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Abstract. In this paper, we propose a new eddy current model for the nonlinear Maxwell
equations with laminated conductors. Direct simulation of three-dimensional (3D) eddy currents in
grain-oriented (GO) silicon steel laminations is very challenging since the coating film over each
lamination is only several microns thick and the magnetic reluctivity is nonlinear and anisotropic.
The system of GO silicon steel laminations has multiple sizes and the ratio of the largest scale to
the smallest scale can amount to 106. The new model omits coating films and thus reduces the scale
ratio by 2–3 orders of magnitude. It avoids very fine or very anisotropic mesh in coating films and
can save computations greatly in computing 3D eddy currents. We establish the wellposedness of
the new model and prove the convergence of the solution of the original problem to the solution of
the new model as the thickness of coating films tends to zero. The new model is validated by finite
element computations of an engineering benchmark problem — Team Workshop Problem 21c–M1.
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1. Introduction. We propose to study the following eddy current problem in
magnetic and anisotropic materials

∂B

∂t
+ curlE = 0 in R3, (Farady’s law)(1.1a)

curlH = J in R3, (Ampere’s law)(1.1b)

where E is the electric field, B is the magnetic flux, H is the magnetic field, and J
is the current density defined by:

(1.2) J =

{
σE in Ωc, (conducting region)
Js in R3\Ω̄c. (nonconducting region)

Here σ ≥ 0 is the electric conductivity, Js is the source current density carried by some
coils, and Ωc denotes the conducting region. For magnetic and anisotropic materials,
B = (B1, B2, B3) is a nonlinear vector function of H = (H1,H2,H3) in the form of
Bi = Bi(Hi), i = 1, 2, 3.

The eddy current problem is a quasi-static approximation of Maxwell’s equa-
tions at very low frequency by neglecting the displacement currents in Ampere’s law
(see [2]). For linear eddy current problems, there are many interesting works in the
literature on numerical methods (cf. e.g. [5, 9, 13, 15, 22]) and on the regularity of
the solution (cf. e.g. [10]). But the mathematical theory and numerical analysis for
nonlinear eddy current problems are still rare in the literature. In [4], Bachinger et
al studied the numerical analysis of nonlinear multi-harmonic eddy current problems
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in isotropic materials. In this paper, we shall study the eddy current problem with
nonlinear and anisotropic reluctivity.

GO silicon steel laminations are widely used in iron cores and shielding structures
of large power transformers [7]. The complex structure is made of many laminated steel
sheets and each sheet is only 0.18−0.35mm thick. Moreover, each steel sheet is coated
with a layer of insulating film whose thickness is only 2 − 5µm so that the electric
current can not flow into its neighboring sheets (see Figure 1.1). Usually the lamination
stack has multi-scale sizes and the ratio of the largest scale to the smallest scale can
amount to 106. Full 3D finite element modeling for (1.1) is extremely difficult because
of extensive unknowns from meshing the laminations and the coating films. There are
very few works on the computation of 3D eddy currents inside the laminations in the
literature.

Fig. 1.1. Left: the magnetic shield for protecting the magnetic plate. Right: the magnetic shield
made of laminated steel sheets.

In recent years, there are considerable papers devoted to developing efficient nu-
merical methods for nonlinear eddy current problems in steel laminations in the engi-
neering community. Among them, most works pay attention to effective reluctivities
and conductivities of the lamination stack (cf. e.g. [6, 12, 14, 17, 19]). The main idea
is to replace physical parameters with equivalent (or homogenized) parameters for
Maxwell’s equations. Since the effective conductivity is anisotropic and has zero value
in the perpendicular direction to the lamination plane, the numerical eddy current is
thus two-dimensional in the lamination stack. When the leakage magnetic flux is very
strong and enters the lamination plane perpendicularly, for example, in the outer
laminations of a large power transformer core, the eddy current loss induced there
must be taken into account in electromagnetic design. It is preferable to accurately
compute 3D eddy currents at least in a few laminations close to the source, that is,
to use the zoned treatment for practical approaches (see Figure 1.2). In the 3D eddy
current region, one usually has to mesh both the laminations and the coating films [8].

The main objective of this paper is to propose a new eddy current model for the
Maxwell equations with laminated conductors. This model omits coating films from
the lamination system and thus saves computations greatly in numerical solution. For
the original model, the eddy current is confined in each steel sheet by the coating film.
The treatment of this conservation property plays the key role in designing accurate
numerical methods for computing 3D eddy currents. Without the coating film, the
new model still conserves the eddy current inside each steel sheet, that is, the eddy
current can not flow across the interface between neighboring steel sheets. Based on
the magnetic potential A, we established the following theories:

1. the existence and uniqueness of the solution of the new eddy current model,
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Fig. 1.2. Zoned treatment of the lamination stack.

2. the stability of the solution with respect to the source current,
3. and the convergence of the solution of the original problem to the solution of

the new model as the thickness of coating films tends to zero.
The magnetic potential A is not unique and makes no physical sense in the noncon-
ducting region. It is just σA and curlA that are important in electrical engineering
and usually used in computing iron loss. We proved the convergence of σA and curlA
as the thickness of the coating film tends to zero. To validate the new eddy current
model numerically, we computed an engineering benchmark problem, Team Work-
shop Problem 21c–M1 [7], by the hybrid of edge element method and nodal element
method. The numerical results show good agreements with the experimental values
and demonstrate our theory.

The layout of the paper is organized as follows. In section 2 we present some no-
tation and Sobolev spaces used in this paper and study the A-formulation of (1.1). In
section 3 we propose a new eddy current model for laminated conductors by omitting
coating films. In section 4 we prove the well-posedness of the new model. In section
5, we prove the convergence of the solution of the original problem to the solution of
the new model. In section 6 we present a numerical experiment to validate the new
eddy current model.

2. The A-formulation of the eddy current problem. Let Ω be a truncated
cube which encloses all inhomogeneities, such as coils and conductors. Let L2(Ω) be
the usual Hilbert space of square integrable functions equipped with the following
inner product and norm:

(u, v) :=
∫

Ω

u(x) v(x)dx and ‖u‖L2(Ω) := (u, u)1/2.

Define Hm(Ω) := {v ∈ L2(Ω) : Dξv ∈ L2(Ω), |ξ| ≤ m} where ξ represents non-
negative triple index. Let H1

0 (Ω) be the subspace of H1(Ω) whose functions have zero
traces on ∂Ω. Throughout the paper we denote vector-valued quantities by boldface
notation, such as L2(Ω) := (L2(Ω))3.

We define the spaces of functions having square integrable curl by

H(curl,Ω) := {v ∈ L2(Ω) : curlv ∈ L2(Ω)},
H0(curl,Ω) := {v ∈ H(curl,Ω) : n× v = 0 on ∂Ω}.

which are equipped with the following inner product and norm

(v,w)H(curl,Ω) := (v,w) + (curlv, curlw), ‖v‖H(curl,Ω) :=
√

(v,v)H(curl,Ω) .
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Here n denotes the unit outer normal to ∂Ω. We shall also use the spaces of functions
having square integrable divergence

H(div,Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)},
H0(div,Ω) := {v ∈ H(div,Ω) : n · v = 0 on ∂Ω}.

which are equipped with the following inner product and norm

(v,w)H(div,Ω) := (v,w) + (div v,div w), ‖v‖H(div,Ω) :=
√

(v,v)H(div,Ω) .

