∈ Th, for l ≥ 1 putting the Raviart-Thomas element of
order l as follows:

RT l(T ) = span{a+ bx, a ∈ (Pl−1(T ))
3, b ∈ P̃l−1(T )}, (4.7)

Xh = {v ∈ H0(div ; Ω) : v|T ∈ RT l(T ), ∀T ∈ Th}. (4.8)

The degrees of freedom for any function v ∈ RT l(T ) on each T ∈ T are as follows:∫
F

v · nq ∀q ∈ Pl−1(F ),

∫
T

v · q ∀q ∈ (Pl−2(T ))
3.

For any given u with suitable regularity (see Remark 4.3 below) we can define a unique ΥTu ∈ RT l(T ) using
the above degrees of freedom, i.e.,∫

F

ΥTu · nq =

∫
F

u · nq ∀q ∈ Pl−1(F ), ∀F ∈ ∂T,

∫
T

ΥTu · q =

∫
T

u · q ∀q ∈ (Pl−2(T ))
3.

Let Πh and Υh respectively denote the finite element interpolant onto Uh and Xh, with Πhu|T = ΠTu
and Υhu|T = ΥTu for all T ∈ Th. Let u be a given function making Πhu ∈ Uh and Υhcurlu ∈ Xh

well-defined. Then curlUh ⊂ Xh and curlΠhu = Υhcurlu.
Remark 4.3 If u ∈ H(div ;T ) ∩ (Lp(T ))3 for some p > 2, then ΥTu is well-defined , see [14]. If u

satisfies the following regularity

{u ∈ (Lp(T ))3 : curlu ∈ (Lp(T ))3, v × n ∈ (Lp(∂T ))3},

where p > 2, then ΠTu is well-defined, see [3]. There are several examples of u for which ΠTu is well-
defined. 1) u ∈ (Hs(T ))3 for some s > 1/2 and curlu ∈ (Lp(T ))3 for some p > 2, ΠTu is well-defined,
since by Sobolev embedding theorem Hs(T ) for some s > 1/2 is continuously embedded into Lp(∂T ) with

p =
6

3− 2(s− 1/2)
> 2; 2) When u, curlu ∈ (Hs(T ))3 for some s > 1/2, ΠTu is also well-defined, since by

Sobolev embedding theorem Hs(T ) is continuously embedded into Lp(T ) with p =
6

3− 2s
> 2; 3) When

u ∈ (Hs1(T ))3 for some s1 > 1/2 and curlu ∈ (Hs2(T ))3 for some s2 > 0 , ΠTu is well-defined, since by
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Sobolev embedding theorem we know that Hs1(T ) for s1 > 1/2 is continuously embedded into Lq(∂T ) with

q =
6

3− 2(s1 − 1/2)
> 2, and Hsi(T ) is continuously embedded into Lpi(T ) with pi =

6

3− 2si
> 2. Take

p := min(q, p1, p2) > 2; 4) For u ∈ (Hs(T ))3 for some s > 1/2 and curlu ∈ Xh, ΠTu is well-defined.
Below we recall the finite element interpolation property we shall use.
Proposition 4.2 [44] For u ∈ (Hs(Ω))3 for some s > 1/2 and curlu ∈ Xh, ΠTu is well-defined and

we have

||ΠTu− u||0,T ≤ Chs
T (||u||s,T + ||curlu||0,T ) ∀T ∈ Th. (4.9)

For u ∈ (Hs1(Ω))3 for some s1 > 1/2 and curlu ∈ (Hs2(Ω))3 for some s2 > 0, ΠTu is well-defined and we
have

||ΠTu− u||0,T ≤ Chs1
T (||u||s1,T + ||curlu||s2,T ) ∀T ∈ Th, (4.10)

||curl (ΠTu− u)||0,T ≤ Chs2
T ||curlu||s2,T ∀T ∈ Th. (4.11)

Proof of Lemma 4.1. For v ∈ Zh(ε) ⊂ Uh, it admits a both L2 and H0(curl ; Ω) orthogonal decomposi-
tion (see Assumption A1) with ε = 1) as follows:

v = ṽ +∇ph, (4.12)

where ṽ ∈ Zh(1) and ph ∈ Qh. Since v ∈ Zh(ε), we have

(εv, v) = (εv, v −∇ph) = (εv, ṽ). (4.13)

Hence

||v||20 ≤ C||v||20,ε = C(εv, v) = C(εv, ṽ) ≤ C||v||0,ε||ṽ||0, (4.14)

that is

||v||0 ≤ C||ṽ||0. (4.15)

Noticing that

curl v = curl ṽ, (4.16)

if we can show

||ṽ||0 ≤ C||curl ṽ||0 (4.17)

then we have the conclusion (4.3). In what follows, we are to show (4.17).
According to Proposition 4.1, with the given ṽ ∈ Uh ⊂ H0(curl ; Ω) we first have the L2 orthogonal

decomposition

ṽ = v1 +∇p1, v1 ∈ H0(curl ; Ω) ∩H(div 0; Ω), p1 ∈ H1
0 (Ω), (4.18)

then from Assumption A3) we have the regular-singular decomposition for v1 ∈ H0(curl ; Ω) ∩H(div 0; Ω):

v1 = v0 +∇p0, v0 ∈ (Ht(Ω))3, p0 ∈ H1
0 (Ω), (4.19)

where, t > 1/2, and

||v0||t ≤ C||curl v1||0 = C||curl ṽ||0. (4.20)

We thus have

ṽ = v0 +∇p, p := p0 + p1 ∈ H1
0 (Ω), (4.21)

curl v0 = curl ṽ ∈ Xh. (4.22)
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From Proposition 4.2 we know that Πhv0 is well-defined, satisfying

||Πhv0 − v0||0 ≤ Cht(||v0||t + ||curl v0||0) ≤ Cht||curl ṽ||0, (4.23)

from which and (4.20) we have

||Πhv0||0 ≤ C||curl ṽ||0. (4.24)

Consequently, Πh∇p is also well-defined, and it is a well-known result [30] that Πh∇p = ∇qh for some
qh ∈ Qh. Therefore,

||ṽ||20 = (ṽ, ṽ) = (ṽ, v0 +∇p) = (ṽ, v0 +∇p−Πh(v0 +∇p)) + (ṽ,Πhv0 +∇qh), (4.25)

where, since Πhvh = vh for all vh ∈ Uh, we have

(ṽ, v0 +∇p−Πh(v0 +∇p)) = (ṽ, ṽ −Πhṽ) = 0, (4.26)

and since ṽ ∈ Zh(1), we have

(ṽ,Πhv0 +∇qh) = (ṽ,Πhv0) ≤ ||ṽ||0||Πhv0||0 ≤ C||ṽ||0||curl ṽ||0. (4.27)

Thus, (4.17) follows from (4.25)-(4.27). 2

Remark 4.4 The difference between Proposition 3.1 and Lemma 4.1 is that the former requires the
continuously embedding (3.6) for some s > 1/2 in Assumption A2); while the latter instead requires a weaker
Assumption A3). For Lipschitz domains, only s = 1/2 in Assumption A2), while Assumption A3) holds with
t = 1.

