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There are three electrons out of the nucleus of the lithium atom; and each of
them has three freedoms (without considering its spin). So the system is de-
scribed by a nine-dimensional Schrodinger equation (for fixed-nucleus prob-
lem). It is very difficult to solve it by variational methods, finite difference
methods and other methods directly. Usual approaches in quantum mechanics
are mean-field methods [1]. For them, every electron is considered indepen-
dently to be in a central electric field formed by the nucleus and other electrons.
The original problem is transferred into a system of nonlinear partial differ-
ential equations of low-dimension, then solve it iteratively. So the physical
model itself is simplified approximately.

The main works of the finite element method (FEM) applied to atomic and
molecular problems appeared in 1970’s, and in one- or two-dimensional cases
[2-4]. In 1975, Askar calculated the energies of hydrogen atom in the ground
state and the first excited state [2]. Then Nordholm and Bacsky applied FEM to
more general bound state problems [4]. Fridman and Rosenfeld analyzed two
model problems of two-dimensional Schrodinger equations with FEM in 1977
[3]. All these works showed that FEM was simple and efficient for one- and two-
dimensional atomic and molecular problems. The first work of FEM applied to
three-dimensional case was due to Levin and Shertzer [5]. They calculated the
helium in the ground state in 1985. The six-dimensional Schrodinger equation
can be transferred into three-dimensional systems of equations rigorously [6].
Most of the works about three-dimensional FEM applied to three-body
problems appeared hereafter. They are Braun et al. [7], Scrinzi [§8], Ackermann
[9], Zheng and Ying [10], and so on. They obtained very precise results.

Shi and Ding [11] solved the Hartree-Fock equation of the ground lithium
numerically by one-dimensional piecewise linear finite element method. It is a
system of one-dimensional nonlinear partial differential equations(whose
Coulomb integral and exchange integral are double). The relative error be-
tween their result and the Hartree-Fock limit value is —4.1 x 107*. After
considering correlative correct, the relative error between their approximate
eigenvalue and the experimental value is —4.9 x 104, That is to say, the results
by the Hartree—-Fock FEM can only be compared with the limit value of the
Hartree-Fock method.

To the best of our knowledge, we have not seen any other finite element
result for the lithium atom. In this paper, we transfer the nine-dimensional
Schrodinger equation into a six-dimensional partial differential eigenvalue
equation rigorously for the ground state of the lithium atom. From the vari-
ational formulation of the Schrodinger equation, we have also derived an six-
dimensional weak form of the eigenvalue problem which is equivalent to the
original variational formula for the ground lithium.

We construct a kind of six-dimensional finite element methods to solve the
transferred energy equation. With very coarse mesh, the relative error of our
approximate eigenvalue and the nonrelativistic limit value is order of 10~ in
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atomic unit. Up to now, the finite element methods are only applied to partial
differential equations of dimension no more than three. This work is the first
try to construct highly dimensional FEM; and it is also valuable in applying
FEM to quantum mechanics.

The paper is arranged as follows. The nine-dimensional Schrodinger equa-
tion is transferred into a six-dimensional partial differential equation in Section
2. A six-dimensional variational equation is given in Section 3. In Section 4, a
kind of six-dimensional finite element methods are described in detail to ap-
proximate the obtained variational equation. Numerical results are given in
Section 5.

We use atomic unit in this paper, i.e. Bohr Radius a, for length, Hartree for
energy. We consider the stationary nucleus, nonrelativistic and spin-indepen-
dent case.

2. Six-dimensional differential equation of the ground lithium

There are three electrons out of the nucleus of the lithium atom. In the
Cartesian coordinates, its Schrodinger equation is:
Hy =Ey, (2.1)
where the Hamiltonian operator H is defined as

1 303 3 1 1 1
H == (A + 4yt 43) — = ———— +—+—+—, (2.2)
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dj=—5+5+73 <j<3
RO
are Laplacian operators. Let
7 = (xi,¥i,2i) = ri(sin 0; cos ¢;, sin §; sin ¢;, cos 0;) (2.3)

be coordinates of the ith electron in the space-fixed system of coordinates
o —xyz and spherical coordinates. ry = |, — 7| is the distance between the
jth electron and the kth electron.

