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Abstract. In this paper, we develop an adaptive finite element method based on reliable
and efficient a posteriori error estimates for the H − ψ formulation of eddy current problems with
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1. Introduction. Eddy currents appear in almost all electromagnetic devices.
They cause energy loss and may reduce lifespan of devices. Three dimensional eddy
current problems describe very low-frequency electromagnetic phenomena by quasi-
static Maxwell’s equations. In this case, displacement currents may be neglected (see
[1] and [7, Ch.8]), thus Maxwell’s equations become

(1.1)



















curl H = J in R
3, (Ampere’s law)

µ
∂H

∂t
+ curl E = 0 in R

3, (Farady’s law)

div(µH) = 0 in R
3,

where E is the electric field, H is the magnetic field, and J is the total current defined
by:

(1.2) J =

{

σE in Ωc, (conducting region)

Js in R
3 \ Ωc. (nonconducting region)

In (1.1) and (1.2), µ is the magnetic permeability, σ is the electric conductivity, Js is
the solenoidal source current carried by some coils in the air, and Ωc is the conducting
region which carries eddy currents. To avoid extra complicated constraints on Js, we
assume supp(Js) ∩ Ω̄c = ∅.

(1.1) – (1.2) may be simplified into different forms by virtue of various field
variables (see [19] and references therein). Generally speaking, each of these simplified
formulations contains at least an unknown vector function defined in the conducting
region, plus an unknown vector function or an unknown scalar function defined in
the nonconducting region. From the point of view of numerical computation, the
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latter case needs less degrees of freedom and thus is more favorable. In this paper,
we adopt a formulation based on the magnetic field H in the conducting region and
the magnetic scalar potential ψ in the nonconducting region. When all connected
components of the conducting region are simply connected, the scalar potential ψ
belongs to H1(R3 \ Ωc) and the problem is relatively easy to be dealt with in the
framework of finite element method. Otherwise, in the case of multiply connected
conductors, ψ is discontinuous somewhere in the nonconducting region [2] and thus
the problem becomes more difficult. We focus on this case and treat the discontinuities
of ψ by making “cuts” in the nonconducting region.

Eddy current problems involve discontinuous coefficients, reentrant corners of
material interfaces, and skin effect. Thus local singularities and internal layers of
the solution arise. We refer to [17] for the descriptions of the eddy current limit
and the singularities of the solutions. Among various numerical methods for eddy
current problem, the finite element method is most popular (see [7, Ch.8], [8], and
references therein). We also refer to [16] for the finite integration method. It is well
known that the adaptive finite element method is very efficient for problems with local
singularities since it produces “quasi-optimal” mesh by using reliable and efficient
error estimates [11] [33]. A posteriori error estimates are computable quantities in
terms of the discrete solution and known datum that measure the actual discretization
errors without the knowledge of the exact solution. They are essential in designing
algorithms for mesh modification which equidistribute the error and optimize the
computation. Ever since the pioneering work of Babuška and Rheinboldt [3], the
adaptive finite element methods based on a posteriori error estimates have become a
central theme in scientific and engineering computing. The ability of error control and
the asymptotically optimal approximation property (see e.g. [9], [25], and [14]) make
the adaptive finite element method attractive for complicated physical and industrial
processes (cf. e.g. [10] and [12]).

A posteriori error estimates for Nédélec H(curl)-conforming edge elements are
obtained in [24] for Maxwell scattering problems, in [4] for the electric field-based
formulation of eddy current problems, in [5] for higher order edge element approxi-
mation of eddy current problems, in [31] and [32] for the fem-bem coupling scheme
of eddy current problems, and also in [13] for time-harmonic Maxwell equations with
singularities. The key ingredient in the analysis is the orthogonal Helmholtz decompo-
sition v = ∇ϕ+ Ψ, where for any v ∈ H(curl; Ω), ϕ ∈ H1(Ω), and Ψ ∈ H(curl; Ω).
Since a stable edge element interpolation operator is not available for functions in
H(curl; Ω), some kind of regularity result for Ψ ∈ H(curl; Ω) is required. This regu-
larity result is proved in [24] for domains with smooth boundary and in [4] for convex
polyhedral domains. If one removes the orthogonality requirement in the Helmholtz
decomposition, the regularity Ψ ∈ H1(Ω) can be proved for a large class of non-convex
polygonal domains or domains having screens [13] [18] [27]. In this paper, the proof
of the Helmholtz decomposition becomes more complicated due to the presence of the
discontinuities of the magnetic potential in the nonconducting region. We treat this
difficulty by introducing some finite element functions into the decomposition.

In this paper, we develop an adaptive finite element method based on reliable and
efficient a posteriori error estimates for the H− ψ formulation of eddy current prob-
lems with multiply connected conductors (see [Chapter 8, 7] for the formulation of
time-harmonic problems). We compute two challenging problems to demonstrate the
competitive performance of our method. One is an engineering benchmark problem,
the Team Workshop Problem 7, and another is a singular problem with analytic solu-
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tion. The results indicate that our adaptive method has the following very desirable
quasi-optimality property:

ηtotal ≈ C N
−1/4
total

is valid asymptotically, where ηtotal is the total error estimate (see Theorem 4.1), and

Ntotal :=
∑M

n=1Nn with M being the number of time steps and Nn being the number
of elements of the mesh Tn at the n-th timestep.

The rest of the paper is arranged as follows: In section 2, we derive the H – ψ
based formulation of time-dependent eddy current problems. The equivalent weak
formulation and its well-posedness are also given in this section. In section 3, we
introduce a coupled conforming finite element approximation to the H − ψ based
formulation and prove the Helmholtz decomposition of the variational space. In sec-
tion 4, we derive reliable and efficient residual-based a posteriori error estimates. In
section 5, we report the numerical results for a singular solution and the Team Work-
shop Problem 7, and compare them with experimental results to show the competitive
performance of the method proposed in this paper.