Remark 4.5 Theorem 3.2 holds, since the Kh ellipticity (4.3) and Assumption A1) with Uh defined
by (4.6) hold.

5. Error estimates. In this section, we will establish the convergence of uδ,h.
From Proposition 4.2 we first recall the finite element interpolation theory of Πh in Uh for a u with a

piecewise regularity with respect to the material subdomains.
Proposition 5.1 Let u, curlu ∈

∏J
j=1(H

r(Ωj))
3 for some r > 1/2. Then, Πhu is well-defined and

satisfies

||u−Πhu||0,curl ≤ Chr(

J∑
j=1

||u||r,Ωj + ||curlu||r,Ωj ). (5.1)

Since Aδ(u, v) given by (2.5) is coercive over H0(curl ; Ω) and the consistency property between problem
(1.9) and problem (3.2) holds because of the conformity of Uh ⊂ H0(curl ; Ω), it is not difficult to have the
following quasi-optimal error estimates following the classical Céa’s argument in [18].

Proposition 5.2 Let uδ ∈ H0(curl ; Ω) be the solution of problem (1.9) and uδ,h ∈ Uh the solution of
problem (3.2). Then

||uδ − uδ,h||Aδ
= inf

v∈Uh

||uδ − v||Aδ
, (5.2)

where

||v||2Aδ
:= Aδ(v, v) = (µ−1curl v, curl v) + δ(εv, v). (5.3)

From Proposition 5.1 and Proposition 5.2 we can obtain the error estimates following the classical finite
element theory in [18].

Proposition 5.3 Let uδ ∈ H0(curl ; Ω) be the solution of problem (1.9) and uδ,h ∈ Uh the solution of

problem (3.2). Assume that uδ, curluδ ∈
∏J

j=1(H
r(Ωj))

3 for some r > 1/2. Then

||uδ − uδ,h||Aδ
≤ Chr(

J∑
j=1

||uδ||r,Ωj + ||curluδ||r,Ωj ). (5.4)

To relate the right-hand side of (5.4) to the source function f , we need to make the following assumption.
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Assumption A4) We assume that there exists a r > 0 such that

H0(curl ; Ω) ∩H(div 0; ε; Ω) ↪→
J∏

j=1

(Hr(Ωj))
3 (5.5)

is a continuously embedding, satisfying for all v ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω)

J∑
j=1

||v||r,Ωj ≤ C||curl v||0. (5.6)

Note that this Assumption A4) reduces to Assumption A2) for ε = 1.
Assumption A5) Introduce H0(div

0;µ; Ω) = {v ∈ (L2(Ω))3 : divµv = 0, µv · n|S = 0,∀S ∈ Sext}.
We assume that there exists a r > 0, the same as in Assumption A4), such that

H(curl ; Ω) ∩H0(div
0;µ; Ω) ↪→

J∏
j=1

(Hr(Ωj))
3 (5.7)

is a continuously embedding, satisfying for all v ∈ H(curl ; Ω) ∩H0(div
0;µ; Ω)

J∑
j=1

||v||r,Ωj ≤ C||curl v||0. (5.8)

Remark 5.1 The regularity in Assumption A4) and Assumption A5) may be possibly different, but
here we assume the same r.

Lemma 5.1 Given a compatible f ∈ H(div 0; Ω). Under Assumption A4) and Assumption A5), the
solution uδ of problem (1.9) and the solution u of problem (1.5), together with curluδ and curlu, are in∏J

j=1(H
r(Ωj))

3, and the following hold:

J∑
j=1

||uδ||r,Ωj + ||curluδ||r,Ωj ≤ C||f ||0, (5.9)

J∑
j=1

||u||r,Ωj + ||curlu||r,Ωj ≤ C||f ||0. (5.10)

Proof. Observe that uδ and u belong to H0(curl ; Ω) ∩H(div 0; ε; Ω) and satisfy ||uδ||0,curl , ||u||0,curl ≤
C||f ||0 (See Lemma 2.1, Theorem 2.1 and Remark 2.1). At the same time, both µ−1curluδ and µ−1curlu
belong to H(curl ; Ω) ∩H0(div

0;µ; Ω), satisfying

||curlµ−1curlu||0 = ||f ||0, (5.11)

||curlµ−1curluδ||0 = ||f − δεuδ||0 ≤ ||f ||0 + C||uδ||0 ≤ C||f ||0. (5.12)

Hence, from Assumption A4) and Assumption A5) we conclude that Lemma 5.1 holds, noting that µ|Ωj is
in (W 1,∞(Ωj))

3×3. 2

Theorem 5.1 Assume that r > 1/2 holds in Assumption A4) and Assumption A5). Then, the solution
u of problem (1.5) and the solution uδ,h of problem (3.2) satisfy the following error estimation:

||u− uδ,h||Aδ
≤ C(δ + hr)||f ||0. (5.13)

Proof. From Proposition 5.3 and Lemma 5.1 we obtain

||uδ − uδ,h||Aδ
≤ Chr||f ||0. (5.14)

Secondly, from Theorem 2.2 and Remark 2.2 we have

||u− uδ||Aδ
≤ C||u− uδ||0,curl ≤ Cδ||u||0 ≤ Cδ||f ||0. (5.15)

By the triangle inequality we immediately obtain (5.13) from (5.14) and (5.15). 2
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Remark 5.2 The inadequacy of the error estimates of (5.13) in Theorem 5.1 is the δ-dependent norm
|| · ||Aδ

. However, we can have uniform error estimates, i.e., (5.13) can hold for the error u − uδ,h in the
standard H(curl ; Ω) norm ||v||20,curl = ||v||20 + ||curl v||20. We will achieve this by using the Fortin-type finite
element interpolation [8].

In what follows, we only consider the case where µ = ε = 1 and use the Fortin-operator to obtain the
uniform error estimates under the same assumptions in Theorem 5.1. The study for the case with general
µ, ε and with very low regular solution will be deferred to the next section.

Let πh be the Fortin operator defined by seeking πhu ∈ Zh(1) ⊂ Uh for a given u ∈ H0(curl ; Ω) ∩
H(div 0; Ω) such that

(curlπhu, curl v) = (curlu, curl v) ∀v ∈ Uh, (5.16)

(πhu,∇q) = 0 ∀q ∈ Qh. (5.17)

Proposition 5.4 [4][8][44][34] Let u ∈ H0(curl ; Ω) ∩H(div 0; Ω) and let πhu be defined by (5.16) and
(5.17). Assuming the same Assumptions as in Theorem 5.1, we have

||πhu− u||0,curl ≤ Chr(||u||r + ||curlu||r). (5.18)

Remark 5.3 Under an additional assumption, i.e., the following continuous embedding holds:

{v ∈ H0(div
0; Ω) : −∆v ∈ (L2(Ω))3, curl v × n|∂Ω = 0} ↪→ (Hr(Ω))3 for some r > 1/2,

a little stronger result in [8] than (5.18) is obtained as follows:

||πhu− u||0 ≤ Chr||u||r, (5.19)

where curlu does not appear in the right-hand side of (5.19).
Theorem 5.2 Under the same assumptions in Theorem 5.1, we have the following uniform error

estimation:

||u− uδ,h||0,curl ≤ C(δ + hr)||f ||0. (5.20)