Fef - AP

cosly = (2.4)

Tty 27,1y
where 0 is the inter-electronic angle between radial vectors 7; and 7, r; = ||

We know from quantum mechanics [12,13], that the ground state of the
lithium atom is the stablest and has the lowest energy. It is the most symmetric
state under rotations about the vector 7| (or equivalently about 7, or 743); and it
depends only on six variables r, 7,73, 012, 013, 623. SO we can suppose that the
wave function ¢ in (2.1) depends only on them for the ground state, that is,

V= W(”lﬂ’zarm 012, 013, 923)-
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In spherical coordinates, the Hamiltonian of the system can be written as

11 © 0 1 O 0 1 0 0
He—= |2 () 42 2 ()2 2 (22
2{;’% or (rl 6r1)+r§ 6r2<26r2>+r§ ors (r36r3>

—————— +—t—+—, (2.5)

where L? is the square of the angular momentum operator of the ith electron
defined as

L} =L+ L, +L,

_(, o AN (Lo aN (a0
-—\ 0z, & oy & Oxy 10z, layl N ox )

(2.6)
By (2.3) and (2.4), we have

on _m on_on o0y

axlirl’ 6x176x1 B 6x1 o

6912 B 1 X1 COS 012 X2

6x1 B sin 912 ( I’% r1r2> (2'7)

6913 . 1 <JC1 COS 0]3 _i)

6x1 sin 013 }”12 rrs

We can also obtain partial derivatives 0r/0x, r =ry,ry,73, 012,053,013 and
X =x;, Vi, 2, [ = 1,2, 3. But they are left out for briefness. The cross product of
any two vectors is defined as

01 =7 X7 = (41,93, 43) = (123 — Y322, 20X3 — Z3X2, X2)3 — X3)2),
O, =F x 7 = (41,93, 43) = (321 — V123, 23X — Z1X3, X3)1 — X1)3),
Oy =7 X7 = (ﬂﬂl;qg) = (Nz2 — W21, 21X — Z2pX1, X1)2 — X))
(2.8)

By the law of chain, it follows
0 0 ig3 0 iq? 0
lelp:i(xl—— >¢: e W G W,

6y1 yla_x] _I"ll"z Sin@lz 6012 rrs sin613 6613.

Since

P = : >
rirysinbi; 00,  rirpsin0), riry sin” 6y, | 0012

@) T g Y }, 2.10)

3 0 i 3 cos 6y \ O
7 —l//—{<x1x2yu’z+7(q3) 12>—l//

ryr sin 012 60%2 rrs Sil’l013 60126013
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So thanks to (2.9)-(2.11), the following is true:

-3
1q;

o
1q;

oy oy
Py=L.(Ly)=L. ——2— Lo\ —— 2 3"
LY 1=(Li) 12( 7y sin 0, @912) + lz(r,m sin 0,5 6913>

1 3) cos 6 0
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_ g —
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_ —
rir; SIn 0]3 rir; SIN 6]3 aOU

2434 Oy
2ryry sin 0y, sin 0,5 90,,00,;

Similarly, we have

1 3) cos 6 0
{ (x1x3 + 3y — ((]3) 13) _lﬁ +

_ (@) @y
rry Sin 912 ae?z
()’ &y
rry Sin 013 aefs

(2.12)

