CONVERGENCE OF THE UNIAXITAL PERFECTLY MATCHED
LAYER METHOD FOR TIME-HARMONIC SCATTERING
PROBLEMS IN LAYERED MEDIA*

ZHIMING CHENT AND WEIYING ZHENGH

Abstract. In this paper, we propose a uniaxial perfectly matched layer (PML) method for
solving the time-harmonic scattering problems in layered media. The exterior region of the scatterer
is divided into two half spaces by an infinite plane, on two sides of which the wave number takes
different values. We surround the computational domain where the scattering field is interested by
a PML layer with the uniaxial medium property. By imposing homogenous boundary condition
on the outer boundary of the PML layer, we show that the solution of the PML problem converges
exponentially to the solution of the original scattering problem in the computational domain as either
the PML absorbing coefficient or the thickness of the PML layer tends to infinity.

1. Introduction. We propose and study the uniaxial perfectly matched layer

(PML) method for solving Helmholtz scattering problems in layered media:
(1.1) Au+k*u=0 in R*\ D,
(1.2) u=g on I'p,
ou .
(1.3) N 8——1ku —0 as r=|z| — cc.
r

Here D C R? is a bounded domain with Lipschitz boundary T'p and g € HY/?(Tp).
We assume the wave number k is positive and piecewise constant, defined by

. k1, if,TER%_,
(14) k(x)_{ ko, ifo e RZ,

where RE = {(x1,22) € R? : £x5 > 0}. Without loss of generality we asuume in
this paper that ko > k1 > 0. Additional continuity conditions are needed across the
interface ¥ = {(21,0) : —oo0 < z1 < 00}:

(1.5) fuls = [‘9“ } —0,

Dy

where [u]y := uj — u_ is the jump of u across ¥ from above to below. We remark
that the boundary condition (I2]) and the continuity conditions (LT are not essential
for our results. In fact, (I2)) can be replaced by other boundary conditions such as
Neumann or impedance boundary conditions on I'p, and (L) can be replaced by
other continuity conditions (cf. e.g. [16]). We refer to Coyle and Monk [13] and
Monk [20] for finite element methods solving scattering problems in layered media.
Since the work of Bérénger [3] which proposed a PML method for solving the
time dependent Maxwell equations, various constructions of PML absorbing layers
have been proposed and studied in the literature (cf. e.g. Hagstrom [14], Turkel and
Yefet [23], Teixeira and Chew [22] for the reviews). The basic idea of the PML method
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is to surround the computational domain by a layer of finite thickness with specially
designed model medium that absorbs all the waves that propagate from inside the
computational domain.

The convergence of the PML method for homogeneous background materials has
drawn considerable attention in the literature. Lassas and Somersalo [17], [18], Hohage
et al [15] studied the acoustic scattering problems for circular and smooth PML layers.
It is proved in [15] [I7, 18] that the PML solution converges exponentially to the
solution of the original scattering problem as the thickness of the PML layer tends
to infinite. In the practical application of PML methods, the adaptive PML method
was proposed in Chen and Wu [5] for a scattering problem by periodic structures (the
grating problem), in Chen and Liu [6] for the acoustic scattering problem, and in Chen
and Chen [4] for Maxwell scattering problems. The main idea of the adaptive PML
method is to use the a posteriori error estimate to determine the PML parameters and
to use the adaptive finite element method to solve the PML equations. The adaptive
PML method provides a complete numerical strategy to solve the scattering problems
in the framework of finite element which produces automatically a coarse mesh size
away from the fixed domain and thus makes the total computational costs insensitive
to the thickness of the PML absorbing layer.

The purpose of this paper is to study the convergence of the uniaxial PML
(UPML) method for the scattering problem (LI)-(LH). The UPML method is widely
used in the engineering literatures and has the advantage over the circular PML
method in that it provides greater flexibility and efficiency to solve problems involv-
ing anisotropic scatterers. The convergence result established in this paper constitutes
an important step in studying efficient numerical methods such as adaptive UPML
method for solving scattering problems in layered media. In Chen and Wu [7] the
adaptive UPML method is proposed for Helmholtz scattering problems with constant
wave number.

Since the background materials in the upper and lower half spaces are different,
the scattering waves will change their directions at the interface ¥ and split into re-
flective and refractive waves on two sides of ¥. The Green function of the scattering
problem in layered media becomes very complicated. Our convergence proof is based
on the Cagniard de-Hoop transformation of the Green function and the idea of the
complex coordinate stretching. By using the integral representation of the exterior
Helmholtz equation and some elaborated estimation of the modified Green function,
we show that the solution of the UPML problem converges exponentially to the so-
lution of (LI)—(LH) as either the PML absorbing coefficient or the thickness of the
PML layer tends to infinity.

The layout of the paper is as follows. In section 2 we study the Green function
for the scattering problem in layered media. We recall the derivation of the Green
function by the method of Fourier transform and derive an alternative form of the
Green function which is crucial for the convergence analysis by using the Cagniard-
de Hoop transformation. In section 3 we prove an integral representation of the
exterior Helmholtz equation in layered media. In section 4 we introduce the UPML
formulation for (LI)—(TEH) by following the method of complex coordinate stretching
in Chew and Weedon [7], Collino and Monk [11]. In section 5 we study the stability
of the Dirichlet problem of UPML equation in the PML layer. In section 6 we study
the exponential decay estimate for the modified Green function in the PML layer. In
section 7 we prove the convergence of the UPML method.
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2. Green function. In this section we study the Green function for the layered
media

(21) AZ‘G(Ia y) + k2G(Ia y) = _5.7;(33) in R27
oG

. Gy = | & =o,

(2.2) Gl [a] 0

where 6, (x) is the Dirac source at y € R3 or y € R%. We will first derive the formula
for the Green function by using the method of Fourier transform and the Sommerfeld
Integral Path. Next we will use the Cagniard-de Hoop transform to obtain a new
formula for the Green function which will be crucial for us to prove the exponential
decay of the PML extension in Section 6.

2.1. The method of Fourier transform. We first consider the case y € R,
that is, yo > 0. Let

A~ 1 oo .
G(§,x2) = E/ Gy(a?1,:132)6_‘(””1—y1)5d331

be the Fourier transform of G,(x) = G(z,y) for the first variable. By taking the
Fourier transform of (2)) in the first variable, we obtain

1
E% (2).

Throughout the paper we will always assume that for z € C, 21/2 is the analytic
branch of v/z such that Re (z'/2) > 0. This corresponds to the left half real axis as
the branch cut in the complex plane.

Denote v; = el#il72=v2l where y; = (k]2 —&)1/2j =1,2. Tt is easy to see that

+ (k= )G = -

92G
(2.3) 3
2

EX3

/2

2.
07v;
2
Oxs

(2.4) + (kF = €%)vj = 2ip;6,, (22).

For y2 > 0, we write the solution of ([Z3]) as

« i 1M1|m2 ya| G i 0
G(§ x2) = L 2u1 +Gi(§,w2) if x>0,
\/g G2(§7x2)

if zo < 0.
Combining [23]) and ([24]) we find that

s
023

+ (k3 —€)G; =0

which has two fundamental solutions el#%2 and e~1i%2 j =1,2. Since only outgomg
waves are allowed for the Green function, we choose Gy = Ae‘”lw? and G2 —lpzzs

oG

= 0 which follow from (22, we
8%2

By using the matching conditions [G]s = 0,

know that
i H1 — M2 1H1y2 B = i
T 20y + o ’ B+ po
3

elH1y2.




