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Abstract

In this paper, the monolithic multigrid method is investigated for reduced magneto-

hydrodynamic equations. We propose a diagonal Braess-Sarazin smoother for the finite

element discrete system and prove the uniform convergence of the MMG method with

respect to mesh sizes. A multigrid-preconditioned FGMRES method is proposed to solve

the magnetohydrodynamic equations. It turns out to be robust for relatively large physical

parameters. By extensive numerical experiments, we demonstrate the optimality of the

monolithic multigrid method with respect to the number of degrees of freedom.
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1. Introduction

The incompressible magnetohydrodynamic (MHD) equations governs the dynamics of a

charged fluid in the presence of electromagnetic fields. It has broad applications in technology

and engineering, such as aluminum electrolysis, electromagnetic pumping, stirring of liquid

metals, and flow-quantity measurements based on magnetic induction [1, 9, 12]. The governing

model is a coupled system of Navier-Stokes equations and Maxwell’s equations. When the

magnetic field tends to be saturated or the electric conductivity is relatively small, the model is

usually simplified to the reduced MHD (RMHD) equations [19, 22, 27]. In dimensionless form,

the stationary RMHD model is given by

− 1

Re
4u+∇p+N(∇φ− u×B)×B = f in Ω, (1.1a)

∇ · u = 0 in Ω, (1.1b)

−4φ+∇ · (u×B) = χ in Ω, (1.1c)

u = 0, φ = ξ on Γ, (1.1d)

where Ω ⊂ R3 is a bounded domain with Lipschitz-continuous boundary Γ := ∂Ω. The un-

knowns are the velocity of fluid u, the hydrodynamic pressure p, and the electric potential φ.
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The right-hand sides f ∈ L2(Ω), χ ∈ L2(Ω) and the applied magnetic field B ∈ H1(Ω) are

assumed to be given. The non-dimensional parameters Re and N are the Reynolds number

and coupling parameter. The boundary value for φ satisfies ξ ∈ H1/2(Γ). Here the momentum

equation (1.1a) does not contain the convection term u · ∇u. The model can be interpreted

as the coupling between the Stokes equations and the electric potential Poisson equation or as

the Stokes linearization of time-dependent Navier-Stokes equations where the convective term

is treated explicitly in time (cf. e.g. [16, 20,24]).

There are many papers in the literature on numerical solutions of RMHD equations. In

[27], Peterson proved the existence and uniqueness of weak solutions of RMHD model and

studied its finite element approximation. Layton et al [19] proved L2-error estimates and

proposed a two-level method to deal with the nonlinearity. Ervin et al studied a posteriori

error estimates for both standard finite element method as well as a two-level Newton finite

element method [11]. For time-dependent problems, Yuksel and Ingram gave a comprehensive

error analysis for both semi-discrete and fully discrete approximate [35, 36]. In 2007, Ni et

al developed consistent and charge-conservative schemes for inductionless MHD equations on

both structured and unstructured meshes [25,26]. For theoretical and numerical studies of other

MHD models, we refer to [14,17,18,22,30,32] and references therein.

After linearization and discretization, the MHD equations usually result in a large and

indefinite linear system which is very hard to solve. The study for robust and efficient pre-

conditioners is an important research topic. Among various existing solvers for these types of

systems, one may distinguish between block preconditioners and monolithic multigrid (MMG).

Block preconditioners exploit inherent block structure of the fully coupled system and utilize

existing Poisson solvers as building blocks. The key ingredient is to construct approximate

Schur complements (cf. e.g. [21, 23,24,28,29]).

The MMG method solves the fully-coupled system not only on the finest level of finite

element meshes, but also on coarse levels. Over the past three decades, great success has been

achieved in MMG for large-scale multi-physics problems. We refer to [7,38] for MMG methods

for Stokes equations and Navier-Stokes equations and to [2] for MMG method for resistive

MHD equations. In [33, 34], Salah et al proposed a fully-coupled multilevel preconditioner

for incompressible resistive MHD in the context of fully-implicit time integration and direct-to-

steady-state solution. Recently, Adler et al proposed an MMG-preconditioned GMRES method

for vector-potential formulation of two-dimensional resistive MHD equations [3]. However, to

the authors’ knowledge, there are few papers in the literature on the convergence of multigrid

(MG) method for MHD equations.

The objective of this paper is to investigate the MMG method for solving the discrete prob-

lem of (1.1). Inspired by Braess and Sarazin, we propose a diagonal Braess-Sarazin (DBS)

smoother for solving the discrete system. Different from classical Braess-Sarazin smoother for

Stokes equations [7, 38], our smoother uses damped Jacobi relaxation for each variable. It is

easy to implement and economic in practical computations. A rigorous convergence analysis

is presented for the MMG method by verifying its smoothing and approximation properties.

Furthermore, we also propose a MMG-preconditioned FGMRES method for the discrete prob-

lem. Numerical experiments show that the method is robust for large physical parameters and

quasi-optimal with respect to mesh sizes.

The paper is organized as follows. In Section 2, we introduce the variational formulation

and present mixed finite element approximation to the RMHD equations. Some preliminary

estimates are also presented. In Section 3, we present the MMG algorithm with DBS smoother.
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In Section 4, we prove the convergence of the MMG method by virtue of smoothing property and

approximation property. In Section 5, we present some numerical experiments to demonstrate

the uniform convergence of the MMG method and the robustness of MMG-preconditioned

FGMRES method with respect to large physical parameters. Section 6 concludes the main

result of the paper.