Proof. Let v := uδ,h−πhuδ ∈ Uh, where uδ is the solution of problem (1.9). Note that µ = ε = 1. From
the consistency property between problem (1.9) and problem (3.2) and the definition of the Fortin operator
πh by (5.16) and (5.17) we have

||v||2Aδ
= (curl v, curl v) + δ(v, v)
= (curl (uδ,h − πhuδ), curl v) + δ(uδ,h − πhuδ, v)
= (curl (uδ,h − uδ), curl v) + (curl (uδ − πhuδ), curl v) + δ(uδ,h − uδ, v) + δ(uδ − πhuδ, v)
= δ(uδ − πhuδ, v)
≤ δ||uδ − πhuδ||0||v||0
≤ δ

1
2 ||uδ − πhuδ||0||v||Aδ

,

(5.21)

that is

||curl (uδ,h − πhuδ)||0 + δ
1
2 ||uδ,h − πhuδ||0 ≤ Cδ

1
2 ||uδ − πhuδ||0, (5.22)

||uδ,h − πhuδ||0 ≤ C||uδ − πhuδ||0, (5.23)

||curl (uδ,h − πhuδ)||0 ≤ Cδ
1
2 ||uδ − πhuδ||0. (5.24)

From Proposition 5.4 with uδ ∈ H0(curl ; Ω) ∩H(div 0; Ω), by the triangle inequality we obtain from (5.23)
and (5.24)

||uδ − uδ,h||0,curl ≤ ||uδ − πhuδ||0,curl + ||uδ,h − πhuδ||0,curl
≤ C||uδ − πhuδ||0,curl
≤ Chr(||uδ||r + ||curluδ||r),

(5.25)
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and from Lemma 5.1 we further have

||uδ − uδ,h||0,curl ≤ Chr||f ||0. (5.26)

Finally, from Theorem 2.2 and Remark 2.2 we obtain the desired (5.20). 2

Remark 5.4 Clearly, a more refined error estimation for uδ − uδ,h can be concluded in the following

||uδ − uδ,h||0 ≤ C||uδ − πhuδ||0, ||curl (uδ − uδ,h)||0 ≤ C||curl (uδ − πhuδ)||0 + Cδ
1
2 ||uδ − πhuδ||0.

Remark 5.5 The assumption r > 1/2 of the regularity of u and curlu over Ωj is not that restrictive in
practice. In fact, such regularity assumption is commonly used in the literature [17][19][36][2][44]. Meanwhile,
it has been shown r > 1/2 or even r = 1 for practical interface problems [16][39].

Remark 5.6 On the other hand, the interface problem from electromagnetism would have a possible
very low regularity solution, i.e., r ≤ 1/2, see [24]. In addition, even if µ = ε = 1, s in Assumption A2) or r
in both Assumption A4) and Assumption A5) is still possibly less than or equal to 1/2. For example, for a
general Lipschitz domain, s = 1/2 in Assumption A2).

Without the requirements r > 1/2 and s > 1/2, we shall obtain the uniform error estimates next section.
We have seen that the uniform error estimates rely on the Fortin operator, so it suffices that the finite element
interpolation property (5.18) for the Fortin operator hold even if 0 < r, s ≤ 1/2. In addition, we shall deal
with general µ and ε as assumed in section 2.

6. A general Fortin operator. The advantage of the Fortin operator over the finite element inter-
polation operator Πh is the former is a projection in the sense of equation (5.16). We have seen that it is
based on the projection property of πh that we have established the uniform error bound in the previous
section. Although, from the definition (5.16) we may infer that the Fortin operator πh would be well-defined
for any u ∈ H0(curl ; Ω) ∩H(div 0; Ω) even if the interpolated function u does not have the regularity with
r > 1/2. Unfortunately, in the literature, the well-definedness and the interpolation error property of the
Fortin operator indeed depend on Assumption A2) with s > 1/2 (or (1.8) mentioned in Introduction section)
and on the regularity r > 1/2 of the interpolated function u.

In this section, we consider the following general Fortin operator: Given u ∈ H0(curl ; Ω), to find
πhu ∈ Uh such that

(µ−1curlπhu, curl v) = (µ−1curlu, curl v) ∀v ∈ Uh, (6.1)

(επhu,∇q) = (εu,∇q) ∀q ∈ Qh. (6.2)

It will be shown that πhu is well-defined and satisfy (5.18) without assuming the regularity index r of the
interpolated function u to be greater than 1/2 and without requiring s > 1/2 in Assumption A2). In fact,
we only assume Assumption A3) which is already stated in section 4. The difference between Assumption
A3) and Assumption A2) is addressed in Remark 4.4 and will be further addressed in Remark 6.4.

Lemma 6.1 Assume that Assumption A3) holds. For any given u ∈ H0(curl ; Ω), πhu is well-defined.
Proof. Observe that πhu is the first component of the solution pair (uh, ph) ∈ Uh ×Qh such that

(µ−1curluh, curl v) + (εv,∇ph) = (µ−1curlu, curl v) ∀v ∈ Uh, (6.3)

(εuh,∇q) = (εu,∇q) ∀q ∈ Qh. (6.4)

In fact, since Uh = Zh(ε) +∇Qh as stated in Assumption A1) which is verified with Uh defined by (4.6), ph
is equal to zero in the above mixed problem. If we have shown K t

h ⊂ K t, Kh-ellipticity and the Inf-Sup
condition, then the classical theory in [14] for saddle-point problems yields the well-posedness of the above
mixed problem. The inclusion K t

h ⊂ K t is verified by noticing that K t = {q ∈ H1
0 (Ω) : (εv,∇q) = 0,∀v ∈

H0(curl ; Ω)} = {0} and K t
h = {qh ∈ Qh : (εvh,∇qh) = 0, ∀vh ∈ Uh} = {0}, and the verification of the

Inf-Sup condition follows from the decomposition Uh = Zh(ε) +∇Qh

sup
v∈Uh

(εv,∇q)

||v||0,ε + ||curl v||0,µ−1

≥ (ε∇q,∇q)

||∇q||0,ε
≥ C||q||1 ∀q ∈ Qh. (6.5)

We are left to verify the Kh ellipticity, where Kh = Zh(ε) = {v ∈ Uh : (εv,∇q) = 0, ∀q ∈ Qh}. But, this is
just the conclusion of Lemma 4.1 since Assumption A3) holds. 2
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Remark 6.1 Lemma 6.1 implies the following invariance property over Uh

πhu = u ∀u ∈ Uh ⊂ H0(curl ; Ω) (6.6)

and the following boundedness property

||πhu||0,curl ≤ C||u||0,curl ∀u ∈ H0(curl ; Ω). (6.7)

Lemma 6.2 For any p ∈ H1
0 (Ω) with ∇p ∈ H0(curl ; Ω), we have πh∇p = ∇ph, where ph ∈ Qh satisfies

(ε∇ph,∇q) = (ε∇p,∇q) ∀q ∈ Qh. (6.8)

Proof. With u := ∇p ∈ H0(curl ; Ω) and πhu ∈ Uh ⊂ H0(curl ; Ω) at hand, we find from equation (6.1)
that curlπh∇p = 0. Thus, from [30][44] we have some ph ∈ Qh satisfies πh∇p = ∇ph, and we obtain (6.8)
from equation (6.2). 2

