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Abstract. To deal with the divergence-free constraint in a double curl problem: curlµ−1curlu = f and div εu = 0
in Ω, where µ and ε represent the physical properties of the materials occupying Ω, we develop a δ-regularization method:
curlµ−1curluδ + δεuδ = f to completely ignore the divergence-free constraint div εu = 0. It is shown that uδ converges to
u in H(curl ; Ω) norm as δ → 0. The edge finite element method is then analyzed for solving uδ. With the finite element
solution uδ,h, quasi-optimal error bound in H(curl ; Ω) norm is obtained between u and uδ,h, including a uniform (with respect
to δ) stability of uδ,h in H(curl ; Ω) norm. All the theoretical analysis is done in a general setting, where µ and ε may be
discontinuous, anisotropic and inhomogeneous, and the solution may have a very low piecewise regularity on each material
subdomain Ωj with u, curlu ∈ (Hr(Ωj))

3 for some 0 < r < 1, where r may be not greater than 1/2. To establish the uniform
stability and the error bound for r ≤ 1/2, we have respectively developed a new theory for the Kh ellipticity (related to mixed
methods) and a new theory for the Fortin interpolation operator. Numerical results presented confirm the theory.
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1. Introduction. Given a simply-connected Lipschitz polyhedron Ω ⊂ R3, with a connected boundary
∂Ω. Let µ, ε : Ω 7→ R3×3 be given matrix functions, representing the physical properties (such as permeability
and permittivity ) of the material occupying Ω. We assume that µ and ε are piecewise smooth with respect
to a finite partition P of Ω, P = {Ωj , j = 1, 2, · · · , J}, where every Ωj is a simply-connected Lipschitz
polyhedron with connected boundary. Let Sint and Sext denote the set of the faces of P contained in Ω
and the set of the faces of P contained in ∂Ω, respectively. Let [q]|S denote the jump of q across S ∈ Sint.
Given f : Ω 7→ R3, satisfying div f = 0. Consider the double curl problem as follows:

curlµ−1curlu = f in Ωj , 1 ≤ j ≤ J, (1.1)

div εu = 0 in Ωj , 1 ≤ j ≤ J, (1.2)

[u× n]|S = 0, [µ−1curlu× n]|S = 0, [εu · n]|S = 0 ∀S ∈ Sint, (1.3)

u× n|S = 0 ∀S ∈ Sext. (1.4)

Problem (1.1)-(1.4) arises from computational electromagnetism [10][47][43][44]. An example is the
vector potential method [31] for some divergence-free unknown which may be expressed as the curl of
u(the vector potential), where the divergence-free constraint (1.2) is set up to ensure the uniqueness of
the solution. Otherwise, there would exist infinitely many solutions, due to the infinite dimensional kernel
of the curl operator consisting of the form ∇p where p ∈ H1

0 (Ω) = {v ∈ H1(Ω) : v|S = 0, ∀S ∈ Sext}.
Another example [47] is from the stabilization of the time-harmonic Maxwell’s equation curlµ−1curlu−κ2u =
f with a very low frequency number κ, where the divergence-free constraint (1.2) may be introduced to
play the stabilization role so that a unique solution can exist even for κ = 0. By introducing Hilbert
spaces H(div ; Ω) = {v ∈ (L2(Ω))3 : div v ∈ L2(Ω)}, H(curl ; Ω) = {v ∈ (L2(Ω))3 : curl v ∈ (L2(Ω))3},
H0(curl ; Ω) = {v ∈ H(curl ; Ω) : u× n|S = 0 ∀S ∈ Sext}, H(div ; ε; Ω) = {v ∈ (L2(Ω))3 : div εv ∈ L2(Ω)},
H(div 0; ε; Ω) = {v ∈ H(div ; ε; Ω) : div εv = 0}, and H(div 0; Ω) := H(div 0; 1; Ω), H0(div ; Ω) = {v ∈
H(div ; Ω) : v · n|S = 0 ∀S ∈ Sext}. Let (·, ·) denote the L2-inner product. Corresponding to (1.1)-(1.4),
we may state a variational problem as follows: Find u ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω) such that

(µ−1curlu, curl v) = (f, v) ∀v ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω), (1.5)

When discretized by a finite element method for solving problem (1.5), we would naturally seek the finite
element solution in a finite element subspace of H0(curl ; Ω)∩H(div 0; ε; Ω). However, as is well-known, it is
quite difficult to construct a finite element space consisting of lower-order piecewise polynomials to satisfy
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the divergence-free constraint. With rather restrictive finite element triangulations (e.g., multiply-refined
composite elements) for lower-order (e.g., quadratic) elements or with higher-order (at least sextic) elements
together with some relatively less restrictive but still quite structured finite element triangulations, one could
construct divergence-free elements in the case where ε itself is piecewise polynomial [54].

In practice, the rule for dealing with the divergence-free constraint is to let it be satisfied weakly.
This could be done by including the divergence-free constraint directly into the variational formulation
and by seeking the solution in some bigger Hilbert space U without the divergence-free constraint other
than the restricted H0(curl ; Ω) ∩ H(div 0; ε; Ω) with the divergence-free constraint. Two general ways are
the divergence-regularization method and the mixed method. The former is to find u ∈ U such that
(µ−1curlu, curl v) + ⟨div εu, div εv⟩ = (f, v) for all v ∈ U , where there are several choices for defining ⟨·, ·⟩
and U , see [36][25][29][11]. When ⟨·, ·⟩ is simply taken as the L2 inner product, the method is referred to as
the plain regularization (PR) method [36][24], with a second-order U = H0(curl ; Ω) ∩ H(div ; ε; Ω)-elliptic
problem. For smooth ε, one may consider the classical continuous finite element method for the PR method.
But, when the solution is only in Hr for some r < 1, the continuous finite element method cannot give
a correct solution [37][47][10][25][24]. Meanwhile, the PR formulation is not suitable for discontinuous ε;
otherwise, by the introduction of amounts of jumps, one may consider the discontinuous Galerkin method.
But, likewise, this method cannot accommodate the nonsmooth solution with a low-regularity in Hr with
r < 1 [50]. Some of the combination of the nonconforming element method and the discontinuous Galerkin
method may lead to a correct approximation of the nonsmooth solution [14]. One may still consider to use
the continuous element if adopting the recently developed L2 projected method [29][28], or the H−1 method
[11] and the weighted method [25][16][46]. All these methods involve sophisticated modifications.

The mixed method [47] for dealing with the divergence-free constraint is to find u ∈ H0(curl ; Ω) and
p ∈ H1

0 (Ω) such that

(µ−1curlu, curl v)+ (∇p, εv) = (f, v) ∀v ∈ H0(curl ; Ω),
(εu,∇q) = 0 ∀q ∈ H1

0 (Ω).
(1.6)

With the help of the Lagrange multiplier p, the solution is only required to belong to the Hilbert space
H0(curl ; Ω). The Lagrange multiplier p ∈ H1

0 (Ω) satisfies the following weak problem

(ε∇p,∇q) = (f,∇q) ∀q ∈ H1
0 (Ω). (1.7)

Note that p is actually equal to zero with a compatible f ∈ H(div 0; Ω). For the mixed problem (1.6) one
may consider to use the edge element for u and the continuous element for p, or the discontinuous Galerkin
method [41]. The difficulty would be the verification of K -ellipticity in the classical theory for saddle-
point problems [15]. In the literature [3][47], the verification has been to rely on the following continuous
embedding: there is s > 1/2 such that

H0(curl ; Ω) ∩H(div 0; Ω) ↪→ (Hs(Ω))3 where ||v||s ≤ C||curl v||0 for v ∈ H0(curl ; Ω) ∩H(div 0; Ω). (1.8)

But, in some cases, such s > 1/2 does not exist for (1.8) to hold true, e.g., when Ω is only Lipschitz, we can
only find s = 1/2, see [23]. We shall address this point again later in the paper. The most difficult would be
of course the saddle-point structure of the mixed problem, since the indefiniteness of the saddle-point system
would thwart many classical iterative algorithms, such as conjugate gradient algorithm. The preconditioning
step is necessary to have a good iterative algorithm for solving the saddle-point system [6].