2. Mixed finite element method for the RMHD equations

Let L2(Ω) be the space of square-integrable functions and define L2
0(Ω) := L2(Ω)/R. The

inner product and norm on L2(Ω) are given by

(u, v) :=

∫
Ω

uvdx, ||u||L2(Ω) := (u, u)1/2.

Define Hk(Ω) :=
{
v ∈ L2(Ω) : Dξv ∈ L2(Ω), |ξ| ≤ k

}
where ξ represents non-negative triple

index. Let H1
0 (Ω) ⊂ H1(Ω) be the subspace whose functions have zero traces on Γ. The dual

space of H1
0 (Ω) is denoted by H−1(Ω). Vector-valued quantities will be denoted by boldface

notations, such as L2(Ω) := (L2(Ω))3.

2.1. Weak formulation and the well-posedness

For convenience, we introduce some notations for function spaces

V = H1
0(Ω), Q = L2

0(Ω), S = H1
0 (Ω).

Define the following linear and bilinear forms:

a(u,v) := R−1
e (∇u,∇v) +N(u×B,v ×B), b(v, q) := −(∇ · v, q),

c(φ, ψ) := N(∇φ,∇ψ), d(v, ψ) := −N(v ×B,∇φ),

lu(v) := (f ,v), lφ(ψ) := N(χ, ψ).

Since we are studying MG method for solving the discrete problem, the boundary conditions

are assumed to be homogeneous namely, g = 0 and ξ = 0, for simplicity. A weak formulation

of (1.1) reads: Find u ∈ V , p ∈ Q, and φ ∈ S such that

a(u,v) + b(v, p) + d(v, φ) = lu(v) ∀v ∈ V , (2.1a)

b(u, q) = 0 ∀ q ∈ Q, (2.1b)

c(φ, ψ) + d(u, ψ) = lφ(ψ) ∀ψ ∈ S. (2.1c)

The weak formulation can be casted into one in the product space W = V × Q × S: Find

x := (u, p, φ) ∈W such that

B(x,y) = F(y) ∀y := (v, q, ψ) ∈W , (2.2)

where B(·, ·) and F(·) are defined by

B(x,y) = a(u,v) + b(v, p) + d(v, φ) + b(u, q) + c(φ, ψ) + d(u, ψ),

F(y) = lu(v) + lφ(ψ).

In [27], Peterson proved the existence and uniqueness of weak solution to (2.1) with nonlinear

convection term. Here we only summarize the well-posedness of (2.1) without proofs.
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Theorem 2.1. Assume that f ∈H−1(Ω) and χ ∈ H−1(Ω), the variational problem (2.1) has

a unique solution (u, p, φ) ∈ V ×Q× S which satisfies

‖u‖H1(Ω) + ‖φ‖H1(Ω) + ‖p‖L2(Ω) ≤ C
(
‖f‖H−1(Ω) + ‖χ‖H−1(Ω)

)
. (2.3)

For the forthcoming analysis, we make the assumption on the regularity of solutions. It

holds when Ω is a convex polygonal domain or ∂Ω is smooth (see [1] for more details).

Assumption 2.1. For any f ∈ L2(Ω) and χ ∈ L2(Ω), the solutions u, p, φ satisfy the regular-

ities

‖u‖H2(Ω) + ‖φ‖H2(Ω) + ‖p‖H1(Ω) ≤ C(‖f‖L2(Ω) + ‖χ‖L2(Ω)). (2.4)

2.2. Finite element approximation

Let Th be a quasi-uniform and shape-regular tetrahedral mesh of Ω. The mesh size of Th is

denoted by h = maxT∈Th hT . For any T ∈ Th, let Pk(T ) be the space of polynomials of degree

k on T . Let V h × Qh × Sh ⊂ V × Q × S be finite element spaces which satisfy the discrete

inf-sup condition

sup
vh∈V h

b(vh, qh)

‖vh‖H1(Ω)

≥ β ‖qh‖L2(Ω) ∀ qh ∈ Qh, (2.5)

where the constant β > 0 does not depend on h. A wide variety of spaces V h, Qh satisfying

(2.5) have been proposed in the literature. We refer to [5,8,13] and the references therein. Here

we employ the well-known Hood-Taylor P 2 − P1 finite elements to discretize the velocity and

the pressure

V h =
{
vh ∈H1

0(Ω): vh|T ∈ P 2(T ) ∀T ∈ Th
}
,

Qh = Q ∩
{
q ∈ H1(Ω) : q|T ∈ P1(T ) ∀T ∈ Th

}
.

The finite element space for the electric potential is given by

Sh =
{
ψ ∈ H1

0 (Ω) : ψ|T ∈ P2(T ) ∀T ∈ Th
}
.

The finite element discretization of (2.1) leads to a coupled discrete system: Find uh ∈ Vh,

ph ∈ Qh and φh ∈ Sh such that

a(uh,vh) + b(vh, ph) + d(vh, φh) = lu(vh) ∀vh ∈ V h, (2.6a)

b(uh, qh) = 0 ∀ qh ∈ Qh, (2.6b)

c(φh, ψh) + d(uh, ψh) = lφ(ψh) ∀ψh ∈ Sh. (2.6c)

Equivalently, the problem can also be written into a compact form: Find xh ∈W h,

B(xh,yh) = F(yh) ∀yh ∈W h := V h ×Qh × Sh. (2.7)

In [25], Peterson proved the optimal error estimate in energy norm. In [1], Layton et al proved

the L2-error estimates. For brevity, we only present the results.

