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Abstract. This paper is concerned with the analysis of the electromagnetic wave scattering
in inhomogeneous medium with infinite rough surfaces. Consider a time-harmonic electromagnetic
field generated by either a magnetic dipole or an electric dipole incident on an infinite rough surface.
Throughout the dielectric permittivity is assumed to have a positive imaginary part which accounts
for the energy absorption. The scattering problem is modeled as a boundary value problem governed
by the Maxwell equations with transparent boundary conditions proposed on plane surfaces with the
inhomogeneity in between. The existence and uniqueness of the weak solution for the model problem
are established by using a variational approach. The perfectly matched layer (PML) method is
investigated to truncated the unbounded rough surface electromagnetic scattering problem in the
direction away from the rough surfaces. It is shown that the truncated PML problem attains a
unique solution. An explicit error estimate is given between the solution of the scattering problem
and that of the truncated PML problem. The error estimate implies that the PML solution converges
exponentially to the scattering solution by increasing either the PML medium parameter or the PML
layer thickness. The convergence result is expected to be useful for determining the PML medium
parameter in the computational electromagnetic scattering problem.

Key words. rough surface scattering, variational formulation, Maxwell’s equations, transparent
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1. Introduction. This paper is concerned with the mathematical analysis of an
infinite rough surface electromagnetic wave scattering problem for Maxwell’s equa-
tions. An infinite rough surface is referred to as a surface which is a non-local per-
turbation of an infinite plane surface such that the whole surface lies within a finite
distance of the original plane.

The importance of the rough surface scattering problems is clear, since they are
related to technology with significant industrial and military applications, e.g., mod-
eling acoustic and electromagnetic wave propagation over outdoor ground and sea
surfaces or, at a very different scale, optical scattering from the surface of materials
in near-field optics or nano-optics, detection of underwater mines, especially those
buried in soft sediments. These problems are widely studied in the engineering litera-
ture and a considerable amount of information is available concerning their solutions
via both rigorous methods of computation and approximate, asymptotic, or statistical
methods, e.g., the reviews and monographs by Ogilvy [43], Voronovich [50], Saillard
and Sentenac [46], Warnick and Chew [51], DeSanto [29], Elfouhaily and Guerin [35],
and references cited therein.
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In this paper, we study the electromagnetic wave scattering problem in an in-
homogeneous medium with infinite rough surfaces. Specifically, we consider a time-
harmonic electromagnetic field generated by either a magnetic dipole or an electric
dipole incident on an infinite rough surface. The scattering problem is modeled as a
boundary value problem for electromagnetic wave propagation governed by the three-
dimensional Maxwell equations with transparent boundary conditions proposed on
plane surfaces with the inhomogeneity in between. As a part of the boundary value
problem the radiation condition is required. Due to the infinite rough surfaces, the
usual Silver–Müler radiation condition is no longer valid. Instead, the following ra-
diation is employed: above (below) the rough surface of inhomogeneous medium, the
solution can be represented in integral form as a superposition of upward (downward)
traveling and evanescent plane waves. This radiation condition is equivalent to the
upward propagating radiation condition proposed for a two-dimensional rough sur-
face scattering problems by Chandler-Wilde and Zhang [21], and has recently been
analyzed carefully by Arens and Hohage [6]. The existence and uniqueness of the
weak solution for the model problem are established by using a variational approach.
Our method enjoys a great generality in the sense that it allows very general surface
structures as well as complex materials. In particular, the analysis requires neither the
smoothness nor being the graphs of functions for the rough surfaces, and the material
coefficients, i.e., the dielectric permittivity and the magnetic permeability, can be a
general spatially varying bounded measurable function. Throughout we restrict to the
case of lossy medium, where the dielectric permittivity is assumed to have a positive
imaginary part accounting for the energy absorption. We refer to Ritterbusch [44]
for a related electromagnetic scattering problem in the lossless case where weighted
Sobolev spaces are studied for unbounded domains.

This paper is closest to the recent study by Chandler-Wilde and Monk [17, 18],
Chandler-Wilde et al [19], Lechleiter and Ritterbusch [38], who consider the varia-
tional approach to solve a two- or three-dimensional rough surface scattering problem
governed by the Helmholtz equation which models the time-harmonic acoustic wave
scattering by a layer of homogeneous or inhomogeneous medium above a sound soft
surface. The present paper is devoted to the analysis of the scattering problem for
the vector form of Maxwell’s equations with dielectric surfaces, which models the
time-harmonic electromagnetic wave by three layers of inhomogeneous medium with
two infinite rough surfaces. It is evident that the present model problem is consider-
ably more difficult than the scalar Helmholtz equation. The two-dimensional scalar
model problem has been considered by integral equation methods in two cases. The
first case assumes that the medium is homogeneous and the surface is the graph of a
sufficiently smooth bounded function, when the boundary integral equation methods
are applicable, e.g., Chandler-Wilde et al [16,20], Zhang and Chandler-Wilde [52,53],
and DeSanto and Martin [30–32]. The second case studied is that the surface is a
straight line, e.g., Chandler-Wilde and Zhang [22] and Li [39].

The PML technique, which was first proposed by Berenger [12, 13], is an im-
portant and popular mesh termination technique in computational wave propagation
due to its effectiveness, simplicity, and flexibility, e.g., Chen and Liu [24], Chen and
Wu [25], Collino and Monk [26], Lassas and Somersalo [37], Teixera and Chew [48],
and Turkel and Yefet [49]. The idea is to surround the computational domain by a
nonphysical PML medium which has the remarkable property of being reflectionless
for incident waves of any frequency or any incident direction, and waves decay expo-
nentially in magnitude into the PML medium. In practice, the PML medium must
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be truncated and the truncation boundary generates reflects waves which can pollute
the solution in the computational domain. We refer to Bao and Wu [10], Bramble
and Pasciak [14, 15], and Chen and Chen [23] for convergence analysis of the PML
problems for three-dimensional Maxwell’s equations. We shall use a PML to truncate
in the direction vertically away from the rough surfaces. A practical calculation also
requires truncation on vertical side boundaries, which we do not consider here. Under
a proper assumption on the PML medium parameter, we prove that the truncated
PML problem attains a unique solution and obtain an error estimate between the
solution of the scattering problem and the solution of the truncated PML problem in
the computational domain. The error estimate implies particulary that the PML solu-
tion converges exponentially to the scattering problem when either the PML medium
parameter or the thickness of the layer is increased.

Related work for the scattering of electromagnetic waves in a grating (periodic
surface) structure (diffractive optics) and in a cavity (with a local perturbation of
a plane surface) have been studied extensively by either integral equations methods
or variational approaches by Ammari and Bao [2], Bao [7], Bao and Dobson [9],
Bao et al [11], Dobson and Friedman [33], Nédélec and Starling [42], Ammari et
al [5], and reference therein. A recent review on diffractive optics technology and its
mathematical modeling can be found in Bao et al [8]. The diffraction grating problem
or the cavity problem is simpler since the variational formulation is on either a single
periodic cell or a bounded domain, a compact set, as a consequence of which the
sesquilinear form satisfies a G̊arding inequality, so that the associated linear operator
is Fredholm of index zero and well-posedness follows from uniqueness. More recently,
existence of the solution to the acoustic and electromagnetic scattering problem in
infinite periodic surface perturbed by a single inhomogeneous object placed inside the
periodic structure are established via the integral equation method by Ammari and
Bao [3, 4]. We refer to Sun and Zheng [47], Ehrhardt et al [34], and Joly et al [36]
for some numerical results for scattering problems with local perturbation of periodic
structure. One may consult Colton and Kress [27, 28], Nédélec [41], and Monk [40]
for extensive accounts of the integral equation methods and finite element methods
for acoustic and electromagnetic scattering problems.

The outline of this paper is as follows. In Section 2, the model problem is intro-
duced and some regularity properties of the trace operator are discussed. Section 3 is
devoted to the derivation of the transparent boundary condition. Some estimates of
the capacity operator are introduced. In Section 4, a variational formulation for the
infinite rough surface electromagnetic scattering problem is introduced by using the
transparent boundary condition. The existence and uniqueness of the weak solution
for the variational problem are established. The PML formulation and convergence
analysis are presented in Section 5. The paper is concluded with some general remarks
and directions for future research in Section 6.

2. A model problem. In this section we shall introduce a mathematical model
and define some notation for the rough surface scattering problem. Let us first specify
the problem geometry. Figure 1 shows the structure of the problem geometry, where
S1 and S2 are two Lipschitz continuous surfaces imbedded in the strip

Ω = {x = (x, y, z) ∈ R3 : z2 < z < z1} = R2 × [z2, z1],

where z1 and z2 are two constants. The medium in the region Ω between S1 and S2

may be inhomogeneous. Above the surface S1 and below the surface S2, the media are
assumed to be homogeneous. Let Ω1 = {x ∈ R3 : z > z1} and Ω2 = {x ∈ R3 : z < z2}.
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Fig. 2.1. Problem geometry.