In our paper, we shall study a much simpler method, as originally appeared in [51], to deal with the
divergence-free constraint. Just completely neglecting the divergence-free constraint, instead, we consider a
δ-perturbed problem: with δ > 0 decreasing to zero, finding a family of uδ ∈ H0(curl ; Ω) such that

(µ−1curluδ, curl v) + δ(εuδ, v) = (f, v) ∀v ∈ H0(curl ; Ω). (1.9)

The δ-perturbed method will be called the δ-regularization method, since problem (1.9) is free of the
divergence-free constraint and since problem (1.9) is H0(curl ; Ω)-elliptic. In comparisons with previous
existing methods, there are several obvious features of the present method: a) it is no longer subject to
the divergence-free constraint; b) it is more suitable for discontinuous ε, since no div εv appears; c) it only
involves a space H0(curl ; Ω) which can be discretized by edge elements composing of lower-order piecewise
polynomials, since no Lagrange multiplier is introduced; d) it is always well-posed and results in a symmetric,
positive definite system in the finite element discretization, so the resultant algebraic system may be imple-
mented more readily. In fact, since it results in a symmetric, positive definite system, the δ-regularization
problem may be conveniently solved by any direct or iterative methods [33]. Moreover, nowadays there are
highly efficient multigrid methods and preconditioning techniques available for solving (1.9) where multigrid
convergence and preconditioned conditioning are uniform with respect to the parameter δ [4][38].
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With f ∈ H(div 0; Ω), for all δ > 0, we can verify that uδ satisfies the divergence-free condition:

div εuδ = 0. (1.10)

IntroduceH(curl ; Ω)-norm ||v||20,curl := ||v||20+||curl v||20 andH(curl ; Ω)∩H(div ; ε; Ω)-norm ||v||20,curl ,div ,ε :=

||v||20+ ||curl v||20+ ||div εv||20, where || · ||0 represents the L2-norm. We show that uδ converges to the original
u as follows:

||u− uδ||0,curl ,div ,ε = ||u− uδ||0,curl ≤ Cδ||u||0. (1.11)

We then analyze the edge finite element method for the δ-regularization problem in the finite element space
Uh ⊂ H0(curl ; Ω), under the general setting where µ, εmay be discontinuous, anisotropic and inhomogeneous

and u, curlu are nonsmooth and may have very low regularity only in
∏J

j=1(H
r(Ωj))

3 for some 0 < r < 1.

Assume that Uh allows the usual both L2 and H(curl )-orthogonal decomposition [47]. For the lowest-order
edge/Nédélec element of first-family [48][47][37], we establish the following error estimates for the finite
element solution uδ,h of the δ-regularization problem:

||u− uδ,h||0,curl ≤ C(δ + hr)||f ||0. (1.12)

From (1.12) we may choose δ ≤ hr to have the optimal error bound in the usual sense. A ready choice is
δ = h. Note that if the solution and its curl are more regular, higher-order edge elements can be employed
to obtain higher-order error bounds. At the same time, a δ-uniform stability for any given compatible
f ∈ H(div 0; Ω) is obtained, where C does not depend on δ, as follows:

||uδ,h||0,curl ≤ C||f ||0. (1.13)

Interestingly, the theory for the uniform stability (1.13) is closely related to the well-posedness of the
mixed problem (1.6). In fact, (1.13) is essentially the consequence of the Kh-ellipticity (which, together with
the Inf-Sup condition, ensures the well-posedness of the mixed problem (1.6)). In the literature [47][3], the
Kh-ellipticity was only shown under the assumption (1.8) with s > 1/2. In this paper, we shall establish
the Kh-ellipticity using Assumption A2) (a type of regular-singular decomposition) in section 4, instead of
(1.8). The Assumption A2) is much weaker than (1.8), because the former generally holds but the latter
may not, see Remarks 3.3, 4.1, 5.4 and 6.4. In addition, the error bound in H(curl ; Ω)-norm in (1.12) is
obtained with the help of the Fortin operator [9]. Likewise, in the literature, the well-posedness and the
error estimate of the Fortin operator rely on the assumption (1.8) with s > 1/2. Under the much weaker
Assumption A2) again, in this paper we shall provide a new theory for the Fortin operator, so that we can
establish the error estimate (1.12) in H(curl ; Ω) norm for very low regular solution, i.e., r ≤ 1/2 in (1.12).
This is in sharp contrast to the numerous existing literature, where r and s are usually assumed to be greater
than 1/2, e.g., see [2][9][18][39][47][40][41][49], just to name a few. Note that for interface problem, not only
the global regularity of the solution is very low (this is a well-known fact), but also its piecewise regularity
over each material subdomain Ωj may still be possibly very low, see [26].

Also, there exists the so-called bounded co-chain or smoothed projector [5][19][52] for a low regularity
solution. Such projector may be applied to problem (1.9), but we cannot obtain the δ-uniform optimal
convergence, since it does not preserve the divergence-free constraint. By contrast, the Fortin operator
trivially does, as it is indeed a finite element solution solver, and it is for this reason that we can obtain
δ-uniform convergence ||uδ − uδ,h||0,curl ≤ Chr||f ||0 from which and (1.11), we have (1.12). In addition, as
mentioned earlier, the low regularity convergence is also known in the continuous element methods where
the regular-singular decomposition is also often used as a fundamental tool in the error estimates, e.g., [11].

The rest of this paper is organized as follows. In section 2, we obtain the convergence of the solution
of problem (1.9) to the solution of problem (1.5). In section 3, the edge finite element method is defined
and the uniform stability (1.13) is obtained under the Kh ellipticity. In section 4, a general Kh ellipticity is
established without the assumption (1.8), instead under Assumption A2) the regular-singular decomposition.
In section 5, the δ-uniform error estimates of the finite element solution of problem (1.9) is established, with
the application of the Fortin operator. In section 6, under Assumption A2), we present the general theory for
the Fortin operator without the assumption (1.8). In section 7, numerical results are presented to illustrate
the proposed method. In the last section, some concluding remarks are given, and an extension of the
proposed method to a more general problem arising in computational electromagnetism is briefly discussed.
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2. Convergence for continuous problem. Throughout the paper, we shall use the standard Hilbert
and Sobolev spaces Hs(Ω) for any s ∈ R and Lp(Ω) for any p ≥ 2, see [1][35]. Assume that µ and ε are
symmetric, uniformly positive definite, satisfying ξ′µ(x)ξ, ξ′ε(x)ξ ≥ C|ξ|2 for all ξ ∈ R3 almost everywhere
over Ω̄, µ, ε ∈ (L∞(Ω))3×3, satisfying µ|Ωj , ε|Ωj ∈ (W 1,∞(Ωj))

3×3, 1 ≤ j ≤ J , where µ, ε are required
to be piecewise smooth so that we could obtain the regularity of the solution of problem (1.1)-(1.4). Let
||v||20,µ−1 := (µ−1v, v) and ||v||20,ε := (εv, v) be the µ−1-weighted and ε-weighted L2 norms respectively.

We first give a lemma about the divergence of uδ.
Lemma 2.1 For compatible f ∈ H(div 0; Ω), the solution uδ ∈ H0(curl ; Ω) of problem (1.9), in fact,

belongs to H0(curl ; Ω) ∩H(div ; ε; Ω), and satisfies the equation

div εuδ = 0. (2.1)

Proof. Taking any φ ∈ C∞
0 (Ω) (the linear space of infinitely differentiable functions, with compact

support on Ω) and inserting v = ∇φ ∈ H0(curl ; Ω) into (1.9) immediately yields (εuδ,∇φ) = 0 which proves
the lemma. 2

We next recall a Poincaré-Friedrichs’ inequality over H0(curl ; Ω) ∩H(div 0; ε; Ω).
Proposition 2.1 [30] For any Lipschitz domain Ω and for any ε as assumed earlier, we have

||v||0 ≤ C||curl v||0 ∀v ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω). (2.2)

We are now in a position to investigate the existence and uniqueness and the convergence of uδ.
Theorem 2.1 For any given δ > 0 and for any f ∈ (L2(Ω))3 problem (1.9) has a unique solution uδ.

Moreover, for the compatible f ∈ H(div 0; Ω), there exists a constant C > 0, independent of δ, such that

||uδ||0,curl ≤ C||f ||0. (2.3)

Proof. From the classical Lax-Milgram lemma [13][20], existence and uniqueness of the solution uδ to
problem (1.9) is obvious. Note that uδ is in fact in H0(curl ; Ω) ∩ H(div 0; ε; Ω) from Lemma 2.1. Taking
v = uδ in problem (1.9), from (2.2) in Proposition 2.1 we can obtain ||curluδ||0 ≤ C||curluδ||0,µ−1 ≤ C||f ||0.
From (2.2) again, (2.3) follows. 2

Remark 2.1 With the compatible f ∈ H(div 0; Ω), from Proposition 2.1 we have a stability for the
original u, the solution to problem (1.5), as follows:

||u||0,curl ≤ C||f ||0. (2.4)

Theorem 2.2 Let u and uδ denote the solutions of problem (1.5) and problem (1.9), respectively. For
a compatible f ∈ H(div 0; Ω), there exists C, independent of δ, such that

||u− uδ||0,curl = ||u− uδ||0,curl ,div ,ε ≤ Cδ||u||0. (2.5)

Proof. From Lemma 2.1 and (1.2) we have ||u− uδ||0,curl ,div ,ε = ||u− uδ||0,curl . Taking v := u− uδ ∈
H0(curl ; Ω)∩H(div 0; ε; Ω), from (1.5) and (1.9) we can obtain (2.5) following the same argument for (2.3).
2