Theorem 2.2. The problem (2.1) admits a unique solution. There is a constant C independent

of h such that

‖uh‖H1(Ω) + ‖φh‖H1(Ω) + ‖ph‖L2(Ω) ≤ C
(
‖f‖H−1(Ω) + ‖χ‖H−1(Ω)

)
. (2.8)
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Let (u, p, φ) be the solutions of (1.1) and let assumption (2.4) be satisfied. Then

‖u− uh‖Hj(Ω) + ‖φ− φh‖Hj(Ω) + h1−j ‖p− ph‖L2(Ω)

≤Ch2−j
(
‖u‖H2(Ω) + ‖p‖H1(Ω) + ‖φ‖H2(Ω)

)
, j = 0, 1. (2.9)

2.3. The discrete system

We write the discrete problem (2.2) into an algebraic saddle-point problem

Kx = b, (2.10)

where the quantities have the following block forms

K =

(
X Y>

Y 0

)
, X =

(
A D>

D C

)
, Y =

(
B 0

)
,

x =

(
xw

xp

)
, b =

(
bw

bp

)
, xw =

(
xu

xφ

)
, bw =

(
bu

bφ

)
.

The vectors xu, xp, xφ represent degrees of freedom (DOFs) for u, p, φ respectively and bu,

bp, bφ are the corresponding load vectors. Let vi, qi, ψi be basis functions of V h, Qh and Sh
respectively. The entries of block matrices are given by

Ai,j = R−1
e (∇vj ,∇vi) +N(vj ×B,vi ×B), Bi,j = −(∇ · vj , qi),

Ci,j = N(∇ψj ,∇ψi), Di,j = −N(vj ×B,∇ψi).

3. Monolithic multigrid method

The purpose of this section is to construct MMG method for solving the discrete problem.

First we present the MMG algorithm. The DBS smoother will be presented next.

3.1. Multigrid algorithm

Let T0 be an initial triangulation of Ω and let the triangulation Tk, k ≥ 1, be generated

from Tk−1 through uniform refinement so that the mesh sizes satisfy hk+1 = hk/2. The finite

element spaces on Tk satisfy

V k ⊂ V k+1, Qk ⊂ Qk+1, Sk ⊂ Sk+1, k = 0, · · · , L− 1.

Let xk ∈W k := V k ×Qk × Sk solve the discrete problem on level k

B(xk,yk) = Fk(yk) ∀yk ∈W k. (3.1)

Let Ikk−1 denote the natural injection W k−1 ↪→ W k. Let Sk : W k → W k denote the DBS

smoother which will be specified in the next subsection.

Given an approximate solution x
(0)
k ∈W k of (3.1) on level k ≥ 1, the approximate solution

MG(k, γ,x
(0)
k , ν1, ν2) := x

(ν1+ν2+1)
k by one MG iteration is computed recursively in three steps.

(I) Pre-smoothing : Compute x
(ν1)
k by ν1 iterations starting from x

(0)
k ,

x
(ν1)
k = Sν1k x

(0)
k . (3.2)
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1. Coarse-grid correction: x
(ν1+1)
k = x

(ν1)
k +Ikk−1ẽk−1 where ẽk−1 is the approximate solution

of the error equation

B(ek−1,yk−1) = R(Ikk−1yk−1) ∀yk−1 ∈W k−1, (3.3)

and R(yk) := F(yk)−B(x
(ν1)
k ,yk) is the residual functional on W k. For k = 1, ẽ0 = e0

is the exact soluiton of (3.3), while for k > 1, ẽk−1 := MG(k−1, γ,0, ν1, ν2) is computed

by the MG algorithm on Tk−1.

2. Post-smoothing : Compute x
(ν1+ν2+1)
k by ν2 iterations starting from x

(ν1+1)
k ,

x
(ν1+ν2+1)
k = Sν2k x

(ν1+1)
k . (3.4)

The parameter γ is called cycle index which yields the V-cycle algorithm by setting γ = 1

and the W-cycle algorithm by setting γ = 2. The F-cycle MG algorithm MGF(k, 1,x
(0)
k , ν1, ν2)

is defined by computing ẽk−1 as follows

ěk−1 = MGF(k − 1, 1,0, ν1, ν2), ẽk−1 = MG(k − 1, 1, ěk−1, ν1, ν2), k > 1.

3.2. Diagonal Braess-Sarazin smoother

Smoothing method plays the key role in MG method. Here we propose a Braess-Sarazin-

type smoother for the saddle-point RMHD system. For convenience, we drop off the subscript

k of all quantities.

Following Bank et al [4], we propose an iterative method for solving (2.10)

x̂(m)
u = x(m)

u + Â−1
(
bu − Ax(m)

u − D>x(m)
φ − B>x(m)

p

)
, (3.5a)

x(m+1)
p = x(m)

p − Ŝ−1
(
bp − Bx̂(m)

u

)
, (3.5b)

x(m+1)
u = x(m)

u + Â−1
(
bu − Ax(m)

u − D>x(m)
φ − B>x(m+1)

p

)
, (3.5c)

x
(m+1)
φ = x

(m)
φ + Ĉ−1

(
bφ − Dx(m)

u − Cx(m)
φ

)
, (3.5d)

where Â−1, Ĉ−1, Ŝ−1 are, respectively, preconditioners for A, C, and the inexact Schur com-

plement S := BÂ−1B>. For simplicity, we define

Â := αAdiag(A), Ĉ := αCdiag(C), Ŝ := αSdiag(S). (3.6)

Here αA > 0, αC > 0, αS > 0 are scaling parameters whose values will be discussed in more

details in Section 4.5. Since Â is diagonal, diag(S) can be easily computed. Therefore, each

step of (3.5) is economic in computations.