2. Magnetic field and magnetic scalar potential based formulation. Let
Ω ⊂ R

3 be a sufficiently large convex polyhedral domain containing all conductors
and coils (see Fig. 2.1 for a typical model with one conductor and one coil). Denote
the conducting domain by Ωc which consists of all conductors. We assume that Ωc is
bounded and each of its connected components is a Lipschitz domain.

Fig. 2.1. Setting of the eddy current problems: A conductor with a hole and a coil.

We assume that µ and σ are real valued L∞(Ω) functions and there exist two posi-
tive constants µmin and σmin such that µ ≥ µmin in Ω and σ ≥ σmin in Ωc. Furthermore,
we assume σ ≡ 0 outside of Ωc.

Let L2(Ω) be the usual Hilbert space of square integrable functions equipped with
the following inner product and norm:

(u, v) :=

∫

Ω

u(x) v(x) dx and ‖u‖0,Ω := (u, v)1/2.
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Hm(Ω) := {v ∈ L2(Ω) : Dξv ∈ L2(Ω), |ξ| ≤ m} equipped with the following norm
and semi-norm

‖u‖m,Ω :=





∑

|ξ|≤m

‖Dξu‖2
0,Ω





1/2

and |u|m,Ω :=





∑

|ξ|=m

‖Dξu‖2
0,Ω





1/2

,

where ξ represents non-negative triple index. H1
0 (Ω) is the subspace of H1(Ω) whose

functions have zero traces on ∂Ω. Throughout the paper we denote vector-valued
quantities by boldface notation, such as L2(Ω) := (L2(Ω))3. Define

H(curl; Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)},
H0(curl; Ω) := {v ∈ H(curl; Ω) : n× v = 0 on ∂Ω}.

H(curl; Ω) is equipped with the following norm:

‖v‖H(curl;Ω) :=
(

‖v‖2
0,Ω + ‖curl v‖2

0,Ω

)1/2
.

Since divJs ≡ 0, there exists a source magnetic field Hs such that

(2.1) Js = curlHs in R
3.

The field Hs can be written explicitly by the Biot-Savart Law for general coils:

Hs := curlAs where As(x) :=
1

4π

∫

R3

Js(y)

|x − y| dy.

In the following we are going to find the residual H0 := H − Hs which is called the
reaction field in [21]. Clearly, by (1.1), (1.2), and (2.1), we have

curlH0 = 0 in Ω \ Ωc .

Our goal is to write H0 as ∇ψ for some scalar potential ψ. Since Ω \ Ωc may not be
simply connected, ψ may not be unique. To deal with this difficulty, we introduce the
following assumption (see [2, Hypothesis 3.3]):

Hypothesis 2.1. There exist I connected open surfaces Σ0, · · · ,ΣI , called “cuts”,
contained in Ω \ Ωc, such that

(i) each cut Σi is an open part of some smooth two-dimensional manifold with
Lipschitz-continuous boundary, i = 1, · · · , I;

(ii) the boundary of Σi is contained in ∂Ωc and Σi ∩ Σj = ∅ for i 6= j;
(iii) the open set Ω◦ := (Ω\Ωc)\(∪I

i=1Σi) is simply connected and pseudo-Lipschitz
(see [2, Definition 3.1] for the definition of pseudo-Lipschitz domain).

For each Σi, we fix its unit normal vector n pointing to one side (see Fig. 2.2 for
I = 1). Define

Θ := {ϕ ∈ H1(Ω◦) : [ϕ]Σj
= const., 1 ≤ j ≤ I},

where [ϕ]Σj
is the jump of ϕ across the cut Σj . For any ϕ ∈ Θ, we can extend

∇ϕ ∈ L2(Ω◦) continuously to a function ∇̃ϕ ∈ L2(Ω \ Ωc) such that

∇̃ϕ = ∇ϕ in Ω◦ .

4



Fig. 2.2. Setting of the eddy current problems: Stem the hole by making “cut”.

Lemma 2.2. [2, Lemma 3.11] Let ϕ ∈ H1(Ω◦). Then ϕ ∈ Θ if and only if

curl (∇̃ϕ) = 0 in Ω \ Ωc .

Since Ω◦ is simply connected, by Lemma 2.2, there exists a unique potential
ψ ∈ Θ/R1 such that

H0 = ∇ψ in Ω◦.

Thus the second equation in (1.1) becomes















µ
∂ (Hs + ∇ψ)

∂t
+ curlE = 0 in Ω◦,

µ
∂ (Hs + H0)

∂t
+ curlE = 0 in Ωc .

(2.2)

For the initial conditions, we set

(2.3) ψ(·, 0) = 0, H0(·, 0) = 0.

Since the total electro-magnetic energy is finite, we may assume H ∈ L2(R3) which
implies curlE ∈ L2(R3). Assuming Ω large enough, we set the following boundary
condition on ∂Ω:

∇ψ · n = −Hs · n on ∂Ω .(2.4)

Our next goal is going to derive a weak formula for (1.1), starting from (2.2). Similar
development can be found in [7, Chapter 8]).
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Since the tangential field H0×n is continuous through ∂Ωc, we add this constraint
to the test functions and define

X =
{

v : v = ∇̃ϕ in Ω \ Ωc for some ϕ ∈ Θ/R1 and v = w in Ωc

for some w ∈ H(curl; Ωc) such that ∇̃ϕ× n = w × n on ∂Ωc

}

.

It is clear that X ⊂ H(curl; Ω). For any ϕ ∈ Θ/R1, we multiply the first equation of
(2.2) by ∇ϕ, integrate by part to obtain

∂

∂t

∫

Ω◦

µ (∇ψ + Hs) · ∇ϕ = −
∫

Ω◦

curlE · ∇ϕ = −
∫

∂Ω◦

curlE · nϕ .