Remark 2.2 A similar result was obtained in [51]. From (2.4) and (2.5) we have the convergence

||u− uδ||0,curl = ||u− uδ||0,curl ,div ,ε ≤ Cδ||f ||0. (2.6)

3. Edge finite element method. For any given h > 0, let Th denote the shape-regular conforming
triangulation of Ω into tetrahedra [20][13], where h := maxT∈Th

hT , and hT denotes the diameter of T . We
assume that Th is also conforming along every interface S ∈ Sint and every boundary face S ∈ Sext. In our
analysis we shall use the first family of edge/Nédélec elements of H0(curl ; Ω), the Raviart-Thomas elements
of H0(div ; Ω) and the Lagrange elements of H1

0 (Ω), see [48][47][32]. Over every T ∈ Th, let Pl(T ) and

P̃l(T ) denote the space of polynomials of total degree not greater than the integer l ≥ 0 and the subspace of
homogeneous polynomials of total degree l, respectively. On every T ∈ Th, for l ≥ 1, we introduce the Nédélec
element of order l: Nl(T ) := span{a + b, a ∈ (Pl−1(T ))

3, b ∈ (P̃l(T ))
3, b · x = 0} and the Raviart-Thomas

element of order l: RT l(T ) = span{a+ bx, a ∈ (Pl−1(T ))
3, b ∈ P̃l−1(T )}. Define

Uh = {v ∈ H0(curl ; Ω) : v|T ∈ Nl(T ), ∀T ∈ Th}, (3.1)

Xh = {v ∈ H0(div ; Ω) : v|T ∈ RT l(T ), ∀T ∈ Th}, (3.2)

Qh = {q ∈ H1
0 (Ω) : q|T ∈ Pl(T ), ∀T ∈ Th}. (3.3)
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We state the finite element problem corresponding to problem (1.9): To find uδ,h ∈ Uh such that

(µ−1curluδ,h, curl v) + δ(εuδ,h, v) = (f, v) ∀v ∈ Uh. (3.4)

Since Uh ⊂ H0(curl ; Ω), from Theorem 2.1, we have the well-posedness of (3.4), as stated below.
Theorem 3.1 For any f ∈ (L2(Ω))3, for any δ > 0 and for any h, problem (3.4) is well-posed. 2

However, simply from the trivial H0(curl ; Ω)-ellipticity of the bilinear form

Aδ(u, v) := (µ−1curlu, curl v) + δ(εu, v), (3.5)

we cannot obtain a δ-uniform stability on the finite element solution uδ,h. In order to have a uniform stability
like (2.3) for uδ,h, we recall the well-known decomposition of Uh. Let (·, ·)0,ε = (ε·, ·) denote the ε-weighted
L2 inner product.

Proposition 3.1 [47] For Uh and Qh defined by (3.1) and (3.3), defining Zh(ε) = {v ∈ Uh :
(εv,∇q) = 0, ∀q ∈ Qh}, we have the following L2-orthogonal decomposition with respect to (·, ·)0,ε:

Uh = Zh(ε) +∇Qh. (3.6)

2

Remark 3.1 In fact, for any given v ∈ Uh, we first let ph ∈ Qh uniquely solve (ε∇ph,∇q) = (εv,∇q)
for all q ∈ Qh. We have (ε(v − ∇ph),∇q) = 0 for all q ∈ Qh. Putting zh := v − ∇ph ∈ Uh, we see that
v = zh +∇ph is the desired, with zh ∈ Zh(ε). Note that ∇Qh ⊂ Uh.

Lemma 3.1 Let uδ,h ∈ Uh be the solution of problem (3.4). Then, for a compatible f ∈ H(div 0; Ω),
we have uδ,h ∈ Zh(ε).

Proof. From Proposition 3.1, we have the ε-weighted L2-orthogonal decomposition: uδ,h = zδ,h+∇pδ,h,
where zδ,h ∈ Zh(ε) and pδ,h ∈ Qh. From Proposition 3.1 again, problem (3.4) may be reformulated into a
mixed problem (in fact, two decoupled subproblems): Find zδ,h ∈ Zh(ε) and pδ,h ∈ Qh such that

(µ−1curl zδ,h, curl z) + δ(εzδ,h, z) = (f, z) ∀z ∈ Zh(ε), (3.7)

δ(ε∇pδ,h,∇q) = (f,∇q) ∀q ∈ Qh. (3.8)

But, f ∈ H(div 0; Ω), we find that pδ,h ≡ 0, and we conclude that uδ,h = zδ,h ∈ Zh(ε), solving (3.7). 2

Before giving the δ-uniform stability of the finite element solution uδ,h ∈ Uh of problem (3.4), we shall
make an assumption.

Assumption A1) We assume that the following Kh-ellipticity holds:

||v||0 ≤ C||curl v||0 ∀v ∈ Kh := Zh(ε). (3.9)

Remark 3.2 We refer (3.9) as the Kh-ellipticity using the terminology in the classical theory for
the mixed problem (1.6), with Kh := Zh(ε), since there is some relationship between the δ-regularization
problem and the mixed problem (1.6). Nevertheless, problem (3.4) does not need the Kh-ellipticity to ensure
the well-posedness, but problem (1.6) does.

Theorem 3.2 Let uδ,h ∈ Uh be the solution to problem (3.4). Assume that Assumption A1), i.e., the
Kh-ellipticity (3.9) holds. There exists C > 0, independent of δ, such that

||uδ,h||0,curl ≤ C||f ||0. (3.10)

Proof. Since uδ,h solves (3.7) in Lemma 3.1, from (3.9) and (3.7), (3.10) easily follows. 2

Remark 3.3 Under the continuous embedding (1.8) for s > 1/2, for ε = 1, (3.9) is proven in [3], and
for a general ε, (3.9) is essentially proven in [47]. For Ω being Lipschitz polyhedron, we have s > 1/2 in (1.8),
see [3], but for general Lipschitz domains, s = 1/2, see [23]. Possibly, even s < 1/2, e.g., for non-Lipschitz,
non-simply-connected domains with screening parts [24]. We are not aware of any work in the literature in
which the Kh ellipticity (3.9) was shown without using the continuous embedding (1.8) for s > 1/2.

In the next section,we shall develop a different and new argument for showing (3.9), no longer resorting
to (1.8), i.e., the continuous embedding H0(curl ; Ω) ∩H(div 0; Ω) ↪→ (Hs(Ω))3.

4. A general verification of Kh-ellipticity. In order to establish the Kh-ellipticity (3.9) without
involving the continuous embedding (1.8), we make the following assumption.

Assumption 2) We assume that for any v ∈ H0(curl ; Ω) ∩ H(div 0; Ω) it admits a regular-singular
decomposition in the following:

v = v0 +∇p0, (4.1)

where v0 ∈ H0(curl ; Ω) ∩ (Ht(Ω))3 for some t > 1/2 and p0 ∈ H1
0 (Ω), satisfying

||v0||t + ||p0||1 ≤ C||curl v||0. (4.2)
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Remark 4.1 For Lipschitz domains, in [8] it is shown that t = 1. In this paper, we only need t > 1/2.
Lemma 4.1 Assuming that Assumption A2) holds, we have the Kh ellipticity (3.9), i.e.

||v||0 ≤ C||curl v||0 ∀v ∈ Zh(ε). (4.3)

Before proving Lemma 4.1, we recall the L2 orthogonal decomposition for (L2(Ω))3 and recall the finite
element interpolation theory of Uh.

Proposition 4.1 [30] For any v ∈ (L2(Ω))3 and for any Lipschitz domain Ω, it can be written as the
following L2-orthogonal decomposition:

v = v1 +∇p1, (4.4)

where v1 ∈ H(div 0; Ω), p1 ∈ H1
0 (Ω).

Remark 4.2 With the L2-orthogonal decomposition in Proposition 4.1, for any z ∈ H0(curl ; Ω), from
Assumption A2) we can obtain the following regular-singular decomposition:

z = z0 +∇p, (4.5)

where z0 ∈ H0(curl ; Ω) ∩ (Ht(Ω))3, with the same t in Assumption A3), and p ∈ H1
0 (Ω), satisfying

||z0||t ≤ C||curl z||0, ||p||1 ≤ C||z||0,curl . (4.6)

Let Πh and Υh respectively denote the canonical finite element interpolation operator onto Uh and Xh,
with Πhu|T = ΠTu and Υhu|T = ΥTu for all T ∈ Th, where ΠTu ∈ Nl(T ) and ΥTu ∈ RT l(T ) are defined
with respect to degrees of freedom on T ∈ Th. Let u be given, making Πhu ∈ Uh and Υhcurlu ∈ Xh well-
defined. Then curlΠhu = Υhcurlu, the well-known commuting diagram property. Note that curlUh ⊂ Xh.
It is also well-known that if Πh∇q ∈ Uh is well-defined, then there exists a qh ∈ Qh such that Πh∇q = ∇qh
and that if vh ∈ Uh satisfies curl vh = 0 then there exists ph ∈ Qh such that vh = ∇ph. See [48][47][15][32].