Equivalently, (3.5) can be written into a preconditioned Richardson algorithm

x(m+1) = x(m) + K̂−1
(
b−Kx(m)

)
, m = 0, 1, · · · , (3.7)

where the pre-conditioner is defined by

K̂−1 =

(
X̂ Y>

Y S− Ŝ

)−1

, X̂ :=

(
Â 0

0 Ĉ

)
.
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Since X̂ and Ŝ are diagonal matrices, the K̂−1 is easy to compute. Therefore, the smoothing

algorithm (3.7) is referred to diagonal Braess-Sarazin smoother hereafter. Accordingly, (3.7)

defines the DBS smoothing operator Sk: W k →W k such that

x(m+1) = Skx(m), m = 0, 1, · · · . (3.8)

Remark 3.1. One can also consider block upper triangular or block lower triangular approxi-

mation to X, which gives

X̂upper :=

(
Â D>

0 Ĉ

)
, X̂lower :=

(
Â 0

D Ĉ

)
.

Since we are only interested in the case that X̂ is SPD, the details on these two cases are omitted

here.

Remark 3.2. For large coupling number N , the MMG method may become less efficient due

to strong coupling between fluid and electricity. In this case, we recommend to use the MMG

method as a pre-conditioner of FGMRES method for solving (2.10). Numerical experiments in

Section 5 show that the MG-preconditioned FGMRES method is robust to large coupling number

and Reynolds number.

4. Convergence of MMG method

The purpose of this section is to prove the convergence of the MMG method. The main

technique follows the framework in [6] by verifying two vital properties, the approximation

property and the smoothing property of the MG algorithm.

4.1. Error representation of two-grid algorithm

First we present the lemma on the continuity of the bilinear form B.

Lemma 4.1. There exists a constant C > 0 depending on N , Re, B such that

|B(x,y)| ≤ C ‖x‖W ‖y‖W ∀x,y ∈W ,

where

‖x‖W :=
(
‖u‖2H1(Ω) + ‖p‖2L2(Ω) + ‖φ‖2H1(Ω)

)1/2

, x = (u, p, φ).

Proof. By Schwarz’s inequality and the injection of H1(Ω) ↪→ L6(Ω), we have

‖u×B‖L2(Ω) ≤ ‖u‖L6(Ω) ‖B‖L3(Ω) ≤ C‖u‖H1(Ω).

The proof is finished by applying Schwarz’s inequality to each term of B(x,y).

Now we define the mesh-dependent inner product and norm on W k

(x,y)0,k := (u,v) + (φ, ψ) + h2
k(p, q), ‖|x|‖0,k := (x,x)

1/2
0,k . (4.1)
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By the continuity of B and inverse inequalities on finite element spaces, the norm of the bilinear

form B satisfies

‖|B|‖ := sup
06=x,y∈W k

|B(x,y)|
|||x|||0,k|||y|||0,k

≤ Ch−2
k . (4.2)

Associated with this norm, a mesh-dependent 2-norm is defined by

‖|x|‖2,k = sup
06=y∈W k

|B(x,y)|
‖|y|‖0,k

. (4.3)

To study the two-grid algorithm, we need the so-called coarse-to-fine operator Ikk−1 and

the fine-to-coarse operator Ik−1
k . Here Ikk−1: W k−1 →W k is the natural injection defined in

Section 3.1 and Ik−1
k : W k →W k−1 is the duality of Ikk−1 with respect to the mesh-dependent

inner product

(Ik−1
k xk,yk−1)0,k−1 = (xk, Ikk−1yk−1)0,k ∀yk−1 ∈W k−1, xk ∈W k.

Since Ikk−1 is the natural injection, we immediately get∥∥∣∣Ikk−1yk−1

∣∣∥∥
0,k
≤
∥∥∣∣yk−1

∣∣∥∥
0,k−1

,
∥∥∣∣Ik−1

k xk
∣∣∥∥

0,k−1
≤ ‖|xk|‖0,k .

Let Pk−1
k : W k →W k−1 be the duality of Ikk−1 with respect to B(·, ·), namely,

B(Pk−1
k xk,yk−1) = B(xk, Ikk−1yk−1) ∀yk−1 ∈W k−1,xk ∈W k. (4.4)

It follows from (4.3) and (4.4) that∥∥∣∣Pk−1
k xk

∣∣∥∥
2,k−1

≤ C ‖|xk|‖2,k ∀xk ∈W k.

Let Ik: W k →W k be the identity operator and let Sk: W k →W k be the DBS smoothing

operator defined in (3.8). Since the two-grid algorithm solves the coarse-grid problem exactly,

the error between the exact solution xk and the approximate solution x
(ν1+ν2+1)
k by one MG

iteration can be represented as follows

xk − x(ν1+ν2+1)
k = Sν2k (Ik − Pk−1

k )Sν1k (xk − x(0)
k ).