Define the boundaries Γ1 = {z = z1} and Γ2 = {z = z2}. The surface S1 and S2

divide Ω into three connected components.
Suppose that the whole space is filled with material with the dielectric permittivity

ε and magnetic permeability µ. The electromagnetic field is governed by the time-
harmonic Maxwell equations (time dependence e−iωt):

curlE− iωµH = 0, curlH+ iωεE = 0 in R3, (2.1)

where E and H denote the electric field and magnetic field in R3, ω is the angular
frequency. Throughout the paper we assume that ε ∈ L∞(R3) and µ ∈ L∞(R3) with
Re ε > 0, Im ε > 0, and µ > 0. We restrict our attention to the case Im ε > 0, which
accounts for materials which absorb energy. The more sophisticated case Im ε = 0
will be considered in a separate work. Since the medium is homogeneous away from
region Ω that contains the inhomogeneity, there exist constants εj and µj such that

ε(x) = ε1, µ(x) = µ1, inΩ1,

ε(x) = ε2, µ(x) = µ2, inΩ2,

which satisfy Re (εj) > 0, Im (εj) > 0, and µj > 0 for j = 1, 2.
Let p be a constant vector, known as the polarization vector. The pair of functions

Em(x) := curlx [pG(x,y)], Hm(x) :=
1

iωµ1
curlEm(x) (2.2)

represent the electromagnetic field generated by a magnetic dipole located at the point
y and

He(x) := curlx [pG(x,y)], Ee(x) := − 1

iωε1
curlHe(x) (2.3)

represent the electromagnetic field generated by an electric dipole located at the point
y, where G is the fundamental solution for the three-dimensional Helmholtz equation,
given explicitly as

G(x,y) =
1

4π

eiκ|x−y|

|x− y|
,

where κ2 = ω2ε1µ1 with Imκ > 0 and κ is called the wavenumber. Evidently both Eq.
(2.2) and Eq. (2.3) satisfy the Maxwell equations (2.1) for x ̸= y and ε = ε1, µ = µ1
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in R3. The incident electric field Einc and the magnetic field Hinc are taken as the
electromagnetic fields generated by either a magnetic dipole or an electric dipole at
some point y ∈ Ω1, i.e., E

inc = Em and Hinc = Hm or Einc = Ee and Hinc = He.
To ensure the uniqueness, an appropriate radiation condition is required. Due to the
infinite rough surfaces, the usual Silver–Müler radiation condition is no longer valid.
Instead, the following radiation condition is employed: (E,H) is composed of bounded
outgoing waves in Ω1 and Ω2 plus the incident wave (Einc,Hinc) in Ω1.

To describe the boundary value problem and derive its variational formulation,
we introduce some Sobolev space notation. The reader is referred to the reference
like Adams [1] for more details. For u ∈ L2(Γj), which is identified with L2(R2), we
denote by û the Fourier transform of u defined by

û(ξ) =
1

2π

∫
R2

u(ρ)e−iρ·ξdρ,

where ξ = (ξ1, ξ2) ∈ R2 and ρ = (x, y) ∈ R2. We define C∞
ρ (Ω) to be the linear space

of infinitely differential functions with compact support with respect to the variable
ρ on Ω. Denote by L2(Ω) the space of complex square integrable functions on Ω with
the norm

∥ u ∥0,Ω=
[∫ z1

z2

∫
R2

|u(ρ, z)|2dρdz
]1/2

=

[∫ z1

z2

∫
R2

|û(ξ, z)|2dξdz
]1/2

.

We define the Sobolev space: Hs(Ω) = {Dαu ∈ L2(Ω) for all |α| ≤ s} which is a
Banach space for the norm:

∥ u ∥s,Ω=

∫ z1

z2

∑
l+m≤s

(∫
R2

(1 + |ξ|2)l|Dm
z û(ξ, z)|2dξ

)
dz

1/2

,

where l,m ∈ N and Dm
z is the m-th derivative with respect to z. These norms, given

in the spatial-frequency domain, are equivalent to the usual Sobolev norms in the
entire spatial domain due to the Parseval identity.

The following two lemmas are concerned with the density of C∞
ρ (Ω). This is

important, particulary for our case of unbounded slab Ω, since it allows us to prove
results for smooth function with compact support and extend them by limiting argu-
ment to more general functions.

Lemma 2.1. C∞
ρ (Ω) is dense in Hs(Ω).

Proof. Noting that C∞
0 (R3) is dense in Hs(R3), we have C∞

0 (R3)|Ω is dense
in Hs(R3)|Ω. From the Sobolev extension theorem, Hs(R3)|Ω = Hs(Ω). Therefore
C∞

ρ (Ω) ⊇ C∞
0 (R3)|Ω is dense in Hs(Ω).

Introduce the following space:

H(curl, Ω) = {u ∈ (L2(Ω))3, curlu ∈ (L2(Ω))3},

which is clearly a Hilbert space for the norm:

∥ u ∥H(curl,Ω)=
(
∥ u ∥20,Ω + ∥ curlu ∥20,Ω

)1/2
.

Given u = (u1(ρ, z), u2(ρ, z), u3(ρ, z))
⊤ in H(curl, Ω), it has the following inverse

Fourier transform:

u(ρ, z) =
1

2π

∫
R2

(û1(ξ, z), û2(ξ, z), û3(ξ, z))
⊤eiρ·ξdξ.
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A simple calculation yields an explicit characterization of the norm in H(curl, Ω) via
Fourier coefficients:

∥ u ∥2H(curl,Ω) =

∫ b1

b2

∫
R2

[|û1(ξ, z)|2 + |û2(ξ, z)|2 + |û3(ξ, z)|2 + |iξ2û3(ξ, z)− û′2(ξ, z)|2

+ |û′1(ξ, z)− iξ1û3(ξ, z))|2 + |ξ1û2(ξ, z)− ξ2û1(ξ, z)|2]dξdz, (2.4)

where û′j(ξ, z) = ∂
∂z ûj(ξ, z), j = 1, 2. Using a similar argument to Lemma 2.1, we

have the following lemma. The proof is omitted.

Lemma 2.2. (C∞
ρ (Ω))3 is dense in H(curl,Ω).

Therefore when dealing with function spaces H1(Ω) or H(curl,Ω), we may prove
assertions on the dense subset C∞

ρ (Ω) or (C∞
ρ (Ω))3 and then pass the limit through

approximations from C∞
ρ (Ω) or (C∞

ρ (Ω))3. The density lemmas are useful for the
variational formulation in the domain Ω, where the lateral boundary integrals will
vanish as ρ→ ∞ when integration by parts is applied.

For any vector field u = (u1, u2, u3)
⊤, denote the tangential component on the

surface Γj by

uΓj = −nj × (nj × u) = (u1(x1, x2, bj), u2(x1, x2, bj), 0)
⊤,

where nj is the unit outward normal on Γj , i.e., n1 = (0, 0, 1)⊤ and n2 = (0, 0,−1)⊤.
For any smooth vector u = (u1, u2, u3)

⊤ defined on Γj , denote by divΓju = ∂xu1 +
∂yu2 and curlΓju = ∂xu2 − ∂yu1 the surface divergence and the surface scalar curl of
the field u, respectively. For a smooth function u, denote by ∇Γju = (∂xu, ∂yu, 0)

⊤

the surface gradient.

To describe the capacity operator and transparent boundary condition in the
formulation of the boundary value problem, we introduce some trace functional spaces.
Denote by H−1/2(Γj) the standard Sobolev space, the completion of L2(Γj) in the
norm ∥ · ∥H−1/2(Γj) characterized by

∥ u ∥2H−1/2(Γj)
=

∫
R2

(1 + |ξ|2)−1/2|û|2dξ. (2.5)

We then introduce the following two vector trace spaces:

H
−1/2
div (Γj) = {u ∈ (H−1/2(Γj))

3 : u3 = 0, divΓju ∈ H−1/2(Γj)},

H
−1/2
curl (Γj) = {u ∈ (H−1/2(Γj))

3 : u3 = 0, curlΓju ∈ H−1/2(Γj)}.

Using Fourier modes, the norms on the spaces H
−1/2
div (Γj) and H

−1/2
curl (Γj) can be

characterized by

∥ u ∥2
H

−1/2
div (Γj)

=

∫
R2

(1 + |ξ|2)−1/2
[
|û1|2 + |û2|2 + |ξ1û1 + ξ2û2|2

]
dξ, (2.6)

∥ u ∥2
H

−1/2
curl (Γj)

=

∫
R2

(1 + |ξ|2)−1/2
[
|û1|2 + |û2|2 + |ξ1û2 − ξ2û1|2

]
dξ. (2.7)

To simply proofs, we shall employ positive constants C and Ci as generalized
constants whose precise values are not required and may change line by line but
should always be clear from the context.
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The following lemma shows that the spaces H
−1/2
div (Γj) and H

−1/2
curl (Γj) are mutu-

ally adjoint under the dual paring ⟨·, ·⟩ defined by

⟨u,v⟩ =
∫
R2

(û1v̂1 + û2v̂2)dξ. (2.8)

Note that, from the Parseval formula, the dual paring ⟨u,v⟩ is the (L2(R2))3 inner
product between u and v if u,v ∈ (L2(R2))3 (cf. [45, p. 189]).