Throughout the paper, we make the following assumptions on the material pa-
rameters and the source current which are usually satisfied in electrical engineering:

(H1) The electric conductivity σ is piecewise constant and there exist two constants
σmin, σmax such that

0 < σmin ≤ σ ≤ σmax in Ωc and σ ≡ 0 in Ωnc := Ω \ Ωc,

(H2) Let H = (H1,H2,H3) and B = (B1, B2, B3) be the magnetic field and the
magnetic flux respectively. Each Hi is a Lipschitz continuous function of Bi

satisfying Hi(0) = 0 and Hi(Bi) = ν0Bi in Ωnc. Moreover, there exist two
constants νmin, νmax such that

0 < νmin ≤ H ′
i(Bi) ≤ νmax a.e. in Ω, i = 1, 2, 3.

(H3) The source current density satisfies

Js ∈ L2(0, T ;L2(Ω)) and div Js = 0 in Ω.

In (H2), ν0 is the magnetic reluctivity in the empty space and the nonlinear functions
Hi = Hi(Bi) are usually obtained by spline interpolations using experimental data.
Figure 2.1 shows the BH-curves in two different directions of the GO silicon steel
laminations in large power transformers [7].

Fig. 2.1. BH-curves in rolling (left) and transverse (right) directions of silicon steel laminations.

Denote the boundary of Ω by Γ = ∂Ω. We impose the initial and boundary
conditions for (1.1) as follows

B(·, 0) = 0 in Ω and E × n = 0 on Γ.(2.1)

Then (1.1a) indicates that div B = 0 in Ω. There exists a magnetic potential a such
that B = curla in Ω. Thus (1.1a) turns into

curl
(∂a

∂t
+ E

)
= 0 in Ω.
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Thus there is a scalar electric potential p such that

E +
∂a

∂t
= −∇p in Ω.

Write ψ(·, t) =
∫ t

0

p(·, s)ds and set A = a +∇ψ. It follows that

E = − ∂

∂t

(
a +∇ψ

)
= −∂A

∂t
and B = curla = curlA.

Substituting the identities into (1.1b) and using (2.1), we obtain the following initial
boundary value problem

σ
∂A

∂t
+ curlH(curlA) = Js in Ω× [0, T ],(2.2a)

A× n = 0 on Γ× [0, T ],(2.2b)
A(·, 0) = 0 in Ωc,(2.2c)

where T > 0 is the final time and H = H(curlA) is nonlinear with respect to
B = curlA and usually defined by the BH-curves [7] (see Figure 2.1). We remark
that (2.2) is understood in a distributional sense.

A weak formulation equivalent to (2.2) reads: Find A ∈ L2(0, T ;H0(curl,Ω))
such that A(·, 0) = 0 in Ωc and

(2.3)
∫

Ω

σ
∂A

∂t
· v +

∫

Ω

H(curlA) · curlv =
∫

Ω

Js · v ∀v ∈ H0(curl,Ω).

We remark that (2.3) is meant in the sense of distributions in time. It is obvious that
the solution of (2.3) is not unique in the insulating region Ωnc. In fact, if A solves
(2.3), then A + ξ∇φ also solves (2.3) for any ξ ∈ C1([0, T ]) and

φ ∈ H1
c (Ω) :=

{
p ∈ H1

0 (Ω), p = Const. in Ωc

}
.

To study the wellposedness of the weak solution, we define

X =
{
v ∈ H0(curl,Ω) : (v,∇p) = 0 ∀ p ∈ H1

c (Ω)
}
.(2.4)

Then H0(curl,Ω) admits the orthogonal decomposition

H0(curl,Ω) = X ⊕∇H1
c (Ω).(2.5)

The following lemma is well-known (cf. e.g. [4, 9]) and will play an important role in
our analysis.

Lemma 2.1. Let X be endowed with the inner product

(v,w)X =
∫

Ωc

v ·w +
∫

Ω

curlv · curlw ∀v,w ∈ X.(2.6)

Then ‖·‖X =
√

(·, ·)X is an equivalent norm to ‖·‖H(curl,Ω) on X.
A weak formulation on the subspace X reads: Find u ∈ L2(0, T ;X) such that

u(·, 0) = 0 in Ωc and

(2.7)
∫

Ω

σ
∂u

∂t
· v +

∫

Ω

H(curlu) · curlv =
∫

Ω

Js · v ∀v ∈ X.
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From (2.5), it is easy to see that u also satisfies

(2.8)
∫

Ω

σ
∂u

∂t
· v +

∫

Ω

H(curlu) · curlv =
∫

Ω

Js · v ∀v ∈ H0(curl,Ω).

This means that u is one solution of (2.3). Here (2.7) and (2.8) are also meant in
the sense of distributions in time. Although the solution A of (2.3) is not unique, the
current density and the magnetic flux density are unique, namely,

∂

∂t
(σA) =

∂

∂t
(σu), curlA = curlu in Ω.

Therefore, we are only interested in σu and curlu throughout this paper.
Theorem 2.2. Let (H1)–(H3) be satisfied. Then (2.7) has a unique solution and

there exists a constant C > 0 only depending on T , Ω, σmin, νmin such that

‖u‖L2(0,T ;X) ≤ C ‖Js‖L2(0,T ;L2(Ω)) .

In the next section, we shall propose an approximate model of (2.7) for laminated
conductors. The proof of Theorem 2.2 uses similar arguments as the proof of Theorem
4.7 for the approximate problem, but is much easier. We omit the proof of Theorem
2.2 for simplicity.

3. A new eddy current model for laminated conductors. In this section,
we shall propose an approximate model which omits coating films. To simplify the
setting, we assume that the conducting domain consists of cuboid steel sheets which
are laminated along the x1-direction, that is, Ωc =

⋃I
i=1 Ωi where

(3.1)
Ωi := (Xi−1, Xi)× (Y1, Y2)× (Z1, Z2), for odd i,

Ωi := (Xi−1 + d, Xi − d)× (Y1, Y2)× (Z1, Z2), for even i,
1 ≤ i ≤ I,

and ΩI = (XI−1 + d, XI) × (Y1, Y2) × (Z1, Z2) if I is even. Here d > 0 stands
for the thickness of the coating film between neighboring steel sheets. For example,
Figure 3.1 shows the geometric sizes of silicon steel laminations in Team Workshop
Problem 21c–M1. We also assume that σ = σi > 0 is constant in Ωi for all 1 ≤ i ≤ I.
We remark that the assumptions on Ω1, · · · ,ΩI and σ are not essential for our theory.
In fact, the results can be easily extended to polyhedral conductors and to the case
that σ is not piecewise constant.