Therefore

;eiuﬂwz—yﬂ + Lweiuﬂwz'ﬂﬁ), if x5 > 0,
. 1 2411 2p0 1+ po
G(ga .’IJ2) = \/2_ :
™ 1 ei(MIyQ_H212)7 if 9 < 0.
B+ p2

The desired Green function should be obtained by taking the inverse Fourier transform
of G(f ,x2). Unfortunately, one cannot simply take the inverse Fourier transform in
the above formula because the branch cuts for u; are the half lines (—oo, —k;] and
[k;,00), j = 1,2, in the complex &-plane. One way to solve the problem is to take the
Sommerfeld Integral Path (SIP) as the integral path for the inverse Fourier transform
(see Figure 1] for the SIP for the real wave number k; and k2). We refer to [10]
Chapter 2] for more discussion on the Sommerfeld Integral Paths.

(&)

SIP

4 + N +
B K Re()
SIP

Fic. 2.1. The Sommerfeld Integral Path.

Recall that the Green function for the Helmholtz equation with constant wave
number k; is ®(ky,z,y) = iHél)(kﬂx —y|) which satisfies (cf. e.g. [10])

i 1 .
2.5 O (ky,z,y) = —/ — i@ —y)itimlza—ya|qe
(2.5) (k1,2 y) = — o I §

By taking the inverse Fourier transform of G (&, z2) using the SIP, we obtain the Green
function G(z,y) for z € Ri, Yy € Ri,

1 1 . .
(2.6) Cla,y) = B(k1, 2,y) — Blky, 2,y) + —— / HEmi =y i (eatua) g
2 Jorp p1 + p2

where y' = (y1, —y2) is the image of y = (y1,y2), and for z € R%, y € R%,
i 1 ; .
27 G(z,y) = _/ @ —y)+i(pyz—paz2) ¢
(27) @) =g [ ¢
Similarly we can deduce the Green function for z € Ri, y € R%,
(28) G(:v,y) — i/ 1 ei5($1—y1)+i(M1I2—H2y2)d§’
S

21 Jsip Ha1 + iz
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and for x € R?2, y € R?,

1
P M1+ g2

(29) Gla.9) = Vlka.a,y) ~ Blkay) + 5= [

eif(ﬂﬂl—yl)—iuz(Iz-i'yz)dé"

In (20)-(27), the point source is located at y € RZ. The first term on the
righthand side of (Z8]) stands for the incident waves coming from the source, and the
other terms are the reflected waves by the interface. The righthand side of (2.7 stands
for the refractive waves below the interface. Similarly (2.9) represents the combination
of incident and reflected waves and (Z.8) represents refractive waves when the point
source is located at y € R2.

2.2. The Cagniard-de Hoop transform. Let h be a bounded analytic func-
tion in C\ ((—o0, —k1] U [k1,00)). For any a € R,b > 0, we denote

i h e
(210) I(h,’ a, b) — L / (5) elfa+1,u.1bd€.
27 Jsip p1 + pi2

It is easy to see that the Green function G(x,y) can be represented as follows: for

2
y e Ry,

d(k — ok N+ T(1l;2q — if 0
(2.11) Ga,y) = 4 2o y) = @k 2, ) + Lo~y o2 +y2), 2z >0,
I (el(m #2)12;$1 — Y1, — T2 _|_y2) , if zo <0,

and for y € R%,

I (ei(”l"”)yz,xl — Y1, T — yg) , if zo > 0,
(212) G(‘Ivy) = (I)(k27$7y) —(I)(kg,fﬂ,y/)
+1 (ei(Hl_MQ)(lE2+y2);xl — Y1, —Tg — yg) , if xo <O0.

LEMMA 2.1. Leta € R, b > 0, p = Va2 + b2, and h be a bounded analytic

function in C\ ((—oo, —k1] U [k1,00)) satisfying h(§) = h(=E) and h(§) = h(€). Then

L= 1 2! ) } iy pt
I(h;a,b) = — Re h e 1rtde,
A = Kumuz ©
k1|a|t + iklb\/ t2 -1

where & = and p; = (kj2 — {2)1/2, j=1,2.

p P

Proof. Notice that the Sommerfeld Integral Path is symmetric with respect to
the origin of the complex ¢-plane (see Figure ). From 2I0) and h(§) = h(—£) we
find that

i h : .
I(h;a,b) = I(h; —a,b) = i /S St fi@ ei¢laltimbge,

Without loss of generality we assume a > 0 in the rest of the proof.
We use the method of Cagniard-de Hoop transform to prove the lemma. Let
t' = £a + p1b. Then it is easy to see that

klat ,klb\/ t2 -1 tl
= 41 , t= —

P p kip’
5
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Let £ = & 419, &1,& € R, then
(2.14) b2€f _ CL2€§ — k%aQbQ/pQ,

For t € [1,00), £(t) is the right branch of hyperbola that intersects the real axis at
&0 = k1a/p. Tt is easy to see that

kbt .k 2
kf—{Q_(lT:Fi%a t2—1>.

Since Re (1) > 0, we have, for t € [1, 00),

kbt kK
(2.15) g = 2 8 S
P
d
and consequently d—i =+i \/tl;lj

Let ', T'_ be respectively the parts of the hyperbola in the upper-half complex
plane and the lower-half complex plane. For any r > 0, denote C;, C;~ be respectively
the part of the circle {{ : |{| = r} that are bounded by the SIP and I'y or by the SIP
and I'_. The geometry is depicted in Figure

Im(g)

SIP

Re(¢)

SIP

Fic. 2.2. Cagniard-de Hoop transform from the SIP to 'y UT'_.

For the integrals on C:¥ we have

/ h eiﬁaﬂ—iulbdg‘ =0.
C

(2.16) lim
R

T—00

We will postpone the proof of ([2Z.I0) at the end of the proof of this lemma. Now
notice that for b > 0, £, < k1, by using Cauchy integral theorem and letting r — oo,
we obtain
I(h;a,b) = L/ e elfatimbe — i _h
21 Jsip 1+ p2 2 Jrour_ pa+ p2
6

6i£a+iulbd€,



which by the transform (ZI3) yields

‘a . i > 1 M1 M1 ikt
I(hsa,b) = 27/1 V2 —1 Kﬂl +u2h> &)+ (Ml +M2h> (5)} rd

This implies the desired formula by using the fact that £, = &, €. = €, and h(€) =

h(§).
Now we prove (ZI6). By the convention that Re(z'/2) > 0 for any z € C, we
have, for z = z1 +i29, 21, 29 € R,

(2.17) 2% = 12 —2|— L isgn(z2)4/ M%Zl

Let £ = re'?. Tt is easy to check that for r > ky > ki,

2
|M1+M2|2%(\/72_/{%"'\/7“2_1‘35)'

Since h is bounded in C\ ((—oo,—k1] U [k1,00)) whose upper bound is denoted as
M (h), we obtain

/ h ei£a+iulbd§’ <
cF M1t p2 N

0
PO et @b,
/91 11 (€) + 2(€)] '

02

r

<V2M(h
R AN FaV

¢~ Im (Gatmb) g

where & = rei?2 and & = rel are respectively the intersection point of C;F with SIP
and I'y. We have 0 < 01 < 05 < .
If 6 € (7/2,602), we have Im (u3) = Im (—r? sin 26) > 0 and thus

Im (a + p1b) > arsin® > arsinfs.