For simplicity, we restrict the convergence analysis to the MMG method only having pre-

smoothing, namely, ν1 = m and ν2 = 0. Then the error satisfies

xk −MG(k, γ,x
(0)
k ,m, 0) = xk − x(m+1)

k = (Ik − Pk−1
k )Smk (xk − x(0)

k ). (4.5)

The theory can be extended to the case of ν2 6= 0 straightforwardly.

4.2. Approximation property

First we prove some preliminary results which are important for proving the approximation

property.

Lemma 4.2. Given ξ ∈ L2(Ω) and ϕ ∈ L2(Ω), let xj ∈W j be the solutions of

B(xj ,yj) = (ξ,vj) + (ϕ,ψj) ∀yj = (vj , qj , ψj) ∈W j , j = k − 1, k.

There is a constant C independent of hk such that

‖|xk − xk−1|‖0,k ≤ Ch
2
k

(
‖ξ‖L2(Ω) + ‖ϕ‖L2(Ω)

)
.
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Proof. Let x ∈W be the solution to

B(x,y) = (ξ,v) + (ϕ,ψ) ∀x ∈W .

From Theorem 2.2 and the regularities in (2.4), we have

‖|x− xj |‖0,k ≤ Ch
2
j

(
‖ξ‖L2(Ω) + ‖ϕ‖L2(Ω)

)
, j = k − 1, k.

The proof is finished by using the triangle inequality.

Lemma 4.3. Given w ∈ L2(Ω), let xj ∈W j, j = k − 1, k, be the solutions to

B(xj ,yj) = (w, qj), ∀yj = (vj , qj , ψj) ∈W j . (4.6)

There is a constant C independent of hk such that

‖|xk − xk−1|‖0,k ≤ Chk ‖w‖L2(Ω) .

Proof. By Theorem 2.1, there is a unique solution θ = (w, r, ϕ) ∈W satisfying

B(θ,y) = (uk − uk−1,v) + (φk − φk−1, ψ) ∀y = (v, q, ψ) ∈W .

Let θj ∈W j , j = k − 1, k, be the solutions to

B(θj ,yj) = (uk − uk−1,vj) + (φk − φk−1, ψj) ∀yj = (vj , qj , ψj) ∈W j . (4.7)

Then Lemma 4.2 implies that

‖rk − rk−1‖L2(Ω) ≤ Chk
(
‖uk − uk−1‖L2(Ω) + ‖φk − φk−1‖L2(Ω)

)
. (4.8)

From (4.7), we find that

‖uk − uk−1‖2L2(Ω) + ‖φk − φk−1‖2L2(Ω) = B(θk,xk)− B(θk−1,xk−1).

Combining (4.6) and (4.8) yields

‖uk − uk−1‖+ ‖φk − φk−1‖ ≤ Chk ‖w‖ . (4.9)

From (2.8), the stabilities of discrete solutions lead to

‖uj‖H1(Ω) + ‖φj‖H1(Ω) + ‖pj‖L2(Ω) ≤ C ‖w‖L2(Ω) , j = k − 1, k. (4.10)

The proof is completed by (4.9), (4.10), and the definition of ‖|·|‖0,k.

Lemma 4.4. There is a constant C independent of hk such that, for k ≥ 1,∥∥∣∣(Ik − Pk−1
k )xk

∣∣∥∥
0,k
≤ Ch2

k ‖|xk|‖2,k ∀xk ∈W k. (4.11)

Proof. Write Pk−1
k xk = x̂ = (ûk, p̂k, φ̂k) for convenience. It suffices to estimate ‖uk − ûk‖L2(Ω),∥∥φk − φ̂k∥∥L2(Ω)

, and ‖pk − p̂k‖L2(Ω). We estimate the first two terms by dual techniques. Let

ζj ∈W j , j = k − 1, k, satisfy

B(ζj ,yj) = (uk − ûk,vj) + (φk − φ̂k, ψj) ∀yj = (vj , qj , ψj) ∈W j . (4.12)
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Taking yk = uk − ûk leads to

‖uk − ûk‖2L2(Ω) +
∥∥∥φk − φ̂k∥∥∥2

L2(Ω)
= B(ζk,xk)− B(ζk−1,Pk−1

k xk)

=B(ζk − ζk−1,xk) ≤
∥∥∣∣ζk − ζk−1

∣∣∥∥
0,k
‖|xk|‖2,k .

Estimating
∥∥∣∣ζk − ζk−1

∣∣∥∥
0,k

by Lemma 4.2, we obtain

‖uk − ûk‖L2(Ω) +
∥∥φk − φ̂k∥∥L2(Ω)

≤ Ch2
k ‖|xk|‖2,k . (4.13)

The third term can be estimated similarly. Let ξj ∈W j solve

B(ξj ,yj) = (pk − p̂k, qj) ∀yj ∈W j , j = k − 1, k. (4.14)

By Lemma 4.3 we have
∥∥∣∣ξk − ξk−1

∣∣∥∥
0,k
≤ Chk ‖pk − p̂k‖L2(Ω). So (4.14) shows

‖pk − p̂k‖2L2(Ω) = B(ξk − ξk−1,xk) ≤ Chk ‖pk − p̂k‖L2(Ω) ‖|x|‖2,k .

This gives ‖pk − p̂k‖L2(Ω) ≤ Chk ‖|x|‖2,k. The proof is finished by using (4.13).