1 (¢2)’ cos By, Oy ()
Ly=————— _\4) €050 ) OY 2 oy
vV rir, sin 0, { (xlxz Tan s sin’ 0, /) 00), + 77, 8in 0, agfz
1 (¢2)*cos 0,5\ oY (@) @y
rrssin 65 { (x1x3 A Frssin® 0,5 ) 0015 + rirssin 0, ag?}
24,45 oy
2.13
727,73 8in Oy, sin O, 001,00, (2.13)
1 (4)"cos 01, \ Oy (@) &Py
) A — 4 M PR ) P ! s
1}# 717y 8in 0, { <y1yz Z1Zy s sin’ 0., 90y, " rirysin Oy 89?2
1 (¢2)’cos 05 \ oY @)} oy
T rsinfe taz - +—
rirssin 6, { ()4)’3 Z123 s sin? 0., | 80 " rirysin Oy, @9;
2414; oy
: 2.14
7"127’2}’3 Sin 0I2 Sin 913 691260]3 ( )
Since
010y =\ x 7o)~ (B x 1) = (A7) (7 72) = (- T) (75 - 75)
= r1r3€08 013 - 117 €08 015 — riryrs cos 0o
= rirar3(cos 015 cos 015 — cos Os3), (2.15)
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Combining (2.6) with (2.12)—(2.15) gives
Liy = (Li, + Li, + L)Y
1 0 . 0 1 0 . 0
=~ Sin0y, 301, (51“9‘2@)*” ~ Sinbys 30 (Sm"”%)w

N 2(cos 015 cos 013 — cos 0y3) 02
sin 012 sin 013 60126013 '

(2.16)

Similarly, we have
Ly = (L + Ly, + L)Y

1 0 0 1 0 0
= - i 9 - — T < i 6 ~A
sin 912 6012 (Sln 12 6012 ) w sin 023 6023 (Sln 3 6023 ) w
+2(cos 012 cos 03 — cosby3) O’y
Sin0]2 Sin0|3 60]26023 '

Ly = (L3, + L3, + L)y
1 0 . 0 1 0 . 0
=~ Sin0y 301, (Sm‘)”m)*” ~ Sin 0y, 30y (““923@)*”

N 2(cos 013 cos 03 —cos0,) 02
sin 013 sin 023 60136023 '

(2.17)

(2.18)

Combining (2.5) with (2.16)—(2.18), we can transfer the Hamiltonian into the
following form:

17190 /,0 1 0 0 1 o0/,0
= 2|:}"% 6r1 (r16r1>+r§ 67’2 <7§6r2>+r§ 6r3 (r361’3)
+ : + : : 0 sin 0 0 + ! + : :
}"% V% sin 912 6912 12 6012 V% V% sin 913

w O (sing, 2 Y (LY L 0 (e, O
8013 B 6913 l"% V% sin 923 6623 3 6623

2(cos Oy cos O3 — cosOr;) 2 2(cos 15 cos ty; — cos b3)
I’% sin 012 sin 013 69126913 I’% sin 012 sin 613
y 02 _ 2(cos 013 c0s 3 — cos 01) 02
66126923 V% sin 913 sin 023 69136623
3 3 3 1 1 1
————— -t —+—. (2.19)

ry rp r3 rp o rsaoorg3

The partial differential equation (2.19) is six-dimensional and can be solved
by finite difference methods, variational methods or finite element methods.
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3. Six-dimensional variational equation

In order to obtain finite element approximations to the energy of the ground
lithium, we look for the six-dimensional weak formula of the Schrodinger
equation. The expected formula will be derived from the original equation (2.1)
instead of (2.19).

Let R > 0 and define domains in R® and R’ as follows:

Q=1[0,R] x [0,R] x [0,R] x [0, 7] x [0, =] x [0, ], (3.1)
ﬁ{(xl,yl,..., 3) ER|\/xF+ 37+ 22 <R, i1,2,3}. (3.2)
We consider the approximate problem of (2.1) in the bounded domain Q
{Hlp =Ey, inQ, (3.3)
Y =0, on 0Q,

where 8Q is the boundary of Q. The equivalent variational formula of (3.3) is
find (E, ) € R' x H}(Q) and  # 0, such that

a(y,0) = E(,9), Yo € H(Q), (3.4)
where
ol 6(/) 6¢ 690 Y/ 6(p
/ Z <6x, ox; 6y, 6y, t oz 0z; az, dx
1 1 3 3 3
+/ (—+—+— —————— )de (3.5)
Q\r2 I3 T3 r o r