Remark 4.3 Note that if u ∈ H(div ;T )∩ (Lp(T ))3 for p > 2, then ΥTu is well-defined, see [15], while
if u ∈ {u ∈ (Lp(T ))3 : curlu ∈ (Lp(T ))3, v × n ∈ (Lp(∂T ))3}, where p > 2, then ΠTu is well-defined, see [3].

Throughout this paper, we shall focus on the lowest-order edge element method, namely, l = 1, since we
are interested in the low regular solution of Hr function for some r ≤ 1. It is of course straightforward to
consider higher-order elements if the solution is more regular. Below we recall the finite element interpolation
property that we shall use.

Proposition 4.2 [47] For u ∈ (Hs(Ω))3 for s > 1/2 and curlu ∈ Xh, ΠTu is well-defined, satisfying

||ΠTu− u||0,T ≤ Chs
T (||u||s,T + ||curlu||0,T ) ∀T ∈ Th. (4.7)

For u ∈ (Hs1(Ω))3 for s1 > 1/2 and curlu ∈ (Hs2(Ω))3 for s2 > 0, ΠTu is well-defined, satisfying

||ΠTu− u||0,T ≤ Chs1
T (||u||s1,T + ||curlu||s2,T ) ∀T ∈ Th, (4.8)

||curl (ΠTu− u)||0,T ≤ Chs2
T ||curlu||s2,T ∀T ∈ Th. (4.9)

Proof of Lemma 4.1. For v ∈ Zh(ε) ⊂ Uh, it admits a both L2 and H0(curl ; Ω) orthogonal decompo-
sition (see Proposition 3.1 with ε = 1): v = ṽ +∇ph, where ṽ ∈ Zh(1) and ph ∈ Qh. Since v ∈ Zh(ε), we
have (εv, v) = (εv, v −∇ph) = (εv, ṽ). We have ||v||20 ≤ C||v||20,ε = C(εv, v) = C(εv, ṽ) ≤ C||v||0||ṽ||0, i.e.

||v||0 ≤ C||ṽ||0. (4.10)

Note that curl v = curl ṽ. Hence, if we can show

||ṽ||0 ≤ C||curl ṽ||0 (4.11)

then estimate (4.3) holds. In what follows, we prove (4.11). From Remark 4.2, we have the regular-singular
decomposition of ṽ ∈ Zh(1) ⊂ Uh ⊂ H0(curl ; Ω) as follows:

ṽ = ṽ0 +∇p, ṽ0 ∈ H0(curl ; Ω) ∩ (Ht(Ω))3, t > 1/2, p ∈ H1
0 (Ω), (4.11)

||ṽ0||t ≤ C||curl ṽ||0, curl ṽ0 = curl ṽ ∈ Xh, ||p||1 ≤ C||ṽ||0,curl . (4.12)

From Proposition 4.2 we know that Πhṽ0 ∈ Uh is well-defined, satisfying

||Πhṽ0 − ṽ0||0 ≤ Cht(||ṽ0||t + ||curl ṽ0||0) ≤ Cht||curl ṽ||0, (4.13)

from which we have

||Πhṽ0||0 ≤ C||curl ṽ||0. (4.14)

Consequently, Πh∇p is also well-defined, and from Remark 4.3 we know that Πh∇p = ∇qh for some qh ∈ Qh.
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Therefore,

||ṽ||20 = (ṽ, ṽ) = (ṽ, ṽ0 +∇p) = (ṽ, ṽ0 +∇p−Πh(ṽ0 +∇p)) + (ṽ,Πhṽ0 +∇qh), (4.15)

where, since Πhvh = vh for all vh ∈ Uh, we have

(ṽ, ṽ0 +∇p−Πh(ṽ0 +∇p)) = (ṽ, ṽ −Πhṽ) = 0, (4.16)

and since ṽ ∈ Zh(1), we have

(ṽ,Πhṽ0 +∇qh) = (ṽ,Πhṽ0) ≤ ||ṽ||0||Πhṽ0||0 ≤ C||ṽ||0||curl ṽ||0. (4.17)

Thus, (4.11) follows from (4.15)-(4.17). 2

5. Error estimates. In this section, we will establish the convergence of uδ,h.
From Proposition 4.2 we first recall the finite element interpolation theory of Πh in Uh for a u with a

piecewise regularity with respect to the material subdomains.
Proposition 5.1 Let u, curlu ∈

∏J
j=1(H

r(Ωj))
3 with r > 1/2. Then, Πhu is well-defined and satisfies

||u−Πhu||0,curl ≤ Chr(

J∑
j=1

||u||r,Ωj + ||curlu||r,Ωj ). (5.1)

To relate the right-hand side of (5.1) to the source function f , we need to make the following assumptions.
Assumption A3) We assume that there exists a r > 0 such that H0(curl ; Ω) ∩ H(div 0; ε; Ω) ↪→∏J

j=1(H
r(Ωj))

3 is a continuous embedding, satisfying for all v ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω),
J∑

j=1

||v||r,Ωj ≤

C||curl v||0.
Assumption A4) Introduce H0(div

0;µ; Ω) = {v ∈ (L2(Ω))3 : divµv = 0, µv · n|S = 0,∀S ∈ Sext}.
We assume that there exists a r > 0, the same as in Assumption A3), such thatH(curl ; Ω)∩H0(div

0;µ; Ω) ↪→∏J
j=1(H

r(Ωj))
3 is a continuous embedding, satisfying for all v ∈ H(curl ; Ω) ∩H0(div

0;µ; Ω),
J∑

j=1

||v||r,Ωj ≤

C||curl v||0.
Remark 5.1 Note that Assumption A3) reduces to (1.8) for ε = 1 and r > 1/2. The regularity in

Assumption A3) and Assumption A4) may be different, but here we assume the same r. In fact, the r in
Assumption A3) and Assumption A4) is mainly related to Dirichlet and Neumann boundary value problems
for Laplace operator, respectively. See [3] [26][24]. This fact indicates that r depends on the regularity of ε,
µ and the geometric regularity of Ω.

Lemma 5.1 Given a compatible f ∈ H(div 0; Ω). Under Assumption A3) and Assumption A4), the
solution uδ of problem (1.9) and the solution u of problem (1.5), together with curluδ and curlu, are in∏J

j=1(H
r(Ωj))

3, and the following holds:

J∑
j=1

||uδ||r,Ωj + ||u||r,Ωj + ||curluδ||r,Ωj + ||curlu||r,Ωj ≤ C||f ||0. (5.2)

Proof. Observe that uδ and u belong to H0(curl ; Ω)∩H(div 0; ε; Ω) and satisfy ||uδ||0,curl , ||u||0,curl ≤
C||f ||0 (See Lemma 2.1, Theorem 2.1 and Remark 2.1). At the same time, both µ−1curluδ and µ−1curlu be-
long to H(curl ; Ω)∩H0(div

0;µ; Ω), satisfying ||curlµ−1curlu||0 = ||f ||0, ||curlµ−1curluδ||0 = ||f−δεuδ||0 ≤
||f ||0 + C||uδ||0 ≤ C||f ||0. Hence, from Assumption A3) and Assumption A4) we conclude that Lemma 5.1
holds, noting that µ|Ωj is in (W 1,∞(Ωj))

3×3. 2

Since Aδ(u, v) given by (3.5) is coercive over H0(curl ; Ω) and the consistency property between problem
(1.9) and problem (3.4) holds because of the conformity of Uh ⊂ H0(curl ; Ω), from Proposition 5.1, Lemma
5.1 and Remark 2.2 it is not difficult to obtain the following error estimates in || · ||2Aδ

:= Aδ(·, ·) from the
classical Céa’s argument in [20].

Theorem 5.1 Assume that r > 1/2 holds in Assumption A3) and Assumption A4). Then, the solution
u of problem (1.5) and the solution uδ,h of problem (3.4) satisfy the following error bound:

||u− uδ,h||Aδ
≤ C(δ + hr)||f ||0. (5.3)

2

Remark 5.2 The inadequacy of the error estimates of (5.3) in Theorem 5.1 is the δ-dependent norm
|| · ||Aδ

. However, we can have uniform error estimates, i.e., ||u−uδ,h||0,curl ≤ C(δ+hr)||f ||0. We can achieve
this by using the Fortin-type finite element interpolation [9].
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In what follows, to explore the idea, it suffices to consider the case where µ = ε = 1 and use the Fortin-
operator to obtain the uniform error estimates under the same assumptions in Theorem 5.1. The study for
the case with general µ, ε and with very low regular solution will be deferred to the next section.