Lemma 2.3. The spaces H
−1/2
div (Γj) and H

−1/2
curl (Γj) are mutually adjoint with

respect to the scalar product in (L2(Γj))
3.

Proof. The proof is similar to what is used in [41, Lemma 5.3.1]. It is easy to
show that

⟨u,v⟩ =
∫
R2

(1 + |ξ|2)−1
((

(ξ1 + i)û1 + ξ2û2
)
·
(
(ξ1 + i)v̂1 + ξ2v̂2

)
+
(
(ξ1 − i)û2 − ξ2û1

)
·
(
(ξ1 − i)v̂2 − ξ2v̂1

))
dξ. (2.9)

It is clear that

1

3

∣∣(ξ1 + i)û1 + ξ2û2
∣∣2 − 1

2
|û1|2 ≤ |ξ1û1 + ξ2û2|2 ≤ 4

3

∣∣(ξ1 + i)û1 + ξ2û2
∣∣2 + 4|û1|2.

Noting that

|û1|2 + |û2|2 = (1 + |ξ|2)−1
(∣∣(ξ1 + i)û1 + ξ2û2

∣∣2 + ∣∣(ξ1 − i)û2 − ξ2û1
∣∣2),

we have the following equivalent norm on the spaces H
−1/2
div (Γj),

∥ u ∥2
H

−1/2
div (Γj)

≃
∫
R2

(
(1 + |ξ|2)−1/2

∣∣(ξ1 + i)û1 + ξ2û2
∣∣2

+(1 + |ξ|2)−3/2
∣∣(ξ1 − i)û2 − ξ2û1

∣∣2)dξ. (2.10)

Similarly,

∥ u ∥2
H

−1/2
curl (Γj)

≃
∫
R2

(
(1 + |ξ|2)−3/2

∣∣(ξ1 + i)û1 + ξ2û2
∣∣2

+(1 + |ξ|2)−1/2
∣∣(ξ1 − i)û2 − ξ2û1

∣∣2)dξ. (2.11)

From (2.9)–(2.11) and the Cauchy-Schwarz inequality, there exists a constant C such
that,

⟨u,v⟩ ≤ C ∥ u ∥2
H

−1/2
div (Γj)

∥ v ∥2
H

−1/2
curl (Γj)

. (2.12)

That is ⟨u,v⟩ is well-defined for any u ∈ H
−1/2
div (Γj),v ∈ H

−1/2
curl (Γj).

Define two operators R and L by

R̂u =

(
−ξ2
ξ1 + i

)
(1 + |ξ|2)−3/2

(
(ξ1 − i)û2 − ξ2û1

)
+

(
ξ1 − i
ξ2

)
(1 + |ξ|2)−1/2

(
(ξ1 + i)û1 + ξ2û2

)
.
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L̂v =

(
−ξ2
ξ1 + i

)
(1 + |ξ|2)−1/2

(
(ξ1 − i)v̂2 − ξ2v̂1

)
+

(
ξ1 − i
ξ2

)
(1 + |ξ|2)−3/2

(
(ξ1 + i)v̂1 + ξ2v̂2

)
.

We have

(ξ1 + i)
(
R̂u

)
1
+ ξ2

(
R̂u

)
2
= (1 + |ξ|2)1/2

(
(ξ1 + i)û1 + ξ2û2

)
,

(ξ1 − i)
(
R̂u

)
2
− ξ2

(
R̂u

)
1
= (1 + |ξ|2)−1/2

(
(ξ1 − i)û2 − ξ2û1

)
,

(ξ1 + i)
(
L̂v

)
1
+ ξ2

(
L̂v

)
2
= (1 + |ξ|2)−1/2

(
(ξ1 + i)v̂1 + ξ2v̂2

)
,

(ξ1 − i)
(
L̂v

)
2
− ξ2

(
L̂v

)
1
= (1 + |ξ|2)1/2

(
(ξ1 − i)v̂2 − ξ2v̂1

)
.

Therefore, from (2.9) – (2.11), we have

⟨Lv, Ru⟩ = ⟨u,v⟩,

and

∥ Ru ∥2
H

−1/2
curl (Γj)

≃∥ u ∥2
H

−1/2
div (Γj)

, ∥ Lv ∥2
H

−1/2
div (Γj)

≃∥ v ∥2
H

−1/2
curl (Γj)

.

This completes the proof of the lemma.

The following trace regularity results in H
−1/2
curl (Γj) and H−1/2(Γj) are useful in

subsequent analysis.

Lemma 2.4. Let γ1 = max
{√

1 + (z1 − z2)−1,
√
2
}
. It holds the following esti-

mate

∥ uΓj ∥
H

−1/2
curl (Γj)

≤ γ1 ∥ u ∥H(curl,Ω)

for all u ∈ H(curl, Ω).
Proof. First we have

(−z2)|ζ(zj)|2 =

∫ z1

z2

|ζ(z)|2dz +
∫ z1

z2

∫ zj

z

d

dt
|ζ(t)|2dtdz

≤
∫ z1

z2

|ζ(z)|2dz + (z1 − z2)

∫ z1

z2

2|ζ(z)||ζ ′(z)|dz, (2.13)

which implies by the Cauchy–Schwarz inequality that

(1 + |ξ|2)−1/2|ζ(zj)|2 ≤ γ21

∫ z1

z2

|ζ(z)|2dz + (1 + |ξ|2)−1

∫ z1

z2

|ζ ′(z)|2dz. (2.14)

Given u in H(curl, Ω), it follows from the definition (2.7) that

∥ uΓj ∥2
H

−1/2
curl (Γj)

=

∫
R2

(1 + |ξ|2)−1/2[|û1(ξ, zj)|2 + |û2(ξ, zj)|2

+|ξ1û2(ξ, zj)− ξ2û1(ξ, zj)|2]dξ.

Using (2.14) we obtain

(1 + |ξ|2)−1/2[|û1(ξ, zj)|2 + |û2(ξ, zj)|2 + |ξ1û2(ξ, zj)− ξ2û1(ξ, zj)|2] ≤ I1 + I2,
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where

I1 = γ21

∫ z1

z2

[|û1(ξ, z)|2 + |û2(ξ, z)|2 + |ξ1û2(ξ, z)− ξ2û1(ξ, z)|2]dz

and

I2 =(1 + |ξ|2)−1

∫ z1

z2

[2|û′1(ξ, z)− iξ1û3(ξ, z)|2 + 2ξ21 |û3(ξ, z)|2

+ 2|iξ2û3(ξ, z)− û′2(ξ, z)|2 + 2ξ22 |û3(ξ, z)|2

+ |ξ1û′2(ξ, z)− iξ1ξ2û3(ξ, z) + iξ1ξ2û3(ξ, z)− ξ2û
′
1(ξ, z)|2]dz.

A simple calculation yields

I2 ≤ 2(1 + |ξ|2)−1

∫ z1

z2

[(1 + ξ22)|û′1(ξ, z)− iξ1û3(ξ, z)|2

+ (1 + ξ21)|iξ2û3(ξ, z)− û′2(ξ, z)|2 + |ξ|2|û3(ξ, z)|2]dz

≤ 2

∫ z1

z2

[|û′1(ξ, z)− iξ1û3(ξ, z)|2 + |iξ2û3(ξ, z)− û′2(ξ, z)|2 + |û3(ξ, z)|2]dz. (2.15)

The proof is complete by combining the above estimates and noting the definition of
the norm in H(curl, Ω) (2.4).

Lemma 2.5. For any η > 0 there is a constant C(η) depending only on η, z1,
and z2, such that it holds the following estimate

∥ uΓj ∥2H−1/2(Γj)
≤ η ∥ curlu ∥20,Ω +C(η) ∥ u ∥20,Ω

for all u ∈ H(curl,Ω).
Proof. For any η > 0, we have from (2.13) that

(z1 − z2)|ζ(zj)|2 ≤
∫ z1

z2

|ζ(z)|2dz + (z1 − z2)×(
2(1 + |ξ|2)1/2

η

∫ z1

z2

|ζ(z)|2dz + η

2(1 + |ξ|2)1/2

∫ z1

z2

|ζ ′(z)|2dz
)
,

which implies that

(1 + |ξ|2)−1/2|ζ(zj)|2 ≤ C(η)

∫ z1

z2

|ζ(z)|2dz + η

2
(1 + |ξ|2)−1

∫ z1

z2

|ζ ′(z)|2dz. (2.16)

Given u in H(curl, Ω), it follows from the definition (2.5) that

∥ uΓj ∥2H−1/2(Γj)
=

∫
R2

(1 + |ξ|2)−1/2[|û1(ξ, zj)|2 + |û2(ξ, zj)|2]dξ.