Note that ∂Ω◦ = ∂Ω∪ ∂Ωc ∪ (∪I
j=1Σj). By (2.2) and (2.4) we have curlE · n = 0 on

∂Ω. Thus

∂

∂t

∫

Ω◦

µ (∇ψ + Hs) · ∇ϕ =

I
∑

j=1

∫

Σj

E · [n ×∇ϕ]Σj
+

∫

∂Ωc

E · (n× ∇̃ϕ)(2.5)

=

∫

∂Ωc

E · (n × ∇̃ϕ),

where n is the unit outer normal to ∂Ωc, and we have used the fact that [∇ϕ×n]Σj
= 0

on Σj because of ϕ ∈ Θ. For any w ∈ H(curl; Ωc), we multiply the second equation
of (2.2) by w and integrate by part to obtain

∂

∂t

∫

Ωc

µ (Hs + H0) · w = −
∫

Ωc

curlE ·w =

∫

∂Ωc

E · (n × w) −
∫

Ωc

E · curlw .

By (1.2) and the first equation of (1.1), we have

∂

∂t

∫

Ωc

µ (Hs + H0) ·w +

∫

Ωc

σ−1curlH0 · curlw =

∫

∂Ωc

E · (n× w),(2.6)

where n is the unit normal on ∂Ωc pointing to the exterior of Ωc, and we have used
(2.1) and the fact that Js ≡ 0 in Ωc. By the tangential continuity of the electric field
E, we add (2.5) to (2.6) and obtain, for any v ∈ X such that v = ∇̃ϕ in Ω \ Ωc and
v = w in Ωc,

∂

∂t

∫

Ω◦

µ∇ψ · ∇ϕ+
∂

∂t

∫

Ωc

µH0 · w +

∫

Ωc

σ−1curlH0 · curlw = − ∂

∂t

∫

Ω

µHs · v.

For the convenience in notation, we drop the subscript of H0 and denote the
reaction field by H in the rest of this paper. Thus we are led to the following variational
problem based on the magnetic reaction field and magnetic scalar potential: Find
H ∈ L2((0, T );X) such that H(·, 0) ≡ 0 and

(2.7)
∂

∂t

∫

Ω

µH · v +

∫

Ωc

σ−1curlH · curl v = − ∂

∂t

∫

Ω

µHs · v ∀v ∈ X.

It is easy to prove the following theorem by the Galerkin method. Here we omit
the details.

Theorem 2.3. Assume that ∂(µHs)/∂t ∈ L2(Ω) is Lipschitz-continuous with
respect to t. Then the initial problem (2.7) has a unique solution H ∈ L2((0, T );X).
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3. Finite element approximations. We use a fully discrete scheme to ap-
proximate (2.7). Let {t0, · · · , tM} form a partition of the time interval [0, T] and
τn = tn − tn−1 be the n-th timestep. Let Tn be a regular tetrahedral triangulation of
Ω such that T c

n := Tn|Ωc
and T ◦

n := Tn|Ω◦ are triangulations of Ωc and Ω◦ respectively.
Let Tinit be the initial regular triangulation of Ω such that each Tn, n = 0, · · · ,M , is
a refinement of Tinit.

Let Vn ⊂ H1(Ω) and V ◦
n ⊂ H1(Ω◦) be the conforming linear Lagrangian finite

element spaces over Tn and T ◦
n respectively, and Vc

n ⊂ H(curl; Ωc) be the Nédélec
edge element space of the lowest order over T c

n [26]. We introduce the finite element
space Xn ⊂ X by

Xn =
{

v : v = ∇̃ϕn in Ω \ Ωc for some ϕn ∈ Θ ∩ V ◦
n /R

1 and v = wn in Ωc

for some wn ∈ Vc
n such that ∇̃ϕn × n = wn × n on ∂Ωc

}

.

Thus a fully discrete scheme of (2.7) is: Find Hn ∈ Xn such that H0 ≡ 0 and
∫

Ω

µ
Hn − Hn−1

τn
· v +

∫

Ωc

σ−1curlHn · curl v =

∫

Ω

f̄n · v ∀v ∈ Xn,(3.1)

where f := −µ∂Hs/∂t and f̄n := 1
τn

∫ tn

tn−1

f is the mean value of f over [tn−1, tn]. The

uniqueness and existence of solutions to (3.1) follows directly from the Lax-Milgram
Lemma.

For each “cut” Σi, let qi be the H1(Ω◦)-conforming linear finite element function
satisfying

(3.2) [qi]Σj
= δij , 1 ≤ j ≤ I, and qi(A) = 0, for any node A not on Σi.

Denote the edges in Ω̄ \ Ωc by E Ω̄\Ωc

init . For any E ∈ E Ω̄\Ωc

init , let A1 and A2 be its two
endpoints. We define wE by supp(wE) =

⋃

E⊂∂T,T∈Tinit
T̄ and for any T ⊂ supp(wE)

wE = λT
2 ∇λT

1 − λT
2 ∇λT

2 in T,

where λT
1 and λT

2 are the barycentric coordinates of T with respect to A1 and A2

respectively. In fact, wE is the corresponding canonical basis function of the lowest
order Nédélec edge element space over Tinit [26]. We define

qi :=
∑

E∈E
Ω̄\Ωc

init

∫

E

∇qi · dE wE .(3.3)

The key ingredient in the analysis of a posteriori error estimates for Maxwell’s
equations is Helmholtz-type decompositions for functions in H(curl; Ω). In the next,
we will introduce an H(curl)-stable decomposition for X. Since both Ωc and Ω\Ωc are
multiply connected, it is difficult to find a scalar function ψ with constant jumps across
all “cuts” to define the irrotational part. Instead, we represent these discontinuities
by the help of some finite element function.

Theorem 3.1. Let Xinit be the finite element space over Tinit. For any v ∈ X,
there exists a ϕ ∈ H1(Ω)/R1, a vinit ∈ Xinit, and a vs ∈ H(curl; Ω) ∩ H1(Ωc) such
that vs = 0 in Ω \ Ωc and

(3.4) v = ∇ϕ+ vinit + vs.
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Furthermore, there exists a positive C depending only on Ω and Tinit such that

(3.5) ‖ϕ‖1,Ω + ‖vs‖1,Ωc
+ ‖vinit‖H(curl; Ω) ≤ C‖v‖H(curl; Ω) .