Lemma 6.3 For p ∈ H1
0 (Ω) ∩

J∏
j=1

H1+r(Ωj) for some r > 0, there exists Ihp ∈ Qh such that

||p− Ihp||1 ≤ Chr
J∑

j=1

||p||1+r,Ωj . (6.9)

Proof. If p ∈ H1
0 (Ω) ∩ H1+r(Ω), then (6.7) is a classical result from the finite element interpolation

theory [12][18][20][48]. Now, p is piecewise H1+r(Ωj), no immediate literature could be located. Here, we
give an approach to obtain Ihp ∈ Qh that can satisfies (6.9). Firstly, taking any Ωj , putting

Qh,Ωj
:= Qh|Ωj

, (6.10)

we using the Clément interpolation[20][6] or Scott-Zhang interpolation[48] to have CLh,jp ∈ Qh,Ωj satisfying

||CLh,jp− p||1,Ωj
+

 ∑
F∈SΩj

h−1
F ||CLh,jp− p||20,F

 1
2

≤ Chr||p||1+r,Ωj
, (6.11)

where SΩj denotes the collect of all element faces in Th|Ωj . Introducing a function ph defined by

ph|Ωj := CLh,jp 1 ≤ j ≤ J. (6.12)

In general, such ph is discontinuous when crossing any interface S in Sint. However, by an averaging
procedure (see Remark 6.1 below) we can find a new finite element function Ihp ∈ Qh to satisfy Ihp(a) = ph(a)
for all interior nodes inside Ωj , 1 ≤ j ≤ J , for all boundary nodes on Sext, and

J∑
j=1

||Ihp− ph||21,Ωj
≤ C

∑
F∈Sint

h−1
F

∫
F

|[ph]|2. (6.13)

But, p ∈ H1
0 (Ω), we have( ∑

F∈Sint

h−1
F

∫
F
|[ph]|2

) 1
2

=

( ∑
F∈Sint

h−1
F

∫
F
|[ph − p]|2

) 1
2

≤ C

(
J∑

j=1

∑
F∈SΩj

h−1
F ||CLh,jp− p||20,F

) 1
2

≤ Chr
J∑

j=1

||p||1+r,Ωj .

(6.14)

Hence, using the triangle inequality, we obtain (6.9) from (6.11),(6.13) and (6.14). 2

Remark 6.2 For linear element, the finite element function Ihp which is constructed from an averaging
approach may be referred to [11]. For higher-order elements, readers may refer to [42] for a general approach
to construct Ihp.
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Now we state the main result in Theorem 6.1 below for the Fortin operator πh with the special u := ∇p.

Theorem 6.1 Let ph = πh∇p ∈ Qh be given by (6.8). For p ∈ H1
0 (Ω) ∩

J∏
j=1

H1+r(Ωj) we have

||πh∇p−∇p||0 ≤ Chr
J∑

j=1

||p||1+r,Ωj . (6.15)

Proof. Let Ihp be constructed in Lemma 6.3. Since ph is the finite element solution to (6.8), we have

||∇(ph − p)||20,ε = (ε∇(ph − p),∇(ph − p)) = (ε∇(ph − p),∇(Ihp− p)) ≤ C||∇(ph − p)||0,ε||Ihp− p||1. (6.16)

We then have

||πh∇p−∇p||0 = ||∇(ph − p)||0 ≤ C||∇(ph − p)||0,ε ≤ C||Ihp− p||1 ≤ Chr
J∑

j=1

||p||1+r,Ωj . (6.17)

2

Lemma 6.4 Assume that Assumption A3) holds. For any z ∈ H0(curl ; Ω), we have the following
regular-singular decomposition:

z = z0 +∇p, (6.18)

where z0 ∈ H0(curl ; Ω) ∩ (Ht(Ω))3 with the same t in Assumption A3) and p ∈ H1
0 (Ω), satisfying

||z0||t ≤ C||curl z||0, (6.19)

||p||1 ≤ C||z||0,curl . (6.20)

Proof. From Proposition 4.1 we first have the following L2 orthogonal decomposition

z = z1 +∇p1, (6.21)

where z1 ∈ H0(curl ; Ω) ∩H(div 0; Ω) and p1 ∈ H1
0 (Ω), satisfying

||z||20 = ||z1||20 + ||∇p1||20, (6.22)

curl z1 = curl z. (6.23)

From Assumption A3) we may write

z1 = z0 +∇p0, (6.24)

where z0 ∈ (Ht(Ω))3 ∩H0(curl ; Ω) for some t > 1/2 and p0 ∈ H1
0 (Ω), satisfying

||z0||t + ||p0||1 ≤ C||curl z1||0 = C||curl z||0. (6.25)

Putting

p := p1 + p0, (6.26)

We thus have

z = z0 +∇p. (6.27)

2

Lemma 6.5 Assume that Assumption A3) holds. For z ∈ H0(curl ; Ω) ∩
J∏

j=1

(Hr1(Ωj))
3 with some

r1 > 1/2 and curl z ∈
J∏

j=1

(Hr2(Ωj))
3 with some r2 > 0, we have

||z − πhz||0 ≤ Chr2

J∑
j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ), (6.28)

||curl (z − πhz)||0 ≤ Chr2

J∑
j=1

||curl z||r2,Ωj . (6.29)
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Proof. Since Assumption A3) holds, from Lemma 6.1 it follows that πhz is well-defined for z ∈
H0(curl ; Ω). We are now ready to estimate the difference between z and πhz. For the case where µ = ε = 1
and r1 = r2 > 1/2, see Proposition 5.4. For general µ and ε as assumed in section 2 and for general r1 > 1/2
and r2 > 0 as assumed respectively for the regularity of z and curl z, we prove (6.28) and (6.29) in the
following.

Noticing that Πhz ∈ Uh is well-defined, since z ∈
∏J

j=1(H
r1(Ωj))

3 for some r1 > 1/2 and curl z =

curl z ∈
∏J

j=1(H
r2(Ωj))

3 for some r2 > 0 (see Remark 4.2), from Proposition 4.2 we have

||z −ΠT z||0,T ≤ Chr1
T (||z||r1,T + ||curl z||r2,T ) ∀T ∈ Th, (6.30)

||curl (z −ΠT z)||0,T ≤ Chr2
T ||curl z||r2,T ∀T ∈ Th, (6.31)

and we have

||z −Πhz||0 ≤ Chr1

J∑
j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ), (6.32)

||curl (z −Πhz)||0 ≤ Chr2

J∑
j=1

||curl z||r2,Ωj . (6.33)

We first estimate the difference between Πhz and πhz.
From Lemma 6.4 we decompose Πhz − πhz as follows:

Πhz − πhz = z0 +∇p, (6.34)

where z0 ∈ H0(curl ; Ω) ∩ (Ht(Ω))3 for some t > 1/2 and p ∈ H1
0 (Ω), satisfying

||z0||t ≤ C||curl (Πhz − πhz)||0, (6.35)

||p||1 ≤ C||Πhz − πhz||0,curl , (6.36)

curl z0 = curl (Πhz − πhz) ∈ Xh. (6.37)