Fig. 3.1. Geometric size of silicon steel laminations in Team Workshop Problem 21c–M1.
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Fig. 3.2. Left: isolated conductors with the coating film. Right: extended conductors by merging
the coating film into even conductors.

We define the extended conductors by (see Figure 3.2 (right))

Ω̃c := (X0, XI)× (Y1, Y2)× (Z1, Z2),

Ω̃i := (Xi−1, Xi)× (Y1, Y2)× (Z1, Z2), i = 1, 2, · · · , I.

Clearly Ω̃i and Ω̃i+1 are adjacent conductors and have an interface Γi = ∂Ω̃i ∩ ∂Ω̃i+1

for 1 ≤ i ≤ I − 1. Let Ω̃nc be the complement of Ω̃c in Ω. We define the modified
material parameters as follows:

(3.2)





σ̃ := σi in Ω̃i, 1 ≤ i ≤ I,

H̃(B) = H(B) in Ω̃nc

⋃
Ωc,

H̃(B) is defined by the nonlinear BH-curves satisfying (H2) in Ω̃c\Ωc .

We shall propose an eddy current model which does not allow the eddy current flowing
across each Γi, or which insures J · n = 0 on ∂Ω̃i for all 1 ≤ i ≤ I.

First we consider the isolated conductors Ω1, · · · ,ΩI (see Figure 3.2 (left)). By
div Js = 0 and taking v = ∇ϕ, (2.3) shows that

∫

Ωc

σ
∂A

∂t
· ∇ϕ = 0 ∀ϕ ∈ H1

0 (Ω),(3.3)

which is equivalent to
∫

Ωi

σ
∂A

∂t
· ∇ϕi = 0 ∀ϕi ∈ H1(Ωi), 1 ≤ i ≤ I.(3.4)

This leads to the conservation of the current density J = −σ
∂A

∂t
in each conductor:

div J = 0 in Ωi and J · n = 0 on ∂Ωi.(3.5)

Now we consider the extended conducting domain Ω̃c. Let Ã and J̃ = −σ̃
∂Ã

∂t
be

the modified magnetic vector potential and current density respectively. Similarly the
conservation property should be satisfied

div J̃ = 0 in Ω̃i and J̃ · n = 0 on ∂Ω̃i, 1 ≤ i ≤ I.
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This comes directly from
∫

Ω̃i

σ̃
∂Ã

∂t
· ∇ϕi = 0 ∀ϕi ∈ H1(Ω̃i), 1 ≤ i ≤ I,

which for adjacent conductors is equivalent to
∫

Ω̃c

σ̃
∂Ã

∂t
· ∇ϕ = 0 ∀ϕ ∈ H1

0 (Ω),(3.6)

∫

Ω̃i

σ̃
∂Ã

∂t
· ∇ϕi = 0 ∀ϕi ∈ H1(Ω̃i) and even i.(3.7)

We shall also use the notation that

Ω̃odd = Ωodd :=
⋃
odd i

1≤i≤I

Ωi, Ωeven :=
⋃

even i
1<i≤I

Ωi, Ω̃even :=
⋃

even i
1<i≤I

Ω̃i.

A comparison of (3.6)–(3.7) with (3.3) inspires us to enlarge the test function
space in (2.3) from H0(curl,Ω) to H0(curl,Ω) + χ∇H1

0 (Ω), where χ is the charac-
teristic function satisfying

χ =
{ 1 in Ω̃even ,

0 elsewhere.

Accordingly, we define the modified curl operator by

cũrl (v + χ∇v) := curlv ∀v ∈ H(curl,Ω), v ∈ H1(Ω).(3.8)

It is clear that cũrl is just the normal curl operator on H(curl,Ω):

cũrlv = curlv ∀v ∈ H(curl,Ω).(3.9)

Clearly H0(curl,Ω) + χ∇H1
0 (Ω) is not a direct sum since χ∇φ ∈ H0(curl,Ω) for

any φ ∈ H1
0 (Ω) satisfying supp(φ) ⊂ Ω̃even. To find a direct sum, we define

(3.10) Xodd =
{
v ∈ H0(curl,Ω) : (v,∇ϕ) = 0 ∀ϕ ∈ H1

odd(Ω)
}
,

where

H1
odd(Ω) :=

{
ϕ ∈ H1

0 (Ω), ϕ = Const. in Ω̃odd

}
.

It induces a subspace of H0(curl,Ω) + χ · ∇H1
0 (Ω) as follows

X̃ := Xodd + χ · ∇H1
0 (Ω).(3.11)

Lemma 3.1. The righthand side of (3.11) is a direct sum in the sense that, for
any v̂ ∈ Xodd and v ∈ H1

0 (Ω),

v̂ + χ∇v = 0 if and only if v̂ = 0, χ∇v = 0.(3.12)

Moreover, X̃ is a Hilbert space under the inner product and norm

(3.13) (v,w)X̃ :=
∫

Ω̃c

v ·w+
∫

Ω

cũrlv ·cũrlw, ‖v‖X̃ :=
√

(v,v)X̃ ∀v,w ∈ X̃.
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Proof. Suppose that v̂ + χ∇v = 0 in Ω for v̂ ∈ Xodd and v ∈ H1
0 (Ω). Then

v̂ = −∇v in Ω̃even and v̂ = 0 elsewhere .

From (3.10), we know that vi := v|Ω̃i
solves the elliptic problem

(3.14) −∆vi = div v̂ = 0 in Ω̃i, ∇vi × n = v̂ × n = 0 on ∂Ω̃i,

for any 1 < i ≤ I and even i. Clearly (3.14) only has constant solutions so that
∇vi = 0 in Ω̃i. We have χ∇v = 0 and v̂ = 0 in Ω. Thus (3.12) is a direct sum.

Next we prove that X̃ is complete. Since χ·∇H1
0 (Ω) is isomorphic to ∇H1(Ω̃even),

it suffices to prove the completeness of Xodd. By Lemma 2.1, one equivalent norm on
Xodd is defined by

‖v‖Xodd
:=

( ∫

Ω̃odd

|v|2 +
∫

Ω

|curlv|2
)1/2

∀v ∈ Xodd.

Let {vn}∞n=1 ⊂ Xodd be a Cauchy sequence under the norm ‖·‖Xodd
. Then it is also

a Cauchy sequence under ‖·‖H(curl,Ω). There exists a v ∈ H0(curl,Ω) such that

lim
n→∞

‖vn − v‖H(curl,Ω) = 0, (v,∇ϕ) = lim
n→∞

(vn,∇ϕ) = 0 ∀ϕ ∈ H1
odd(Ω).

Thus v ∈ Xodd and limn→∞ ‖vn − v‖Xodd
= 0. Then Xodd is complete, and so is X̃.

Now let v = v̂ + χ∇v satisfy ‖v‖X̃ = 0 where v̂ ∈ Xodd and v ∈ H1
0 (Ω). Then

(3.8) and (3.13) show that

v̂ = 0 in Ω̃odd, v̂ +∇v = 0 in Ω̃even, curl v̂ = 0 in Ω.