Proof. For any v ∈ X such that v = ∇̃f in Ω \ Ωc for some f ∈ Θ/R1, define

(3.6) ϕinit :=
I
∑

i=1

[f ]Σi
qi and vinit :=

I
∑

i=1

[f ]Σi
qi.

where qi and qi are defined in (3.2) and (3.3) respectively. Clearly, by the definition
of qi, vinit ∈ Xinit is an H(curl)-continuous extension of ∇̃ϕinit to Ωc. We also have
f − ϕinit ∈ H1(Ω \ Ωc). By the trace theorem and Schwartz’s inequality,

|[f ]Σi
| =

1

|Σi|

∫

Σi

|[f ]Σi
| ≤

(

1

|Σi|

∫

Σi

|[f ]Σi
|2
)1/2

≤ C‖f‖1,Ω◦ ,

for all i = 1, · · · , I. Thus there exists a constant C depending only on Σ1, · · · ,ΣI and
Tinit such that

‖ϕinit‖1,Ω◦ ≤ C‖f‖1,Ω◦ and ‖vinit‖H(curl; Ω) ≤ C‖f‖1,Ω◦ .(3.7)

By Stein’s extension theorem [30, Theorem 5, p.181] and (3.7), there exists an exten-
sion of f − ϕinit denoted by ϕ0 ∈ H1(Ω)/R1 such that

ϕ0 = f − ϕinit, in Ω \ Ωc,(3.8)

‖ϕ0‖1,Ω ≤ C‖f − ϕinit‖1,Ω\Ωc
≤ C‖f‖1,Ω◦ ≤ C‖∇f‖0,Ω◦ .(3.9)

By (3.6) and (3.8), we have v−∇ϕ0 −vinit ∈ H0(curl; Ωc). In view of (3.4), we only
need to decompose v −∇ϕ0 − vinit into a gradient part and an H1-smooth part.

Denote w := v−∇ϕ0−vinit and extend w by zero to Ω\Ωc. Clearly the extension
w̃ ∈ H0(curl; Ω). By Theorem 3.4 of [20, p. 45] and Theorem 3.7 of [20, p. 52], there
exists a Ψ ∈ H1(Ω) such that

curlΨ = curl w̃, div Ψ = 0, in Ω,(3.10)

‖Ψ‖1,Ω ≤ C(‖curlΨ‖0,Ω + ‖divΨ‖0,Ω) = C‖curlw‖0,Ωc
.(3.11)

Moreover, by (3.10) and Theorem 2.9 of [20, p. 31], there exists a ξ ∈ H1
0 (Ω) such

that

w̃ = Ψ + ∇ξ, in Ω,(3.12)

‖ξ‖1,Ω ≤ C|ξ|1,Ω ≤ C‖w‖H(curl; Ωc),(3.13)

|ξ|2,Ω\Ωc
≤ ‖Ψ‖1,Ω ≤ C‖curlw‖0,Ωc

.(3.14)

Since Ω \Ωc is a Lipschitz domain, by Stein’s extension theorem [30, Theorem 5,
p. 181], there exists an extension of ξ|Ω\Ωc

denoted by ξ̃ ∈ H2(R3) such that

ξ̃ = ξ in Ω \ Ωc and ‖ξ̃‖2,R3 ≤ C‖ξ‖2,Ω\Ωc
≤ C‖w‖H(curl; Ωc).(3.15)

Define p := ξ − ξ̃ ∈ H1
0 (Ωc) and vs := Ψ + ∇ξ̃ ∈ H1(Ωc) ∩ H0(curl; Ωc). Combining

(3.10)–(3.15) yields

v −∇ϕ0 − vinit = ∇p+ vs, in Ωc,(3.16)

‖p ‖1,Ωc
+ ‖vs‖1,Ωc

≤ C‖v −∇ϕ0 − vinit‖H(curl; Ωc) ≤ C‖v‖H(curl; Ω).(3.17)

8



Extend p and vs by zero to the exterior of Ωc and denote the extensions by the same
notations. Define ϕ := ϕ0 + p. Then (3.16) yields (3.4) and (3.7), (3.9), (3.17) yield
(3.5).

Remark 3.2. If Ω\Ωc in Theorem 3.1 is simply connected, the finite element term
vinit in (3.4) and (3.5) will disappear. The decomposition in Theorem 3.1 extends the
so-called Birman-Solomyak decomposition of H0(curl; D) for non-convex D ∈ R

3 in
[6], [18], and [27].

To derive our error estimates, we introduce the Scott-Zhang Operator [29] In :
H1(Ω) → Vn and the Beck-Hiptmair-Hoppe-Wohlmuth Operator [4] Πn : H1(Ωc) ∩
H0(curl; Ωc) → Vc

n. In and Πn satisfy the following approximation and stability
properties respectively: For any φh ∈ Vn, φ ∈ H1(Ω), wh ∈ Xn, and w ∈ H1(Ωc) ∩
H0(curl; Ωc)



















Inφh = φh,

‖∇Inφ‖0,T ≤ C |φ|1,DT
,

‖φ− Inφ‖0,T ≤ C hT |φ|1,DT
,

‖φ− Inφ‖0,F ≤ C h
1/2
F |φ|1,DF

,

(3.18)



















Πnwh = wh,

‖Πnw‖H(curl; T ) ≤ C ‖w‖1,DT
,

‖w − Πnw‖0,T ≤ C hT |w|1,DT
,

‖w − Πnw‖0,F ≤ C h
1/2
F |w|1,DF

,

(3.19)

where DA is the union of elements in Tk with non-empty intersection with A, A = T
or F .

