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Abstract. In this paper, the local multiplicative and additive multilevel methods are considered
on adaptively refined meshes for second-order elliptic problems with highly discontinuous coefficients.
For the multilevel-preconditioned system, we studied the distribution of its spectrum by using the
abstract Schwarz theory. It is proved that, except for a few small eigenvalues, the spectrum of the
preconditioned system is bounded quasi-uniformly with respect to the jumps of the coefficient and
the mesh sizes. The convergence rate of the multilevel-preconditioned conjugate gradient methods
is proved to be quasi-optimal regarding the jumps and the meshes. Numerical experiments are
presented to demonstrate the convergence theory of the local multilevel methods.
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1. Introduction. In the last two decades, adaptive finite element method (AFEM)
has been developed very rapidly and has become a popular and powerful tool in nu-
merical solutions of partial differential equations (PDEs). The optimal approximation
using finite element methods can be achieved by mesh adaptivity under a posteriori
error estimates (cf. e.g. [6, 16, 32, 36]). Meanwhile, we also pursue optimal meth-
ods for computing the asymptotical solution of the discrete problem. By “optimal”
we means that the computation of the asymptotical solution only requires O(N) op-
erations, where N is the number of degrees of freedom (DOFs) on the underlying
mesh. The multigrid or multilevel method is one of the most efficient and widely used
methods for computing the numerical solution.

The uniform convergence of multigrid methods for conforming finite elements has
been widely studied by many authors. We refer to [7, 8, 9, 10, 12, 25, 33, 43] and et al
for multigrid method theory on uniformly refined meshes. Since the number of DOFs
may not grow exponentially with the mesh levels in AFEM procedure, as Mitchell
pointed out in [31], traditional multigrid methods, which perform relaxations on all
nodes, may use O(N2) operations for certain meshes. To avoid this over-relaxation,
local multigrid methods adopt the idea of local smoothing, which restricts relaxations
to new elements of each level, and is proved to be very efficient on adaptively re-
fined meshes (cf. e.g. [26, 46, 48, 50] for elliptic problems with smooth coefficients).
Motivated by the recent work of Xu and Zhu [49], we study local multiplicative and
additive multilevel algorithms (LMMA and LMAA) for second-order elliptic problems
with highly discontinuous coefficients. Different from the works of Chen, Holst, Xu
and Zhu [18] for second-order elliptic problems with discontinuous coefficients and
Hiptmair and Zheng [27] for Maxwell equations, our algorithm does not reconstruct
a virtual refinement hierarchy of meshes. We assume that the meshes are generated
by using AFEM under a posteriori error estimates.
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Given a bounded, polygonal or polyhedral domain Ω ⊂ Rd(d = 2, 3), we consider
the following second-order elliptic problem:

−div(ρ(x )∇u) = f in Ω, (1.1)
u = 0 on ∂Ω, (1.2)

where the source function f ∈ L2(Ω). The coefficient ρ(x ) is positive and piecewise
constant and may have large jumps in Ω. The homogeneous boundary condition in
(1.2) is not essential to our theory and can be replaced with more general boundary
conditions. Although problem (1.1)–(1.2) seems simple, it plays an important role
in many practical applications: such as steady state heat conduction in composite
materials, electromagnetism, multiphase flow and et al.

It is well known that the solution of problem (1.1)–(1.2) may have singularities
near reentrant corners of the domain and jumps of the coefficient. The AFEM based
on a posteriori error estimates is very efficient to capture local singularities of the
solution. There have been considerable works on a posteriori error estimates for such
problems. We refer to Bernardi and Verfürth [5], Petzoldt [35], and Chen and Dai [20]
for residual-based error estimates, to Luce and Wohlmuth [29] for equilibrated error
estimates, and to Cai and Zhang [14] for recovery-based error estimates. For adaptive
nonconforming or mixed finite element methods, the a posteriori error estimates are
studied by Ainsworth [1, 2] for equilibrated error estimates, by Chen, Xu, and Hoppe
[19] for residual-based error estimates, and by Cai and Zhang [15] for the recovery-
based error estimates.