Using (2.16) yields

(1 + |ξ|2)−1/2[|û1(ξ, zj)|2 + |û2(ξ, zj)|2] ≤ J1 + J2,

where

J1 = C(η)

∫ z1

z2

[|û1(ξ, z)|2 + |û2(ξ, z)|2]dz,
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and

J2 =
η

2
(1 + |ξ|2)−1

∫ z1

z2

[|û′1(ξ, z)|2 + |û′2(ξ, z)|2]dz

≤η(1 + |ξ|2)−1

∫ z1

z2

[|û′1(ξ, z)− iξ1û3(ξ, z)|2 + |û′2(ξ, z)− iξ2û3(ξ, z)|2

+ (ξ21 + ξ22)|û3(ξ, z)|2]dz

≤η
∫ z1

z2

[|û′1(ξ, z)− iξ1û3(ξ, z)|2 + |iξ2û3(ξ, z)− û′2(ξ, z)|2 + |û3(ξ, z)|2)]dz.

The proof is complete by combining the above inequalities and (2.4).

3. Transparent boundary condition. In this section, we introduce a trans-
parent boundary condition by using a capacity operator which maps the value of the
tangential component of the electric field to the value of the tangential trace of the
magnetic field.

We wish to reduce the problem to the domain Ω. The radiation condition for the
scattering problem insists that (E,H) is composed of bounded outgoing waves in Ω1

and Ω2, plus the incident plane wave (Einc,Hinc) in Ω1. Since the derivation of the
transparent boundary conditions on Γ1 and Γ2 are parallel, we will only show how
to deduce the transparent boundary condition on Γ1, and state the corresponding
transparent boundary condition on Γ2 without derivation.

Observe that the medium is homogeneous in Ω1. The scattered electric field
Esc = E−Einc and the scattered magnetic field Hsc = H−Hinc satisfy

curlEsc − iωµ1H
sc = 0, curlHsc + iωε1E

sc = 0. (3.1)

Let Esc = (E1, E2, E3)
⊤. Denote by Esc

Γ1
= (E1(ρ, b1), E2(ρ, b1), 0)

⊤ the tangential

component of the electric field on Γ1. Denote byHsc×n1 = (H2(ρ, b1),−H1(ρ, b1), 0)
⊤

the tangential trace of the magnetic field on Γ1, where

H2(ρ, b1) =
1

iωµ1
[∂zE1(ρ, b1)− ∂xE3(ρ, b1)] ,

−H1(ρ, b1) =
1

iωµ1
[∂zE2(ρ, b1)− ∂yE3(ρ, b1)] .

It is clear that

Ĥ2(ξ, b1) =
1

iωµ1

[
∂zÊ1(ξ, b1)− iξ1Ê3(ξ, b1)

]
, (3.2)

−Ĥ1(ξ, b1) =
1

iωµ1

[
∂zÊ2(ξ, b1)− iξ2Ê3(ξ, b1)

]
. (3.3)

Eliminating the magnetic field from Eq. (3.1) and noting ∇·Esc = 0 in Ω1, we arrive
the equation for the electric field for j = 1, 2, 3,

∆Ej + ω2ε1µ1Ej = 0 inΩ1,

Ej = Ej(ρ, b1) onΓ1.

Taking the Fourier transform with respect to ρ yields

∂2z Êj + (ω2ε1µ1 − |ξ|2)Êj = 0 for z > b1,

Êj = Êj(ξ, b1) for z = b1.
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Using the radiation condition to eliminate the incoming wave term, we obtain

Êj(ξ, z) = Êj(ξ, b1)e
iβ1(ξ)(z−b1). (3.4)

where

β2
1(ξ) = ω2ε1µ1 − |ξ|2 with Imβ1(ξ) > 0.

It is clear that

∂zÊj(ξ, b1) = iβ1(ξ)Êj(ξ, b1).

Noting that ∇ · Esc = ∂xE1 + ∂yE2 + ∂zE3 = 0 in Ω1 and β1(ξ) ̸= 0 for all ξ, we
deduce that

Ê3(ξ, b1) =
1

iβ1(ξ)
∂zÊ3(ξ, b1) =

−1

β1(ξ)
[ξ1Ê1(ξ, b1) + ξ2Ê2(ξ, b1)].

Therefore, we have from (3.2)–(3.3)

Ĥ2(ξ, b1) =
1

ωµ1

[
β1(ξ)Ê1(ξ, b1) +

ξ1
β1(ξ)

(ξ1Ê1(ξ, b1) + ξ2Ê2(ξ, b1))

]
,

−Ĥ1(ξ, b1) =
1

ωµ1

[
β1(ξ)Ê2(ξ, b1) +

ξ2
β1(ξ)

(ξ1Ê1(ξ, b1) + ξ2Ê2(ξ, b1))

]
,

or equivalently

Ĥ2(ξ, b1) =
1

ωµ1β1

[
ω2ε1µ1Ê1(ξ, b1) + ξ2(ξ1Ê2(ξ, b1)− ξ2Ê1(ξ, b1))

]
,

−Ĥ1(ξ, b1) =
1

ωµ1β1

[
ω2ε1µ1Ê1(ξ, b1)− ξ1(ξ1Ê2(ξ, b1)− ξ2Ê1(ξ, b1))

]
.

For any tangential vector u = (u1, u2, 0)
⊤ on Γ1, define the following capacity

operator T1:

T1u = (v1, v2, 0)
⊤,

where

v̂1 =
1

ωµ1

[
β1û1 +

ξ1
β1

(ξ1û1 + ξ2û2)

]
,

v̂2 =
1

ωµ1

[
β1û2 +

ξ2
β1

(ξ1û1 + ξ2û2)

]
,

(3.5)

or equivalently

v̂1 =
1

ωµ1β1

[
ω2ε1µ1û1 + ξ2(ξ1û2 − ξ2û1)

]
,

v̂2 =
1

ωµ1β1

[
ω2ε1µ1û2 − ξ1(ξ1û2 − ξ2û1)

]
.

(3.6)

Similarly, for any tangential vector u = (u1, u2, 0)
⊤ on Γ2, define the capacity operator

T2:

T2u = (v1, v2, 0)
⊤,
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where

v̂1 =
1

ωµ2

[
β2û1 +

ξ1
β2

(ξ1û1 + ξ2û2)

]
,

v̂2 =
1

ωµ2

[
β2û2 +

ξ2
β2

(ξ1û1 + ξ2û2)

]
,

(3.7)

or equivalently

v̂1 =
1

ωµ2β2

[
ω2ε2µ2û1 + ξ2(ξ1û2 − ξ2û1)

]
,

v̂2 =
1

ωµ2β2

[
ω2ε2µ2û2 − ξ1(ξ1û2 − ξ2û1)

]
.

(3.8)

Here

β2
2(ξ) = ω2ε2µ2 − |ξ|2 with Imβ2(ξ) > 0.

For any vector field E ∈ H(curl,Ω), it follows from Lemma 2.4 that its tangential

components EΓj ∈ H
−1/2
curl (Γj). Using the capacity operator, we may propose the

following transparent boundary conditions:

T1(EΓ1 −Einc
Γ1

) = (H−Hinc)× n1 onΓ1, (3.9)

T2(EΓ2) = H× n2 onΓ2, (3.10)

which map the tangential components of the electric fields to the tangential traces of
the magnetic fields.

To present some estimates of the capacity operators, it is useful to introduce the
following notation. Define

ω2εjµj = φj + iψj ,

where

φj = ω2 Re(εjµj) and ψj = ω2 Im(εjµj).

Denote

β2
j = ω2εjµj − |ξ|2 = ϕj + iψj , (3.11)

where

ϕj = ω2 Re(εjµj)− |ξ|2 = φj − |ξ|2. (3.12)

A simple calculations gives

βj = aj + ibj ,

where

aj = Reβj =


√
ϕ2j + ψ2

j + ϕj

2

1/2

,

bj = Imβj =


√
ϕ2j + ψ2

j − ϕj

2

1/2

.

(3.13)
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Lemma 3.1. The operator Tj : H
−1/2
curl (Γj) → H

−1/2
div (Γj) is continuous.

Proof. For any u = (u1, u2, 0)
⊤,w = (w1, w2, 0)

⊤ ∈ H
−1/2
curl (Γj), let Tju =

(v1, v2, 0)
⊤, it follows from the definitions (2.8), (3.6), and (3.8) that

⟨Tju,w⟩ =
∫
R2

(
v̂1ŵ1 + v̂2ŵ2

)
dξ

=

∫
R2

1

ωµjβj

[
ω2εjµj(û1ŵ1 + û2ŵ2)− (ξ1û2 − ξ2û1)(ξ1ŵ2 − ξ2ŵ1)

]
dξ.