4. Residual based a posteriori error estimates. For the sake of convenience,
we neglect iterative errors in the solution of linear algebraic systems. Let H and Hn be
the solutions of (2.7) and (3.1) respectively. For t ∈ [tn−1, tn], let l(t) = (t− tn−1)/τn,
and define

Hh(t) := l(t)Hn + (1 − l(t))Hn−1.(4.1)

Hereafter we define the error function by e(t) := H(t)−Hh(t). Combining (2.7) and
(3.1), we have

(

µ
∂e

∂t
, v

)

+ (curl (H − Hn), curl v) = (f − f̄n, v) + rn(v) ∀v ∈ X,(4.2)

where f and f̄n are defined in the beginning of Section 3, and

rn(v) :=

(

f̄n − µ
∂Hh

∂t
, v

)

− (curlHn, curl v).

Theorem 4.1. There exists a positive constant C depending only on Ω, µ, and
σ such that for any 0 ≤ m ≤M ,

‖√µe(tm)‖2
0,Ω + ‖curl e‖2

L2((0,T );L2(Ω)) ≤ C

m
∑

n=1

τn

{

(ηn
time)

2 +
(

ηn
space

)2
}

,(4.3)
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where the a posteriori error estimates are given by

(ηn
time)

2
= ‖curl(Hn − Hn−1)‖2

0,Ωc
+ τ−1

n ‖f − f̄n‖2
L2((tn−1,tn);L2(Ω)),

(

ηn
space

)2
=
∑

T∈Tn

(

ηn
0,T

)2
+
∑

T∈T c
n

(

ηn
1,T

)2
+
∑

F∈FΩ
n

(

ηn
0,F

)2

+
∑

F∈FΩc
n

(

ηn
1,F

)2
+

∑

F∈F∂Ω
n

(

ηn
0,B,F

)2
,

with the local error indicators defined by

ηn
0,T := hT

∥

∥

∥

∥

div

(

f̄n − µ
∂Hh

∂t

)∥

∥

∥

∥

0,T

,

ηn
1,T := hT

∥

∥

∥

∥

f̄n − µ
∂Hh

∂t
− curl(σ−1 curlHn)

∥

∥

∥

∥

0,T

,

ηn
0,F :=

√

hF

∥

∥

∥

∥

[(

f̄n − µ
∂Hh

∂t

)

· n
]

F

∥

∥

∥

∥

0,F

,

ηn
1,F :=

√

hF

∥

∥

∥

[

σ−1curlHn × n
]

J,F

∥

∥

∥

0,F
,

ηn
0,B,F :=

√

hF

∥

∥

∥

∥

(

f̄n − µ
∂Hh

∂t

)

· n
∥

∥

∥

∥

0,F

.

Here FΩ
n , FΩc

n , and F∂Ω
n denote the edges in Ω, in Ωc, and on ∂Ω respectively.

Proof. It is easy to show the following identity:

2 (curl (H − Hn), curl e)

= ‖curl (H− Hn)‖2
0,Ωc

+ ‖curl e‖2
0,Ωc

− ‖curl (Hh − Hn)‖2
0,Ωc

.

Taking v = e in (4.2), we deduce that

d

dt
‖√µe‖2

0,Ω + ‖curl (H − Hn)‖2
0,Ωc

+ ‖curl e‖2
0,Ωc

(4.4)

= ‖curl (Hh − Hn)‖2
0,Ωc

+ 2 (f − f̄n, e) + 2 rn(e).

Integrating (4.4) in time from 0 to t∗ ∈ (0, tm], m ≥ 1, and using the initial condition,
we have

‖√µe(t∗)‖2
0,Ω +

m
∑

n=1

∫ tn∧t∗

tn−1

{

‖curl (H − Hn)‖2
0,Ωc

+ ‖curl e‖2
0,Ωc

}

(4.5)

=
m
∑

n=1

∫ tn∧t∗

tn−1

{

‖curl (Hh − Hn)‖2
0,Ωc

+ 2 |(f − f̄n, e)| + 2 |rn(e)|
}

,

where tn ∧ t∗ = min(tn, t
∗). By (4.1) and direct calculations, we have

∫ tn

tn−1

‖curl (Hh − Hn)‖2
0,Ωc

=
τn
3

‖curl(Hn − Hn−1)‖2
0,Ωc

.(4.6)

Let Xinit be the finite element space with respect to the initial partition Tinit of
Ω. According to Theorem 3.1, we can decompose e into

e = ∇ϕ+ einit + es,
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where ϕ ∈ H1(Ω)/R1, einit ∈ Xinit, and es ∈ H0(curl; Ωc) ∩H1(Ωc) satisfy

(4.7) es = 0 in Ω\Ωc and ‖ϕ‖1,Ω +‖es‖1,Ωc
+‖einit‖H(curl; Ω) ≤ C ‖e‖H(curl; Ω) .

By virtue of (3.1) and Xinit ⊂ Xn, we have

(4.8) rn(e) = rn(∇(ϕ − Inϕ)) + rn(es − Πnes) .

By the Galerkin orthogonality, the formula of integration by part, (3.18), (3.19),
Schwartz’s inequality, and (4.7), we have

|rn(∇ϕ−∇Inϕ)| =

∣

∣

∣

∣

∫

Ω

(

f̄n − µ
∂Hh

∂t

)

· ∇(ϕ− Inϕ)

∣

∣

∣

∣

(4.9)

≤
∑

T∈Tn

∣

∣

∣

∣

∫

T

div

(

f̄n − µ
∂Hh

∂t

)

(Inϕ− ϕ)

∣

∣

∣

∣

+
∑

F∈FΩ
n

∣

∣

∣

∣

∫

F

[

f̄n − µ
∂Hh

∂t

]

F

· n (ϕ− Inϕ)

∣

∣

∣

∣

+
∑

F∈F∂Ω
n

∣

∣

∣

∣

∫

F

(

f̄n − µ
∂Hh

∂t

)

· n (ϕ− Inϕ)

∣

∣

∣

∣

,

≤ C







∑

T∈Tn

(ηn
0,T )2 +

∑

F∈FΩ
n

(ηn
0,F )2 +

∑

F∈F∂Ω
n

(ηn
0,B,F )2







1/2

‖√µ e‖H(curl; Ω)

and

|rn(es − Πnes)|(4.10)

=

∣

∣

∣

∣

∫

Ωc

{(

f̄n − µ
∂Hh

∂t

)

· (es − Πnes) − curlHn · curl (es − Πnes)

}∣

∣

∣

∣

≤
∑

T∈T c
n

∣

∣

∣

∣

∫

T

{

f̄n − µ
∂Hh

∂t
− curl(σ−1 curlHn)

}

· (es − Πnes)

∣

∣

∣

∣

+
∑

F∈FΩc
n

∣

∣

∣

∣

∫

F

[

σ−1 curlHn × n
]

F
· (es − Πnes)

∣

∣

∣

∣

,

≤ C







∑

T∈T c
n

(

ηn
1,T

)2
+

∑

F∈FΩc
n

(

ηn
1,F

)2







1/2

‖√µ e‖H(curl; Ω).