The purpose of this paper is to study local multilevel solvers for the adaptive
finite element discretization of (1.1)–(1.2) and to prove the quasi-optimality of these
solvers. It is known that the condition number of the discrete system of the problem
(1.1)–(1.2) depends on the jumps of ρ(x) and mesh sizes. To reduce the condition
number, multigrid methods and domain decomposition methods have been studied
for quasi-uniform meshes (cf. e.g. [17, 24, 30, 37, 40, 44]). In general, the convergence
rate of local multilevel methods depends on the jump of the coefficient, the mesh sizes,
or the mesh levels due to the lack of uniform stability estimates for the weighted L2-
projection (cf. [11, 34, 42]). The convergence rate may be improved for some certain
instances (cf. [22, 23, 34, 45]). Recently Xu and Zhu (cf. [49, 51]) proved the quasi-
uniform convergence of the conjugate gradient methods preconditioned by multilevel
methods and overlapping domain decomposition methods respectively.

The objective of this paper is to extend the results of [49] to adaptively refined
meshes which are generated by the “newest vertex bisection algorithm” [31, 46]. Using
the abstract Schwarz theory, we prove that except for a few small eigenvalues, the
effective condition numbers, i.e., the ratio of the maximum to the minimum of the
remaining eigenvalues of the multilevel-preconditioned algebraic system, are bounded
by C|loghmin|2. Here the constant C is independent of the jumps, the mesh sizes, and
the mesh levels, and hmin is the minimum diameter of the triangles or tetrahedrons on
the finest mesh. The main difficulty is how to obtain a stable multilevel decomposition
of the finite element space on the finest mesh and how to prove the strengthened
Cauchy-Schwarz inequality regarding this decomposition. We should point out that
both local Jacobi smoothers and local Gauss-Seidel smoothers apply to the local
multilevel methods.

The remainder of this paper is organized as follows. In Section 2, we intro-
duce some notation, finite element spaces, and the preconditioned conjugate gradient
method. In Section 3, we propose the local multiplicative and additive multilevel
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algorithms, i.e., local multigrid V-cycle and local BPX preconditioner. In Section
4, we study the convergence of LMMA, preconditioned conjugate gradient method
by LMMA (LMMA-PCG), and preconditioned conjugate gradient method by LMAA
(LMAA-PCG). In Section 5, we study the multilevel decomposition of the finite ele-
ment space on the finest mesh and prove the so-called strengthened Cauchy-Schwarz
inequality. In Section 6, we present several numerical experiments to demonstrate our
convergence theory.

2. Preliminary. Throughout this paper, we denote by (·, ·) the standard inner
product in L2(Ω), by ‖·‖1,Ω and | · |1,Ω the norm and semi-norm in H1(Ω). Let C with
or without subscript stand for a generic positive constant which is independent of the
jumps of ρ(x), the mesh sizes and the mesh levels, but depends on Ω and the shape
regularity of the meshes. These constants can take on different values in different
occurrences. We also introduce the weighted inner product and weighted norm in
L2(Ω):

(u, v)ρ = (ρu, v), ‖v‖L2
ρ(Ω) = (v, v)

1
2
ρ ∀u, v ∈ L2(Ω).

The weak formulation of (1.1) and (1.2) is: Find u ∈ H1
0 (Ω) such that

a(u, v) = (f, v) ∀v ∈ H1
0 (Ω), (2.1)

where a : H1
0 (Ω)×H1

0 (Ω) 7→ R1 is a bilinear form defined as follows

a(u, v) = (ρ(x )∇u,∇v) ∀u, v ∈ H1
0 (Ω).

The existence and uniqueness of the solution uh follows from the coercivity of a(·, ·)
and the Lax-Milgram theorem [21]. It is clear that the weighted H1-semi-norm coin-
cides with the energy norm induced by a(·, ·), namely,

‖v‖A :=
√
a(v, v) = ‖∇v‖L2

ρ(Ω) ∀ v ∈ H1
0 (Ω).

Let Th be a conforming triangulation of Ω, that is, any two elements in Th

are either nonintersecting or intersecting with a common vertex or a common edge.
Throughout the paper, we assume that any triangulation of Ω takes care of the dis-
continuity of ρ(x), namely, ρ|T is constant for any T ∈ Th. We define the linear
Lagrangian finite element space on Th by

Vh = {vh ∈ H1
0 (Ω) : vh|T ∈ P1(T ), ∀T ∈ Th}.