If 0 € (A1, 7/2), we have Im (2) = Im (—r?sin 20) < 0 and consequently

|k2 — r2e29| — (k2 — 12 cos 20) 1/2
2

Im (€a + p1b) = arsinf — b,

which is an increasing function in [0y, 7/2] for r2 > 2k?. Thus, for £ = rel? 0, <0 <
/2,
Im (§a + p1b) > Im (§1a + p1(61)) = kipty,

61 _ klatl -‘riklb\/t% -1
P

p

where #; € (1, 00) satisfies & = ret . It is clear that t; — oo

as r — oo. Therefore

h i€atipnb ’ /92 r —arsinf
— it d¢| < VoM (h e—arsindzqg
/c+ P+ pho ¢ %) w/2 /1% — ki + /1% — k2

/2

r
o V12— ki k3
— 0, asr — oo.
7

e frhidg
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This shows (210) for the integral on C;". The proof for the integral on C, is similar
and we omit the details. This completes the proof. O

The following theorem indicates that the Green function G(z, y) satisfies radiation
condition ([3]) at infinity.

THEOREM 2.2. For any fized y € R, we have

Vr <w - ikG(x,y)) —0, asr=|z| — oo,
where k = ky for x € Ri and k = ky for x € R?.

The proof of this theorem depends on the asymptotic behavior of the oscillating
integrals. It is an application of the stationary phase approximation theorem (see e.g.
[24, Example 5.14, Page 295]). In this paper we are interested in the convergence
analysis of the PML method and thus will not elaborate on the details here.

3. The scattering problem. We start with the well-posedness of the scattering
problem (T)-(TH).

THEOREM 3.1. For any g € HY?(T'p), the scattering problem (LI) — (L5) has
a unique solution u € HE (R*\D).

Proof. The uniqueness of the solution can be proved by the similar argument as
that in [16]. In view of II)-(2I2), G(x,y) has the same singularities as ®(k1,x,y)
for xo,y2 > 0 and ®(ke,x,y) for xo,y2 < 0. The existence of the solution can then
be proved upon using the integral method in Colton and Kress [12] Chapter 3]. Here
we omit the details. O

Now we show the integral representation of the solution of the exterior Dirich-
let problem which plays an important role in our subsequent analysis for the PML
problem.

LEMMA 3.2. Any solution u of the exterior Dirichlet problem (LI)-(LH) satisfies

(3.1) u = _‘I’SL()\) + \I/DL(g) in R2\D,

where A = u/dnp € H_1/2(I‘D) is the Neumann trace of u on I'p, and ¥gr,, Ypy,
are respectively the single and double layer potentials

(3.2) TsL(A)(z) = A G(z,y)Ay)ds(y), VreH Y*(Tp),

G (z,y)

r mg(y)ds(y), Vge HY2(Tp).

(3-3) Upr(g)(x) =

Here np is the unit outer normal to I'p.
Proof. For any R > 0 sufficiently large such that Br = {x : [z| < R} includes D,
by the third Green formula, we know that, for any « € Bg\D,

_ ouy) .y _ 9G,y) .
U(I)_/FDUFR Lf?n(y)G( Y) on(y) (y)]d )

where n is the unit outer normal to d(Bgr\D). Since n = —np on I'p, it is clear that
we need only to show that

Ou(y) GGy Vo
/rR {5n(y)G($’y) n(y) (y)] ds(y) — 0, as R _
8




To do that, by the radiation condition ([3]), we know that as R — oo,

(3.4) / @2+/€2|u|2+2k1m u@ ds—/
' Tr or or B Tr

On the other hand, for any fixed Ry < R such that Bpg, includes D, again by the
third Green formula we know that

ou ou
/FR Im <u5> ds = /FR0 Im (u5> ds < co.

Thus we deduce from (B.4) that ||ul[z2(r,) is bounded as R — oo. Similarly, by
Theorem 2.2 we know that ||G(-,y)||L2(ry) is also bounded as R — oo. Now the
lemma follows from ([3)), Theorem 22 and the fact that

| e - )] ast)

2

15}
Y ds — 0.

— —iku

or

- Lon(y) on(y)
- /FR [<gz$ - iku(y)) G(z,y) — (% —ikG(ar,y)) u(y)} ds(y).

This completes the proof. O

We conclude this section by introducing the equivalent weak formulation of the
original scattering problem ([I)-(I3]). Let D be contained in the interior of the
rectangle By = {z € R? : |21| < L1/2,|z2| < La/2}. Let I'y = 0B; and n; the
unit outer normal to I';. We start by introducing the Dirichlet-to-Neumann operator

0
T:HY2(Ty) — H-Y?(Ty). Given f € HY/?(T';), we define Tf = aTX on I'y, where
1

X is the solution of the following exterior Dirichlet problem of the Helmholtz equation

(3.5) Ax+k*x =0 in R*\By,

_ | ox ] _
56 W= [2X] -0
ax .
(3.7) x=f only, +/r E—lkx —0 asr=|z| - cc.

By Theorem Bl T : HY/?(Ty) — H~/2(I';) is well-defined and is a continuous linear
operator. -
Let a: HY(Q) x H*(Q1) — C, where 3 = B1\D, be the sesquilinear form

(3.8) a(ip, ) = /Q (Vo Vi — ko) dz — (T, )r,,

where (-,-)r, stands for the inner product on L?(I'y) or the duality pairing between
H='Y2(I';) and HY?(T;). The scattering problem (LI)-(L3) is equivalent to the
following weak formulation: Given g € H'/?(T'p), find u € H'(Q;) such that u = g
on I'p and

(3.9) a(u,) =0, Ve H%D (Q4),

where Hf (1) ={ve H' (1) :v=0 on I'p}. By Theorem 3] the general theory
in Babuska and Aziz [2, Chap. 5] implies that there exists a constant C' > 0 such that
the following inf-sup condition is satisfied

a 9
(3.10) sp AU S o, Ve e HL ().

0#pEHL () 19 1| 2 0



4. The uniaxial PML equation. Now we introduce the absorbing PML layer.
Let By = {x € R? : |z1| < L1/2 + dy,|z2| < La/2 + d2} be the rectangle which
contains By. Let a;(t) = 14i01(t), as(t) = 1+1ioa(t) be the model medium property
which satisfy

UjZO, O'j(t)ZO'j(—t), and UjZO for |t|§Lj/2, j:1,2.

Denote by Z; the complex coordinate defined by

T
(41) fj = / O[j(t)dt, j = 1,2
0

Notice that Z; depends only on x; and for this reason the method is called the uniaxial
PML method. The complex distance is defined by

1/2

p(3,y) = (81— 90)” + (52— )]

We follow the method of complex coordinate stretching [9, [5] to introduce the
PML equation. We define

G(z,y) := G(Z,y), Va,y € R

From 2II)-(ZI2) and (&I, it is easy to see that G is smooth for z € R?\B; and
y € B1. Now we can define the modified single and double layer potentials

(4.2) e (V) () = / Glr.A(y) ds(y), Ve HV2(Ty),
an @ = [ TR, Ve H).