This indicates ‖v̂‖Xodd
= 0. We conclude that v̂ = 0 in Ω and thus v = 0 in Ω.

Therefore, ‖·‖X̃ is a norm on X̃ so that X̃ is a Hilbert space.

We end this section by the approximate problem to (2.7): Find ũ ∈ L2(0, T ; X̃)
such that ũ(·, 0) = 0 in Ω̃c and

∫

Ω

σ̃
∂ũ

∂t
· v +

∫

Ω

H̃(cũrl ũ) · cũrlv =
∫

Ω

Js · v ∀v ∈ X̃.(3.15)

The formulation is meant in the sense of distributions in time.

4. Well-posedness of the approximate problem. First we prove the unique-
ness of the solution of (3.15).

Theorem 4.1. Let (H1)–(H3) be satisfied. Then (3.15) has at most one solution.
Proof. Suppose ũ1 and ũ2 are two solutions of (3.15). Then

∫

Ω

σ̃
∂

∂t

(
ũ1 − ũ2

) · v +
∫

Ω

{
H̃

(
cũrl ũ1

)− H̃
(
cũrl ũ2

)} · cũrlv = 0 ∀v ∈ X̃.

It means that, for almost every t ∈ (0, T ] and all v ∈ L2(0, t; X̃),

∫ t

0

∫

Ω

σ̃
∂

∂t

(
ũ1 − ũ2

) · v +
∫ t

0

∫

Ω

{
H̃

(
cũrl ũ1

)− H̃
(
cũrl ũ2

)} · cũrlv = 0.
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Taking v = ũ1 − ũ2, the above equality shows that
∫ t

0

d
dt

∫

Ω

σ̃

2
|ũ1 − ũ2|2 +

∫ t

0

∫

Ω

{
H̃

(
cũrl ũ1

)− H̃
(
cũrl ũ2

)} · cũrl (ũ1 − ũ2) = 0.

From initial conditions ũ1(·, 0) = ũ2(·, 0) = 0 in Ω̃c, we find that
∫ t

0

d
dt

∫

Ω

σ̃

2
|ũ1 − ũ2|2 =

1
2

∫

Ω

σ̃ |ũ1(t)− ũ2(t)|2 .

And the strict monotonicity of H̃ shows that (see (3.2) and (H2))
∫

Ω

{
H̃

(
cũrl ũ1

)− H̃
(
cũrl ũ2

)} · cũrl (ũ1 − ũ2) ≥ νmin ‖cũrl (ũ1 − ũ2)‖2L2(Ω) .

It follows that, for almost every t ∈ (0, T ],

1
2

∫

Ω

σ̃ |ũ1(t)− ũ2(t)|2 + νmin

∫ t

0

‖cũrl (ũ1 − ũ2)‖2L2(Ω) ≤ 0.

This shows ‖ũ1 − ũ2‖L2(0,T ;X̃) = 0. From Lemma 3.1 we have ũ1 = ũ2.

We shall use Rothe’s method (cf. e.g. [18]) to prove the existence of the solution
of (3.15). Let N be a positive integer and let

tn = nτ, n = 0, 1, · · · , N, τ = T/N,

be a uniform partition of [0, T ]. We consider the semi-discrete approximation to (3.15):
Given ũ0 = 0, find ũn ∈ X̃, 1 ≤ n ≤ N such that

(4.1)
(
σ̃

ũn − ũn−1

τ
,v

)
+

(
H̃(cũrl ũn), cũrlv

)
= (Jn,v) ∀v ∈ X̃,

where Jn = τ−1

∫ tn

tn−1

Js(·, t)dt is the temporal average of Js over (tn−1, tn).

Lemma 4.2. Let (H1)–(H3) be satisfied and assume supp(Js) ∩ Ω̃c = ∅. For any
1 ≤ n ≤ N , (4.1) has a unique solution ũn ∈ X̃. Then there exists a constant C only
depending on Ω such that

(4.2) max
1≤n≤N

∥∥∥σ̃1/2ũn

∥∥∥
2

L2(Ω)
+ νmin

N∑
n=1

τ ‖cũrl ũn‖2L2(Ω) ≤ Cν−1
min ‖Js‖2L2(0,T ;L2(Ω)) .

Proof. The proof of this lemma is provided in Appendix A.

Lemma 4.3. There exists a constant C > 0 only depending on Ω such that, for
any f ∈ L2(Ω) satisfying div f = 0,

|(f ,v)| ≤ C ‖f‖L2(Ω) ‖curlv‖L2(Ω) ∀ v ∈ H0(curl,Ω).

Proof. For any v ∈ H0(curl,Ω), we have the orthogonal decomposition v =
∇φ + w, where φ ∈ H1

0 (Ω) and w ∈ H0(curl,Ω) satisfying div w = 0. By the
embedding theorem in [3], there exists a constant C only depending on Ω such that

‖w‖H(curl,Ω) ≤ C
(
‖curlw‖L2(Ω) + ‖div w‖L2(Ω)

)
= C ‖curlv‖L2(Ω) .
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Then by Hölder’s inequality and div f = 0, we have

|(f ,v)| = |(f ,w)| ≤ ‖f‖L2(Ω) ‖w‖L2(Ω) ≤ C ‖f‖L2(Ω) ‖curlv‖L2(Ω) .

The proof is completed.

We define the piecewise constant and piecewise linear interpolations in time by

(4.3) ūτ (·, t) = ũn, ũτ (·, t) = ln(t)ũn + (1− ln(t))ũn−1 ∀ t ∈ (tn−1, tn],

where 1 ≤ n ≤ N and ln(t) := (t − tn−1)/τ . Clearly we have ūτ ∈ L2(0, T ; X̃) and
ũτ ∈ C(0, T ; X̃). Then the following lemma is a direct consequence of Lemma 4.2.

Lemma 4.4. Let (H1)–(H3) be satisfied and assume supp(Js) ∩ Ω̃c = ∅. There
exists a constant C only depending on Ω, T , νmin, σmin such that

‖ūτ‖L2(0,T ;X̃) + ‖ũτ‖L2(0,T ;X̃) ≤ C ‖Js‖L2(0,T ;L2(Ω)) .

Lemma 4.5. Let (H1)–(H3) be satisfied and assume supp(Js) ∩ Ω̃c = ∅. There
exists a ũ ∈ L2(0, T ; X̃) such that

lim
τ→0

ũτ = lim
τ→0

ūτ = ũ weakly in L2(0, T ; X̃),(4.4)

lim
τ→0

σ̃
∂ũτ

∂t
= σ̃

∂ũ

∂t
weakly* in L2(0, T ; X̃

′
).(4.5)

Proof. Clearly (4.1) and (4.3) indicate that
∫ T

0

∫

Ω

σ̃
∂ũτ

∂t
· v =

∫ T

0

∫

Ω

{
Js · v − H̃(cũrl ūτ ) · cũrlv

}
∀v ∈ L2(0, T ; X̃).