Let πh be the Fortin operator defined by seeking πhu ∈ Zh(1) ⊂ Uh for a given u ∈ H0(curl ; Ω) ∩
H(div 0; Ω) such that

(curlπhu, curl v) = (curlu, curl v) ∀v ∈ Uh, (5.4)

(πhu,∇q) = 0 ∀q ∈ Qh. (5.5)

Proposition 5.2 [4][9][47][37] Let u ∈ H0(curl ; Ω) ∩ H(div 0; Ω) and let πhu be defined by (5.4) and
(5.5). Assuming the same Assumptions as in Theorem 5.1, we have

||πhu− u||0,curl ≤ Chr(||u||r + ||curlu||r). (5.6)

Theorem 5.2 Under the same assumptions in Theorem 5.1, we have the uniform error estimation:

||u− uδ,h||0,curl ≤ C(δ + hr)||f ||0. (5.7)

Proof. Let v := uδ,h − πhuδ ∈ Uh, where uδ is the solution of problem (1.9). Note that µ = ε = 1.
From the consistency property between problem (1.9) and problem (3.4) and the definition of the Fortin
operator πh by (5.4) and (5.5), we have

||v||2Aδ
= (curl v, curl v) + δ(v, v) = (curl (uδ,h − πhuδ), curl v) + δ(uδ,h − πhuδ, v)
= (curl (uδ,h − uδ), curl v) + (curl (uδ − πhuδ), curl v) + δ(uδ,h − uδ, v) + δ(uδ − πhuδ, v)

= δ(uδ − πhuδ, v) ≤ δ||uδ − πhuδ||0||v||0 ≤ δ
1
2 ||uδ − πhuδ||0||v||Aδ

,

(5.8)

that is

||curl (uδ,h − πhuδ)||0 + δ
1
2 ||uδ,h − πhuδ||0 ≤ Cδ

1
2 ||uδ − πhuδ||0, (5.9)

From Proposition 5.2 with uδ ∈ H0(curl ; Ω) ∩H(div 0; Ω), by the triangle inequality we obtain from (5.9)

||uδ − uδ,h||0,curl ≤ ||uδ − πhuδ||0,curl + ||uδ,h − πhuδ||0,curl
≤ C||uδ − πhuδ||0,curl ≤ Chr(||uδ||r + ||curluδ||r),

(5.10)

and from Lemma 5.1 we further have

||uδ − uδ,h||0,curl ≤ Chr||f ||0. (5.11)

Finally, from Remark 2.2 we obtain the desired (5.7). 2

Remark 5.3 The assumption r > 1/2 of the regularity of u and curlu over Ωj is not that restrictive in
practice. In fact, such regularity assumption is commonly used in the literature [18][21][39][2][47]. Meanwhile,
it has been shown r > 1/2 or even r = 1 for practical interface problems [17][42].

Remark 5.4 On the other hand, the interface problem from electromagnetism would have a possible
very low regularity solution, i.e., r ≤ 1/2, see [26]. In addition, even if µ = ε = 1, from Remark 3.3, r in
both Assumption A3) and Assumption A4) is still possibly less than or equal to 1/2.

Without the requirements r > 1/2 in Assumptions A3) and A4) and s > 1/2 in (1.8), we shall obtain
the uniform error estimates next section. We have seen that the uniform error estimates rely on the Fortin
operator, so it suffices that the finite element interpolation property (5.6) for the Fortin operator holds for
any 0 < r ≤ 1. In addition, we shall deal with general µ and ε as assumed in section 2.

6. A general Fortin operator. The advantage of the Fortin operator over the finite element interpo-
lation operator Πh is that the former is a projection from (5.4) and (5.5): (5.4) is a commuting property and
(5.5) preserves discrete divergence-free constraint. We have seen that it is based on the projection property
of πh that we have established the uniform error bound in the previous section. Although, from the definition
(5.4) and (5.5) we infer that the Fortin operator πh could be well-defined for any u ∈ H0(curl ; Ω)∩H(div 0; Ω)
even if u does not have the regularity with r > 1/2. Unfortunately, in the literature, the well-definedness
and the interpolation error property of the Fortin operator indeed depend on Assumption A3) with r > 1/2
(or (1.8) mentioned in Introduction section with s > 1/2) and on the regularity r > 1/2 of the interpolated
function u.

In this section, we consider the following general Fortin operator: Given u ∈ H0(curl ; Ω), to find
πhu ∈ Uh such that

(µ−1curlπhu, curl v) = (µ−1curlu, curl v) ∀v ∈ Uh, (6.1)

(επhu,∇q) = (εu,∇q) ∀q ∈ Qh. (6.2)
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It will be shown that πhu is well-defined and satisfy (5.6) without assuming the regularity index r of
the interpolated function u to be greater than 1/2 and without using the continuous embedding (1.8) or the
continuous embeddings in Assumptions A3) and A4). In fact, we only assume Assumption A2) which is a
regular-singular decomposition already stated in section 4.

Lemma 6.1 Assume that Assumption A2) holds. For any given u ∈ H0(curl ; Ω), πhu is well-defined.
Proof. Observe that πhu is the first component of the solution pair (uh, ph) ∈ Uh ×Qh such that

(µ−1curluh, curl v) + (εv,∇ph) = (µ−1curlu, curl v) ∀v ∈ Uh, (6.3)

(εuh,∇q) = (εu,∇q) ∀q ∈ Qh. (6.4)

In fact, since Uh = Zh(ε)+∇Qh as stated in Proposition 3.1 which is verified in Remark 3.1, ph is equal to zero
in the above mixed problem. If we have shown K t

h ⊂ K t, Kh-ellipticity and the Inf-Sup condition, then the
classical theory in [15] for saddle-point problems yields the well-posedness of the above mixed problem. The
inclusion K t

h ⊂ K t is verified by noticing that K t = {q ∈ H1
0 (Ω) : (εv,∇q) = 0, ∀v ∈ H0(curl ; Ω)} = {0}

and K t
h = {qh ∈ Qh : (εvh,∇qh) = 0,∀vh ∈ Uh} = {0}, and the verification of the Inf-Sup condition follows

from the decomposition Uh = Zh(ε) +∇Qh, namely,

sup
0 ̸=v∈Uh

(εv,∇q)

||v||0,ε + ||curl v||0,µ−1

≥ (ε∇q,∇q)

||∇q||0,ε
≥ C||q||1 ∀q ∈ Qh. (6.5)

We are left to verify the Kh ellipticity, where Kh = Zh(ε) = {v ∈ Uh : (εv,∇q) = 0, ∀q ∈ Qh}. But, this is
just the conclusion of Lemma 4.1 since Assumption A2) holds. 2

Remark 6.1 Lemma 6.1 implies the invariance or projection property over Uh: πhu = u on Uh ⊂
H0(curl ; Ω) and the H(curl ; Ω)-boundedness property ||πhu||0,curl ≤ C||u||0,curl for all u ∈ H0(curl ; Ω).
Moreover, from (6.1) we have

||curlπhu||0 ≤ C||curlu||0, ||curl (πhu− u)||0 ≤ C inf
vh∈Uh

||curl (u− vh)||0. (6.6)

Lemma 6.2 For any p ∈ H1
0 (Ω) with ∇p ∈ H0(curl ; Ω), we have πh∇p = ∇ph, where ph ∈ Qh satisfies

(ε∇ph,∇q) = (ε∇p,∇q) ∀q ∈ Qh. (6.7)

Proof. With u := ∇p ∈ H0(curl ; Ω) and πhu ∈ Uh ⊂ H0(curl ; Ω) at hand, we find from equation (6.1)
that curlπh∇p = 0. Thus, from section 4 we have some ph ∈ Qh satisfies πh∇p = ∇ph, and we obtain (6.7)
from equation (6.2). 2

Lemma 6.3 For p ∈ H1
0 (Ω) ∩

J∏
j=1

H1+r(Ωj) for some r > 0, there exists Ihp ∈ Qh such that

||p− Ihp||1 ≤ Chr
J∑

j=1

||p||1+r,Ωj . (6.8)

Proof. If p ∈ H1
0 (Ω) ∩ H1+r(Ω), then (6.8) is a classical result from the finite element interpolation

theory [13][20][22][53]. Now, p is piecewise H1+r(Ωj), no immediate literature could be located. Here, we
give an approach to obtain an interpolation Ihp ∈ Qh such that estimate (6.8) holds. Firstly, take any Ωj

and put

Qh,Ωj := Qh|Ωj . (6.9)