Combing (4.8)–(4.10) yields

|rn(e)| ≤ C ηn
space ‖

√
µ e‖H(curl; Ω).

Thus we have

∫ tn

tn−1

{

|(f − f̄n, e)| + |rn(e)|
}

≤
∫ tn

tn−1

(

‖f − f̄n‖0,Ω + ηn
space

)

‖√µ e‖H(curl; Ω).(4.11)
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Substituting (4.6) and (4.11) into (4.5), for any t∗ ∈ (tm−1, tm], we have

‖√µe(t∗)‖2
0,Ω +

m
∑

n=1

∫ tn∧t∗

tn−1

{

‖curl (H− Hn)‖2
0,Ωc

+ ‖curl e‖2
0,Ωc

}

(4.12)

≤ 1

3

m
∑

n=1

τn ‖curl(Hn − Hn−1)‖2
0,Ωc

+ C
m
∑

n=1

τn
(

ηn
space

)2

+C

m
∑

n=1

∫ tn∧t∗

tn−1

‖f − f̄n‖2
0,Ω +

1

2

m
∑

n=1

∫ tn∧t∗

tn−1

‖curl e‖2
0,Ωc

+
1

2
max

0≤t≤t∗
‖√µe(t)‖2

0,Ω.

For anym, we may choose t∗ ∈ [0, tm] such that ‖√µe(t∗)‖2
0,Ω = max0≤t≤tm

‖√µe(t)‖2
0,Ω

first to get the estimate for ‖√µe(t∗)‖2
0,Ω, then use (4.12) again to obtain (4.3).

Remark 4.2. ηn
1,T and ηn

0,T are the residuals of the second and third equations of
(1.1) respectively. ηn

1,F and ηn
0,F reflect the continuity conditions of the electromagnetic

fields. ηn
0,B,F is the boundary residual of the last equation of (2.2).

To show the sharpness of the spatial error estimator, we need to bound ηn
space by

the error between the discrete solution and the continuous solution. In view of (3.1),
we observe that for fixed tn and time-step size τn, we are essentially controlling the
error between Hn and H∗

n by adapting the current mesh Tn. Here H∗
n is the solution

of the following continuous problem: Given the discrete solution Hn−1 ∈ Xn−1 at
tn−1, find H∗

n ∈ X such that

(

µ
H∗

n − Hn−1

τn
, v

)

+

∫

Ωc

curlH
∗
n · curl v = (f̄n, v) ∀v ∈ X.

Similar to the arguments in [4, Section 5] and [11], we obtain the following theorem
of lower bound estimates in terms of Hn and H∗

n. The proof is omitted.

Theorem 4.3. Let µ and σ be piecewise constants. Then there exists a constant
C independent of the mesh Tn such that

(

ηn
space

)2 ≤ Cτ−2
n ‖H∗

n − Hn‖2
0,Ω + C‖curl(H∗

n − Hn)‖2
0,Ωc

(4.13)

+C
∑

T∈T c
n

h2
T ‖gn −QTgn‖2

0,T + C
∑

F∈F Ω̄
n

hF ‖(I −QF )[gn · n]F ‖2
0,F

+C
∑

T∈Tn

h2
T ‖div (gn − PTgn)‖2

0,T ,

where gn := f̄n − µ∂Hh/∂t, QT : L2(T ) → P2(T ) and QF : L2(F ) → P2(F ) are
L2-projections, PT : H(div; T ) → P1(T ) is the H(div)-projection. Pk(D) is the space
of vector polynomials of maximal degree k defined on D for D = T or F .

Remark 4.4. The last three terms in the righthand side of (4.13) are higher
order than τ−1

n ‖H∗
n −Hn‖0,Ω + ‖curl(H∗

n −Hn)‖0,Ωc
, supposing that Tn = Tn−1 and

the source field Hs is smooth enough in time. It reflects the coarseness of known
datum Hn−1 and Hs on the current mesh Tn.

5. Adaptive algorithm and numerical results. The implementation of our
adaptive algorithm is based on the adaptive finite element package ALBERT [28] and
is carried out on Origin 3800.
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We define the local a posteriori error estimator over an element T ∈ Tn by

ηT :=

{

C0

(

ηn
0,T

)2
+ C0

(

ηn
1,T

)2
+
C1

2

∑

F⊂∂T

[

(

ηn
0,F

)2
+
(

ηn
1,F

)

]2
}1/2

,

where η0,F = η0,B,F if F ⊂ ∂Ω. Define the time error estimate, the global spacial
error estimate, the maximal element error estimate over Tn respectively by

ηn
time :=

{

‖curl(Hn − Hn−1)‖2
0,Ωc

+ τ−1
n ‖f − f̄n‖2

L2((tn−1,tn);L2(Ω))

}1/2

,

ηn
space :=

(

∑

T∈Tn

η2
T

)1/2

, ηn
max = max

T∈Tn

ηT .

In real computations, we choose C0 = 100 and C1 = 1. Denote the interpolation
operator of Nédélec’s lowest order edge element over the mesh Tn by Υn. Now we de-
scribe the adaptive algorithm used in this paper. For similar time and space adaptive
strategies, we refer to the documentation of ALBERT [28] and references therein.