Write v = v̂ + χ∇v with v̂ ∈ Xodd and v ∈ H1
0 (Ω). Then Lemma 4.3 shows that

∫

Ω

Js · v =
∫

Ω

Js · v̂ ≤ C ‖Js‖L2(Ω) ‖curl v̂‖L2(Ω) = C ‖Js‖L2(Ω) ‖cũrlv‖L2(Ω) .

Together with Lemma 4.4, we deduce that
∫ T

0

∫

Ω

σ̃
∂ũτ

∂t
· v ≤ C ‖Js‖L2(0,T ;L2(Ω)) ‖v‖L2(0,T ;X̃) ∀v ∈ L2(0, T ; X̃).

This implies

(4.6) σ̃
∂ũτ

∂t
∈ L2(0, T ; X̃

′
) and

∥∥∥σ̃
∂ũτ

∂t

∥∥∥
L2(0,T ;X̃

′
)
≤ C ‖Js‖L2(0,T ;L2(Ω)) .

Since L2(0, T ; X̃) is self-reflective, from (4.2), there are two subsequences still
denoted by {ũτ}τ>0 and {ūτ}τ>0 such that

lim
τ→0

ũτ = ũ, lim
τ→0

ūτ = ū weakly in L2(0, T ; X̃).

Similarly from (4.6) we have a subsequence such that

lim
τ→0

σ̃
∂ũτ

∂t
= ũ′ weakly* in L2(0, T ; X̃

′
).
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Then (4.4) requires to show ũ = ū and (4.5) requires to show ũ′ = σ̃
∂ũ

∂t
.

Next we fix the integer N > 0 and define δ = T/N and tn = nδ for any 0 ≤ n ≤ N .
Let m > 0 be an integer and define τ = δ/m. From (4.2), there exists a constant C > 0
independent of n, τ such that

√
τ

∥∥ũmn − ũm(n−1)

∥∥
X̃
≤ C ‖Js‖L2(0,T ;L2(Ω)) .

Let ζn be the characteristic function satisfying

ζn(t) =
{ 1 if t ∈ (tn−1, tn),

0 elsewhere, 1 ≤ n ≤ N.

We introduce the space of piecewise constant functions for the time variable

X̃N =
{
v(x, t) = w(x)ζ(t) : w ∈ X̃, ζ ∈ Span {ζn, 1 ≤ n ≤ N}}

.

For any ζnw ∈ X̃N , the weak convergence of ũτ and ūτ shows that
∫ T

0

(ũ− ū, ζnw)X̃ = lim
τ→0

∫ T

0

(ũτ − ūτ , ζnw)X̃ = lim
τ→0

∫ tn

tn−1

(ũτ − ūτ ,w)X̃

= lim
τ→0

mn−1∑

k=m(n−1)

∫ (k+1)τ

kτ

t− kτ

τ
(ũk+1 − ũk,w)X̃dt

= lim
τ→0

τ

2
(
ũmn − ũm(n−1),w

)
X̃

= 0.

The density of X̃N in L2(0, T ; X̃) as N → ∞ implies that
∫ T

0
(ũ − ū,v)X̃ = 0 for

any v ∈ L2(0, T ; X̃). This proves ũ = ū.
Moreover, using the formula of integration by parts, we find that ũ′ satisfies

∫ T

0

〈ũ′,v〉X̃′×X̃ = lim
τ→0

∫ T

0

(
σ̃

∂ũτ

∂t
,v

)
= − lim

τ→0

∫ T

0

(
σ̃ũτ ,

∂v

∂t

)
= −

∫ T

0

(
σ̃ũ,

∂v

∂t

)
,

for any v ∈ C∞0 (0, T ; X̃). This implies ũ′ = σ̃
∂ũ

∂t
in a distributional sense.

Lemma 4.6. Let (H1)–(H3) be satisfied and assume supp(Js)∩ Ω̃c = ∅. Let ũ be
the weak limit of ũτ in L2(0, T ; X̃). Then ũ(·, 0) = 0 in Ω̃c and

lim
τ→0

ũτ (·, T ) = ũ(·, T ) weakly in L2(Ω̃c).

Proof. From (4.2), it is easy to see

‖ũτ (·, T )‖L2(Ω̃c)
≤ C ‖Js‖L2(0,T ;L2(Ω)) ∀ τ > 0 .(4.7)

So
{
ũτ (·, T )

}
τ>0

has a subsequence such that lim
τ→0

ũτ (·, T ) = q weakly in L2(Ω̃c). It

is left to show q = ũ(·, T ) in Ω̃c.
Take any φ ∈ C∞([0, T ]) satisfying φ(0) = 0 and φ(T ) = 1. Then Lemma 4.5 and

the formula of integration by parts show that, for any v ∈ H0(curl,Ω),
∫

Ω̃c

σ̃q · v = lim
τ→0

∫

Ω

σ̃ũτ (·, T ) · vφ(T ) = lim
τ→0

∫ T

0

∫

Ω

σ̃
[
ũτ · ∂(φv)

∂t
+

∂ũτ

∂t
· (φv)

]

=
∫ T

0

∫

Ω

σ̃
[
ũ · ∂(φv)

∂t
+

∂ũ

∂t
· (φv)

]
=

∫

Ω̃c

σ̃ũ(·, T ) · v .
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We conclude that q = ũ(·, T ) in Ω̃c by the density of H(curl, Ω̃c) in L2(Ω̃c).
Notice that ũτ (·, 0) = 0 for all τ > 0. The proof for ũ(·, 0) = 0 in Ω̃c is similar

and we do not elaborate on the details here.

Theorem 4.7. Let (H1)–(H3) be satisfied and assume supp(Js) ∩ Ω̃c = ∅. Then
(3.15) has a unique solution ũ and there exists a constant C > 0 only depending on
Ω, T , νmin, σmin such that

‖ũ‖L2(0,T ;X̃) ≤ C ‖Js‖L2(0,T ;L2(Ω)) .

Proof. Let ũτ and ūτ be defined in (4.3). For any v ∈ L2(0, T ; X̃), (4.1) yields
∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (v − ūτ ) = I(1)
τ − I(2)

τ ,(4.8)

where

I(1)
τ :=

∫ T

0

∫

Ω

Js · (v − ūτ ), I(2)
τ :=

∫ T

0

∫

Ω

σ̃
∂ũτ

∂t
· (v − ūτ ).

An application of (4.4) shows that

lim
τ→0

I(1)
τ =

∫ T

0

∫

Ω

Js · (v − ũ).(4.9)

Now we are going to study the limit of I
(2)
τ . From (4.5) we have

lim
τ→0

∫ T

0

∫

Ω

σ̃
∂ũτ

∂t
· v =

∫ T

0

∫

Ω

σ̃
∂ũ

∂t
· v ∀v ∈ L2(0, T ; X̃).(4.10)

Using (A.5) and the initial condition ũ0 = 0, we deduce that

∫ T

0

∫

Ω

σ̃
∂ũτ

∂t
· ūτ =

N∑
n=0

(
σ̃(ũn − ũn−1), ũn

) ≥ 1
2

∥∥∥σ̃1/2ũN

∥∥∥
2

L2(Ω)
.