The Galerkin approximation to (2.1) is: Find uh ∈ Vh such that

a(uh, vh) = (f, vh) ∀vh ∈ Vh. (2.2)

Let the linear operator Ah : Vh 7→ Vh be defined by

(Ahwh, vh)ρ = a(wh, vh), ∀wh, vh ∈ Vh.

Clearly Ah is symmetric and positive definite (SPD) and (2.2) is equivalent to the
following operator equation

Ahuh = fh, (2.3)
3



where fh ∈ Vh satisfies (fh, v)ρ = (f, v) for any v ∈ Vh.
Let Nh be the dimension of Vh and {xh

i , i = 1, · · · , Nh} be the set of interior
vertices of Th. We denote by φh

i ∈ Vh the nodal basis function belonging to xh
i ,

1 ≤ i ≤ Nh. Then the operator equation (2.3) is equivalent to the following algebraic
system

AhUh = Fh, (2.4)

where the entries of the matrix Ah and the vectors Uh,Fh are defined by

(Ah)ij := a(φi, φj), (Uh)i := uh(xh
i ), (Fh)i := (f, φi) ∀ i, j = 1, ..., N.

Using the arguments in Bank and Scott [4], we know that the `2-condition number
κ(Ah) can be estimated as follows:κ(Ah) ≤ CJ (ρ)Nh

(
1 + |log(Nhh

2
min)|

)
if d = 2,

κ(Ah) ≤ CJ (ρ)N2/3
h if d = 3,

J (ρ) =
maxx∈Ω ρ(x)
minx∈Ω ρ(x)

.

The following lemma is to estimate the convergence rate of the PCG algorithm
for the operator equation (2.3) (cf. e.g. [3, 49]).

Lemma 2.1. Let Bh be a SPD preconditioner of Ah such that the spectrum of
BhAh satisfies

0 < λ1 ≤ . . . ≤ λm0 � λm0+1 ≤ . . . ≤ λNh
. (2.5)

Let uk be the asymptotic solution of the system (BhAh)uh = Bhfh at the kth iteration
of the PCG algorithm. Then

‖uh − uk‖A

‖uh − u0‖A
≤ 2 |κ(BhAh)− 1|m0

(√
λNh

/λm0+1 − 1√
λNh

/λm0+1 + 1

)k−m0

∀ k ≥ m0. (2.6)

Remark 2.2. If the integer m0 is very small, the convergence rate of the PCG
algorithm will be dominated by κm0+1(BA) = λNh

/λm0+1 which is known as the
“effective condition number”. In the following we shall study the spectrum distribution
(2.5) of the preconditioned system, where the preconditioner Bh will be defined by local
multilevel solver.

3. Local multilevel methods. Let {Tl}L
l=0 be a family of nested conforming

triangulations of Ω such that T0 is a quasi-uniform initial mesh and Tl is a (local)
refinement of Tl−1, l ≥ 1, using the “newest vertex bisection” algorithm. For any
0 ≤ l ≤ L, we denote the linear Lagrangian finite element space on Tl by Vl ⊂ H1

0 (Ω)
and define Al : Vl → Vl by

(Alv, w)ρ = a(v, w) ∀v, w ∈ Vl.

Then the operator equation (2.3) on Tl can be written as: Find ul ∈ Vl such that

Alul = fl, (3.1)

where fl ∈ Vl satisfies that (fl, vl)ρ = (f, vl) for any vl ∈ Vl. For 0 ≤ l ≤ L, we also
define the energy projections Pl: H1

0 (Ω) 7→ Vl and the weighted L2-projections Qρ
l :

L2(Ω) 7→ Vl by

a(Plv, w) = a(v, w) ∀ v ∈ H1
0 (Ω), w ∈ Vl, (3.2)