But, from Remark 6.1 and (6.33) we have

||curl (Πhz − πhz)||0 = ||curlπh(Πhz − z)||0 ≤ C||curl (Πhz − z)||0 ≤ Chr2

J∑
j=1

||curl z||r2,Ωj . (6.38)

Thus, it follows from (6.35), (6.37) and (6.38) that

||z0||0,curl ≤ Chr2

J∑
j=1

||curl z||r2,Ωj
, (6.39)

||z0||t ≤ Chr2

J∑
j=1

||curl z||r2,Ωj . (6.40)

Note that Πhz0 is well-defined, because z0 ∈ (Ht(Ω))3 for some t > 1/2 and curl z0 ∈ Xh. From Proposition
4.2 and (6.39), (6.40) we have

||z0 −Πhz0||0 ≤ Cht(||z0||t + ||curl z0||0) ≤ Cht+r2

J∑
j=1

||curl z||r2,Ωj . (6.41)

In addition, Πh∇p is also well-defined since ∇p = Πhz − πhz − z0, and we have some qh ∈ Qh such that
Πh∇p = ∇qh, see [30]. And, we have

Πhz − πhz = Πh(Πhz − πhz) = Πhz0 +Πh∇p = Πhz0 +∇qh. (6.42)
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We next estimate z − πhz.
We have

||z − πhz||20,ε = (ε(z − πhz), z − πhz) = (ε(z − πhz), z −Πhz) + (ε(z − πhz),Πhz − πhz), (6.43)

where, from (6.32), we have

(ε(z− πhz), z−Πhz) ≤ C||z− πhz||0,ε||z−Πhz||0 ≤ C||z− πhz||0,εhr1

J∑
j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ), (6.44)

and from (6.2) in the definition of πh with u := z here, i.e., (επhz,∇q) = (εz,∇q) holds for all q ∈ Qh, and
from (6.42), (6.39) and (6.41), we have

(ε(z − πhz),Πhz − πhz) = (ε(z − πhz),Πhz0 +∇qh)
= (ε(z − πhz),Πhz0)
= (ε(z − πhz),Πhz0 − z0) + (ε(z − πhz), z0)
≤ C||z − πhz||0,ε||z0 −Πhz0||0 + C||z − πhz||0,ε||z0||0

≤ C||z − πhz||0,εhr2
J∑

j=1

||curl z||r2,Ωj .

(6.45)

Hence, from (6.43), (6.44) and (6.45) we obtain

||z − πhz||0 ≤ C||z − πhz||0,ε ≤ Chr2

J∑
j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ). (6.46)

This competes the proof of (6.28). Regarding (6.29), we find from (6.1) in the definition of πh that for all
v ∈ Uh,

||curl (z − πhz)||20,µ−1 = (µ−1curl (z − πhz), curl (z − πhz))

= (µ−1curl (z − πhz), curl (z − v))
≤ ||curl (z − πhz)||0,µ−1 ||curl (z − v)||0,µ−1

(6.47)

i.e.

||curl (z − πhz)||0,µ−1 ≤ inf
v∈Uh

||curl (z − v)||0,µ−1 , (6.48)

and taking v = Πhz ∈ Uh, we have

||curl (z − πhz)||0 ≤ C||curl (z − πhz)||0,µ−1 ≤ C||curl z − curl Πhz||0 ≤ Chr2

J∑
j=1

||curl z||r2,Ωj . (6.49)

2

Remark 6.3 Compared with the error bound (6.32) of Πhz, the error bound (6.28) of πhz may be
improved, since we would expect r1 in (6.28), i.e., the following

||z − πhz||0 ≤ Chr1

J∑
j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ). (6.50)

We are not aware of any work in the literature that dealt with this issue where z and curl z have different
regularity. At the same time, we did not find the way to obtain (6.50). However, if Assumption A2) holds
for some s > 1/2 and Assumption A4) and Assumption A5) hold for some r > 0, using a different argument
from the one in proving Lemma 6.5, we can obtain

||z − πhz||0 ≤ Chmin(r1,s+r2,r+r2)
J∑

j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ),

which is not the same as (6.50) but is better than (6.28). Here, we will not deal with this issue any further,
since (6.28) and (6.29) are sufficient for the main result in the following.
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We now state the main result for the Fortin operator πh for the general u := z with suitable regularity.
Theorem 6.2 Assume that Assumption A3) holds for some t > 1/2 and that z ∈ H0(curl ; Ω) and

z, curl z ∈
J∏

j=1

(Hr(Ωj))
3, where 0 < r ≤ t. Then

||z − πhz||0 ≤ Chr(||curl z||0 +
J∑

j=1

||z||r,Ωj +
J∑

j=1

||curl z||r,Ωj ), (6.51)

||curl (z − πhz)||0 ≤ Chr
J∑

j=1

||curl z||r,Ωj . (6.52)

Proof. From Lemma 6.4 we write z ∈ H0(curl ; Ω) into the following regular-singular decomposition:

z = z0 +∇p, (6.53)

where z0 ∈ H0(curl ; Ω) ∩ (Ht(Ω))3 for some t > 1/2 and p ∈ H1
0 (Ω), satisfying

||z0||t ≤ C||curl z||0, (6.54)

||p||1 ≤ C||z||0,curl . (6.55)

Note that Πhz0 ∈ Uh is well-defined, since z0 ∈ (Ht(Ω))3 for some t > 1/2 and curl z0 = curl z ∈∏J
j=1(H

r(Ωj))
3 for some r > 0, see Remark 4.2. From Proposition 4.2 we have

||z0 −ΠT z0||0,T ≤ Cht
T (||z0||t,T + ||curl z0||r,T ) ∀T ∈ Th, (6.56)

||curl (z0 −ΠT z0)||0,T ≤ Chr
T ||curl z0||r,T ∀T ∈ Th, (6.57)

and from (6.54) and curl z0 = curl z we have

||z0 −Πhz0||0 ≤ Cht(||z0||t +
J∑

j=1

||curl z0||r,Ωj ) ≤ Cht(||curl z||0 +
J∑

j=1

||curl z||r,Ωj ), (6.58)

||curl (z0 −Πhz0)||0 ≤ Chr
J∑

j=1

||curl z||r,Ωj . (6.59)

On the other hand, since z ∈
∏J

j=1(H
r(Ωj))

3 for some r > 0 and z0 ∈ (Ht(Ω))3 with t ≥ r, from (6.53)

we know that p ∈
∏J

j=1 H
1+r(Ωj), satisfying

J∑
j=1

||p||1+r,Ωj ≤ C(

J∑
j=1

||z||r,Ωj + ||z0||t) ≤ C(||curl z||0 +
J∑

j=1

||z||r,Ωj ). (6.60)

Thus, from Theorem 6.1 we have

||πh∇p−∇p||0 ≤ Chr
J∑

j=1

||p||1+r,Ωj ≤ Chr(||curl z||0 +
J∑

j=1

||z||r,Ωj ). (6.61)

We are now in a position to estimate the difference z − πhz in the following.
Observe that

||z − πhz||20,ε = (ε(z − πhz), z − πhz) = (ε(z − πhz), z0 − πhz0) + (ε(z − πhz),∇p− πh∇p), (6.62)
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where, from Lemma 6.5 for this z0 with r1 := t and r2 := r we have