(W, 9) = /Q Vodx, (3.6)

where dx = dx;dy; ---dz; is the volume element of Q. Thanks to [14], the
spectrum of H in (3.3) is discrete and bounded below and approximates the
discrete spectrum of H in (2.1) as R — oo. If i is an eigenfunction of (3.3) or
(3.4), then y € H*(Q) N H (Q).
Denote Q = [0,R] x [0,R] x [0,R] x [—1,1] x [-1,1] x [—1, 1] without con-
fusion. Let
U, =cos B, 3 =cosliz, i3 = cosOa;. (3.7)

Like in Section 2, we also suppose that the wave function of the ground lithium
depending only on six variables,

=Y (r, s, s sy i3)s @ = @(r1, 72, 73, s Moz, ) (3.8)

Substituting , ¢ into (3.5) and (3.6), in view of (2.3), (2.4) and (2.7), we can
transfer (3.4) into the following form: Find (E, ) € R! x V and y # 0, such that

a(y,0) =EW. ), Vo€V, (3.9)
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where
(.0), = [ Worirridr drsdredinsdps . (3.10)
-~ oY dp Oy B¢ Y B¢ >
ay(l//,(/))——/ l(@rl 6r1+6r2 6r2+6r3 6r3 7’7"7"3
Oy 09 oy Q¢
aﬂlz a.ulz( f—&—r%)r%( “12)“‘%%(’1"”3)”2(1 ﬂl%)
W O  , ) 2
— —(r+r)r(l—pu
6#23 a,u23( 2 3) 1( 23)
oy Op oY Op )
s -5+t 1373 (Hay — Mokt
<6/112 Oty3  Opyz Oy ? 3( 23 i3)
(i ey |
"
Ouyy a.1123 a.Uz3 o, ) 3 fia = ks
R SO
Ot 6/123 6;423 oz ) ! R 1
N 213 2rirr
\/r1 —|—r2 2rraly, \/r1 —|—r3 2r 3ty
2rfr§r2
— 6P 1213 — 61212 — 6112t
\/r2+r3 2173 thy; 17573~ 6riars = o [y
x drydrydrsdp, dpns dpys. (3.11)
We define the function space V as
V={yl¥ln=0, [y, < oo}, (3.12)

where 0Q is the boundary of Q defined as
0Q = {(r1, 72,73, fys o3, Hy3) € Qlry =R or r, = R or r3 = R},

LAY (Y (W e (L LYY
”d’”vf/g [(6_7’1> +<6_r2) +<6r3) +( ‘uu)(l”]z—i_”;)(a:ulz)
+(1u?3)(:2+2><§;/j> +(1“§3)<r12+:2)<aaf>

2(:“23 — :ulzlulz) % a‘// + (:ulz — lulzluzz) % a‘p

+

" Oy, Optyy r Oty Ofhoy
+ 2(:“12 - :u13/"23) % a‘// ]

r Otty; Ofty

x rirrydrydr drydpg, dpg dg, + (0, 9),. (3.13)

1273
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4. Finite element approximations

Let {7} be the family of subdivisions of the domain Q C RS (defined as in
Section 3). Each K in .7, is a rectangle in R®. Use notations similar to those in
[15], the finite element triple is defined as:

K = [r10,710 + ] X [r20,720 + ha] X [r30,730 + B3] X [t12,0, fy29 + ha]

X [H1305 My30 + hs] X [Ua305 a3 o + he]—six-dimensional rectangle,

Xk = {@ijpimn = (rio +ih1 /2,120 + jha /2,730 + kh3 /2, w0+ 1ha/2,
:ul3,0 + mh5/27 :u23,0 + nh6/2)|15]7 k> la m,n = Oa 1) 2}7