(Qρ
l v, w)ρ = (v, w)ρ ∀ v ∈ L2(Ω), w ∈ Vl. (3.3)
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For 1 ≤ l ≤ L, denote by Nl the set of interior nodes of Tl and by Ñl the set of
nodes on which local relaxations are carried out. We shall give the exact definition
of Ñl in Section 5. For brevity, we denote Ñl = {xl

i, i = 1, ..., ñl} with ñl being the
cardinality of Ñl, and let φl

i be the nodal basis function of Vl belonging to the node
xl

i. For notational ease we set V 0
1 := V0 and ñ0 := 1. We define the energy projection

and the weighted L2-projection onto the one-dimensional space V l
i := span{φl

i} as
follows:

P l
i : H1

0 (Ω) 7→ V l
i , a(P l

i v, φ
l
i) = a(v, φl

i) ∀ v ∈ H1
0 (Ω),

Qρ,l
i : L2(Ω) 7→ V l

i , (Qρ,l
i v, φl

i)ρ = (v, φl
i)ρ ∀ v ∈ L2(Ω).

Let Al
i : V l

i 7→ V l
i be defined by

(Al
iv, φ

l
i)ρ = a(v, φl

i) ∀v ∈ V l
i .

Then the well-known relationship holds:

Qρ,l
i Al = Al

iP
l
i .

Let RJ
l : Vl 7→ Vl be the local smoothing operator which performs Jacobi relax-

ations at the nodes in Ñl, and let RG
l : Vl 7→ Vl be the local smoothing operator which

performs Gauss-Seidel relaxations at the nodes in Ñl, 1 ≤ l ≤ L. Moreover, we set
RJ

0 = RG
0 = A−1

0 on the initial mesh T0. Then RJ
l defines an additive smoother (cf.

[8]):

RJ
l := γ

enl∑
i=1

(Al
i)
−1Qρ,l

i , 1 ≤ l ≤ L, (3.4)

with a scaling factor γ > 0, while RG
l defines a multiplicative smoother:

RG
l := (I − El)A−1

l , El := (I − P lenl) · · · (I − P l
1), 1 ≤ l ≤ L. (3.5)

With RJ
l and RG

l at hand, we construct the local multilevel algorithms for the
adaptive finite element approximation to (2.1).

Algorithm 3.1. (Local multilevel additive algorithm (LMAA))
Given an initial guess û0 ∈ VL, the asymptotic solution of (3.1) on TL at the kth

iteration is defined by:

ûk = ûk−1 +BA
L (fL −ALûk−1), k ≥ 1,

where BA
L =

∑L
l=0RlQ

ρ
l is an additive multilevel operator and the smoother Rl can

be either local Jacobi smoother Rl = RJ
l or local Gauss-Seidel smoother Rl = RG

l .

Algorithm 3.2. (Symmetrical local multilevel additive algorithm (SLMAA))
Given an initial guess û0 ∈ VL, the asymptotic solution of (3.1) on TL at the kth

iteration is defined by:

ûk = ûk−1 +B
A

L(fL −ALûk−1), k ≥ 1,

where B
A

L =
(
BA

L + (BA
L )t
)
/2 is the symmetrization of BA

L .
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Algorithm 3.3. (Local multilevel multiplicative algorithm (LMMA))
Given an initial guess û0 ∈ VL, the asymptotic solution of (3.1) on TL at the kth

iteration is defined by:

ûk = ûk−1 +BM
L (fL −ALûk−1), k ≥ 1.

For any g ∈ Vl, the multiplicative multilevel operators BM
l : Vl 7→ Vl, l ≥ 0 are

recursively defined as follows: BM
0 := A−1

0 and BM
l g = x3,

1. pre-smoothing: x1 = (Rl)tg;
2. correction: x2 = x1 +BM

l−1Q
ρ
l−1(g −Alx1);

3. post-smoothing: x3 = x2 +Rl(g −Alx2),
where the smoother Rl can be either local Jacobi smoother Rl = RJ

l or local Gauss-
Seidel smoother Rl = RG

l .

4. The abstract Schwarz theory. In this section, we present an abstract
Schwarz theory for the local multilevel methods. We shall adopt the abstract the-
ory (cf. [41], [43]) to the LMMA, LMAA algorithms and the PCG algorithms for
which LMMA and LMAA serve as preconditioners.