We use the Clément interpolation[22][7] or Scott-Zhang interpolation[53] to find a finite element interpolation
CLh,jp ∈ Qh,Ωj

of p|Ωj
∈ H1+r(Ωj),

||CLh,jp− p||1,Ωj +

 ∑
F∈SΩj

h−1
F ||CLh,jp− p||20,F

 1
2

≤ Chr||p||1+r,Ωj , (6.10)

where SΩj denotes the set of all element faces in Th|Ωj . Note that if p|S = 0 for S ∈ Sext, then CLh,jp|S = 0
also, i.e., CLh,jp preserves the homogenous boundary condition. Define a function ph by

ph|Ωj := CLh,jp 1 ≤ j ≤ J. (6.11)
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In general, such ph is discontinuous when crossing any interface S in Sint. However, by ‘a nodal averaging
procedure’ (see Remark 6.2 below), from ph, we can find a new finite element function Ihp ∈ Qh. Since ph
is continuous over Ωj and homogeneous on Sext, the nodal average Ihp ∈ Qh satisfies Ihp(a) = ph(a) for all
interior nodes inside Ωj , 1 ≤ j ≤ J , for all boundary nodes on Sext, and

J∑
j=1

||Ihp− ph||21,Ωj
≤ C

∑
F∈Sint

h−1
F

∫
F

|[ph]|2. (6.12)

But, p ∈ H1
0 (Ω), we have( ∑

F∈Sint

h−1
F

∫
F
|[ph]|2

) 1
2

=

( ∑
F∈Sint

h−1
F

∫
F
|[ph − p]|2

) 1
2

≤ C

(
J∑

j=1

∑
F∈SΩj

h−1
F ||CLh,jp− p||20,F

) 1
2

≤ Chr
J∑

j=1

||p||1+r,Ωj .

(6.13)
Hence, using the triangle inequality, we obtain (6.8) from (6.10),(6.12) and (6.13). 2

Remark 6.2 For linear element, the argument for constructing the finite element function Ihp from the
discontinuous ph through a nodal averaging approach may be referred to [12]. In fact, with the discontinuous
ph, we can construct Ihp from (2.1) in [12] on page 1072, and then from (2.10) in [12] on page 1073 and
Example 2.3 in [12] on page 1074, and from the local inverse estimates (as used in (3.10) in [12] on page
1076), it follows that (6.12) holds. For higher-order elements, readers may refer to [45] for a general nodal
averaging approach to construct a continuous finite element function from a discontinuous finite element
function, see Theorem 2.2 on page 2378 therein.

Now we state the main result in Theorem 6.1 below for the Fortin operator πh with the special u := ∇p.

Theorem 6.1 Let ∇ph = πh∇p ∈ Qh be given by (6.7). For p ∈ H1
0 (Ω) ∩

J∏
j=1

H1+r(Ωj), with r > 0,

||πh∇p−∇p||0 ≤ Chr
J∑

j=1

||p||1+r,Ωj . (6.14)

Proof. Since ph ∈ Qh ⊂ H1
0 (Ω) is the finite element solution to (6.7), it follow from (6.8) and the

standard analysis in [13][20] that (6.14) holds. 2

Lemma 6.4 Assume that Assumption A2) holds. For z ∈ H0(curl ; Ω) ∩
J∏

j=1

(Hr1(Ωj))
3 with some

r1 > 1/2 and curl z ∈
J∏

j=1

(Hr2(Ωj))
3 with some r2 > 0, we have

||z − πhz||0 ≤ Chr2

J∑
j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ), (6.15)

||curl (z − πhz)||0 ≤ Chr2

J∑
j=1

||curl z||r2,Ωj . (6.16)

Proof. Since Assumption A2) holds, from Lemma 6.1 it follows that πhz is well-defined for z ∈
H0(curl ; Ω). We are now ready to estimate the difference between z and πhz.

Noticing that Πhz ∈ Uh is well-defined, since z ∈
∏J

j=1(H
r1(Ωj))

3 for some r1 > 1/2 and curl z ∈∏J
j=1(H

r2(Ωj))
3 for some r2 > 0, from Proposition 4.2, we have

||z −Πhz||0 ≤ Chr1

J∑
j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ), (6.17)

||curl (z −Πhz)||0 ≤ Chr2

J∑
j=1

||curl z||r2,Ωj . (6.18)

We first estimate the difference between Πhz and πhz.
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From Remark 4.2 we decompose Πhz − πhz as follows:

Πhz − πhz = z0 +∇p, (6.19)

where z0 ∈ H0(curl ; Ω) ∩ (Ht(Ω))3 for some t > 1/2 and p ∈ H1
0 (Ω), satisfying

||z0||t ≤ C||curl (Πhz − πhz)||0, ||p||1 ≤ C||Πhz − πhz||0,curl , (6.20)

curl z0 = curl (Πhz − πhz) ∈ Xh. (6.21)

But, from Remark 6.1 and (6.18), we have

||curl (Πhz − πhz)||0 = ||curlπh(Πhz − z)||0 ≤ C||curl (Πhz − z)||0 ≤ Chr2

J∑
j=1

||curl z||r2,Ωj . (6.22)

Thus, it follows from (6.20)-(6.22) that

||z0||0,curl ≤ Chr2

J∑
j=1

||curl z||r2,Ωj , ||z0||t ≤ Chr2

J∑
j=1

||curl z||r2,Ωj . (6.23)

Note that Πhz0 is well-defined, because z0 ∈ (Ht(Ω))3 for some t > 1/2 and curl z0 ∈ Xh. From Proposition
4.2 and (6.23), we have

||z0 −Πhz0||0 ≤ Cht(||z0||t + ||curl z0||0) ≤ Cht+r2

J∑
j=1

||curl z||r2,Ωj . (6.24)

In addition, Πh∇p is also well-defined since ∇p = Πhz − πhz − z0, and we have some qh ∈ Qh such that
Πh∇p = ∇qh, see section 4. Thus, we have

Πhz − πhz = Πh(Πhz − πhz) = Πhz0 +Πh∇p = Πhz0 +∇qh. (6.25)

We next estimate z − πhz. We have

||z − πhz||20,ε = (ε(z − πhz), z − πhz) = (ε(z − πhz), z −Πhz) + (ε(z − πhz),Πhz − πhz), (6.26)

where, from (6.17), we have

(ε(z− πhz), z−Πhz) ≤ C||z− πhz||0,ε||z−Πhz||0 ≤ C||z− πhz||0,εhr1

J∑
j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ), (6.27)

and from (6.2) in the definition of πh with u := z here, i.e., (επhz,∇q) = (εz,∇q) holds for all q ∈ Qh, and
from (6.23)-(6.25), we have

(ε(z − πhz),Πhz − πhz) = (ε(z − πhz),Πhz0 +∇qh) = (ε(z − πhz),Πhz0)
= (ε(z − πhz),Πhz0 − z0) + (ε(z − πhz), z0)
≤ C||z − πhz||0,ε||z0 −Πhz0||0 + C||z − πhz||0,ε||z0||0

≤ C||z − πhz||0,εhr2
J∑

j=1

||curl z||r2,Ωj .

(6.28)

Hence, combining (6.26)-(6.28) we obtain

||z − πhz||0 ≤ C||z − πhz||0,ε ≤ Chr2

J∑
j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ). (6.29)

This competes the proof of (6.15). Regarding (6.16), it follows from (6.6) in Remark 6.1 and (6.18). 2

Remark 6.3 Compared with the error bound (6.17) of Πhz, the error bound (6.15) of πhz could be

improved, since we would expect r1 in (6.15), i.e., ||z − πhz||0 ≤ Chr1
J∑

j=1

(||z||r1,Ωj + ||curl z||r2,Ωj ). We are

not aware of any work in the literature that dealt with this issue where z and curl z have different regularity.
At the same time, we did not find the way to obtain such estimate. However, if (1.8) holds for some s > 1/2
and Assumption A3) and Assumption A4) hold for some r > 0, using a different argument, we could obtain

||z − πhz||0 ≤ Chmin(r1,s+r2,r+r2)
∑J

j=1(||z||r1,Ωj + ||curl z||r2,Ωj ), where the order is not the same as r1 but
better than (6.15). Here, we will not deal with this issue any further, since (6.15) and (6.16) are sufficient
for the main result in the following.
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We now state the main result for the Fortin operator πh for the general u := z with suitable regularity.
Theorem 6.2 Assume that Assumption A2) holds for some t > 1/2 and that z ∈ H0(curl ; Ω) and

z, curl z ∈
J∏

j=1

(Hr(Ωj))
3, where 0 < r ≤ t. Then

||z − πhz||0 ≤ Chr(||curl z||0 +
J∑

j=1

||z||r,Ωj +

J∑
j=1

||curl z||r,Ωj ), (6.30)

||curl (z − πhz)||0 ≤ Chr
J∑

j=1

||curl z||r,Ωj . (6.31)