From Lemma 4.6, the righthand side has the weak limit

lim
τ→0

σ̃1/2ũN = lim
τ→0

σ̃1/2ũτ (·, T ) = σ̃1/2ũ(·, T ) weakly in L2(Ω).

It follows that
∥∥∥σ̃1/2ũ(·, T )

∥∥∥
L2(Ω)

≤ lim
τ→0

∥∥∥σ̃1/2ũN

∥∥∥
L2(Ω)

. This implies

lim
τ→0

∫ T

0

∫

Ω

σ̃
∂ũτ

∂t
· ūτ ≥ 1

2

∥∥∥σ̃1/2ũ(·, T )
∥∥∥

2

L2(Ω)
.(4.11)

Combining (4.10) and (4.11) leads to

lim
τ→0

I(2)
τ = lim

τ→0

{∫ T

0

∫

Ω

σ̃
∂ũτ

∂t
· v −

∫ T

0

∫

Ω

σ̃
∂ũτ

∂t
· ūτ

}
(4.12)

≤
∫ T

0

∫

Ω

σ̃
∂ũ

∂t
· v − 1

2

∥∥∥σ̃1/2ũ(·, T )
∥∥∥

2

L2(Ω)
=

∫ T

0

∫

Ω

σ̃
∂ũ

∂t
· (v − ũ).
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Inserting (4.9) and (4.12) into (4.8) leads to

(4.13) lim
τ→0

∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (v − ūτ ) ≥
∫ T

0

(
Js − σ̃

∂ũ

∂t

)
· (v − ũ).

On one hand, taking v = ũ, (4.13) shows that

lim
τ→0

∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (ūτ − ũ) ≤ 0.

On the other hand, the strict monotonicity of H̃ shows that, as τ → 0,
∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (ūτ − ũ) ≥
∫ T

0

∫

Ω

H̃(cũrl ũ) · cũrl (ūτ − ũ) → 0.

Thus we conclude that

lim
τ→0

∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (ūτ − ũ) = 0.(4.14)

Let w = ũ + s(v − ũ) with s > 0. The strict monotonicity of H̃ yields
∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (ūτ −w) ≥
∫ T

0

∫

Ω

H̃(cũrlw) · cũrl (ūτ −w),

which is equivalent to

s

∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (ūτ − v) ≥ s

∫ T

0

∫

Ω

H̃(cũrlw) · cũrl (ũ− v)

+
∫ T

0

∫

Ω

H̃(cũrlw) · cũrl (ūτ − ũ) + (s− 1)
∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (ūτ − ũ).

Taking the lower limit of the above inequality as τ → 0 and using (4.4) and (4.14),
we find that

∫ T

0

∫

Ω

H̃(cũrlw) · cũrl (ũ− v) ≤ lim
τ→0

∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (ūτ − v).

Since H̃ is Lipschitz continuous, letting s → 0 in the above inequality yields

(4.15)
∫ T

0

∫

Ω

H̃(cũrl ũ) · cũrl (ũ− v) ≤ lim
τ→0

∫ T

0

∫

Ω

H̃(cũrl ūτ ) · cũrl (ūτ − v).

Combining (4.13) and (4.15), we have
∫ T

0

∫

Ω

H̃(cũrl ũ) · cũrl (ũ− v) ≤
∫ T

0

∫

Ω

(
Js − σ̃

∂ũ

∂t

)
· (ũ− v).

Since v is arbitrary, we conclude that

(4.16)
∫ T

0

∫

Ω

H̃(cũrl ũ) · cũrlv =
∫ T

0

∫

Ω

(
Js − σ̃

∂ũ

∂t

)
· v ∀v ∈ L2(0, T ; X̃).

Thus ũ solves (3.15) in a distributional sense.
The initial condition ũ(·, 0) = 0 in Ω̃c has been proved in Lemma 4.6. The stability

comes from the weak convergence of ũτ and Lemma 4.4:

‖ũ‖L2(0,T ;X̃) ≤ lim
τ→0

‖ũτ‖L2(0,T ;X̃) ≤ C ‖Js‖L2(0,T ;L2(Ω)) .

The proof is completed.



Nonlinear eddy current problems 15

5. Convergence of the approximate problem. The purpose of this section
is to study the convergence of the solution of (2.7) to the solution of (3.15) as d → 0,
where d = dist(Ωi; Ωi+1) is the thickness of coating films. For convenience, we append
the solution of (2.7) with a subscript d, namely, ud ∈ X denotes the solution. In
electrical engineering, it is just σud and curlud that are important and used in
computing iron loss. Therefore, we shall study the convergence of σud and curlud as
d → 0.

5.1. Nonlinear and time-dependent problems. First we consider the non-
linear and time-dependent eddy current problems (2.7) and (3.15).

Theorem 5.1. Let supp(Js) ∩ Ω̃c = ∅ and (H1)–(H3) be satisfied. Let ud, ũ be
the solutions of (2.7), (3.15) respectively and assume ∂ũ

∂t ∈ L2(0, T ;L2(Ω̃c)). Then

lim
d→0

{ ‖σ(ũ− ud)‖L∞(0,T ;L2(Ω)) + ‖cũrl (ũ− ud)‖L2(0,T ;L2(Ω))

}
= 0.

Proof. From (2.8) we know that
∫

Ω

[
σ

∂ud

∂t
· v + H(curlud) · curlv

]
=

∫

Ω

Js · v ∀v ∈ H0(curl,Ω).

Since supp(Js) ∩ Ωc = ∅ and dist(Ωi; Ωj) ≥ d > 0 for any i 6= j, we have
∫

Ω

σ
∂ud

∂t
· (χ∇ϕ) =

∫

Ω̃even

σ
∂ud

∂t
· ∇ϕ =

∫

Ωeven

σ
∂ud

∂t
· ∇ϕ = 0 ∀ϕ ∈ H1

0 (Ω).