LetM ≥ 1 be the smallest integer such that there exists a family of open polygonal
or polyhedral subdomains {Ωi ⊂ Ω : 1 ≤ i ≤M} satisfying

∪M
i=1Ωi = Ω, Ωi ∩ Ωj = ∅ if i 6= j, and ρi := ρ|Ωi

= Constant.

We introduce the set of indices of subdomains which do not touch ∂Ω:

I = {i : ∂Ωi ∩ ∂Ω = ∅, 1 ≤ i ≤M}. (4.1)

As in [49], we define a subspace Ṽl ⊂ Vl by

Ṽl =
{
v ∈ Vl :

∫
Ωi

v(x) dx = 0, i ∈ I
}
. (4.2)

Then using Poincáre’s inequality and Friedrichs’ inequality we have

‖v‖2L2
ρ(Ω) =

M∑
i=1

ρi‖v‖2L2(Ωi)
=
∑
i∈I

ρi‖v‖2L2(Ωi)
+

∑
i∈{1,··· ,M}\I

ρi‖v‖2L2(Ωi)
(4.3)

≤ C
(∑

i∈I
ρi |∇v|2L2(Ωi)

+
∑

i∈{1,··· ,M}\I

ρi |∇v|2L2(Ωi)

)
≤ C ‖v‖2A , ∀ v ∈ Ṽl,

where the constant C depends on Ω1, · · · ,ΩM .
The abstract Schwarz theory depends greatly on two important properties of the

finite element spaces {Vl}L
l=0, that is, the existence of a stable multilevel decompo-

sition of VL and the strengthened Cauchy-Schwarz inequality regarding the space
decomposition. At this moment we simply state the two properties and postpone the
proofs to the next section.

(A1) Stability of the multilevel decomposition. For any function v ∈ VL, there exists
a decomposition of v:

v = v0 +
L∑

l=1

enl∑
i=1

vl
i, v0 ∈ V0, v

l
i ∈ V l

i , (4.4)
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and a positive constant Cstab independent of J (ρ), L, and hmin such that

‖v0‖2A +
L∑

l=1

enl∑
i=1

∥∥vl
i

∥∥2

A
≤ CstabC

h,ρ
d ‖v‖2A , (4.5)

where d is the dimension of Ω and

Ch,ρ
d :=

{
min{| log hmin|2,J (ρ)}, if d = 2,

min{h−1
min,J (ρ)}, if d = 3.

(4.6)

In particular, there also exists a positive constant C̃stab independent of J (ρ),
L, and hmin such that

‖v0‖2A +
L∑

l=1

enl∑
i=1

∥∥vl
i

∥∥2

A
≤ C̃stab| log hmin|2 ‖v‖2A ∀v ∈ ṼL. (4.7)

(A2) Strengthened Cauchy-Schwarz inequality. For any functions

vl
i, w

l
i ∈ V l

i , 1 ≤ i ≤ ñl, 0 ≤ l ≤ L,

there exists a constant Corth independent of J (ρ), L, and hmin such that

L∑
l=0

enl∑
i=1

l−1∑
k=0

enk∑
j=1

a(vl
i, w

k
j ) ≤ Corth

( L∑
l=0

enl∑
i=1

∥∥vl
i

∥∥2

A

) 1
2
( L∑

l=0

enl∑
i=1

∥∥wl
i

∥∥2

A

) 1
2
. (4.8)

Lemma 4.1. Let Tl = RlAlPl where Rl = RJ
l or RG

l , 0 ≤ l ≤ L. Then the
following statements hold with a constant C > 0 only depending on the domain and
the shape regularity of the meshes:

(E1) Let TA =
∑L

l=0RlAlPl be the additive operator. Then

‖v‖2A ≤ CCh,ρ
d a(TAv, v) ∀v ∈ VL,

‖v‖2A ≤ C| log hmin|2a(TAv, v) ∀v ∈ ṼL.

(E2) For any vl, wk ∈ VL, 0 ≤ l, k ≤ L, we have

L∑
l=0

l−1∑
k=0

a(Tlvl, Tkwk) ≤ C
( L∑

l=0

a(Tlvl, vl)
) 1

2
( L∑

k=0

a(Tkwk, wk)
) 1

2
.