Proof. From Remark 4.2 we write z ∈ H0(curl ; Ω) into the following regular-singular decomposition:

z = z0 +∇p, (6.32)

where z0 ∈ H0(curl ; Ω) ∩ (Ht(Ω))3 for some t > 1/2 and p ∈ H1
0 (Ω), satisfying

||z0||t ≤ C||curl z||0, ||p||1 ≤ C||z||0,curl , curl z0 = curl z. (6.33)

Since z0 ∈ (Ht(Ω))3 for some t > 1/2 and curl z0 = curl z ∈
∏J

j=1(H
r(Ωj))

3 for some r > 0, from Proposition
4.2 and (6.33), we have

||z0 −Πhz0||0 ≤ Cht(||z0||t +
J∑

j=1

||curl z0||r,Ωj ) ≤ Cht(||curl z||0 +
J∑

j=1

||curl z||r,Ωj ), (6.34)

||curl (z0 −Πhz0)||0 ≤ Chr
J∑

j=1

||curl z||r,Ωj . (6.35)

On the other hand, since z ∈
∏J

j=1(H
r(Ωj))

3 for some r > 0 and z0 ∈ (Ht(Ω))3 with t ≥ r, from (6.32)

we know that p ∈
∏J

j=1 H
1+r(Ωj), satisfying

J∑
j=1

||p||1+r,Ωj ≤ C(

J∑
j=1

||z||r,Ωj + ||z0||t) ≤ C(||curl z||0 +
J∑

j=1

||z||r,Ωj ). (6.36)

Thus, from Theorem 6.1 we have

||πh∇p−∇p||0 ≤ Chr
J∑

j=1

||p||1+r,Ωj ≤ Chr(||curl z||0 +
J∑

j=1

||z||r,Ωj ). (6.37)

We are now in a position to estimate the difference z − πhz in the following.
Observe that

||z − πhz||20,ε = (ε(z − πhz), z − πhz) = (ε(z − πhz), z0 − πhz0) + (ε(z − πhz),∇p− πh∇p), (6.38)

where, from Lemma 6.4 for this z0 with r1 := t and r2 := r we have

(ε(z − πhz), z0 − πhz0) ≤ C||z − πhz||0,ε||z0 − πhz0||0

≤ C||z − πhz||0,εhr(||z0||t +
J∑

j=1

||curl z0||r,Ωj )

≤ C||z − πhz||0,εhr(||curl z||0 +
J∑

j=1

||curl z||r,Ωj ),

(6.39)

and from (6.37), we have

(ε(z−πhz),∇p−πh∇p) ≤ C||z−πhz||0,ε||∇p−πh∇p||0 ≤ C||z−πhz||0,εhr(||curl z||0+
J∑

j=1

||z||r,Ωj ), (6.40)
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It then follows from (6.38)-(6.40) that

||z − πhz||0 ≤ C||z − πhz||0,ε ≤ hr(||curl z||0 +
J∑

j=1

||z||r,Ωj +
J∑

j=1

||curl z||r,Ωj ). (6.41)

Regarding (6.31), from (6.6) in Remark 6.1 we have

||curl (z − πhz)||0 ≤ C inf
vh∈Uh

||curl z − curl vh||0, (6.42)

but, curl z = curl z0 and Πhz0 is well-defined, from (6.35) we have

inf
v∈Uh

||curl z − curl v||0 ≤ ||curl z0 − curl Πhz0||0 ≤ Chr
J∑

j=1

||curl z||r,Ωj , (6.43)

and we obtain (6.31). 2

Following the argument in proving Theorem 5.2 we can obtain the following H(curl )-error bound for
very low regular solution, with r being possibly not greater than 1/2.

Corollary 6.1 Assume that Assumption A2) holds for some t > 1/2 and that Assumption A3) and
Assumption A4) hold for some 0 < r ≤ t. Given any compatible f ∈ H(div 0; Ω). Let u be the solution of
problem (1.5) and uδ,h ∈ Uh the finite element solution of problem (3.4). We have

||u− uδ,h||0,curl ≤ C(δ + hr)||f ||0. (6.44)

Remark 6.4 We have used Assumption A2) to ensure that πh is well-defined. We also used this
assumption to establish the error estimates for the Fortin operator. Assumption A2) states a regular-
singular decomposition where t > 1/2. This t is different from the s in the continuous embedding (1.8)
and the r in the continuous embedding of Assumption A3) and Assumption A4), since where s and r may
be not greater than 1/2. For example, for Lipschitz domains we can have t = 1, but s = 1/2 only. For
interface problem, we may still have t = 1, but r may be close to zero [26]. In fact, the regular-singular
decomposition in Assumption A2) depends little on the domain boundary and on the material occupying
Ω, since it has been established mainly from the H1 existence of the Poisson equation of Laplace operator
and the extension of H0(curl ; Ω) to the H(curl ;R3) [27][8]. On the contrary, the continuous embedding
in (1.8), Assumption A3) and Assumption A4), and the regularity of the solution and its curl counterpart
of problem (1.1)-(1.4), are determined by the domain boundary singularities (due to reentrant corners and
edges, etc), the regularity of the materials occupying Ω, and the topology of Ω (i.e., simply-connected or
multi-connected, etc), see [24][26]. In general, these are profoundly related to the singularities of the solution
of the second-order elliptic problem of Laplace operator in nonsmooth domains [35].

Remark 6.5 As highlighted in Remark 6.4, r ≤ t is generally true, since t = 1 usually. If r is larger
than t and r > 1/2, then the theory has already been developed in section 5. For more regular solution,
say r > 1, we may use higher-order elements, and the theory in section 5 can be easily applied to obtain
higher-order error bounds.

7. Numerical test. In this section, some numerical results are reported to support the method and the
theory developed in the previous sections. Below, Ω is triangulated into uniform tetrahedra, with the mesh
reduction of factor two, i.e., h = 1/4, 1/8, 1/16,, etc. In the δ-regularization problem, we use the lowest-order
Nédélec element of first-family and choose δ = h.

Given the domain in R3: Ω = ([−1, 3] × [−1, 1] \ ([0, 3] × [−1, 0] ∪ {(x, y) ∈ R2 : 2 < x < 3, y =
1
2})) × [0, 1] in the O − xyz-coordinates system. There is a reentrant edge originating from the origin
O(0, 0, 0) along the positive z axis with an opening angle 3π/2 and a screen originating from the point
(2, 1/2, 0) along the positive x axis with an opening angle 2π in Ω. We take µ = 1. But, we assume
there are two material subdomains in Ω, Ω1 = [1, 3] × [0, 1]2, Ω2 = [−1, 1]2 \ ([0, 1] × [−1, 0]) × [0, 1],
which are introduced by the interface Sint = {(x, y, z) ∈ R3 : x = 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}. We
consider ε by piecewise constants, where ε|Ω1 = 1 and ε|Ω2 = 1/2. We choose f so that the exact solution

u|Ωj = (∂yp|Ωj ,−∂xp|Ωj , 0), 1 ≤ j ≤ 2, where p|Ω−
1
= (1 − x)2(1 − y)2q1(x, y), with q1(x, y) = r

2
3 cos( 2θ3 ),

and p|Ω−
2
= (1−x)2(3−x)2( 14−(y− 1

2 )
2)2q2(x−2, y− 1

2 ), with q2(x, y) = r
1
2 cos( θ2 ), where q1(x, y) = r

2
3 cos( 2θ3 )

and q2(x, y) = r
1
2 cos( θ2 ) in the cylindrical coordinates system of R3, x = r cos(θ), y = r sin(θ), z = z, r is the

distance to the origin O and θ is the angular degree between 0 and 2π. The regularity of the exact solution
u and its curlu = (0, 0,−∆p) is the same on each material subdomain Ωj and u, curlu ∈ (Hrj (Ωj))

3, rj is
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respectively 2/3 − ϵ, 1/2 − ϵ for any ϵ > 0. The solution u and its curlu belong to
∏2

j=1(H
r(Ωj))

3 for r
being approximately 1/2. From the theoretical results, we should expect that the ratio of the error reduction
is approximately 21/2 ≈ 1.4142 for the mesh reduction of factor two and that the finite element solution is
uniform stable independent of the regularization parameter δ decreasing to zero. The computed results in
L2 semi-norm and curl semi-norm which are listed in Table 1 and Table 2, as expected, are consistent with
the theoretical results. Also, we notice that although the solution and its curl have higher regularity in Ω1,
the whole convergence rate is governed by the lower regularity in Ω2.