Algorithm 5.1. (Time and space adaptive algorithm)

Given the end time tend > 0, an initial coarse triangulation of Ω denoted by Tinit,
positive tolerances TOLinit, TOLtime, TOLspace, parameters δ1 ∈ (0, 1), δ2 > 1, and θtime ∈
(0, 1).

1. Mesh refinements at t0:
• set the initial solution by H0 := Υ0H(0, ·) over the mesh T0 := Tinit

• While ‖H(0, ·)− H0‖H(curl; Ω) > TOLinit do

Refine each element T ∈ T0 satisfying

‖H(0, ·)− H0‖H(curl; T ) > 0.6 max
T∈T0

‖H(0, ·) − H0‖H(curl; T )

end while
2. While tn ≤ tend do

(I) given Hn−1, Tn−1, and the timestep size τn−1 from the previous time step
• Tn := Tn−1, τn := τn−1, tn := tn−1 + τn
• solve the discrete problem (3.1) on Tn using known data Hn−1

• compute the time error estimate ηn
time, the local error estimator ηT on

each T ∈ Tn, the global error estimate ηn
space, and the maximal element

error estimate ηn
max

(II) while ηn
time > TOLtime/

√
tend do

• τn := δ1τn, tn := tn−1 + τn
• solve the discrete problem (3.1) on Tn

• compute ηn
time, η

n
space, η

n
max, and ηT on each T ∈ Tn

end while
(III) while ηn

space > TOLspace/
√
tend do

• mark each element T ∈ Tn for refinement if ηT > 0.6 ηn
max and for

coarsening if ηT < 0.1 ηn
max

• if elements are marked then
– adapt mesh Tn to produce a modified Tn

– solve the discrete problem (3.1) on Tn

13



– compute ηn
time, η

n
space, η

n
max, and ηT on each T ∈ Tn

end if
• while ηn

time > TOLtime/
√
tend do

– τn := δ1τn, tn := tn−1 + τn
– solve the discrete problem (3.1) on Tn

– compute ηn
time, η

n
space, η

n
max, and ηT on each T ∈ Tn

end while
end while

(IV) if ηn
time < θtime · TOLtime/

√
tend then τn := δ2 τn

end while.

In the following, we report two numerical experiments to demonstrate the com-
petitive behavior of the proposed method.

Example 5.1. We consider the problem (2.7) defined on the three-dimensional
domain Ω = (−1, 1)3. The conducting region is an “L-shaped” domain

Ωc = (−0.5, 0.5)3 \ {(0.0, 0.5) × (0.0, 0.5) × (−0.5, 0.5)}.

Let µ ≡ 1.0 and σ ≡ 100.0. The righthand side Hs is so chosen that the exact solution
of (2.7) is H(x, t) = s(t)∇ψ(x), where

s(t) = sign(0.5 − t) ×
[

1 − e−10000×(t−0.5)2
]

,

ψ(x) =

{

0 if |x2| ≥ 0.5,

(1 − x2
1)

2 (1 − x2
2)

2 (0.25 − x2
3)

2
√

r−x1

2 elsewhere,

and r2 = x2
1 + x2

2 in cylindrical coordinates. Fig.5.1 shows the graph of the function
s(t) which varies very rapidly near t = 0.5.

0 0.2 0.4 0.5 0.6 0.8 1

−1

−0.8

−0.6
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−0.2

0

0.2

0.4

0.6

0.8

1

t

s(
t)

Fig. 5.1. The graph of function s(t).
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Fig. 5.2 shows the time step sizes at different time. We observe that the time
step sizes are very small near t = 0.5 where the solution varies very rapidly in time.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

tim
e 

st
ep

 s
iz

es

time

Fig. 5.2. The time step sizes at different time.

Fig. 5.3 shows the curve of log ‖H(tM ) − HM‖H(curl; Ω) versus logNtotal, where

tM = 1.0 is the final time, M is the number of time steps, Ntotal =
∑M

n=1Nn is the
total number of elements of all time steps, and Nn is the number of elements of Tn.
Fig. 5.4 shows the curve of logEtotal versus logNtotal, where Etotal is the total energy
error defined by

E2
total =

M
∑

n=1

τn‖H(tn) − Hn‖2
H(curl; Ω),

and Hn is the solution of (3.1). Fig.5.5 shows the curve of log ηtotal versus logNtotal,
where ηtotal is the total error estimate defined by

η2
total =

M
∑

n=1

τn

{

(ηn
time)

2
+
(

ηn
space

)2
}

.

They indicate that the adaptive meshes and the associated numerical complexity are
quasi-optimal, i.e.

‖H(tM ) − HM‖H(curl; Ω) ≈ C N
−1/4
total , Etotal ≈ C N

−1/4
total , ηtotal ≈ C N

−1/4
total .

Fig. 5.6 shows an adaptive mesh of 773,736 elements on Ω at the final time tM
after 61 adaptive iterations in time and space. We observe that the mesh is locally
refined near the segment {x1 = x2 = 0, −0.5 < x3 < 0.5} where the solution is
singular.
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Fig. 5.3. Quasi-optimality of the adaptive mesh refinements of the error at the final time
‖H(tM ) − HM‖H(curl; Ω) (Example 5.1).
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Fig. 5.4. Quasi-optimality of the adaptive mesh refinements of the total error Etotal (Example
5.1).
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Fig. 5.5. Quasi-optimality of the adaptive mesh refinements of the total error estimate ηtotal
(Example 5.1).

Fig. 5.6. An adaptively refined mesh of 773,736 elements at the final time tM after 61 adaptive
iterations in time and space (Example 5.1).
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Example 5.2. We compute the Team Workshop Problem 7. This problem
consists of an aluminum plate with a hole above which a racetrack shaped coil is placed
(see Fig.5.7). The aluminum plate has a conductivity of 3.526 × 107 Siemens/Metre
and the sinal driving current of the coil is 2742 Ampere/Turn. The frequency of the
driving current is ω = 50 Hertz.