Adding up the two equalities leads to

(5.1)
∫

Ω

[
σ

∂ud

∂t
· v + H(cũrlud) · cũrlv

]
=

∫

Ω

Js · v ∀v ∈ X̃,

where we have used curlud = cũrlud. And (3.15) reads
∫

Ω

[
σ̃

∂ũ

∂t
· v + H̃(cũrl ũ) · cũrlv

]
=

∫

Ω

Js · v ∀v ∈ X̃.(5.2)

Subtracting (5.1) from (5.2), we find that, for any v ∈ X̃,
∫

Ω

σ
∂

∂t
(ũ− ud) · v+

∫

Ω

[
H(cũrl ũ)−H(cũrlud)

] · cũrlv(5.3)

=
∫

Ω

(σ − σ̃)
∂ũ

∂t
· v +

∫

Ω

[
H(cũrl ũ)− H̃(cũrl ũ)

] · cũrlv

=−
∫

Ωd

σ̃
∂ũ

∂t
· v +

∫

Ωd

[
ν0 cũrl ũ− H̃(cũrl ũ)

] · cũrlv,

where Ωd := Ω̃c\Ω̄c denotes the region of coating films. Taking v = ũ − ud, (5.3)
shows that

(5.4)
1
2

d
dt

∫

Ω

σ |ũ− ud|2 + νmin

∫

Ω

|cũrl (ũ− ud)|2 ≤ (νmax + σmax)Ed ‖ũ− ud‖X̃ ,

where Ed is a function of t and defined by

Ed :=
{∥∥∥∂ũ

∂t

∥∥∥
2

L2(Ωd)
+ ‖cũrl ũ‖2L2(Ωd)

}1/2

.
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Using Theorem 2.2 and 4.7, we have

‖ũ− ud‖L2(0,T ;X̃) ≤ C ‖Js‖L2(0,T ;L2(Ω)) .

Integrating (5.4) from 0 to t ∈ (0, T ] and using ũ(·, 0) = ud(·, 0) = 0 in Ωc, we have

‖σ(ũ− ud)‖2L∞(0,T ;L2(Ω)) + ‖cũrl (ũ− ud)‖2L2(0,T ;L2(Ω)) ≤ C

∫ T

0

Ed(t)dt,

where C only depends on T , σmin, σmax, νmin, νmax, and ‖Js‖L2(0,T ;L2(Ω)). Since

∂ũ

∂t
∈ L2

(
0, T ;L2

(
Ω̃c

))
, cũrl ũ ∈ L2(0, T ;L2(Ω)), |Ωd| < Cd,

where |Ωd| denotes the measure of Ωd, we easily get

lim
d→0

∫ T

0

Ed(t)dt ≤ T 1/2 lim
d→0

( ∫ T

0

|Ed(t)|2 dt
)1/2

= 0.

This completes the proof.

5.2. Linear time-harmonic problems. The purpose of this subsection is to
derive an explicit error estimate with respect to d for linear eddy current problems.
For simplicity, we assume that H(B) = ν0B and Js is periodic in time so that (2.7)
and (3.15) can be written into the time-harmonic forms at a single frequency ω > 0:

Find u ∈ X : iω(σu,v) + ν0(curlu, curlv) = (Js,v) ∀v ∈ X,(5.5)
Find ũ ∈ X̃ : iω(σ̃ũ,v) + ν0(cũrl ũ, cũrlv) = (Js,v) ∀v ∈ X̃.(5.6)

Theorem 5.2. Let (H1) be satisfied. Assume Js ∈ L2(Ω), div Js = 0, and
supp(Js) ∩ Ω̃c = ∅. Then problem (5.5) has a unique solution u ∈ X, problem (5.6)
has a unique solution ũ ∈ X̃, and there exists a constant C only depending on σmin

and σmax such that

‖u‖X ≤ C ‖Js‖L2(Ω) , ‖ũ‖X̃ ≤ C ‖Js‖L2(Ω) .(5.7)

Proof. The theorem is a direct consequence of Lemma 2.1 and Lemma 3.1.

Theorem 5.3. Assume σ|Ωi
= σi > 0 for each 1 ≤ i ≤ I and that Js ∈ L2(Ω)

satisfies div Js = 0 and supp(Js) ∩ Ω̃c = ∅. Let u ∈ X and ũ ∈ X̃ be the solutions
of (5.5) and (5.6) respectively. Then there exists a constant C > 0 only depending on
Ω̃even and ‖Js‖L2(Ω) such that

∥∥∥σ1/2(u− ũ)
∥∥∥

2

L2(Ω)
+ ν0ω

−1 ‖cũrl (u− ũ)‖2L2(Ω) ≤ Cρ(d) d1/3, lim
d→0

ρ(d) = 0.

Proof. By similar arguments as for (5.1) and (5.2), we know that u and ũ satisfy

iω(σu,v) + ν0(cũrlu, cũrlv) = (Js,v) ∀v ∈ X̃,(5.8)
iω(σ̃ũ,v) + ν0(cũrl ũ, cũrlv) = (Js,v) ∀v ∈ X̃.(5.9)
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Subtracting (5.8) from (5.9) shows that
∫

Ω

[
iωσ(ũ− u) · v + ν0cũrl (ũ− u) · cũrlv

]
= −iω

∫

Ωd

σ̃ũ · v.

Taking v = ũ− u, we find that
∥∥∥σ1/2(u− ũ)

∥∥∥
2

L2(Ω)
+ ν0ω

−1 ‖cũrl (u− ũ)‖2L2(Ω) ≤ ρ(d) ‖ũ‖L2(Ωd) .(5.10)

where ρ(d) := ‖σ̃(ũ− u)‖L2(Ωd). By Theorem 5.2 and Lemma 2.1, we know that
‖ũ− u‖L2(Ω) is uniformly bounded with respect to d. Then we have lim

d→0
ρ(d) = 0.

Since σ̃ = σi in each Ω̃i, taking v = χ∇v, then (5.9) shows that
∫

Ω̃i

σ̃ũ · ∇v = σi

∫

Ω̃i

ũ · ∇v = 0 ∀ v ∈ H1(Ω̃i) and even i.

This indicates that div ũ = 0 in Ω̃i and ũ · n = 0 on ∂Ω̃i, that is, ũ ∈ H(curl, Ω̃i) ∩
H0(div, Ω̃i) for even i. By [11, Theorem 3.9], we have ũ ∈ H1(Ω̃i). Then an applica-
tion of Hölder’s inequality shows that

‖ũ‖L2(Ωd) ≤ |Ωd|1/3 ‖ũ‖L6(Ωd) ≤ Cd1/3 ‖ũ‖L6(Ω̃even) ≤ Cd1/3 ‖ũ‖H1(Ω̃even)

≤ Cd1/3 ‖curl ũ‖L2(Ω̃even) ≤ Cd1/3,

where the generic constant C only depends on Ω̃even and ‖Js‖L2(Ω). This completes
the proof.

6. Numerical experiments. The purpose of this section is to validate the
approximation of the new eddy current model (3.15) to the original eddy current
problem (2.7) numerically.

We let Th be a tetrahedral triangulation of Ω which subdivides each Ωi into the
union of tetrahedra, and let {tn = nτ : n = 0, 1, · · · , N}, τ = T/N be the partition
of the time interval [0, T ] for integer N > 0. Let Pk be the space of polynomials of
degree k ≥ 0. First we introduce the third-order Lagrange finite element space

Vh =
{
v ∈ H1

0 (Ω) : v|K ∈ P3(K), ∀K ∈ Th

}
,

and the second-order Nédélec edge element space in the second family [16]

Uh =
{
v ∈ H0(curl,Ω) : v|K ∈ (

P2(K)
)3

, ∀K ∈ Th

}
.

Similar to (3.10), we define a subspace of Uh by

Uodd =
{
v ∈ Uh : (v,∇ϕ) = 0 ∀ϕ ∈ Vh, ϕ = Const. in Ω̃odd

}
.