2
Py = {P = Z Lijttmn P55 5 5 | Siimn € Rl}a (4.1)

i.j.k,l.mn=0
where (710,720,730, li2.0s f130, Hozo) are coordinates of some vertex of K.
Choose a basis of Py as

(’”1 - ”1j+1)(”1 - Vl,i—l)(”z - ”2,.;'+1)(Vz - Vz,j—l)(l’z - r3,k+1)
(Vl,i - rl,i+1)(’”1,i - rl,i—l)(rz,j - 72J+1)(Vz,j - 1’2.]4)(”3,1( - 73‘k+])
(r3 = r35-1) (o — foe) (2 =t 1) (B3 — Bz )
(rsx — ’”371(71)(,“12,1 - M12,1+1)(,“12,1 - #1271—1)(H13,m - #13,m+1)
(13 — #13,,7171)(.“23 - #23,n+1)(/123 - tu23,n—l)
(i3 — ti3m—1)(Hazn — Haz i) (Hozn — Moz 1) ’

pijklmn -

(4.2)
where all subscripts and superscripts recur in turn according to 0, 1, 2. Denote
ri; = r19 + ih; /2 and define other notations similarly. Obviously, the following
relations are true:

sz/klmn(aleLMN) = 5ijk1mn,u1<LMN

_{17 (i7j7k7l7m7n):(17J7K7L7M7N)7

0. (ijkclmn) % (I.J.K.LMN). (4.3)

Define the finite element space as
Vi={y € C' QW =0, ¥|x €Px, VK€ T}, (4.4)

where 0Q is the boundary of Q. Clearly, ¥, C H'(Q) C V. So the conforming
finite element approximation of (3.9) is: Find (E;,¥,) € R' x V}, and y, # 0,
such that

a,(Wy, 1) = Ex(¥y, 01),, Yo, € Vi (4.5)

Since the dimension of V} is finite, (4.5) is equivalent to the following gener-
alized algebraic eigenvalue problem:

AX = E,MX, (4.6)
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where A is the global stiffness matrix and M is global mass matrix. Their orders
are equal to the dimension of Vj,. Furthermore, both of them are large and
banded matrices. In real computations, we only need to calculate all element
stiffness matrices AX and element mass matrices MX and assemble them to 4
and M [16]. The number of freedoms in each inner element equals to 729.

Remark. The convergence and error estimates of the finite element scheme will
be our future work.

5. Numerical results

We use inverse iteration method [16] to solve the generalized eigenvalue
problems (4.6), and use the standard Gaussian integral formula to obtain all
matrix elements. We carry out our computation on PC: Intel PIII750 with 1G
SDRAM. Since the dimension of the domain is six, the number of freedoms
grows very quickly as the mesh is refined. We can not get very small meshes,
nor can we choose very big R for the domain Q because of the limit of our
computer. Although the number of grid points for each variable is very small,
the relative error of our result is order of 10~°. So our result can be improved
as capabilities of computers are improved.

We place same grid points along three radial directions and also along three
angular directions. The subdivisions and computational results are listed in the
Table 1 (NGPs means number of Gaussian points).

Nonrelativistic limit value [11]: — 7.47807 a.u.
Subdivisions (grid points):
1. Radial directions (unit ap): 0.0, 1.0, 3.0,
Angular directions: -1.0, 1.0.
2. Radial directions (unit ap): 0.0, 0.8, 2.0, 4.0,
Angular directions: -1.0, 1.0.

3. Radial directions (unit a):
Angular directions:

0.0, 0.4, 1.0, 2.5, 5.0,
-1.0, 1.0.

Table 1
Approximate energies of the ground lithium by FEM (a.u.)
Subdivisions of  Approximate Cutoff radiuses Numbers of NGPs in each
the domain energies R(ap) freedoms direction
1 —7.450617 1620 3
2 —7.47699138 5319 5
3 —7.47794341 13149 6
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