It is clear that Wsp,(\), Upy,(f) are smooth in R?\ By, and
1HUsL(N) =7hUsL(N), Ve HVA(I),
(4.4) YHUpL(f) = vH¥ou(f), ¥ fe HV(T),

where 7}, : H (R?\B;) — H'/?(T'y) is the trace operator.
For any f € H'/?(Ty), let E(f)(z) be the PML extension given by

(4.5) E(f)(z) = —Usp,(Tf) + Upr(f) for z € R?\B.
By @4) and 3.7) we know that, for any f € H/?(I';),
THE(f) = =75 ¥su(Tf) + 75 ¥or(f) =vHx =f on Iy

For the solution u of the scattering problem (B3), let @ = E(u|r,) be the PML
extension of u|r, which satisfies v}, = u|r, on I'y. It is obvious that @ satisfies

0*u  0%u _ o
— + 7= +ku=0 in R*\B iy = |=—| =0
72 T am THE=0 mRAB, il {3552]2 ’
which yields the desired UPML equation by the chain rule
V- (AV’&) + 041042]€2’l~t =0 in RQ\Bl,
10



where A = diag(aa(z2)/a1(x1), a1(x1)/az(xe)) is a diagonal matrix. The continuity
condition across X reads

=0.

8:1:2 )

{aa] —0 o [(AV@)-my=0 < [

PR

i

The UPML solution 4 in Qo = BQ\D is defined as the solution of the following
system

(4.6) V- (AVa) + ajagk?a =0 in Qo

N ot
(4.7) [i]y, = {8—x2]2 =0 on XN Qo,
(4.8) u=g onlp, =0 on/ls.

The well-posedness of the UPML problem [@6)-(S8) and the convergence of the
solution @ to the solution of the original scattering problem will be studied in next
section.

5. The PML equation in the PML layer. In this section we consider the
Dirichlet problem of the PML equation in the layer:

(51) V- (AVw) + alangw =0 in QPML = Bg \ Bl,
ow

(52) [w]z = |:8—$2:| s =0 on XN Qpmr,

(5.3) w=0 on Iy, w=gq on Ig,

where ¢ € H'/?(T'3). Introduce the sesquilinear form ¢: H'(Qpy) x H(Qpyr) — C
as

c(p, ) = /Q (AVy - VY — araok®pip) dz, Vo, ¢ € Hj(Qpuw).
PML

Then the weak formulation of (5.1)) — (5.3) is: Find w € H'(Qppr) such that w = 0
onT'y, w=gqonTy, and

(54) c(w, 1)) =0, Yo e H& (QPML)-

Notice that, for any ¢ € H'(QpmL),

14+ 0109 | Op 2 140102 | Op 2 9 9
Re [, )] = ST\ I D02\ IR 2, — 1 du.
ool = [ SR GE] - T | e = Dl
Since
1+ 0109 1 1+ 0109 1
> b 2 b
1+0? ~ 1402 1+ 03 1+ 02
where 0, = max (01(z1), o2(x2)) > 0, we know by using the spectral theory of

rellpmL
compact operators that for any given ks, (5.4 has a unique solution for every real ky

except possibly for a discrete set of values of k; (see Collino and Monk [I1, Theorem
2] for a similar discussion on the PML equation in the polar coordinates). In this
section we will make the following assumption on the medium property

11



(H1) 0(t) =0 >0, V|t| > L;/2, j=1,2, where o is a positive constant.

This assumption which allows us to prove the coercivity of the sesquilinear form
c is not very restrictive in practical applications. In particular, our numerical expe-
riences with the adaptive uniaxial PML for Maxwell scattering problems [§] indicate
that the constant medium property leads to better preconditioning techniques for the
discrete PML problems as opposed to the continuous medium properties.
Throughout the paper we will use the weighted H'-norm

1/2
el @) = (IVellEe@) + kel

for any bounded domain Q C R2. For any ¢ € H'(QpumL), we define an equivalent
norm on H!(Qpwmr) by

1/2
Illeten, = (JAVOIE2 gy, + k102020000, ) -

LEMMA 5.1. Let (H1) be satisfied. Then (BA) has a unique solution and it holds
that

53 wp | lelew)

Z é||w||*1£2PML7 V@ S H&(QPML),
opert Qo) I (@par)

where
min(1, 03)

é = d == d d .
2(1 + 02)2 max(1, k2d2)’ max(ds, ds)

Proof. Tt is clear that Qpyr, = Q. U QU Qy, where
QCZ{JJEQPMLZ |$1|>L1/2, |$2|>L2/2},
le{xEQpMLZ |$1|>L1/2, |$2|<L2/2},
QQZ{{EGQPMLI |:Z?2|>L2/2, |I1|<L1/2}.

Since 01 = 02 = 0 in ¢, 09 = 0 in 4, and o1 = 0 in ), it is east to check that

s ool =52+ 22 Ly |2
92212 (qy) 021 || 12 (qy) =1 O L2(9;)
-2 H/ﬂPHm(QC) - HkSDHN(Qlusb) :
The key observation is that
1
Rec(p, ¢)] = ~Tm [c(p, ¢)]
2 2 2
= HVS"”U(QC) +(1+07) HkS"”U(Q 83: :
illL2(Q;))
Therefore, for any + > 0,
v—1
= Vel +7H +a] 22
r Oy L2(9) Oy L2($l2) 6% L2(Q;)

+(1+0% - 27)||80||L2(QC) - VW“PHL?(Qlusby
12



Since ¢ = 0 on I'y, we deduce easily that

590
oy

Op

||90||L2(Ql) < d1 ) ||90||%2(522) < d Oy

)

L2(Qy)

L2(Q)

which implies
2 2 2
—’Y||k80||L2(QluQ2) = ”Y||k<ﬂ||L2(szlqu) - 2’Y||k80||L2(Qluszz)

e

2
> Yl kel 2, u0.) — 27k3d° Z Oz
j

j=1

3

L2(9;)
where d = max(d;,ds). Substitute the above estimate into (5.6) we obtain
Re[c(p, @)l + (v =)o~ 'Tm [c(p, ¢)]

Oy
> |V -+
IVel2a00, —Fqﬂ\axz o 15,
2—v 2 2> ¢
+ — 2vk2d -
<1+U2 2 ; a.’IIj L2(Qj)

+(1+0% - 27)||90||2L2(QC) + 7||/€<P||%2(Qlu92)-
Now we take v = 1/(2max(1,k3d?)(1 + 02)), then

2—~y 2 2 1 2 2
— 2yk2d? > S5, 1+02—2y> 0%
102 IR Zoqygay =0 1o msy=o

Thus
max(1,071)le(p, 9)| = Re[e(p, )] + (v = D)o™' Im [c(p, ¢)]
2 min(’Y? U2)|||<P|||?{1(QPML)'
Since min(y, 0?)/ max(1,0~!) > ymin(1, 0%), we have

sup ()] > (e, @)
0#YeHL (QpmL) |||¢|||H1(QPML) |||SD|||H1(QPML)