(ε(z − πhz), z0 − πhz0) ≤ C||z − πhz||0,ε||z0 − πhz0||0

≤ C||z − πhz||0,εhr(||z0||t +
J∑

j=1

||curl z0||r,Ωj )

≤ C||z − πhz||0,εhr(||curl z||0 +
J∑

j=1

||curl z||r,Ωj ),

(6.63)

and from (6.61), we have

(ε(z−πhz),∇p−πh∇p) ≤ C||z−πhz||0,ε||∇p−πh∇p||0 ≤ C||z−πhz||0,εhr(||curl z||0+
J∑

j=1

||z||r,Ωj ), (6.64)

It then follows from (6.62)-(6.64) that

||z − πhz||0 ≤ C||z − πhz||0,ε ≤ hr(||curl z||0 +
J∑

j=1

||z||r,Ωj +
J∑

j=1

||curl z||r,Ωj ). (6.65)

Regarding (6.52), by the definition of πh we have

||curl (z − πhz)||0,µ−1 ≤ ||curl z − curl v||0,µ−1 ∀v ∈ Uh. (6.66)

But, curl z = curl z0 and Πhz0 is well-defined, from (6.59) we have

inf
v∈Uh

||curl z − curl v||0,µ−1 ≤ C||curl z0 − curlΠhz0||0 ≤ Chr
J∑

j=1

||curl z||r,Ωj . (6.67)

We therefore have

||curl (z − πhz)||0 ≤ C||curl (z − πhz)||0,µ−1 ≤ Chr
J∑

j=1

||curl z||r,Ωj . (6.68)

2

Following the argument in proving Theorem 5.2 we can obtain the following H(curl )-error bound for
very low regular solution with r not greater than 1/2.

Corollary 6.1 Assume that Assumption A3) holds for some t > 1/2 and that Assumption A4) and
Assumption A5) hold for some 0 < r ≤ t. Given any compatible f ∈ H(div 0; Ω). Let u be the solution of
problem (1.5) and uδ,h ∈ Uh the finite element solution of problem (3.2), where Uh is taken as (4.6) which
satisfies Assumption A1). We have

||u− uδ,h||0,curl ≤ C(δ + hr)||f ||0. (6.69)

Remark 6.4 We have used Assumption A3) to ensure that πh is well-defined. We also used this
assumption to establish the error estimates for the Fortin operator. Assumption A3) is a regular-singular
decomposition where t > 1/2. This t is different from the s in Assumption A2) and the r in both Assumption
A4) and Assumption A5) where s and r may be not greater than 1/2. For example, for Lipschitz domains
we can have t = 1, but s = 1/2 only. For interface problem, we may still have t = 1, but r may be close
to zero [24]. In fact, the regular-singular decomposition in Assumption A3) depends little on the domain
boundary and on the material occupying Ω, since it has been established mainly from the H1 existence of
the Poisson equation of Laplace operator and the extension of H0(curl ; Ω) to the H(curl ;R3) [25][7]. On
the contrary, the continuous embedding in Assumption A2), Assumption A4) and Assumption A5), and
the regularity of the solution and its curl counterpart of problem (1.1)-(1.4) are determined by the domain
boundary singularities (due to reentrant corners and edges, etc), the property of the materials occupying
Ω, and the topology of Ω (i.e., simply-connected or multi-connected, etc), see [22][24]. In general, these are
profoundly related to the singularities of the solution of the second-order elliptic problem of Laplace operator
in nonsmooth domains [32].

Remark 6.5 As highlighted in Remark 6.4, r ≤ t is generally true, since t = 1 usually. If r is larger
than t and r > 1/2, then the theory has already been developed in section 5. For more regular solution,
say r > 1, we may use higher-order elements, and the theory in section 5 can be easily applied to obtain
higher-order error bounds.
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7. Numerical test. We report some numerical results to support the method and the theory developed
in the previous sections. We present four examples for numerical experiments associated with problem (1.1)-
(1.4) in three-dimensions. All the domains in these examples are partitioned into uniform tetrahedra, with
the mesh reduction of factor two, i.e., h = 1/4, 1/8, 1/16,, etc. In the δ-regularization problem, we use the
lowest-order Nédélec element of first-family and choose δ = h.

Example 1. Given the thick L-domain in R3: Ω = [−1, 1]2 \ ([0, 1] × [−1, 0]) × [0, 1] in the O − xyz-
coordinates system. There is a reentrant edge of the opening angle 3π/2 along the positive z-axis of Ω. We
choose µ = ε = 1 and f so that the exact solution is

u = (∂yp,−∂xp, 0)

where p(x, y) = (1−x2)2(1−y2)2r
2
3 cos( 2θ3 ) in the polar coordinates system of R2, x = r cos(θ), y = r sin(θ),

r is the distance to the origin O(0, 0) and θ is the angular degree between 0 and 2π. The regularity of u
and curlu = (0, 0,−∆p) is (H2/3−ϵ(Ω))3 for any ϵ > 0, i.e., r is approximately 2/3. From the theoretical
results we should expect that the ratio of the error reduction is approximately 22/3 ≈ 1.5874 for the mesh
reduction of factor two and that the finite element solution is uniform stable independent of the regularization
parameter δ deceasing to zero. The computed results in L2 semi-norm and curl semi-norm which are listed
in Table 1 and Table 2, as we have expected, are consistent with the theoretical results.

TABLE 1 Errors in L2 semi-norm and curl semi-norm

h 1/4 1/8 1/16 1/32 1/64
||u− uδ,h||0 0.0809 0.0503 0.0314 0.0196 0.0124

Ratio 1.6083 1.6019 1.6020 1.5806
||curl (u− uδ,h)||0 1.9963 0.9973 0.5125 0.2795 0.1721

Ratio 2.0020 1.9460 1.8336 1.6241

TABLE 2 Stability in L2 semi-norm and curl semi-norm
for a fixed mesh size h = 1/16 but δ decreases

δ 1/10 1/20 1/30 1/40 1/50
||u− uδ,h||0 0.0821 0.0826 0.0827 0.0828 0.0829

Ratio 0.9939 0.9988 0.9988 0.9988
||curl (u− uδ,h)||0 1.9960 1.9960 1.9961 1.9961 1.9961

Ratio 1.0000 1.0000 1.0000 1.0000

Example 2. Given the thick cracked domain in R3: Ω = [−1, 1]2 \ {(x, 0) ∈ R2 : 0 < x < 1} × [0, 1] in
the O− xyz-coordinates system. There is a “screen” of the opening angle 2π along the positive x-axis of Ω.
We choose µ = ε = 1 and f so that the exact solution is

u = (∂yp,−∂xp, 0)

where p(x, y) = (1− x2)2(1− y2)2r
1
2 cos( θ2 ) in the polar coordinates system of R2, x = r cos(θ), y = r sin(θ),

r is the distance to the origin O(0, 0) and θ is the angular degree between 0 and 2π. The regularity of u
and curlu = (0, 0,−∆p) is (H1/2−ϵ(Ω))3 for any ϵ > 0, i.e., r is approximately 1/2. From the theoretical
results we should expect that the ratio of the error reduction is approximately 21/2 ≈ 1.4142 for the mesh
reduction of factor two and that the finite element solution is uniform stable independent of the regularization
parameter δ deceasing to zero. The computed results in L2 semi-norm and curl semi-norm which are listed
in Table 3 and Table 4, as we have expected, are consistent with the theoretical results.
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TABLE 3 Errors in L2 semi-norm and curl semi-norm

h 1/4 1/8 1/16 1/32 1/64
||u− uδ,h||0 0.1361 0.0913 0.0637 0.0451 0.0319

Ratio 1.4907 1.4333 1.4124 1.4138
||curl (u− uδ,h)||0 2.9047 1.8437 1.2459 0.8872 0.6412