To prove the lemma, it is required to estimate

(1 + |ξ|2)1/2

|βj |
=

[
(1 + φj − ϕj)

2

ψ2
j + ϕ2j

]1/4

.

Let

Fj(t) =
(1 + φj − t)

2

ψ2
j + t2

.

It can be verified that Fj(t) increases for t < Kj = −ψ2
j /(1 + φj) and decreases for

Kj < t ≤ φj . Therefore,

(1 + φj − ϕj)
2

ψ2
j + ϕ2j

= Fj(ϕj) ≤ Fj(Kj) = 1 +
(1 + φj)

2

ψ2
j

.

Combining the above estimates yields

|⟨Tju,w⟩| ≤ Cj ∥ u ∥
H

−1/2
curl (Γj)

∥ w ∥
H

−1/2
curl (Γj)

,

where

Cj =
(Fj(Kj))

1/4

ωµj
max{

√
φ2
j + ψ2

j , 1}.

Thus, from Lemma 2.3, we have

∥ Tju ∥
H

−1/2
div (Γj)

≤ C sup
w∈H

−1/2
curl (Γj)

|⟨Tju,w⟩|
||w||

H
−1/2
curl (Γj)

≤ CCj ||u||H−1/2
curl (Γj)

.

Lemma 3.2. Let u be in H
−1/2
curl (Γj). It holds Re ⟨Tju,u⟩ ≥ 0. If Re ⟨Tju,u⟩ = 0,

then u = 0.
Proof. By definitions (2.8), (3.5), and (3.7), we obtain

⟨Tju,u⟩ =
1

ωµj

∫
R2

[
βj(|û1|2 + |û2|2) +

1

βj
|ξ1û1 + ξ2û2|2

]
dξ.

Taking the real part gives

Re ⟨Tju,u⟩ =
1

ωµj

∫
R2

[
aj(|û1|2 + |û2|2) +

aj
a2j + b2j

|ξ1û1 + ξ2û2|2
]
dξ ≥ 0.
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Hence Re ⟨Tju,u⟩ = 0 implies

|û1|2 + |û2|2 = 0,

which yields u = 0.
Lemma 3.3. There exist two positive constants C1 and C2 such that

Im ⟨Tju,u⟩ ≥ C1 ∥ curlΓju ∥2H−1/2(Γj)
−C2 ∥ u ∥2H−1/2(Γj)

for all u in H
−1/2
curl (Γj).

Proof. By definitions (2.8), (3.6), and (3.8), we obtain

⟨Tju,u⟩ =
1

ωµj

∫
R2

[
ω2εjµj

βj
(|û1|2 + |û2|2)−

1

βj
|ξ1û2 − ξ2û1|2

]
dξ.

Taking the imaginary part gives

Im⟨Tju,u⟩ =
1

ωµj

∫
R2

[ bj
a2j + b2j

|ξ1û2 − ξ2û1|2

+
(ajψj − bjφj)

a2j + b2j
(|û1|2 + |û2|2)

]
dξ. (3.14)

To prove the lemma, it is required to estimate

1

ωµj

bj(1 + |ξ|2)1/2

a2j + b2j
=

1√
2ωµj


(√

ϕ2j + ψ2
j − ϕj

)
(1 + φj − ϕj)

ϕ2j + ψ2
j

1/2

.

Let

Gj(t) =

(√
t2 + ψ2

j − t
)
(1 + φj − t)

t2 + ψ2
j

.

It can be seen that Gj is a continuous positive function for t ≤ φj and Gj(t) → 2 as
t→ −∞, and thus Gj(t) can reach its minimum at some t∗. Therefore, we have

1

ωµj

bj(1 + |ξ|2)1/2

a2j + b2j
≥

√
Gj(t∗)√
2ωµj

= C1.

Next we estimate

1

ωµj

∣∣∣ (ajψj − bjφj)

a2j + b2j
(1 + |ξ|2)1/2

∣∣∣
=

1

ωµj

 (1 + φj − ϕj)

ϕ2j + ψ2
j

ψ2
j

√
ϕ2j + ψ2

j + ϕj

2
+ φ2

j

√
ϕ2j + ψ2

j − ϕj

2
− φjψ

2
j

1/2

.

Let

Hj(t) =
(1 + φj − t)

t2 + ψ2
j

ψ2
j

√
t2 + ψ2

j + t

2
+ φ2

j

√
t2 + ψ2

j − t

2
− φjψ

2
j

 .
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It can be seen that Hj is a continuous positive function for t ≤ φj and Hj(t) → φ2
j

as t→ −∞, and thus Hj(t) can reach its maximum at some t∗. Therefore, we have

1

ωµj

∣∣∣ (ajψj − bjφj)

a2j + b2j
(1 + |ξ|2)1/2

∣∣∣ ≤ √
Hj(t∗)

ωµj
= C2.

The proof of the lemma follows from plugging the above estimates into (3.14).

4. Variational problem. In this section, we shall introduce the variational for-
mulation for the infinite rough surface scattering problem using transparent boundary
conditions. The existence and uniqueness of a weak solution for the model problem
are established by the variational approach.

We present a variational formulation of the Maxwell system in the spaceH(curl,Ω)
and give a simple proof of the well-posedness for the boundary value problem. By
eliminating the magnetic field from (2.1), we obtain the equation for the electric field:

curl (µ−1curlE)− ω2εE = 0 in Ω. (4.1)

Multiplying the complex conjugate of a test function v ∈ H(curl,Ω), integrating over
Ω, and using integration by parts (recall that the density Lemma 2.2 implies the
lateral boundary integrals vanish as ρ→ ∞), we arrive at the variational form for the
scattering problem: find E ∈ H(curl,Ω) such that

a(E,v) = ⟨f ,v⟩Γ1 for allv ∈ H(curl,Ω), (4.2)

with the sesquilinear form

a(u,v) =

∫
Ω

µ−1curlu · curlv −
∫
Ω

ω2εu · v − iω

2∑
j=1

∫
Γj

TjuΓj · vΓj , (4.3)

and the linear functional

⟨f ,v⟩Γ1 =

∫
Γ1

f · vΓ1 with f = iω(Hinc × n1 − T1E
inc
Γ1

). (4.4)

Theorem 4.1. The variational problem (4.2) has a unique solution. Moreover,
there exists a constant γ2 only depending on ω, µ, ε such that

|a(u,u)| ≥ γ2 ∥ u ∥2H(curl,Ω) for all u ∈ H(curl,Ω). (4.5)

Proof. We first prove the continuity and coercivity of the sesquilinear form a.
The continuity follows directly from the Cauchy–Schwarz inequality and Lemma 3.1:

|a(u,v)| ≤ C1 ∥ u ∥H(curl,Ω)∥ v ∥H(curl,Ω) +C2

2∑
j=1

∥ TjuΓj
∥
H

−1/2
div (Γj)

∥ vΓj
∥
H

−1/2
curl (Γj)

≤ C1 ∥ u ∥H(curl,Ω)∥ v ∥H(curl,Ω) +C2 ∥ uΓj
∥
H

−1/2
curl (Γj)

∥ vΓj
∥
H

−1/2
curl (Γj)

≤ C ∥ u ∥H(curl,Ω)∥ v ∥H(curl,Ω) .
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Taking the real part of the sesquilinear form a and using Lemma 3.3 yield

Re[a(u,u)] =

∫
Ω

µ−1|curlu|2 − ω2

∫
Ω

Re(ε)|u|2 + ω
2∑

j=1

Im⟨TjuΓj ,uΓj ⟩

≥
∫
Ω

µ−1|curlu|2 − ω2

∫
Ω

Re(ε)|u|2 − ωC2

2∑
j=1

∥ uΓj ∥2H−1/2(Γj)
.

Using Lemma 2.5 and setting η sufficiently small there, we find that

Re[a(u,u)] ≥ C3 ∥ curlu ∥20,Ω −C4 ∥ u ∥20,Ω,

where the constants C3 > 0 and C4 ≥ 0. Taking the imaginary part of the sesquilinear
form a and using Lemma 3.2 give

Im[a(u,u)] = −ω2

∫
Ω

Im(ε)|u|2 − ω
2∑

j=1

Re ⟨TjuΓj ,uΓj ⟩ ≤ −ω2

∫
Ω

Im(ε)|u|2,

which yields with a constant C5 > 0 that

|Im[a(u,u)]| ≥ C5 ∥ u ∥20,Ω .

Denote α = (1 + C4)/C5 > 0. Then simple calculations yield

(1 + α)|a(u,u)| ≥ |Re[a(u,u)]|+ α|Im[a(u,u)]|
≥ C3 ∥ curlu ∥20,Ω + ∥ u ∥20,Ω≥ C ∥ u ∥2H(curl,Ω) .