> ymin(1, %) [l ()

min(1,03)
z ’YW”SQH*,QPML-
This completes the proof. O

LEMMA 5.2. Let (H1) be satisfied and w be the solution of the PML equation in

the layer (5.1)-G.3). Then, for any ¢ € HY(Qpm1) such that ¢ =0 on Ty and ¢ = q

on I'g,

(5.7) \] < (14 E)C st

H-1/2(Ty)

Proof. Since w — ¢ € Hg (Qpy1), by (5.5) we have

Cllw = Clognn, < sup A0 =GP
YEH (ML) |||<P|||H1(QPML)
(¢, 0|

sup —_———
PEH (QpML) |||<P|||H1(QPML)

13
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where we have used (5.4]) and the fact that |c(C, )| < [[C][+,0pp @l 1 ( This

proves [|wll« qpy < (14 éil)”d *,QpML *
To show (5.7), for any ¢ € H(Qpm1) such that ¢ = 0 on Iy, by testing (5.1))
with ¢ and using (52) we know that

ow
¢,

This completes the proof. O

QpmL)*

= [e(w, )| < [Jwlls,0em ol @) -

6. Estimation of the modified Green function. The convergence analysis
for the UPML problem depends crucially on the exponential decay estimate for the
modified Green’s function G(x,y) which is the goal of this section. We start with the
following assumption on the fictitious medium property, which is rather mild in the
practical application of the UPML method.

Bya, L2 4d,
(H2) / o1(t)dt = / o2(t)dt =: 5, & > 01is a constant.
0 0

We also remark that the result of this section does not depend on the assumption
of constant medium property (H1). The following elementary lemma is from [7,
Lemma 3.2].

LEMMA 6.1. For any z1 = a1 + iby and zo = as + iby with a1,b1,a2,b2 € R such
that a1b1 + asbs > 0 and a% + a% > 0, we have

b b
Im (22 4 22)1/2 > @101 1 4202

T Vaira

Proof. Because the proof is short, we rewrite it here for the completeness. Since
Im (22 4 23) = 2(a1by + azb2) > 0, by ZIT7) we know that

PRy 5
(6.1) Re(a+ib)t/? = @7 Im(a+ib)1/2_\/@_

It is easy to check that Im (a + ib)'/2 is a decreasing function in a € R. Let 22 + 22 =
a + ib, then

2
b b by — a1bs)?

a+ib= ,/a%+a%+i7all+a22 _ (azh —a1by) 12 a122)'
Vai+ a3 aj +az

(asby — a1bs)?

Let a' =a+
a%—l—a%

. Since a1by + azbs > 0, we have

albl + a2b2
NCETE

On the other hand, since a’ > a, we know that Tm (a + ib)*/? > Im (a’ + ib)}/2. This
completes the proof. O

Im (a’ +ib)"/? =

14



The following lemma is the complex counterpart of (ZI3)) and (ZI5)).
LEMMA 6.2. For any z1 = a1 + iby and z2 = ag + ibs with a1,b1,a2,bs € R such
that ay,asz,b1,b2 > 0, define

k
(6.2) §::—l(zﬁ—%i@\/ﬂ-—1>, p=(2+22)Y2  Vie[l, o0).
P

Then uq(§) = (k% — 52) 1/2 satisfies

_k i 2
(6.3) 1 = n (zzt— iz /12 — 1) , Vit e[l,00).

Proof. For any t € [1,00), let pn = ky (2ot — i21Vt2 — 1) /p. Clearly p* = k3 —¢2 =
u3. By the convention in (ZIT), the lemma follows from Re (x) > 0 which can be
proved by direct calculations. Here we omit the details. O

For ¢ given in ([G.2)). Let £ = & + & with &1,& € R. Tt is easy to check that

(araz + biba)(|z1]* + |22]?)
lp|*

1 4 4
g2 f0, ate) = 0 st
p

(6'4) §1& = k% fl(t)7 fl(t) =t — ﬁ(tz + tlz)v
(65) &-G= K+

where t' = v/t2 — 1 and

albg — a2b1
6.6 ==
(66) (AR PR PAE
Consequently, for p = (27 4 23)'/2,
(6.7) |p|4 = |Z1|4 + |22|4 + 2(a1a2 + blbg)2 — 2(a2b1 — a1b2)2.

It is easy to check that (&) = (k% — 52)1/2 satisfies

(a1ag +biba)* ki (Jz1]* + [22f?
ll* 4 [l*

6.8)  Jual® = 40k — K2KD) V (hatt) = 202

where

(6 9) M = 2k% - k% |Zl|2 — |Z2|2'
' ' ko |zl + [z

LEMMA 6.3. For any z1 = a1 + iby and zo = ag + ibs with a1,b1,a2,bs € R such
that a1, az,by, by > 0, define p = (22 + 25)1/2. Assume that

(6.10) b3+ b2 > a? +al.
Then for any p1;(§) = (kf - 52)1/2 with & given in (62), j = 1,2, we have

Im [(p1 — p2)2z2] < 0.

15



Proof. Denote p; = p; +ig; with pj,q; € R, j = 1,2. Since p3 — u3 = k3 — ki,
we have

Py —ds = ki — ki +pi —p3, pia1 = p2go.
We recall (ZI7) and find

1/2
2
\/(k§ -k +p}— )" + 4l + (k3 — k3 +p? — ¢})

(6.11) py = 5 :

1/2

2
| V=12 402 — ) + 4033 — (K — 12 + 03 — ¢f)

(612) g2 = sgu(as .

Direct calculations show that

(6.13) p2>p1 >0, |g2| < laul,

where we have used p; > 0 from Lemma Since

(6.14) Im [(p1 — p2)22] = aa(qr — q2) + b2(p1 — p2),

the lemma now follows obviously for ¢; < 0. The rest of the proof is devoted to the
case of ¢; > 0.

By the assumption (6.I0) we know that Re (22 + 23) < 0. Thus (ZI7) implies
p1 < pa2, where p; = Rep, po = Im p. By Lemma [6.2] we know that

(6.15) p1= % [t(praz + paba) +t'(p1b1 — p2a1)]
(6.16) Q= |I/~% [t(p1be — p2az) —t'(pra1 + pab1)] .
This yields
P1—q1= %{f [a2(p2 + p1) + b2(p2 — p1)] +t' [br(p2 + p1) + ar(p1 — p2)] }
> M(%-ﬁ-%—i—h —ay) > 0.

p|?

Since ¢1 > 0, (G.I0) implies that pi1bs > poas, which together with p; < po implies
bz > as. Therefore, by (6.14), 1 > 0, and p1g1 = p2¢2,

1 a
Im [(p1 — p2) 2] = a(% —q1)(b2p2 — a2q1) < q—f(fn —q1)(p2 —q1)

as
< a(qz —q)(p1—q1) <0,

where we have used (I3). This completes the proof. O
LEMMA 6.4. For z1,20 € C and p = (27 4+ 23)Y/2. Suppose k1 Imp > 1 and let
h(t) be a bounded function in [1,00). Then the function

<I>1(h;zl,22) = €ik1ptdt

1 /°° h(t)
o)y VE1

16



satisfies the estimate
|®1 (h; 21, 20)| < CM (h)e Fr1me,

where M (h) is the upper bound of |h| and C is independent of ki, z1, z2.
Proof. Since k1 Im p > 1, we have

|®1(h; 21, 22)| < OM ki Impt gy

e 1
L -
0 [ =
< CM(h)e~(krimp=1) / ———dt
1 2 -1
= CM(h)e Fme,
This completes the proof. O

In the following we will always denote

617) 2 =[(@—y)2]"?, 2= [@2)2]" +lyal, Voels, yely.