Ratio 1.5755 1.4798 1.4043 1.3837

TABLE 4 Stability in L2 semi-norm and curl semi-norm
for a fixed mesh-size h = 1/16 but δ decreases

δ 1/10 1/20 1/30 1/40 1/50
||u− uδ,h||0 0.0637 0.0637 0.0638 0.0638 0.0638

Ratio 1.0000 0.9984 1.0000 1.0000
||curl (u− uδ,h)||0 1.2459 1.2458 1.2458 1.2458 1.2457

Ratio 1.0000 1.0000 1.0000 1.0000

Example 3. We consider the same domain as in Example 1 and still take µ = 1. But, we assume there
are three material subdomains in Ω, Ω1 = [0, 1]3, Ω2 = [−1, 0] × [0, 1]2, Ω3 = [−1, 0]2 × [0, 1], which are
introduced by the interfaces Sint = {(x, y, z) ∈ R3 : x = 0, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}∪{(x, y, z) ∈ R3 : −1 ≤ x ≤
0, y = 0, 0 ≤ z ≤ 1}, and ε is discontinuous and for three material subdomains ε are respectively given by

ε|Ω1 =

 1 0 0
0 1 0
0 0 1

 , ε|Ω2 =

 1/2 0 0
0 1/2 0
0 0 1/2

 , ε|Ω3 =

 1 0 0
0 1 0
0 0 1

 .

In this example, we are given a smooth source, i.e., f = (1, 1, 1). Since the exact solution is not known, we
only compute the H(curl ) norm of the numerical solution to illustrate the uniform stability independent of δ
and h which decrease to zero. The computed results in H(curl ) norm which are given in Table 5 and Table
6, as we have expected, are consistent with the theoretical results.

TABLE 5 Stability in H(curl ) norm
for δ = h and h decreases

h 1/4 1/8 1/16 1/32 1/64
||uδ,h||0,curl 0.8978 0.9352 0.9446 0.9463 0.9468

Ratio 0.9600 0.9900 0.9982 0.9995

TABLE 6 Stability in H(curl ) norm
for a fixed mesh-size h = 1/16 but δ decreases

δ 1/10 1/20 1/30 1/40 1/50
||uδ,h||0,curl 0.9457 0.9480 0.9488 0.9491 0.9494

Ratio 0.9976 0.9992 0.9997 0.9997

Example 4. Given the domain in R3: Ω = ([−1, 3] × [−1, 1] \ ([0, 3] × [−1, 0] ∪ {(x, y) ∈ R2 : 2 <
x < 3, y = 1

2})) × [0, 1] in the O − xyz-coordinates system. There is a reentrant edge originating from the
origin O(0, 0, 0) along the positive z axis with an opening angle 3π/2 and a screen originating from the point
(2, 1/2, 0) along the positive x axis with an opening angle 2π in Ω. We take µ = 1. But, we assume there
are two material subdomains in Ω, Ω1 = [1, 3] × [0, 1]2, Ω2 = [−1, 1]2 \ ([0, 1] × [−1, 0]) × [0, 1], which are
introduced by the interface Sint = {(x, y, z) ∈ R3 : x = 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}, and ε is discontinuous and
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for two material subdomains ε are respectively given as follows:

ε|Ω1 =

 1 0 0
0 1 0
0 0 1

 , ε|Ω2 =

 1/2 0 0
0 1/2 0
0 0 1/2

 .

We choose f so that the exact solution

u|Ωj = (∂yp|Ωj ,−∂xp|Ωj , 0), 1 ≤ j ≤ 2,

where p|Ω−
1

= (1 − x)2(1 − y)2q1(x, y), with q1(x, y) = r
2
3 cos( 2θ3 ), and p|Ω−

2
= (1 − x)2(3 − x)2( 14 − (y −

1
2 )

2)2q2(x− 2, y − 1
2 ), with q2(x, y) = r

1
2 cos( θ2 ), where q1(x, y) = r

2
3 cos( 2θ3 ) and q2(x, y) = r

1
2 cos( θ2 ) in the

polar coordinates system of R2, x = r cos(θ), y = r sin(θ), r is the distance to the origin O and θ is the
angular degree between 0 and 2π. The regularity of the exact solution u and its curlu = (0, 0,−∆p) is the
same on each material subdomain Ωj and u, curlu ∈ (Hrj (Ωj))

3, rj is respectively 2/3 − ϵ, 1/2 − ϵ for any

ϵ > 0. The solution u and its curlu belong to
∏2

j=1(H
r(Ωj))

3 for r being approximately 1/2. From the

theoretical results we should expect that the ratio of the error reduction is approximately 21/2 ≈ 1.4142 for
the mesh reduction of factor two and that the finite element solution is uniform stable independent of the
regularization parameter δ deceasing to zero. The computed results in L2 semi-norm and curl semi-norm
which are listed in Table 7 and Table 8, as we expected, are consistent with the theoretical results. Also,
we find that although the solution and its curl have higher regularity in Ω1, the whole convergence rate is
governed by the lower regularity in Ω2.

TABLE 7 Errors in L2 semi-norm and curl semi-norm

h 1/4 1/8 1/16 1/32 1/64
||u− uδ,h||0 0.3955 0.2604 0.1566 0.0981 0.0700

Ratio 1.5188 1.6628 1.5963 1.4014
||curl (u− uδ,h)||0 2.9515 1.5506 0.8720 0.5282 0.3517

Ratio 1.9035 1.7782 1.6509 1.5018

TABLE 8 Stability in L2 semi-norm and curl semi-norm
for a fixed mesh-size h = 1/16 but δ decreases

δ 1/10 1/20 1/30 1/40 1/50
||u− uδ,h||0 0.1510 0.1434 0.1419 0.1414 0.1412

Ratio 1.0530 1.0106 1.0035 1.0014
||curl (u− uδ,h)||0 0.8541 0.8294 0.8247 0.8230 0.8223

Ratio 1.0300 1.0057 1.0021 1.0009

We change the value of ε|Ω2 so that there is a discontinuity of ε with high ratio/contrast across the
interface. We take two choices for ε|Ω2 :

ε|Ω2 =

 1/100 0 0
0 1/100 0
0 0 1/100

 , or ε|Ω2 =

 1/1000 0 0
0 1/1000 0
0 0 1/1000

 .