This proves (4.5), namely, the coercivity of the sesquilinear form a in H(curl,Ω).
Now the Lax–Milgram lemma shows the existence and uniqueness of a solution

of the variational problem (4.2).

5. PML formulation and convergence. In this section, we introduce the
variational formulation for the infinite rough surface scattering problem using the
PML technique. Our goal is to prove the existence and uniqueness of the solution
to the PML problem, and derive an error estimate between the solution to the PML
problem and the solution to the original rough surface scattering problem.

5.1. PML formulation. Now we turn to the introduction of absorbing PML
layers. The domain Ω is surrounded with two PML layers of thickness δ1 and δ2 in
Ω1 and Ω2, respectively. Figure 2 shows the geometry of the PML problem. The
specially designed model medium in the PML layers should basically be chosen so
that either the wave never reaches its external boundary or the amplitude of the
reflected wave is so small that it does not essentially contaminate the solution in Ω.
Let s(τ) = s1(τ) + is2(τ) be the model medium property which is continuous and
satisfies

s1 = 1, s2 = 0 in (z2, z1) and s1 ≥ 1, s2 > 0 otherwise. (5.1)

We remark that, in contrast to the original PML condition which takes s1 = 1 in
the PML region, a variable s1 is allowed in order to attenuate both the outgoing
and evanescent waves. The advantage of this extension is that it makes our method
insensitive to the distance of the PML region from the structure. Following the general
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Γ1

Γ2

S1

S2

ΩPML

1

ΩPML

2

Ω

z = z1 + δ1

z = z2

z = z1

z = z2 − δ2

ΓPML

1

ΓPML

2

Fig. 5.1. Geometry of the PML problem.

idea in designing PML absorbing layers in Teixera and Chew [48], we introduce the
PML by complex coordinate stretching:

z̃ =

∫ z

0

s(τ)dτ. (5.2)

Denote by

Einc
1 = Einc, Hinc

1 = Hinc, and Einc
2 = Hinc

2 = 0.

Let x̃ = (x, y, z̃)⊤. It is clear that z̃ = z for x ∈ Ω and

curl diag(1, 1, s(z))u = diag (s(z), s(z), 1) curlz̃u.

Introduce the new fields (Ẽ, H̃):

Ẽ(x) = Einc
j (x) + diag (1, 1, s(z))

(
E(x̃)−Einc

j (x̃)
)
,

H̃(x) = Hinc
j (x) + diag (1, 1, s(z))

(
H(x̃)−Hinc

j (x̃)
) (5.3)

It follows from (2.1) and (5.2) that the fields (Ẽ, H̃) satisfy the following Maxwell
equations:

curl (Ẽ−Einc)− iωµ̃(H̃−Hinc) = 0, curl (H̃−Hinc) + iωε̃(Ẽ−Einc) in Ω1,

curl Ẽ− iωµ̃H̃ = 0, curl H̃+ iωε̃ Ẽ = 0 otherwise,

(5.4)

where

ε̃ = diag (s(z), s(z), 1/s(z)) ε, µ̃ = diag (s(z), s(z), 1/s(z))µ. (5.5)

Define the PML regions

ΩPML
1 = {x ∈ R3 : z1 < z < z1 + δ1} and ΩPML

2 = {x ∈ R3 : z2 − δ2 < z < z2}.

The perfect conductor boundary condition can thus be imposed on

ΓPML
1 = {x ∈ R3 : z = z1 + δ1} and ΓPML

2 = {x ∈ R3 : z = z2 − δ2}
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to truncate the PML media. We arrive at the following truncated PML problem:
Find (EPML,HPML) such that

curlEPML − iωµ̃HPML = g1, curlHPML + iωε̃EPML = g2,

EPML × n1 = Einc × n1 onΓPML
1 , EPML × n2 = 0 onΓPML

2 ,
(5.6)

where

g1 = curlEinc − iωµ̃Hinc, g2 = curlHinc + iωε̃Einc in ΩPML
1 ,

g1 = g2 = 0 otherwise.
(5.7)

We next present a weak formulation of the PML problem (5.6) in the domain

D = {x ∈ R3 : z2 − δ2 < z < z1 + δ1}.

Eliminating the magnetic field from (5.6), we obtain the equation for the electric field:

curl (µ̃−1 curlEPML)− ω2ε̃EPML = h in D, (5.8)

where

h = curl (µ̃−1curlEinc)− ω2ε̃Einc in ΩPML
1

h = 0 otherwise.
(5.9)

Introduce the sesquilinear form: aD : H(curl, D)×H(curl, D) → C as

aD(u,v) =

∫
D

µ̃−1curlu · curlv − ω2

∫
D

ε̃u · v. (5.10)

Define H0(curl, D) = {u ∈ H(curl, D), u × nj = 0 on ΓPML
j , j = 1, 2}. The weak

formulation on the PML model (5.6) reads as follows: Find EPML ∈ H(curl, D) such
that EPML × n1 = Einc × n1 on ΓPML

1 , EPML × n2 = 0 on ΓPML
2 , and

aD(EPML,F) =

∫
D

h · F for all F ∈ H0(curl, D). (5.11)

We will reformulate the variational problem (5.11) in the domain D into an equiv-
alent variational formulation in the domain Ω and discuss the existence and conver-
gence of the weak solution to the equivalent weak formulation. To do so, we need to
introduce the transparent boundary condition for the PML problem.

5.2. Transparent boundary condition for the PML problem. We intro-
duce transparent boundary conditions for the PML problem by using capacity opera-
tors. Similarly, we will only show how to deduce the transparent boundary condition
on Γ1, and state the corresponding transparent boundary condition on Γ2 without
derivation.

In ΩPML
1 , the scattered electric field Ẽsc = Ẽ − Einc and the scattered magnetic

field H̃sc = H̃−Hinc satisfy

curl Ẽsc − iωµ̃1H̃
sc = 0, curl H̃sc + iωε̃1Ẽ

sc = 0, (5.12)

where

ε̃1 = diag (s(z), s(z), 1/s(z)) ε1, µ̃1 = diag (s(z), s(z), 1/s(z))µ1.
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Let Ẽsc = (E1, E2, E3)
⊤. Denote by Ẽsc

Γ1
= (E1(ρ, z1), E2(ρ, z1), 0)

⊤ the tangential

component of the electric field on Γ1. Denote by H̃sc×n1 = (H2(ρ, z1),−H1(ρ, z1), 0)
⊤

the tangential trace of the magnetic field on Γ1, where

H2(ρ, z1) =
1

iωµ1
[∂zE1(ρ, z1)− ∂xE3(ρ, z1)] ,

−H1(ρ, z1) =
1

iωµ1
[∂zE2(ρ, z1)− ∂yE3(ρ, z1)] .

Eliminating the magnetic field from Eq. (5.12), we arrive the equation for the electric
field

curl (µ̃−1
1 curl Ẽsc)− ω2ε̃1 Ẽ

sc = 0,

which has the components

s−1∂z(s
−1∂zE1) + ∂2yE1 − ∂x[∂yE2 + s−1∂z(s

−1E3)] + ω2ε1µ1E1 = 0, (5.13a)

s−1∂z(s
−1∂zE2) + ∂2xE2 − ∂y[∂xE1 + s−1∂z(s

−1E3)] + ω2ε1µ1E2 = 0, (5.13b)

∂z(∂xE1 + ∂yE2)− ∂2xE3 − ∂2yE3 − ω2ε1µ1E3 = 0. (5.13c)

Noting ∇ · (ε̃1 Ẽsc) = 0, we have

∂xE1 + ∂yE2 + s−1∂z(s
−1E3) = 0. (5.14)

Plugging Eq. (5.14) into Eq. (5.13) yields

s−1∂z(s
−1∂zE1) + ∂2yE1 + ∂2xE1 + ω2ε1µ1E1 = 0, (5.15a)

s−1∂z(s
−1∂zE2) + ∂2xE2 + ∂2yE2 + ω2ε1µ1E2 = 0, (5.15b)

∂z[s
−1∂z(s

−1E3)] + ∂2xE3 + ∂2yE3 + ω2ε1µ1E3 = 0. (5.15c)

Following the complex coordinate stretching (5.2), using the perfect conductor
boundary condition, and taking the Fourier transform with respect to ρ, we get the
two-point boundary value problem to Eqs. (5.15a) and (5.15b) for j = 1, 2:

∂2z̃ Êj(ξ, z) + (ω2ε1µ1 − |ξ|2)Êj(ξ, z) = 0 in ΩPML
1 , (5.16a)

Êj(ξ, z) = Êj(ξ, z1) on Γ1, (5.16b)

Êj(ξ, z) = 0 on ΓPML
1 . (5.16c)

The general solution to Eq. (5.16) can be expressed in the variable z as

Êj(ξ, z) = Aje
iβ1(ξ)

∫ z
0
s(τ)dτ +Bje

−iβ1(ξ)
∫ z
0
s(τ)dτ .