TABLE 1 Errors in L2 semi-norm and curl semi-norm

h 1/4 1/8 1/16 1/32 1/64
||u− uδ,h||0 0.3955 0.2604 0.1566 0.0981 0.0700

Ratio 1.5188 1.6628 1.5963 1.4014
||curl (u− uδ,h)||0 2.9515 1.5506 0.8720 0.5282 0.3517

Ratio 1.9035 1.7782 1.6509 1.5018

TABLE 2 Stability in L2 semi-norm and curl semi-norm
for a fixed mesh-size h = 1/16 but δ decreases

δ 1/10 1/20 1/30 1/40 1/50
||u− uδ,h||0 0.1510 0.1434 0.1419 0.1414 0.1412

Ratio 1.0530 1.0106 1.0035 1.0014
||curl (u− uδ,h)||0 0.8541 0.8294 0.8247 0.8230 0.8223

Ratio 1.0300 1.0057 1.0021 1.0009

Keeping ε|Ω1 unchanged, we change ε|Ω2 so that there is a discontinuity of ε with high ratio/contrast
across the interface. We consider two cases for ε|Ω2

: ε|Ω2
= 1/100 and ε|Ω2

= 1/1000. We find that the
computed results are accurate to four decimal places as shown in Tables 1 and 2. This may be interpreted
as follows. For δ decreasing to zero, the theoretical results show that the finite element solution is uniformly
stable, independent of δ, and holds optimal convergence with respect to δ+h, thus, when the combination of
δε with δ = h and hεmax decrease to zero, all the theoretical results are expected to still be valid, where εmax

represents the upper bound of ε over Ω, and here εmax = 1. Therefore, the present method appears to cover
much wider problems, in particular, the case where the discontinuous materials have high ratio/contrast
across material subdomains, although we did not develop the related theory for this situation.

8. Conclusion and extension. In this paper, we have analyzed a general approach, δ-regularization
method, for dealing with the divergence-free constraint in a double curl problem which typically arises
from computational electromagnetism. With this δ-regularization method, we can completely disregard the
divergence-free constraint and instead we introduce a δ perturbation zero-term which couples the curlcurl
operator to constitute a well-posed coercive problem for any given δ. Such δ-regularization method is
shown to have a uniform stable finite element solution independent of the regularization parameter δ which
decreases to zero. For nonsmooth solution, together with its curl, being Hr regularity for some 0 < r < 1,
we have established the optimal error bound O(hr) in the natural H(curl ) norm (which is independent of
δ) for δ ≤ Ch when using the lowest-order Nédélec element of first-family. Higher-order Nédélec elements
can be used to yield higher-order accuracy if the exact solution is more regular. Furthermore, we have
developed the new theory for the Kh ellipticity (a discrete Poincaré-Friedrichs’ type inequality) and the
new theory for the Fortin-interpolation operator. The Kh ellipticity is one of the two critical conditions
(the other is the Inf-Sup condition) for the well-posedness and the optimal convergence for the mixed finite
element method, while the Fortin operator is fundamental in the edge finite element method, as is well-
known. These two theories generalize the existing ones to cover those problems whose solutions may have
very low regularity. In fact, they are established only under the regular-singular decomposition assumption.
Such assumption is true for general domains and does not depend on the material properties occupying
the domain and the topology of the domain. Numerical results have been presented in three-dimensional
cases to illustrate the method and confirm the theory in this paper. Moreover, the proposed δ-regularization
method numerically appears to cover the interface problem with high contrast/ratio material coefficients
across material subdomains, although we did not have the theory for this situation. These have justified
the capability of the δ-regularization method in dealing with divergence-free constraint. Meanwhile, these
have exhibited the potential to deal with the discontinuous materials of high contrast/ratio among different
material subdomains.
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We should point out that although the proposed δ-regularization method is developed, analyzed and
performed for the model problem in (1.1)-(1.4), but, in actual fact, it can cover a number of models on
computational electromagnetism. To illustrate this point, for example, let us consider the following problem:
to find u and p such that

curlµ−1curlu+ αεu+ ε1∇p = f, div εu = g in Ω, u× n = 0, p = 0 on ∂Ω,

where α is a given real number which may arise from either the time-discretization problems of the time-
dependent Maxwell’s equations with α inversely proportional to the time-step, or the time-harmonic Maxwell’s
equations with −α amounting to the angular frequency, and ε1 is a third material coefficient matrix. Below
we simply show how to apply the proposed δ-regularization method to the above problem. This consists of
two stages. We first parallel solve two second-order elliptic problems: to find p∗ ∈ H1

0 (Ω) such that

div ε∇p∗ = g in Ω, p∗ = 0 on ∂Ω,

and to find p ∈ H1
0 (Ω) such that

div ε1∇p = div f − αg in Ω, p = 0 on ∂Ω,

and then we solve the problem: to find w ∈ H0(curl ; Ω) ∩H(div 0; ε; Ω) such that

curlµ−1curlw + αεw = F := f − ε1∇p− αε∇p∗, div εw = 0 in Ω, w × n = 0 on ∂Ω.

Clearly, we have u = w + ∇p∗. However, we do not directly solve w. Instead, we solve the following δ
regularization problem: to find wδ such that

curlµ−1curlwδ + αεwδ + δεwδ = F in Ω, wδ × n = 0 on ∂Ω.

Noticing that α is known, we choose δ so that δ + α ̸= 0, and we can analyze this δ regularization problem
following the routine from the previous sections. Hence, first simultaneously solving two symmetric, positive
definite problems (second-order elliptic interface problems) in parallel, and then solving a δ-regularization
problem, we can obtain the desired solution. In addition, we could generalize the developed theory to those
problems with mixed boundary conditions (i.e., u × n|Γ1 = 0, εu · n|Γ2 = 0, with Γ = Γ1 ∪ Γ2), since the
two fundamental tools in our analysis are now available for mixed boundary conditions, the regular-singular
decomposition [34] and the L2 orthogonal decomposition [30].
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[17] G. Caloz, M. Dauge, and V. Péron, Uniform estimates for transmission problems with high contrast in heat conduction
and electromagnetism, J. Math. Anal. Appl., 370 (2010), pp. 555–572.

[18] Z. Chen, Q. Du, and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations
with discontinuous coefficients, SIAM J. Numer. Anal., 37 (2000), pp. 1542–1570.

[19] S. H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus, Math. Comp., 77(2008),
pp. 813-829.

[20] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in: Handbook of Numerical Analysis, Vol. II, Finite Element
Methods (part 1), P. G. Ciarlet and J.-L. Lions eds, North-Holland, Amsterdam (1991).

[21] Jr P. Ciarlet and J. Zou, Fully discrete finite element approaches for time dependent Maxwells equations, Numer.
Math., 82 (1999), pp. 193–219.

[22] P. Clément, Approximation by finite element functions using local regularization, RAIRO Numer. Anal., 9 (1975), pp.
77–84.

[23] M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains, M3AS Math. Methods
Appl. Sci., 12 (1990), pp. 365–368.

[24] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains, Arch. Rational Mech. Anal.,
151 (2000), pp. 221–276.

[25] M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numer. Math.,
93(2002), pp. 239–277.

[26] M. Costable, M. Dauge, and S. Nicaise, Singularities of Maxwell inteface problems, M2AN Math. Modelling and
Numer. Anal., 33 (1999), pp. 627–649.

[27] A. Bonnet-Ben Dhia, C. Hazard, and S. Lohrengel, A singular field method for the solution of Maxwells equations
in polyhedral domains, SIAM J. Appl. Math., 59 (1990), no. 6, pp. 2028–2044.

[28] H.Y. Duan, P. Lin, and Roger C. E. Tan, Analysis of a continuous finite element method for H(curl ,div )-elliptic
interface problem, Submitted.

[29] H.Y. Duan, F. Jia, P. Lin, and R.C.E. Tan, The local L2 projected C0 finite element method for Maxwell problem,
SIAM J. Numer. Anal., 47(2009), pp. 1274–1303.

[30] P. Fernandes and G. Gilardi, Magnetostatic and Electrostatic problems in inhomogeneous anisotropic media with
irregular boundary and mixed boundary conditions, Math. Models and Methods Appl. Sci., 7(1997), pp. 957–991.

[31] P. Fernandes and I. Perugia, Vector potential formulation for magnetostatics and modelling of permanent magnets,
IMA J. Appl. Math., 66(2001), pp. 293-318.

[32] V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, New York, 1986.
[33] G. H. Golub and C. F. Van Loan, Matrix Computations, 2ed., The Johns Hopkins University Press, Baltimore, MD

(1989).
[34] J. Gopalakrishnan and W. Qiu, Partial expansion of a Lipschitz domain and some applications, Front. Math. China,

7(2012), pp. 249-272.
[35] P. Grisvard, Elliptitc Problems in Nonsmooth Domains, Pitman Advanced Publishing Program, London (1985).
[36] C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell’s equations, SIAM J.

Math. Anal., 27 (1996), pp. 1597–1630.
[37] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numerica, 2002, pp. 237–339.
[38] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM J. Numer. Anal.,

45(2007), pp. 2483–2509.
[39] R. Hiptmair, J. Li, and J. Zou, Convergence analysis of finite element methods for H(div;)-elliptic interface problems,

J. Numer. Math., 18 (2010), pp. 187–218.
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