Let z; = a; + ibj,a;,b; € R,j = 1,2. Then a;,b; > 0. By Lemma 6.1} p(Z,y) =
(22 + 23)'/? satisfies
1
/ ol(t)dt}
0

/0 " ag(t)dt‘ .

o = min(dl,dg +L2/2)
T VA )+ (La+ do)?

Imp(:ﬁ,y) > |$1 - y1|
Vier —yi2 + (lza] + [y2])?

|z2| + |y
Ve — 12 + (Jz2] + [yal)?

Now by (H2) we have, for any z € I'y and y € I'y,

The following lemma on the estimate of the modified Green function G will play
an important role in the following analysis.

LEMMA 6.5. Let (H2) and oG > max(k; ', min(dy, da+L2/2)) be satisfied. There
exists a constant C independent of k;, L;, and d;, j = 1,2, such that

|G(z,y)| < Cyre M7 Vaely, yely,

where 1 = eF2V ki—ki/2,
Before we prove the lemma we remark that the condition

Y06 > max(ky ', min(dq, da + L2/2))

in the lemma is rather mild in practical applications because one achieves the ex-
ponential convergence of the PML method by enlarging & which can be realized by
either enlarging the thickness of the PML layer d; or enlarging the medium property
;. Moreover, the condition 405 > min(dy,ds + Lo/2) implies b3 + b3 > a? + a3 which
is the condition (GI0) in Lemma [6.3

17



Proof. We only prove the case for y € R, the proof of the other case y € R? is
similar. By (Z.3) and the method of Cagniard-de Hoop transform (cf. [10]) we know

the Green function ®(k1,x,y) = %Hél)(kﬂx — y|) satisfies

1 [ 1

= — etFrlz=ylt gy
27T 1 \/t2 —_ 1

(I)(klaxay)

Thus by 2II) and Lemma 2.1l Lemma [6.4] we know that, for x5 > 0,

(619) G(‘Ivy) = (1)1 (15 21, Zé) - (1)1(13 21, 22) + (I)l(h’lv 21, 22)7

where 21, 29 are given in (GIT), 25, = Z2 — y2, and

(6.20) hi(t) = Re (i) .

M1+ p2

Since Im (p?) = Im (3), by @I7), sgn(Im ;) = sgn(Im o). Recalling the con-
vention of choosing the analytic branch of 1/z, we know Repu; > 0,Reus > 0. It
follows that

M1

6.21 M
( ) 1+ 2

<1,

which yields |1 (¢)] < 2. Then using (619), Lemma [6.4] and ([GI]), we have
|G(z,y)| < Ce™F1707 " for 5 > 0.

Now we consider the case z € R?2. By (Z.II)), Lemma 2] and Lemma [6.4] we
know that

(6.22) G(z,y) = @1 (ho; 21, 22)

where

hs = Re (iei(ul—M2)(52—y2)6iy2(l$1—Hz)) .
M1+ 2

Let p; = p; +1ig; with pj,q; € R, j = 1,2. By the remark after this lemma we can
use Lemma and (E2ZI) to obtain

|h2(t)| < 9¢elar—azllyzl

Since ¢; and g2 have the same sign, we deduce that

Bk _ Bk Bk
p1 A+ p2] T g+ @] T o — g2l

g1 — 2| < |1 — pol| = |

Then
|ha(t)] < eVEE—Rilval < oLav/R3=K/2 'y c Ty,

This completes the proof by ([6:22)) and Lemma [6:4. O

To estimate the derivatives of the modified Green function, we need to estimate
the lower bound of ps(€) for all € in (62) with 21, 29 in ([E11). We distinguish several

cases.
18



1°) If by = 0, we have |z1| < L1/2. Then (H2) and the fact x € I'; indicate that
b2 = ¢. It follows from ”yO& Z min(dl, dQ —|—L2/2) that & Z \/(Ll + d1)2 + (LQ + d2)2.
Thus

|22] >0 >di + L1 > |xy —y1| = |21], Vaxelzyeli.

Since |4] < 1/2 by Cauchy-Schwarz inequality, we have fa(¢) > 0 for any t € [1,00)
and consequently we deduce from (63 that

I 12 eon 1 1
(6.23) 2| > /Re (k§ -&) = k% - Ek% = %kz-

2°) If by > 0 and by > 0, then
either |I1| = L1/2—|—d1, |$2| Z L2/2 or |I2| = L2/2—|—d2, |$1| Z L1/2

Thus as = |za| + |y2| > Lo/2. If |x1| = L1/2 + d1, a1 = |v1 — y1| > dy for any
y € I'1. In the other case, |r2| = La/2 + da and hence by = 7. If |z2| < |2], then
a3 + b3 < a? + b? and consequently a? > a3 + b3 — b? = a3 + 3% — b? > a3. That is
ay > ag > Lo/2. From (G.8) we have

ol 2 (o — gy s VL Lo/ D)L
- o] '

On the other hand, if |22] > |z1|, we obtain as in ([G23)) that |us| > %]{52. In summary
we have

1 min(d1 L2/2)L2
6.24 > —ky or > (k3 — K22)1/4 ’ .
(6.24) 2| > ok ln2| > (kg — kaky) 7

The trickiest case of by = 0 is the objective of next lemma.
LEMMA 6.6. Suppose by = 0 and b? + b3 > a? + a3. Define

(t —t9)2 a?
R= |2+ 2
2B B

where to = ko/k1. Then
Varb
lpa| > \/k3 — k2 |a1| L min (1,VR) , Vtell, o).
p

Proof. For by = 0, we note that (68) becomes

_ 1 2
(6.25) ki tp|*ua(t)]* = 4(tg — t5)atas + 1 (I21] + |22]*)” (fa(t) — M),

By (G.5]) we have

2
£ — M =22 — £ — 261) + 222 — 1) — 12
fQ() ( 0 B ) ( 0 )|Zl|2+|22|2
Note the elementary inequality
(6.26) (X+B?>(1-e)X*+(1 - 1HB?* Ve>0.

19



_ @5 =1zl

By taking X = ¢2 — 2 — 28tt/, B = ~—0__ 122
0 |21]2 + |22

we know from (626) that
22|

30 =207 2 (=) = =2+ (=08~ )P

Again using (6:206) with € = 1/2, we have, for 1 <t < tg, that

2b2

2 122 4822 > (b —tg)? — — 2L
( O) _( 0) (|Zl|2+|22|2)2

(t — 0)-

N =

(t* — 13 — 2ptt")? >

Now since by = 0, # < 0 by (IEI) The above inequality is also valid for ¢ > tg > 1
because t? — 3 — 203tt' > 12 — 12 >t —to > 0 for t > t.

Using (6.28) we have

kol el = (1= e) (|2 + [22*)* (¢ = t0)* + (1 = e71)(265 — 1)%a3
+daj(ty —t3) [a7 — (1 —)b7] .

By the assumption b? 4 b3 > a? + a3 and by = 0, we have b > a?. Therefore we can
set € = 1 —a?/(2b?) > 0 in above inequality to obtain

‘»—ll\.’)

kol el = 2 (I + [22]*)%(t = t0)* + afa3 |2(tg — 13) — ] (2t2—1)

)—AN

where we have used the fact that 1 — e~ = —a?/(2b? — a?) > —a?/b3.