Applying the boundary conditions in Eq. (5.16) yields

Aj(ξ) = a1(ξ)Êj(ξ, z1), Bj(ξ) = b1(ξ)Êj(ξ, z1),

where

a1(ξ) =
e−iβ1(ξ)z1

1− e2iβ1(ξ)ϖ1
, b1(ξ) =

eiβ1(ξ)z1

1− e−2iβ1(ξ)ϖ1
,
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and

ϖ1 =

∫ z1+δ1

z1

s(τ)dτ. (5.17)

Taking the inverse Fourier transform yields

Ej(ρ, z) =

∫
R2

[
a1(ξ)e

iβ1(ξ)
∫ z
0
s(τ)dτ + b1(ξ)e

−iβ1(ξ)
∫ z
0
s(τ)dτ

]
Êj(ξ, z1)e

iρ·ξdξ,

which gives after a simple calculation

∂zEj(ρ, z1) =

∫
R2

iβ1(ξ) coth(−iβ1(ξ)ϖ1)Êj(ξ, z1)e
iρ·ξdξ.

Here coth(t) = (et + e−t)/(et − e−t).
Next we consider Eq. (5.15c). Let F = s−1E3. It follows from Eq. (5.14) and

the perfect conductor boundary condition that

∂zF (ρ, z) = 0 onΓPML
1 .

Following the complex coordinate stretching (5.2) and taking the Fourier transform
with respect to ρ again, we get the two-point boundary value problem for F3 with
constant coefficients

∂2z̃ F̂ (ξ, z) + (ω2ε1µ1 − |ξ|2)F̂ (ξ, z) = 0 in ΩPML
1 ,

F̂ (ξ, z) = Ê3(ξ, z1) on Γ1,

∂z̃F̂ (ξ, z) = 0 on ΓPML
1 .

(5.18)

The general solution to Eq. (5.18) is

F̂ (ξ, z) = s−1Ê3(ξ, z) = Aeiβ1(ξ)
∫ z
0

s(τ)dτ +Be−iβ1(ξ)
∫ z
0
s(τ)dτ . (5.19)

Applying the boundary conditions in Eq. (5.18) yields

A(ξ) = a(ξ)Ê3(ξ, z1), B(ξ) = b(ξ)Ê3(ξ, z1),

where

a(ξ) =
e−iβ1(ξ)z1

1 + e2iβ1(ξ)ϖ1
, b(ξ) =

eiβ1(ξ)z1

1 + e−2iβ1(ξ)ϖ1
.

Taking the partial derivative of Eq. (5.19) with respect to z gives

∂z(s
−1Ê3(ξ, z)) = iβ1(ξ)s

(
Aeiβ1(ξ)

∫ z
0

s(τ)dτ −Be−iβ1(ξ)
∫ z
0
s(τ)dτ

)
.

Evaluating the above equation at z1 yields

∂z(s
−1Ê3)(ξ, z1) = iβ1(ξ)

(
Aeiβ1(ξ)z1 −Be−iβ1(ξ)z1

)
=

iβ1(ξ)

coth(−iβ1(ξ)ϖ1)
Ê3(ξ, z1)

Recalling β1(ξ) ̸= 0 for all ξ, we have

Ê3(ξ, z1) =
coth(−iβ1(ξ)ζ1)

iβ1(ξ)
∂z(s

−1Ê3)(ξ, z1).
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Noting (5.14), we deduce that

E3(ρ, z1) =

∫
R2

coth(−iβ1(ξ)ϖ1)

iβ1(ξ)
∂z(s

−1Ê3(ξ, z1))e
iρ·ξdξ

= −
∫
R2

coth(−iβ1(ξ)ϖ1)

β1(ξ)
[ξ1Ê1(ξ, z1) + ξ2Ê2(ξ, z1)]e

iρ·ξdξ.

Taking the partial derivative with respect to x and y gives

∂xE3(ρ, z1) = −
∫
R2

iξ1
β1(ξ)

[
ξ1Ê1(ξ, z1) + ξ2Ê2(ξ, z1)

]
coth(−iβ1(ξ)ϖ1)e

iρ·ξdξ,

∂yE3(ρ, z1) = −
∫
R2

iξ2
β1(ξ)

[
ξ1Ê1(ξ, z1) + ξ2Ê2(ξ, z1)

]
coth(−iβ1(ξ)ϖ1)e

iρ·ξdξ.

Therefore we have the components of tangential trace of the magnetic field on Γ1:

H2(ρ, b1) =
1

ωµ1

∫
R2

[
β1(ξ)Ê1(ξ, b1) +

ξ1
β1(ξ)

(ξ1Ê1(ξ, b1) + ξ2Ê2(ξ, b1))

]
coth(−iβ1(ξ)ϖ1)e

iρ·ξdξ,

−H1(ρ, b1) =
1

ωµ1

∫
R2

[
β1(ξ)Ê2(ξ, b1) +

ξ2
β1(ξ)

(ξ1Ê1(ξ, b1) + ξ2Ê2(ξ, b1))

]
coth(−iβ1(ξ)ϖ1)e

iρ·ξdξ,

or equivalently

H2(ρ, b1) =
1

ωµ1

∫
R2

1

β1

[
ω2ε1µ1Ê1(ξ, b1) + ξ2(ξ1Ê2(ξ, b1)− ξ2Ê1(ξ, b1))

]
coth(−iβ1(ξ)ϖ1)e

iρ·ξdξ,

−H1(ρ, b1) =
1

ωµ1

∫
R2

1

β1

[
ω2ε1µ1Ê1(ξ, b1)− ξ1(ξ1Ê2(ξ, b1)− ξ2Ê1(ξ, b1))

]
coth(−iβ1(ξ)ϖ1)e

iρ·ξdξ.

Therefore, for any tangential vector u = (u1, u2, 0)
⊤ on Γ1 whose Fourier trans-

form is û, we can define the following capacity operator:

TPML
1 u = (v1, v2, 0)

⊤,

where v1, v2 are respectively the inverse Fourier transform of v̂1, v̂2 which are defined
by

v̂1 =
1

ωµ1

[
β1û1 +

ξ1
β1

(ξ1û1 + ξ2û2)

]
coth(−iβ1(ξ)ϖ1),

v̂2 =
1

ωµ1

[
β1û2 +

ξ2
β1

(ξ1û1 + ξ2û2)

]
coth(−iβ1(ξ)ϖ1),

(5.20)

or equivalently

v̂1 =
1

ωµ1β1

[
ω2ε1µ1û1 + ξ2(ξ1û2 − ξ2û1)

]
coth(−iβ1(ξ)ϖ1),

v̂2 =
1

ωµ1β1

[
ω2ε1µ1û2 − ξ1(ξ1û2 − ξ2û1)

]
coth(−iβ1(ξ)ϖ1).

(5.21)
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Similarly, for any tangential vector u = (u1, u2, 0)
⊤ on Γ2, define the capacity operator

TPML
2 :

TPML
2 u = (v1, v2, 0)

⊤,

where

v̂1 =
1

ωµ2

[
β2û1 +

ξ1
β2

(ξ1û1 + ξ2û2)

]
coth(−iβ2(ξ)ϖ2),

v̂2 =
1

ωµ2

[
β2û2 +

ξ2
β2

(ξ1û1 + ξ2û2)

]
coth(−iβ2(ξ)ϖ2),

(5.22)

or equivalently

v̂1 =
1

ωµ2β2

[
ω2ε2µ2û1 + ξ2(ξ1û2 − ξ2û1)

]
coth(−iβ2(ξ)ϖ2),

v̂2 =
1

ωµ2β2

[
ω2ε2µ2û2 − ξ1(ξ1û2 − ξ2û1)

]
coth(−iβ2(ξ)ϖ2).

(5.23)

Here

β2
2(ξ) = ω2ε2µ2 − |ξ|2 with Imβ2(ξ) > 0

and

ϖ2 =

∫ z2

z2−δ2

s(τ)dτ. (5.24)

Using the capacity operator, we may propose the following transparent boundary
condition:

TPML
1 (EPML

Γ1
−Einc

Γ1
) = (HPML −Hinc)× n1 onΓ1,

TPML
2 (EPML

Γ2
) = HPML × n2 onΓ2,

(5.25)

which map the tangential components of the electric fields to the tangential traces of
the magnetic fields.

5.3. Convergence of the PML solution. We shall prove the existence and
uniqueness of the solution of the above PML problem (5.11) and derive an error
estimate between EPML and E, the solution of the original infinite rough surface
scattering problem in Ω. To achieve this goal, we first find an equivalent formulation
of (5.11) in the domain Ω.