We find that the computed results are accurate to four decimal places as shown in Tables 7 and 8. This
may be interpreted as follows. For δ decreasing to zero, the theoretical results show that the finite element
solution is uniformly stable independent of δ and there holds optimal convergence with respect to δ+h, thus,
when the combination of δε with δ = h and hεmax decrease to zero, all the theoretical results are expected
to still be valid, where εmax represents the upper bound of ε over Ω, and here εmax = 1. Therefore, the
present method appears to cover the case where the discontinuous materials have high ratio/contrast across
material subdomains, although we did not develop the related theory for this situation.
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8. Conclusion and extension. In this paper, we have proposed a general approach, δ-regularization
method, for dealing with the divergence-free constraint in a double curl problem which typically arises
from computational electromagnetism. With this δ-regularization method, we can completely disregard the
divergence-free constraint and instead we introduce a δ perturbation zero-term which couples the curlcurl
operator to constitute a well-posed coercive problem for any given δ. Such δ-regularization method is shown
to have a uniform stable finite element solution independent of the regularization parameter δ which decreases
to zero. For nonsmooth solution, together with its curl, being Hr regularity for some 0 < r < 1, we have
established the optimal error bound O(hr) in the natural H(curl ) norm (which is independent of δ) for
δ ≤ Ch when using the lowest-order Nédélec element of first-family. Higher-order Nédélec elements can be
used to yield higher-order accuracy if the exact solution is more regular.

Furthermore, we have developed the new theory for the Kh ellipticity (a Poincaré-Friedrichs’ type
inequality) and the new theory for the Fortin-interpolation operator. The Kh ellipticity is one of the two
critical conditions (the other is the Inf-Sup condition) for the well-posedness and the optimal convergence for
the mixed finite element method, while the Fortin operator is fundamental in the edge finite element method,
as is well-known. These two theories generalize the existing ones to cover those problems whose solutions
may have very low regularity. In fact, they are established only under the regular-singular decomposition
assumption. Such assumption is true for general domains and does not depend on the material properties
occupying the domain and the topology of the domain.

A series of numerical examples have been performed for three-dimensional problems to illustrate the
method and the theoretical results. Moreover, the proposed δ-regularization method appears to cover the
interface problem with high contrast/ratio material coefficients across material subdomains, although we
did not have the theory for the latter situation. These have justified the capability of the δ-regularization
method in dealing with divergence-free constraint. Meanwhile, these have exhibited the potential to deal
with the discontinuous materials of high contrast/ratio among different material subdomains.

We should point out that although the proposed δ-regularization method is developed, analyzed and
performed for the model problem in (1.1)-(1.4), but, in actual fact, it can cover a number of models of com-
putational electromagnetism. To illustrate this point, we shall discuss the extension of the δ-regularization
method we have developed in this paper. As we know, there are other widely used models arising from
computational electromagnetism, for example, we often need to solve the following problem: to find u and
p such that

curlµ−1curlu+ αεu+ ε1∇p = f in Ω,

div εu = g in Ω,

u× n = 0, p = 0 on ∂Ω,

where α is a given real number which may arise from either the time-discretization problems of the time-
dependent Maxwell’s equations with α inversely proportional to the time-step or the time-harmonic Maxwell’s
equations with −α amounting to the angular frequency, and ε1 is a third material coefficient matrix. Below
we simply show how to apply the proposed δ-regularization method to the above problem. This consists of
two stages. We first parallel solve the two second-order elliptic problems: to find p∗ ∈ H1

0 (Ω) such that

div ε∇p∗ = g in Ω, p∗ = 0 on ∂Ω,

and to find p ∈ H1
0 (Ω) such that

div ε1∇p = div f − αg in Ω, p = 0 on ∂Ω,

and then we solve the problem: to find w ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω) such that

curlµ−1curlw + αεw = F := f − ε1∇p− αε∇p∗ in Ω,

div εw = 0 in Ω,

w × n = 0 on ∂Ω.
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Clearly, we have

u = w +∇p∗.

However, we do not directly solve w. Instead, we solve the following δ regularization problem: to find wδ

such that

curlµ−1curlwδ + αεwδ + δεwδ = F in Ω,

wδ × n = 0 in Ω.

Noticing that α is known, we choose δ so that δ + α ̸= 0, and we can analyze this δ regularization problem
following the routine in previous sections. Hence, firstly simultaneously solving two symmetric, positive
definite problems (second-order elliptic interface problems) in parallel, and then solving a δ-regularization
problem, we can obtain the desired solution.
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[16] G. Caloz, M. Dauge, and V. Péron, Uniform estimates for transmission problems with high contrast in heat conduction

and electromagnetism, J. Math. Anal. Appl., 370 (2010), pp. 555–572.
[17] Z. Chen, Q. Du, and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations

with discontinuous coefficients, SIAM J. Numer. Anal., 37 (2000), pp. 1542–1570.
[18] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in: Handbook of Numerical Analysis, Vol. II, Finite Element

Methods (part 1), P. G. Ciarlet and J.-L. Lions eds, North-Holland, Amsterdam (1991).
[19] Jr P. Ciarlet and J. Zou, Fully discrete finite element approaches for time dependent Maxwells equations, Numer.

Math., 82 (1999), pp. 193–219.
[20] P. Clément, Approximation by finite element functions using local regularization, RAIRO Numer. Anal., 9 (1975), pp.

77–84.
[21] M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains, M3AS Math. Methods

Appl. Sci., 12 (1990), pp. 365–368.
[22] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch. Rational Mech. Anal.,

151 (2000), pp. 221–276.
[23] M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math.,

93(2002), pp. 239–277.
[24] M. Costable, M. Dauge, and S. Nicaise, Singularities of Maxwell inteface problems, M2AN Math. Modelling and

Numer. Anal., 33 (1999), pp. 627–649.
[25] A. Bonnet-Ben Dhia, C. Hazard, and S. Lohrengel, A singular field method for the solution of Maxwells equations

in polyhedral domains, SIAM J. Appl. Math., 59 (1990), no. 6, pp. 2028–2044.
[26] H.Y. Duan, P. Lin, and Roger C. E. Tan, Analysis of a continuous finite element method for H(curl ,div )-elliptic

interface problem, Submitted.
[27] H.Y. Duan, F. Jia, P. Lin, and R.C.E. Tan, The local L2 projected C0 finite element method for Maxwell problem,

SIAM J. Numer. Anal., 47(2009), pp. 1274–1303.
[28] P. Fernandes and G. Gilardi, Magnetostatic and Electrostatic problems in inhomogeneous anisotropic media with

irregular boundary and mixed boundary conditions, Math. Models and Methods Appl. Sci., 7(1997), pp. 957–991.

24



[29] P. Fernandes and I. Perugia, Vector potential formulation for magnetostatics and modelling of permanent magnets,
IMA J. Appl. Math., 66(2001), pp. 293-318.

[30] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1986.
[31] G. H. Golub and C. F. Van Loan, Matrix Computations, 2ed., The Johns Hopkins University Press, Baltimore, MD

(1989).
[32] P. Grisvard, Elliptitc Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, London (1985).
[33] C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell’s equations, SIAM J.

Math. Anal., 27 (1996), pp. 1597–1630.
[34] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 2002, pp. 237–339.
[35] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM J. Numer. Anal.,

45(2007), pp. 2483–2509.
[36] R. Hiptmair, J. Li, and J. Zou, Convergence analysis of finite element methods for H(div;)-elliptic interface problems,

J. Numer. Math., 18 (2010), pp. 187–218.
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