Since the driving current is time-harmonic, most numerical methods developed
for this problem are frequency domain methods. We remark that our method is
applicable to many time-dependent electromagnetic problems with three-dimensional
multiply connected geometry. We set Ω to be a cubic domain with one-meter edges
and start the computation with zero initial value. The result becomes steady after one
period. We compare the peak values of the vertical magnetic flux µHz with measured
values on some points. These points are located at y = 72mm, z = 34mm, and
x = (18 × i)mm where i = 0, · · · , 16 (see Fig. 5.7).

Fig. 5.7. The geometry of Team Workshop Problem 7 in frontal view with specified positions.
All geometry dimensions are given in mm.

Fig.5.8–5.11 show the numerical values of µHz on measured points at time tM =
T = 2.75 periods, which are obtained on different adaptive meshes. With the number
of degrees of freedom increasing, they coincide with the experimental values better
and better. Fig.5.11 shows a very good agreement with the measured values.

Fig.5.12 shows the curve of log ηtotal versus logNtotal. It indicates that the adap-
tive method based on our a posteriori error estimates has the very desirable quasi-
optimality property:

ηtotal ≈ C N
−1/4
total

is valid asymptotically.
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Fig. 5.13 shows an adaptively refined mesh of 2,263,668 elements after 18 adaptive
iterations from 77,760 initial elements. We observe that the mesh is locally refined on
the surface of the conductor.
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Fig. 5.8. Numerical values of µHz with M = 55, Ntotal = 5, 555, 550, ηtotal = 0.0126, the
number of degrees of freedom on TM is 36,714.
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Fig. 5.9. Numerical values of µHz with M = 55, Ntotal = 16, 152, 290, ηtotal = 0.0105, the
number of degrees of freedom on TM is 120,558.
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Fig. 5.10. Numerical values of µHz with M = 110, Ntotal = 73, 068, 160, ηtotal = 0.0065, the
number of degrees of freedom on TM is 277,883.
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Fig. 5.11. Numerical values of µHz with M = 110, Ntotal = 249, 003, 480, ηtotal = 0.0047, the
number of degrees of freedom on TM is 873,971.
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Fig. 5.12. Quasi-optimality of the adaptive mesh refinements of the total a posteriori error
estimate.

Fig. 5.13. An adaptively refined mesh of 2,263,668 elements after 18 adaptive iterations from
77,760 initial elements.
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taanmäki and T. Tiihonen, eds., World Scientific, Singapore, 2000, pp. 110-120.

[6] M.Sh. Birman and M.Z. Solomyak, L2-Theory of the Maxwell operator in arbitary domains,
Uspekhi Mat. Nauk, 42 (1987), pp. 61-76 (in Russian); Russian Math. Surveys, 43 (1987),
pp. 75-96 (in English).

[7] A. Bossavit, Computational Electromagnetism, Variational Formulations, Edge Elements,
Complementarity, Academic Press, Boston, 1998.

[8] F. Bouillault, Z. Ren, and A. Razek, Calculation of eddy currents in an asymmetrical
conductor with a hole, COMPEL, 9(1990), Supplement A, pp. 227-229.

[9] Z. Chen and S. Dai, On the efficiency of adaptive finite element methods for elliptic problems
with discontinuous coefficients, SIAM J. Sci. Comput., 24(2002), pp. 443-462.

[10] Z. Chen and S. Dai, Adaptive Galerkin method with error control for a dynamical Ginzburg-
Landau model in superconductivity , SIAM J. Numer. Anal., 38(2001), pp. 1961-1985.

[11] Z. Chen and F. Jia, An adaptive finite element method with reliable and efficient error
control for linear parabolic problems, Math. Comp., 73(2004), pp. 1163-1197.

[12] Z. Chen, R.H. Nochetto, and A. Schmidt, An adaptive finite element method with er-
ror control for the continuous casting problem, Computer Meth. Appl. Mech. Engrg.,
189(2000), pp. 249-276.

[13] Z. Chen, L. Wang, and W. Zheng, An adaptive multilevel method for time-harmonic
maxwell equations with singularities, preprint.

[14] Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing
layers for the wave scattering by periodic structures, SIAM J. Numer. Anal., 41(2003),
pp. 799-826.

[15] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Amsterdam: North-
Holland, 1978.

[16] M. Clemens and T. Weiland, Transient eddy-current calculations with the FI-method, IEEE
Trans. Magn., 35(1999), pp. 1163-1166.

[17] M. Costabel, M. Dauge, and S. Nicaise, Singularities of eddy current problems, ESAIM:
Mathematical Modelling and Numerical Analysis, 37(2003), pp. 807-831.

[18] A.B. Dhia, C. Hazard, and S. Lohrengel, A singular field method for the solution of
Maxwell’s equations in polyhedral domains, SIAM J. Appl. Math., 59(1999), pp. 2028-
2044.

[19] K. Fujiwara and T. Nakata, Results for benchmark problem 7 (a symmetrical conductor
with a hole), COMPEL, 9(1990), pp. 137-154.

[20] V. Girault and P.A. Raviart, Finite Element Methods for Naviar-Stokes Equations, Theory
and Algorithms, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1986.

[21] P.Dular, F. Henrotte, F. Robert, A. Genon, and W. Legros, A generalized source
magnetic field calculation method for inductors of any shape, IEEE Trans. Mag., 33(1997),
pp. 1398-1401.

[22] R. Hiptmair, Analysis of multilevel methods for eddy current problems, Math. Comp.,
72(2002), pp.1-23.

[23] K. Li and Y. Ma, Hilbert-space methods for Partial Differential Equations in Mathematical
Physics (I) (in Chinese), Xi’an Jiaotong University press, Xi’an, China, 1990.

[24] P. Monk, A posteriori error indicators for Maxwell’s equations, J. Comp. Appl. Math.,
100(1998), pp. 173-190.

[25] P. Morin, R.H. Nochetto, and K.G. Siebert, Data oscillations and convergence of adaptive
FEM, SIAM J. Numer. Anal., 38(2000), pp. 466-488.
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