If tg — 12 > W (2t2 —1)2, since |21]? + |22|? > b2, we have

_ 1
ke 1ol pe|* > ga%b%(t —to)? + afa3(ty — t5) = aibi(ty — 1)°R>.

2 4 2

tx —
If tg — 2 < %(%3 —1)? which is equivalent to a3 > ﬁ b7, we deduce from
1 0
(©25) that
. L4l 4s o g(4h _ g2 2 (6 —18)° B2 > (1 — 1)%a30?
(6.27) ol 2] > 4ty — t5)ad > (5 — 1)7ayby.

2t - 1)2
This completes the proof. O

LEMMA 6.7. Let (H2) and o6 > max(k; ', min(dy, da+L2/2)) be satisfied. There
exists a constant C depending only on ~yo, ka/k1, La/L1 but independent of kj;, L;,
and dj, j = 1,2, such that, for any x € 'y and y € I'y,

aé($7 y) ( 1 ) —k1v0G
6.28 — 2| < Cvik1 | 1+ e~ LT,
( ) 8yj Y1k le1Ly
aé($7 y) 1 —k o
: ) < m — 1707,
(6.29) iy < Cyikia 1+ A e

Here ay, = maxgeqpyy (|oa(21)], |a2(22)]), 11 is defined in Lemma[G.3.
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0G(Z
Proof. By the symmetry of the Green function G(z,y) we know that M =

83:j
0G(z
—a(xj)#. Thus we only need to prove ([G.28) which will be given only for
j

T,y € Ri. The proof for other cases is similar.
In view of ([6.19)), we have, for any x,y € Ri,

G (z,y) L , 0P, L
— < | == (1; —(1; —(ha; .
ayJ >~ aZj ( 721722) + 8,2] ( 721722) + 821] ( 1721722)
0d 0d
Since the estimation for 8—1(1; 21, 25) and 8—1(1; 21, z2) is simpler, we consider only
g Zj
o
%—Zjl(hl; 21, 22) in the sequel.

From the definition of ®4(hq; 21, 22) in Lemma and 9p/0z; = z;/p we know
that
o0,
62’]‘

h .
(hl;Zl,ZQ) = (1)1 <b +ik1hlﬁt;2’1,22> ,j = 1,2

(6.30) 5, ;

Since the remark below Lemma[G.5] we know that the assumption of the lemma implies
b? + b2 > a? + a3, by (6I8) and the fact that |b;j| < & for x € I'y,y € 1, we know
that

Z
p

2, 12
aj—i—bj <§
A

<

(6.31)

Recall Lemma for the expressions of £ and pp. There exists a constant depending
only on vy but independent of k;, d;, L;, j = 1,2, such that

(95 (fml klt .
6.32 — — | < C— =0,1,2.
( ) azj + aZJ = |p|J7 J ]
3] 3]
By the chain rule k2 _ &ﬂ, we deduce by direct calculation and using (6.32))
Z4 125 8zj
that
oh - 3] kit
(6.33) O _C’M om| o kit
0z; po(pr + p2) | | 0z; |pl|p2]
where we have used ‘@ < 1. Then by using (€30)-(@31) and Lemma [6.4] we
M1 T K2
have that
6@1 —k 5 o te_t
—(hl;Zl,Zg) < Ckie ¥ (1+K1), Klz/ —dt.
9z; 1 pllpel Vet =1

To estimate K7, notice that under the assumption & > min(dy,ds + L2/2), & >
V(L1 +d1)? + (Lg + d2)2. Thus |p| > 796 > CL;. Now by (6.23)-(6.24) and Lemma
we have

|pllp2| = CkiLymin(1, /[t — to),
21



which implies easily |K1| < C/(k1L1). Thus

® 1 )
0 1(h1;21,22) <Ck |1+ e~ k1707
ki1l

8zj

This completes the proof. O

LEMMA 6.8. Let (H2) and o6 > max(k;*, min(dy, do+L2/2)) be satisfied. There
exists a constant C' depending only on o, ka/k1, La/L1 but independent of k;, Lj,
and dj;, j = 1,2, such that, for any x € 'y and 1 <p < 4/3,

2 _ 2
1 _
< OnkiL’ (1 * lel) (1 * Lil) ame™ 7.

092G

%Gz, -)
8:1:1-8%-

Lr(T'1)

Proof. We start by estimating 3 (x,y) for any € Ty and y € T'y. We first

xiayj
consider the case when z,y € R2. In view of (619), we have, for any z,y € R?,

%G (x,y) 92®, R R
————| < 15 21, 5 (121, = (h1; 21, .
8:1:1-8%- - |Oé | 82182J ( A1 22) + 82’18,2’]( A1 22) + 82’18,2‘]( 1A 22)
0%® 0%®
Since the estimation for ——— (1; 21, 2}) and L (1521, 22) is simpler, we only
2;0%j ZiaZj
conside " (h ) in the sequel
nsider ——— (h1; 21, 22) in uel.
azzazj 1y <1, <2 q
It is easy to see that
62(1)1 82h1 0 Z5
6.34 hi; =& | —— + ikt hi=L ) ;
(6.34) 8Zi82j( 1521, 22) 1(821_8%_4-1 e ( 1p>,21,22>
oh ; i
+‘I)1 (<—1 + iklhlz—Jt> ikltz—;21722> .
9z; p p
By the chain rule % S % and ([6.32), there exists a constant C' depending only
6zj U2 8zj

on 7o, k2/k1 but independent of k; and d;, j = 1,2, such that

’ 9%y f1 — fiz ’ 9% ’2u2 + i ’Ml — p2 | [Op || O
02,0z | — | pa(p1 + p2) | | 02i0z; s w1+ pe || 0z || 0z,
343
|pI?| 12 |pI? |2
where we have used % < 1 and |ua| < ko + |p1| < Ckyt for t > 1. By the
H1 T f2
assumption vo& > min(dy,ds + L2/2), k1|p| > k1Im p > k15 > 1, we then have
0?hy kit k33| p|
020z | = " |pllu2l T IpPlual®
Similarly, by using ([6.33) we can obtain
0 ; 1
iyt (hlz—]> <Ok ———,
0z p |pl| 2]
oh ; i 1
‘(—1 + iklhlz—Jt> ikt 2| < O3 (1 + —> .
0z, p p ol el
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By Lemma [6.4],

2
(6.35) ’ 070y

< Ck?e 171 + Ky + Ky + K.
0702 < 1€ (1+ K1+ K>+ K3),

(h1; 21, 22)

where K is defined in the proof of last lemma, and

(6.36) K /Oo tre ! K /Oo kt’lple™
. 2 = 3= - -
1 pllp2| V2 — 1 pPlpe PV —1

The estimate (G:35) is also valid for the other cases when x and y are not both in R2
if the constant C' is replaced by Cn;.