Lemma 4.5 (Approximation property) Let assumption (2.4) be satisfied. There exists a

constant C such that ∥∥∥∣∣∣x(m+1)
k − xk

∣∣∣∥∥∥
0,k
≤ Ch2

k

∥∥∥∣∣∣x(m)
k − xk

∣∣∣∥∥∥
2,k
. (4.15)

Proof. This is a direct consequence of (4.5) and (4.11).

4.3. The smoothing property

For two symmetric matrices A and B, “A > B” means that A − B is positive definite and

“A ≥ B” means that A−B is positive semi-definite. Let M ∈ Rn×n be a symmetric and positive

definite (SPD) matrix. For a vector v ∈ Rn and a matrix A ∈ Rn×n, define

‖v‖M =
(
v>Mv

)1/2
, ‖A‖M = sup

0 6=v,w∈Rn

|w>Av|
‖v‖M ‖w‖M

. (4.16)

When M = I is identity matrix, we also use the notations

‖v‖ = ‖v‖I , ‖A‖ = ‖A‖I .

From (3.7), we have the error-propagation equation of the DBS smoother

x(m) − x = Pk
(
x(m−1) − x

)
= Pmk

(
x(0) − x

)
, Pk = Ik − K̂−1

k Kk.

So it is convenient to study the smoothing property in an algebraic setting. Define nk =

dim(V k) + dim(Sk) and mk = dim(Qk) and let Iw ∈ Rnk×nk , Ip ∈ Rmk×mk be identity

matrices. Define

Lk =

(
h3
kIw 0

0 h5
kIp

)
, Dk =

(
X̂k − Xk 0

0 Ŝk − Sk

)
.

From [10, Theorem 7] and [31, Theorem 3], we obtain the following lemma.
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Lemma 4.6. Let the scaling parameters αA, αC, αS be large enough such that X̂ ≥ X and

Ŝ ≥ S. Then for any m ≥ 2,

‖KkPmk ‖Lk
≤ Cm−1/2 ‖Dk‖Lk

.

Lemma 4.7. Let the scaling parameters αA, αC, αS be large enough such that X̂ ≥ X and

Ŝ ≥ S. Then for any m ≥ 2,

‖KkPmk ‖Lk
≤ Cm−1/2 ‖Kk‖Lk

.

Proof. It suffices to prove ‖Dk‖Lk
≤ C ‖Kk‖Lk

. Since Xk is symmetric and semi-positive

definite and X̂k, Sk are SPD, we have

0 ≤ Dk ≤

(
X̂k 0

0 Ŝk

)
, ‖Dk‖Lk

≤ h−3
k max

(∥∥X̂k∥∥, h−2
k

∥∥Ŝk∥∥).
Since X̂k, Ŝk are diagonal matrices, we have

‖Dk‖Lk
≤h−3

k max
(
αA ‖diag(Ak)‖ , αC ‖diag(Ck)‖ , αSh

−2
k ‖diag(Sk)‖

)
≤h−3

k max
(
αA ‖Ak‖ , αC ‖Ck‖ , αSh

−2
k ‖Sk‖

)
.

A standard scaling technique as done in [31] shows that

‖Sk‖ =
∥∥∥BkÂ−1

k B>k
∥∥∥ ≤ Cα−1

A ‖Bk‖ .

Combining the two inequalities above yields

‖Dk‖Lk
≤ Ch−3

k max
(
‖Ak‖ , ‖Ck‖ , h−2

k ‖Bk‖
)
≤ C ‖Kk‖Lk

.

This completes the proof.

Lemma 4.8 (Smoothing property) There is a consant C independent of k,m such that∥∥∥∣∣∣x(m)
k − xk

∣∣∣∥∥∥
2,k
≤ CSm−1/2h−2

k

∥∥∥∣∣∣x(0)
k − xk

∣∣∣∥∥∥
0,k
. (4.17)

Proof. Let y be the vector of DOFs associated with y ∈ W k. By standard scaling argu-

ments, there are two constants C2 > C1 > 0 such that

C1

∥∥y∥∥Lk
≤ ‖|y|‖0,k ≤ C2

∥∥y∥∥Lk
. (4.18)

Write e(m) = x
(m)
k −xk ∈W k for convenience and let e(m) be the vector associated with e(m).

Then ∥∥∥∣∣∣e(m)
∣∣∣∥∥∥

2,k
= sup

0 6=y∈W k

|B(e(m),y)|
‖|y|‖0,k

≤ Csup
y 6=0

|y>Kke(m)|∥∥y∥∥Lk

= Csup
y 6=0

|y>(KkPmk )e(0)|∥∥y∥∥Lk

≤C ‖KkPmk ‖Lk

∥∥e(0)
∥∥
Lk
≤ Cm−1/2 ‖Kk‖Lk

∥∥∥∣∣∣e(0)
∣∣∣∥∥∥

0,k
.

By Lemma 4.1 and inverse inequalities on W k, we find that

‖Kk‖Lk
= sup

y,z6=0

|y>Kkz|∥∥y∥∥Lk
‖z‖Lk

≤ C sup
06=y,z∈W k

|B(y, z)|
‖|y|‖0,k ‖|z|‖0,k

≤ C sup
06=y,z∈W k

‖y‖W ‖z‖W
‖|y|‖0,k ‖|z|‖0,k

≤ Ch−2
k .

The proof is finished.
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4.4. Convergence

Now we are in the position of presenting the main theorem of this paper.