Then the discrete test function space is defined by

X̃h := Uodd + χ∇Vh.

The fully discrete finite element approximation to problem (3.15) reads: Given ũ0 = 0,
find ũn ∈ X̃h such that

(6.1)
∫

Ω

[
σ̃

ũn − ũn−1

τ
· vh + H̃(cũrl ũn) · cũrlvh

]
=

∫

Ω

Jn · vh ∀vh ∈ X̃h,
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where Jn is the temporal average of Js over (tn−1, tn) and defined in (4.1).
Since this paper mainly focuses on the mathematical modeling of GO silicon steel

laminations, we do not elaborate much on the numerical analysis for (6.1). We refer
to [1,5,9,22] for further studies on finite element methods for eddy current problems.
Our implementation is based on the adaptive finite element package PHG [21] and the
computations are carried out on the cluster LSEC-III of Chinese Academy of Sciences.
The numerical experiment is performed for the TEAM Workshop Problem 21c–M1
where the magnetic shield is made of 20 silicon steel laminations. We refer to [7] for
more details of the model.

Table 6.1
Iron loss in the laminations and the magnetic plate (W ).

Experimental value 3.72 [7]

Calculated value
Total loss 3.73
Loss in the laminations 2.789
Loss in the magnetic plate 0.941

−0.25 −0.2 −0.15 −0.1 −0.05 0
−0.02

−0.01

0

0.01

0.02

z (mm)

B
x (

T
)

 

 

Numerical values
Experimental values
data3
data4

Fig. 6.1. Numerical and experimental values of the magnetic flux density [7]. The couple of
curves between Bx = 0 T and Bx = 0.01T show the numerical and experimental values along the
line {(x, y, z) : x = −5.76 mm, y = 0mm}, and the other couple of curves show the numerical and
experimental values along the line {(x, y, z) : x = 11.76 mm, y = 0 mm}.

Since we are investigating the error between the solution of (2.7) and the solution
of (3.15), to reduce the numerical error sufficiently, we adopt a fine mesh of Ω with 9×
106 tetrahedra and 1.26×108 degrees of freedom. Table 6.1 shows that the calculated
iron loss is close to the experimental value. And Figure 6.1 shows that the calculated
values of the magnetic flux agree well with the experimental values [7]. Thus we
conclude that the new eddy current model (3.15) provides an accurate approximation
to the original problem (2.7).
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Appendix A.
The purpose of this appendix is to establish the wellposedness of the semi-discrete

problem (4.1). Now we present the proof of Lemma 4.2.
Proof. First we write (4.1) as: Find ũn ∈ X̃ such that

(A.1)
(
σ̃ũn,v

)
+ τ

(
H̃(cũrl ũn), cũrlv

)
= (σ̃ũn−1 + τJn,v) ∀v ∈ X̃.

From Lemma 3.1, for any w ∈ X̃, there exists a unique solution Ln(w) ∈ X̃ of the
variational problem

(A.2)
(Ln(w),v

)
X̃

=
(
σ̃w,v

)
+ τ

(
H̃(cũrlw), cũrlv

) ∀v ∈ X̃.

Let fn ∈ X̃ be the unique solution of the variational problem

(fn,v)X̃ = (σ̃ũn−1 + τJn,v) ∀v ∈ X̃.

Clearly (A.1) is equivalent to the operator equation

Ln(ũn) = fn in X̃.(A.3)

From (H2) we infer that the operator Ln: X̃ → X̃ is Lipschitz continuous. Moreover,
the strict monotonicity of Ln comes directly from (H1)-(H2): for any w,v ∈ X̃,

(Ln(w)−Ln(v),w − v
)
X̃

=
(
σ̃(w − v),w − v

)
+ τ

(
H̃(cũrlw)− H̃(cũrlv), cũrl (w − v)

)

≥min
(
σmin, τνmin

) ‖w − v‖2X̃ .

By [20, Theorem 25.B], we know that (A.3) has a unique solution ũn for each n ≥ 1.
Setting v = ũn in (A.1) shows that

(A.4)
(
σ̃(ũn − ũn−1), ũn

)
+ τ

(
H̃(cũrl ũn), cũrl ũn

)
= τ(Jn, ũn).

Using the initial value ũ0 = 0 and the inequality

2
(
σ̃(ũn − ũn−1), ũn

) ≥
∥∥∥σ̃1/2ũn

∥∥∥
2

L2(Ω)
−

∥∥∥σ̃1/2ũn−1

∥∥∥
2

L2(Ω)
,

we have

2
m∑

n=1

(
σ̃(ũn − ũn−1), ũn

) ≥
∥∥∥σ̃1/2ũm

∥∥∥
2

L2(Ω)
.(A.5)

Inserting (A.5) into (A.4) and using (H2), we find that
∥∥∥σ̃1/2ũm

∥∥∥
2

L2(Ω)
+ 2νmin

m∑
n=1

τ ‖cũrl ũn‖2L2(Ω) ≤ 2
m∑

n=1

τ(Jn, ũn).(A.6)

Let ũn = ûn +χ∇un with ûn ∈ Xodd and un ∈ H1
0 (Ω). Since supp(Js)∩ Ω̃c = ∅ and

div Jn = τ−1
n

∫ tn

tn−1
div Js = 0, an application of Lemma 4.3 and Young’s inequality

shows that

|(Jn, ũn)| = |(Jn, ûn)| ≤ C ‖Jn‖L2(Ω) ‖curl ûn‖L2(Ω)(A.7)

≤ C2

2νmin
‖Jn‖2L2(Ω) +

νmin

2
‖curl ûn‖2L2(Ω)

=
C2

2νmin
‖Jn‖2L2(Ω) +

νmin

2
‖cũrl ũn‖2L2(Ω) ,
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where the constant C > 0 only depends on Ω. Inserting (A.7) into (A.6) yields

∥∥∥σ̃1/2ũm

∥∥∥
2

L2(Ω)
+ νmin

m∑
n=1

τ ‖cũrl ũn‖2L2(Ω) ≤ C2ν−1
min

m∑
n=1

τ ‖Jn‖2L2(Ω) .

Then (4.2) comes directly from the definition of Jn and the arbitrariness of m.
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Basel, 2005.

[19] I. Sebestyen, S. Gyimothy, J. Pavo, and O. Biro, Calculation of losses in laminated ferro-
magnetic materials, IEEE Trans. on Magnetics, 40 (2004), no.2, pp.924-927.

[20] E. Zeidler, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone
Operators, Springer-Verlag, New York, 1990.

[21] L. Zhang, A Parallel Algorithm for Adaptive Local Refinement of Tetrahedral Meshes Using
Bisection, Numer. Math.: Theor. Method Appl., 2 (2009) 65C89.

[22] W. Zheng, Z. Chen, and L. Wang, An adaptive finite element method for the H–ψ formula-
tion of time-dependent eddy current problems, Numer. Math., 103 (2006), pp. 667–689.