Noting f = g = 0 in Ω, we obtain the equation for the electric field after elimi-
nating the magnetic field from Eq. (5.6):

curl (µ−1curlEPML)− ω2εEPML = 0 inΩ. (5.26)

Multiplying the complex conjugate of a test function F in H(curl,Ω), integrating
over Ω, and using integration by parts, we arrive at the variational form for the PML
problem: Find EPML ∈ H(curl,Ω) such that

aPML(EPML,F) = ⟨fPML,F⟩Γ1 for allF ∈ H(curl,Ω), (5.27)
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where the sesquilinear form

aPML(u,v) =

∫
Ω

µ−1curlu · curlv − ω2

∫
Ω

εu · v − iω
2∑

j=1

∫
Γj

TPML
j uΓj · vΓj (5.28)

the linear functional

⟨fPML,v⟩Γ1 = iω

∫
Γ1

(Hinc × n1 − TPML
1 Einc

Γ1
) · vΓ1 , (5.29)

and

fPML = iω(Hinc × n1 − TPML
1 Einc

Γ1
).

The following lemma establishes the relationship between this variational problem
and the weak formulation (5.11) straightforward from the above derivation, and hence
the details of its proof are omitted.

Lemma 5.1. Any solution of the problem (5.11) restricted to Ω is a solution of
(5.27). Conversely, any solution of the problem (5.27) can be uniquely extended to
the whole domain D as a solution of (5.11).

Next we turn to estimate the error between E and EPML. Clearly, it suffices to
estimate the error between the capacity operator Tj and TPML

j .
Lemma 5.2. Let s(τ) = s1(τ) + is2(τ) be the model medium property satisfying

(5.1). It holds

Re [−iβjs(τ)] ≥
s1√
2

(√
φ2
j + ψ2

j − φj

)1/2

,

where βj is defined in (3.11) and φj = ω2Re(εjµj), ψj = ω2Im(εjµj).
Proof. A simple calculation yields

Re [−iβjs(τ)] = Reβjs2(τ) + Imβjs1(τ).

Recalling the definitions of Reβj and Imβj in Eq. (3.13), we easily obtain Reβj ≥ 0
and

Imβj ≥
1√
2

(√
φ2
j + ψ2

j − φj

)1/2

,

where we have used (3.12) and the fact that Imβj is a monotonically decreasing
function of ϕj in (3.13). The proof is completed by combining the above estimates.

The following lemma plays a key role in the subsequent analysis.
Lemma 5.3. For any u and v in H(curl,Ω), it holds∣∣∣ω ∫

Γj

(
Tj − TPML

j

)
uΓj · vΓj

∣∣∣
≤Mj ∥ uΓj ∥

H
−1/2
curl (Γj)

∥ vΓj ∥
H

−1/2
curl (Γj)

,

where

Mj =
2

µj(eΛj − 1)
×

[
1 +

(1 + φj)
2

ψ2
j

]1/4

×max
{√

φ2
j + ψ2

j , 1
}
,

Λj =
√
2Re(ϖj)

[
(φ2

j + ψ2
j )

1/2 − φj

]1/2
.
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Proof. For any u = (u1, u2, u3)
⊤,v = (v1, v2, v3)

⊤ ∈ H(curl,Ω), it follows from
the definition of Tj and TPML

j that

ω

∫
Γj

(
Tj − TPML

j

)
uΓj · vΓj =

∫
R2

1− coth(−iβjϖj)

µjβj
×[

ω2εjµj(û1v̂1 + û2v̂2)− (ξ1û2 − ξ2û1)(ξ1v̂2 − ξ2v̂1)
]
dξ. (5.30)

To prove the lemma, it is required to estimate

|1− coth(−iβjϖj)|(1 + |ξ|2)1/2

µj |βj |
=

2

µj |e−2iβjϖj − 1|

[
(1 + φj − ϕj)

2

ψ2
j + ϕ2j

]1/4

.

From Lemma 5.2,

|e−2iβjϖj − 1| ≥ |e−2iβjϖj | − 1 ≥ eΛj − 1.

Let

Fj(t) =
(1 + φj − t)

2

ψ2
j + t2

.

We have proved in Lemma 3.1 that

(1 + φj − ϕj)
2

ψ2
j + ϕ2j

= Fj(ϕj) ≤ Fj(Kj) = 1 +
(1 + φj)

2

ψ2
j

.

Combining above estimates yields

|1− coth(−iβjϖj)|(1 + |ξ|2)1/2

µj |βj |
≤ 2(Fj(Kj))

1/4

µj(eΛj − 1)
.

Recall |ω2εjµj | =
√
φ2
j + ψ2

j . The proof of the lemma follows from plugging the above

estimate into (5.30) and using the Cauchy–Schwarz inequality.
Theorem 5.4. Let γ1 and γ2 be the constants in Lemma 2.4 and in (4.5) re-

spectively. Suppose (M1 +M2)γ
2
1 < γ2. Then the PML problem (5.27) has a unique

solution EPML. Moreover, it has the error estimate:

∥ E−EPML ∥Ω:= sup
0 ̸=F∈H(curl,Ω)

|a(E−EPML,F)|
∥ F ∥H(curl,Ω)

≤ γ1M1 ∥ EPML −Einc ∥
H

−1/2
curl (Γ1)

+γ1M2 ∥ EPML ∥
H

−1/2
curl (Γ2)

. (5.31)

Proof. By Lemma 5.1, it suffices to show that the variational problem (5.27) has
a unique solution. The key point is to show the coercivity for the sesquilinear form
aPML : H(curl,Ω)×H(curl,Ω) → C defined in (5.28). Due to Lemma 2.4, Lemma 5.3,
and the assumption (M1 +M2)γ

2
1 < γ2, it is clear that for any u and v in H(curl,Ω)

|aPML(u,v)| ≥ |a(u,v)| −
2∑

j=1

∣∣∣ω ∫
Γj

(
Tj − TPML

j

)
uΓj · vΓj

∣∣∣
≥ |a(u,v)| − (M1 +M2)γ

2
1 ∥ u ∥H(curl,Ω)∥ v ∥H(curl,Ω) .
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It remains to prove the estimate (5.31). By (4.2)–(4.4) and (5.27)–(5.29), we conclude
that

a(E−EPML,F) = −iω

∫
Γ1

(T1 − TPML
1 )Einc

Γ1
· FΓ1 + aPML(EPML,F)− a(EPML,F)

= iω

∫
Γ1

(T1 − TPML
1 )(EPML

Γ1
−Einc

Γ1
) · FΓ1

+ iω

∫
Γ2

(T2 − TPML
2 )EPML

Γ2
· FΓ2

for any F ∈ H(curl,Ω). The proof is complete after using Lemma 5.3 and Lemma
2.4.

Now let us take a closer look at the structure of constant Mj , which controls
the modeling error of the PML equation towards the original grating problem. The
constant Mj approaches zero exponentially as the PML parameters Re(ϖj) tend to
infinity. From the definition (5.17) and (5.24), the quantities Re(ϖj) can be calculated
by the medium property s(τ), which is usually taken as a power function:

s(τ) =


1 + σ1

(τ − z1
δ1

)m

if τ ≥ z1,

1 + σ2

(z2 − τ

δ2

)m

if τ ≤ z2.
m ≥ 1.

Thus we have

Re(ϖj) =

[
1 +

Re(σj)

m+ 1

]
δj . (5.32)

It is obvious that either enlarging the thickness δj of the PML layers or enlarging the
medium parameters Re(σj) will reduce the PML approximation error.

6. Concluding remarks. In this paper we have proposed a variational formu-
lation for the infinite rough surface scattering problem for Maxwell’s equations and
studied the use of the PML to truncate the scattering problem in the direction verti-
cally away from the rough surfaces. The scattering problem is reduced to a boundary
value problem by using transparent boundary conditions. We have shown the unique-
ness and existence of the weak solution for the variational problem. Under some
proper assumptions on the PML medium parameter, it is shown that the truncated
PML problem attains a unique solution in H(curl,Ω). An explicit error estimate be-
tween the solution of the scattering problem and that of the truncated PML problem
in the computational domain is obtained. The error estimate implies particularly that
the PML solution converges exponentially to the scattering solution by increasing ei-
ther the PML medium parameter or the PML layer thickness. Computationally, the
variational approach reported here leads naturally to a class of finite element methods.
Analysis and computation of the finite element methods for the infinite rough surface
scattering problem will be studied and reported elsewhere. Another closely related
but more challenging problem is to study the infinite rough surface scattering prob-
lem in lossless medium, i.e., Im ε = 0. Without energy decay, the capacity operator
introduced in this paper is unbounded and the proposed method can not be straightly
applied to this case. We have not investigated the effect of the vertical side boundary
truncation either, which is certainly an issue for the numerical computation. We are
going to examine the lossless case and hope to be able to address these issues by
studying the weighted Sobolev spaces and limiting absorption principle in the future.
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