Theorem 4.1. Let Assumption 2.1 be satisfied and let the number of smoothing steps m be

large enough. Then the two-grid method is uniformly convergent, namely, there exists a constant

δ ∈ (0, 1) independent of mesh size such that∥∥∥∣∣∣xk −MG(k, γ,x
(0)
k ,m, 0)

∣∣∣∥∥∥
0,k
≤ δ

∥∥∥∣∣∣xk − x(0)
k

∣∣∣∥∥∥
0,k
. (4.19)

Proof. Recall from Subsection 3 that the approximate solution by one MG iteration with

ν1 = m, ν2 = 0 is denoted by MG(k, γ,x
(0)
k ,m, 0) := x

(m+1)
k . By the error representation (4.5),

Lemma 4.5, and Lemma 4.8, we deduce that∥∥∥∣∣∣xk − x(m+1)
k

∣∣∣∥∥∥
0,k

=
∥∥∥∣∣∣(I − Pk−1

k )(xk − x(m)
k )

∣∣∣∥∥∥
0,k
≤ Ch2

k

∥∥∥∣∣∣xk − x(m)
k

∣∣∣∥∥∥
2,k

≤ Cm−1/2
∥∥∥∣∣∣xk − x(0)

k

∣∣∣∥∥∥
0,k
.

The proof is finished by choosing m large enough such that δ := Cm−1/2 < 1.

Remark 4.1. Based on two-grid MG method, the convergence of W-cycle and variable V-cycle

MG methods can be proven similarly (cf. e.g. [15]). We do not elaborate on the details. In

Section 5, we shall also show the uniform convergence of both V-cycle and F-cycle MG methods

numerically.

4.5. Scaling parameters

To end this section, we discuss the choices of the scaling parameters αA, αC, αS in (3.6) to

fulfill the assumptions in Lemma 4.6 and Lemma 4.7.

Recall that for a SPD matrix M ∈ Rn×n, the estimate M ≤ nnz(M) · diag(M) always holds,

where nnz(M) stands for the maximum number of non-zero entries per row in M. For finite

element matrices Xk and Sk, nnz(Xk) and nnz(Sk) are respectively bounded by two constants

NX and NS which are independent of hk. It suffices to set αA = αC = NX and αS = NS.

In practice, the choices of scaling parameters can be less restrictive. An efficient way is

to set αA = αC = λmax
X and αS = λmax

S , where λmax
X and λmax

S are, respectively, approximate

maximal eigenvalues of the generalized eigenvalue problems

Xw = λX X̂w, Sp = λS Ŝp. (4.20)

We merely compute λmax
X , λmax

S by several iterations of Power methods for solving (4.20) on a

coarse mesh TH .

5. Numerical experiments

In this section, we carry out numerical experiments for the 3D RMHD problem to demon-

strate the performance of the MMG method. All numerical tests are carried out on the LSSC-IV

cluster at the State Key Laboratory of Scientific and Engineering Computing (LSEC), Chinese

Academy of Sciences. The finite element method and the discrete solver are implemented on

adaptive finite element package “Parallel Hierarchical Grid” (PHG) [37].
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Example 5.1. This example is to examine the uniform convergence of the MMG method with

respect to mesh size. The problem setting is defined by

Ω = (0, 1)3, B = (0, 0, 1)>, Re = N = 1.

The exact solutions are chosen as

u = 2 (cos 2x sin 2y, − sin 2x cos 2y, 0)>,

p = sin y + cos 1− 1, φ = cos 2x cos 2y + x2 − y2.

Table 5.1: Number of W-cycle MG iterations and convergence rate.

Levels Ndofs
Smoothing steps ν1 + ν2 versus NMG (ρ)

4+4 5+5 6+6 7+7 8+8

2 3,041 21 (0.27) 17 (0.20) 15 (0.14) 14 (0.12) 13 (0.11)

3 20,381 21 (0.27) 18 (0.20) 17 (0.17) 15 (0.14) 14 (0.12)

4 148,661 21 (0.26) 18 (0.20) 16 (0.16) 15 (0.14) 14 (0.12)

5 1,134,437 20 (0.25) 18 (0.20) 16 (0.16) 15 (0.13) 14 (0.11)

Table 5.2: Number of V-cycle MG iterations and convergence rate.

Levels Ndofs
Smoothing steps ν1 + ν2 versus NMG (ρ)

4+4 5+5 6+6 7+7 8+8

2 3,041 21 (0.27) 17 (0.20) 15 (0.14) 14 (0.12) 13 (0.11)

3 20,381 22 (0.28) 18 (0.21) 17 (0.18) 16 (0.15) 14 (0.12)

4 148,661 21 (0.27) 18 (0.21) 17 (0.17) 16 (0.15) 14 (0.12)

5 1,134,437 21 (0.26) 19 (0.22) 17 (0.18) 16 (0.14) 15 (0.12)

Table 5.3: Number of F-cycle MG iterations and convergence rate.