From the proof of last lemma we know that |K;| < C/(k1L1). Similarly we can
prove |Ko| < C/(k1L1). It remains to estimate K3. For |za| > La/2 we have by > 0
and by ([6.23)-(6.24) we know that |p||u2| > CkiL; and thus K3 < Ckq|p|/(k1L1)?

which yields
1/p _
1 g 1/
<C — ) Ly/?.
KLY (Ll) '

For |z3| < Ly/2 we know that by = 0, by = 7, and a1 = |1 — y1| > di > WalLl,
= |22|? + y3 > y3. Thus by Lemma [6.6]

| K3[Pds(y)
IS

pllua] > ChyV/Iio min(1,V7), 7= /(t —t0)? +43/52.

Thus, since |p| < C’&, o> \/(Ll + d1)2 + (LQ + d2)2,

1/p
wm (L]
Notice that

2 \%/? to+1 3ty — 1
p32 < (2 <O, Vtell, ot )|t ,00 ).
to—1 2 2

An application of Holder’s inequality yields that

J,

t3 —t

K3|Pds
| Ksl"ds(y) min(1,73/2)V/t2 — 1

dt

p ds(y)) 1/p |

I

3tg—1

3 t3 —t
/ 1 3/2. /12 dt
ol oy t=—1

p

ds(y)

ds(y) < CL, + c/
Iy

oo t3 —t
——dt
| =

3tg—1

<CLy +C/ i riSTpdtds(y).

On the part of the boundary of I'; where |ya| = La/2, we have r—! < &/Ls, thus

J.

3t0 1

ds(y) < CLy + CLy (—) +C/ / r= % dtdys

P

o] t3 —t
—dt
| =

<CL+CL; <L_> + Co, 1fp<4/3.
2

This completes the proof. O
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7. The convergence. In this section, we are going to show the exponential con-
vergence of the solution of ([@.6)-([Z.8) to the solution of the original scattering prob-
lem (LI)-(LH). We first introduce the approximate Dirichlet-to-Neumann operator
T: HY2('y) — H~/2(I';) associated with the UPML problem. Given f € H/2(T';),

let Tf = %

, where ¢ is the solution of the following Dirichlet problem in the

IS
PML layer:
(71) V- (Ang) + 041042k2¢) =0 in Qpwmr,
¢
(7.2) 9]y = {8—332] s =0 on XN QpmL,
(7.3) ¢=/f on I'y, o=0 on I's.

From (5.5) we know that (7)) (Z:3) has a unique solution and thus 7" is well-defined.
Then ([A6)-(@]) is reduced to the following weak formulation: Find 4@ € H'(Q2) such
that 4 = g on I'p and

(7.4) a(t,v) =0, Vv € Hp (1),
where the sesquilinear form @ : H(£21) x H'(Q1) — C is defined by
) = [ (Vo V0= Rpildo = Ppuir,, Voo e HAS).
o
In view of (3:9) and (7)), we are in the position to estimate the error Tf — T'f

for any f € HY?(T;). Tt is obvious that

. ow
(75) ri-ti= g

where w € H'(Qpwmr) is the solution of the Dirichlet problem (EI)—(E3) with ¢ =

E(f)-
For any f € H'/?(T), denote

X(f):={CeH" (Qpmr): (=0 on I'y, (=E(f) on I's}.
By Lemma [5.2l we know that

(7'6) ||Tf - TfHH*l/?(Fl) < (1 + Cil) C€i§€j') ||<||*7QPML'

We introduce the weighted H'/2(T;)-norm, j = 1,2,

_ 1/2
@) ollarsay = (I ol + By, ) o Yo HY2(T)
where
[v(z) —v(’)|?
(78) |’U|2%1Fj ::/F /1_, st(.f) dS(.I/).

LEMMA 7.1. Let (H2) and o5 > max(k; ', min(dy, do+L2/2)) be satisfied. There
exists a constant C' depending only on o, ka/k1, La/L1 but independent of k;, Lj,
and dj, j = 1,2, such that, for any f € HY2(Ty),

N2
. 3 o
a0 16l < O (R o (14 ) Ul
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Proof. By definition
||C||3,QPML = || AV¢ H%?(QPML) + [l karaz( ||%2(QPML)
<+ b ady (V¢ B + 11121 Baon)) -
which by the trace inequality implies that

LGl < € (14 R L) o By
The definition of the H'/?-norm shows that
B (€l s, < € (U L) o, (Bl 2wy + 01 B <1y ) -
On the other hand,
[E(f)| = | = UsL(A) + ¥pL(f)]
A aé(‘T?y)
=|—- G(z,y)A(y)ds(y) + 7fydsy‘
|- [, G + | G )ds()

< CIG@, szl M -2,y + 110G (@, ) /001 (y) oy L f )

Since || A ||H71/2(F1) < OH f ”Hl/?(Fl)a we then obtain
E()] < O+ kL) mas (G ()] + a9, Gl ) 1 f e
which implies by Lemmas and Lemma that

[E(f)] < Cmi(1 4 kiLy)?e 1707,

Similarly, for any 1 < p < 4/3, we know from the embedding theorem that W1?(I'y)
is embedded to H'/2(I'y) and H'/?(I';) is embedded to L? (1), where 1/p+1/p’ = 1.
Then

IVLE()] < IVG(@, )z N a-17200) + V2V G, o | Ly o)
—1 ~ ~
< CLT (VG (@, o) + LalVaVy G, ) o)) | Lz -
This implies by using Lemmas that

o

2
LB < Can(i4 bL? (141 ) e e,

This competes the proof. O

Now we are ready to present the main result of this paper.

THEOREM 7.2. Let (H1)-(H2) and o7 > max(k; 5, min(dy,da + L2/2)) be satis-
fied. Let u be the solution of (LI)) — (LX). Then for sufficiently large &, the UPML
problem (@6l — (EX) has a unique solution @. Moreover, there exists a constant C
depending only on o, ka/k1, La/L1 but independent of kj, L;, and d;, j = 1,2, such
that

o

2
(19) Ju= ey < O+ C i+ bLah (142 ) e il
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Proof. We prove the estimate (Z9) first. Suppose the solution @ of (6] — (48]
exists. By 39) and (Z4), simple integration by parts implies

a(u—1,¢) = a(t,¢) — ali,¢) = (Ta—Ta,)r,, Ve H (Qpmw).

Using 310) and Lemma [T we obtain (7.9).
Now we turn to the well-posedness of the UPML problem. By the Fredholm

alternative theorem we only need to show the uniqueness of the UPML problem (Z.6))
— ([@8). For that purpose we assume ([£0) — ([L8)) has a solution @ for g = 0 in
(#8). By the uniqueness of the scattering problem we know that the corresponding
scattering solution v = 0 in ;. Thus (Z9) implies

o

2
— k105 || ~
Z) et il

”ﬁHHl(Ql) <C (1 + é_l) 11+ k1L1)3a?n (1 +

Thus for sufficiently large & we conclude that % = 0 on £2;. That @ also vanishes in
s is a direct consequence of the unique continuation theorem (cf. e.g. Monk [20]
Page 92]). Here we omit the details. O

8. Concluding remarks. In this paper we proved that the solution of the
UPML problem converges exponentially to the solution of the Helmholtz scattering
problem in layered media. The convergence can be realized by either enlarging the
thickness of the PML layer or enlarging the PML absorbing coefficients. The proof is
based the method of complex coordinate stretching and a new representation of the
Green function which is essential for the estimate for the modified Green function.
We will extend the results of this paper to design an adaptive UPML method and
report the numerical examples in a forthcoming paper.
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