Levels Ndofs
Smoothing steps ν1 + ν2 versus NMG (ρ)

4+4 5+5 6+6 7+7 8+8

2 3,041 21 (0.27) 17 (0.19) 15 (0.14) 14 (0.12) 13 (0.11)

3 20,381 21 (0.27) 18 (0.20) 17 (0.17) 15 (0.14) 14 (0.12)

4 148,661 21 (0.26) 18 (0.21) 17 (0.17) 15 (0.14) 14 (0.12)

5 1,134,437 20 (0.25) 18 (0.20) 16 (0.16) 15 (0.13) 14 (0.11)

The tolerance for relative residual is set by ε = 10−10. The convergence rate ρ is defined by

the geometric mean of convergence rates

ρ :=
∥∥∥b−Kx(j)

∥∥∥1/j ∥∥∥b−Kx(0)
∥∥∥−1/j

,
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Table 5.4: Convergence rates of uh and ph.

h ‖u− uh‖L2(Ω) order ‖u− uh‖H1(Ω) order ‖p− ph‖L2(Ω) order

0.433 3.41e-03 —– 9.42e-02 —– 4.37e-02 —–

0.216 4.44e-04 2.94 2.34e-02 2.01 7.08e-03 2.67

0.108 5.65e-05 2.98 5.80e-03 2.01 1.20e-03 2.57

0.054 7.10e-06 2.99 1.44e-03 2.01 2.13e-04 2.49

0.027 8.91e-07 3.00 3.60e-04 2.00 4.00e-05 2.41

Table 5.5: Convergence rates of φh.

h ||φ− φh|| order ||φ− φh||1,Ω order

0.433 1.171e-03 —– 3.186e-02 —–

0.216 1.514e-04 2.95 7.909e-03 2.01

0.108 1.920e-05 2.98 1.968e-03 2.00

0.054 2.414e-06 2.99 4.905e-04 2.00

0.027 3.027e-07 3.00 1.224e-04 2.00

where j > 0 is the number of MG iterations. Table 5.1 shows the convergence rate ρ and the

total number NMG of W-cycle MG iterations to reduce the relative residual below ε. Clearly

both NMG and ρ are quasi-uniform with respect to the number of mesh levels and the total

number of DOFs Ndofs for u, p, and φ. Moreover, the convergence rate satisfies the asymptotic

behavior

ρ ∼ m−1, m = ν1 = ν2. (5.1)

This is superior to the theoretical estimate, namely, ρ ≤ Cm−1/2.

Tables 5.2 and 5.3 show the convergence rates of V-cycle and F-cycle MG methods respec-

tively. Both methods yield the asymptotic convergence rate in (5.1).

Tables 5.4 and 5.5 show the decay of approximation errors as the mesh is refined uniformly.

Optimal convergence rates are obtained for finite element solutions.

Example 5.2. (Driven cavity flow) This example is to show the optimality and robustness of

MG-preconditioned FGMRES method for relatively large Reynolds number and coupling number

by a driven cavity flow. The cavity domain is Ω = (0, 1)3 and the right-hand side functions are

given by f = 0 and χ = 0. Dirichlet boundary conditions are set by u = (g1, 0, 0)> and φ = 0

on ∂Ω where g1 = g1(z) is a continuous function and satisfies

g1(1) = 1 and g1(z) = 0 if 0 ≤ z ≤ h.

Here h is the mesh size. The applied magnetic field is B = (0, 0, 1)>.

The information on four successively refined meshes are listed in Table 5.6. The tolerance

for relative residual is set by ε = 10−10. We present numerical results for both the W-cyle MG

solver and the MG-preconditioned FGMRES solver.
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Table 5.6: Mesh information

Meshes h Ndofs

T1 0.216 20,381

T2 0.108 148,661

T3 0.054 1,134,437

T4 0.027 8,861,381

Table 5.7: W-cycle MG method with ν1 = ν2 = 4, N = 1.

meshes Re NMG Re NMG Re NMG Re NMG

T1

100

17

200

18

400

20

800

25

T2 15 15 16 17

T3 13 13 13 13

T4 13 12 12 12

Table 5.8: W-cycle MG method with ν1 = ν2 = 4, N = 10.

meshes Re NMG Re NMG Re NMG Re NMG

T1

100

32

200

40

400

52

800

64

T2 21 26 35 49

T3 16 17 19 25

T4 14 14 14 15

Table 5.9: MG-preconditioned FGMRERS(10) method, N = 1.

meshes Re NMG Re NMG Re NMG Re NMG

T1

100

8

200

8

400

9

800

10

T2 8 8 8 8

T3 8 7 7 7

T4 7 7 6 6

Table 5.10: MG-preconditioned FGMRERS(10) method, N = 10.

meshes Re NMG Re NMG Re NMG Re NMG

T1

100

12

200

13

400

15

800

17

T2 10 11 12 15

T3 8 8 9 10

T4 7 7 7 7
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Tables 5.7 and 5.8 shows the number of iterations for the W-cycle MG solver with ν1 = ν2 =

4. We find that the MG solver is not robust to Reynolds number when the coupling number is

large, say, N = 10. However, it is still optimal with respect to mesh size h for both N = 1 and

N = 10.

Tables 5.9 and 5.10 shows that the number of iterations for the MG-preconditioned FGM-

RES solver is significantly reduced, compared with that of the MMG solver. Moreover, the

preconditioned FGMRES solver is robust even for N = 10.

6. Conclusions

In this paper, we investigate the monolithic multigrid method for solving discrete problem

of stationary RMHD equations. A diagonal Braess-Sarazin smoother is proposed for the MMG

method. By verifying approximation property and smoothing property, we give a rigorous con-

vergence analysis for the MMG method. An MG-preconditioned FGMRES method is proposed

and is demonstrated numerically to be robust for relatively large physical parameters.
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