(E3) There exists a constant 0 < ωl < 2 independent of J (ρ), L, hmin such that

‖Tlv‖2A ≤ ωla(Tlv, v) ∀v ∈ VL, 0 ≤ l ≤ L.

If Rl = RJ
l , the scaling factor should be so chosen that ωl < 2.

(E4) For any vl, wl ∈ VL, 0 ≤ l ≤ L, we have

L∑
l=0

a(Tlvl, wl) ≤ C
( L∑

l=0

a(Tlvl, vl)
) 1

2
( L∑

l=0

a(Tlwl, wl)
) 1

2
.
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Proof. The lemma can be proved upon using (A1)–(A2) and similar arguments
as in [50]. We omit the details here.

For Algorithm 3.3, we can easily derive a representation of the multigrid error
propagation operator

I −BM
L AL = EME∗

M , (4.9)

where I is the identity operator on VL, E∗
M is the conjugate of the operator EM , and

EM := (I − TL) (I − TL−1) · · · (I − T0) , Tl = RlAlPl, 0 ≤ l ≤ L. (4.10)

Using Lemma 4.1 and similar arguments as in [43], we obtain the following theorem.

Theorem 4.2. Let BM
L be the multiplicative multilevel operator in Algorithm

3.3 and Ch,ρ
d be the constant defined in (4.6). There exists a constant C > 0 only

depending on the domain and the shape regularity of the meshes such that

a((I −BM
L AL)v, v) ≤ δ a(v, v) ∀v ∈ VL, (4.11)

a((I −BM
L AL)v, v) ≤ δ̃ a(v, v) ∀v ∈ ṼL, (4.12)

where

δ := 1− 2− ω

CCh,ρ
d

, δ̃ := 1− 2− ω

C| log hmin|2
, ω := max

0≤l≤L
wl < 2.

Since a((I −BM
L AL)v, v) = a(E∗

Mv,E∗
Mv) ≥ 0, we have λmax(BM

L AL) ≤ 1. From
the estimate (4.11) the minimum eigenvalue of BM

L AL reads

λmin(BM
L AL) = inf

v∈VL,v 6=0

a(BM
L ALv, v)
‖v‖A

≥ 2− ω

CCh,ρ
d

.

Denote by m0 = #I the cardinality of the index set I in (4.1). Obviously m0 ≤ M

and dim(ṼL) = dim(VL)−m0 from (4.2). Then by (4.12) we have

λm0+1(BM
L AL) ≥ inf

v∈eVL,v 6=0

a(BM
L ALv, v)
‖v‖A

≥ 2− ω

C| log hmin|2
.

Since ω is independent of J (ρ), L, hmin by (E3) of Lemma 4.1, the `2-condition
number κ(BM

L AL) and the effective condition number κm0+1(BM
L AL) can be bounded

as follows:

κ(BM
L AL) ≤ CCh,ρ

d , κm0+1(BM
L AL) :=

λmax(BM
L AL)

λm0+1(BM
L AL)

≤ C| log hmin|2.

Lemma 4.3. Let BA
L and B

A

L be the additive multilevel operators in Algorithm
3.1 and 3.2 respectively. Then the operators TA =

∑L
l=0RlAlPl = BA

LAL, Rl = RJ
l

or RG
l , and TA = 1

2 (TA + T ∗A) = B
A

LAL admits the following stabilities

‖TAv‖A ≤ C‖v‖A, ‖TAv‖A ≤ C‖v‖A ∀v ∈ VL,

where the constant C > 0 only depends on the domain and the shape regularity of the
meshes.
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Proof. The lemma is a direct consequence of (E2) of Lemma 4.1.

If RJ
l is symmetric, then TA is symmetric with respect to a(·, ·). From Theorem

4.3 and (E1) of Lemma 4.1, we know that

κ(BA
LAL) ≤ CCh,ρ

d , κm0+1(BA
LAL) ≤ C| log hmin|2.

If TA is nonsymmetric, we have the following estimates for Algorithm 3.2:

κ(B
A

LAL) ≤ CCh,ρ
d , κm0+1(BLAL) ≤ C| log hmin|2.

For convenience, we denote by LMAA-PCG, SLMAA-PCG, LMMA-PCG the
PCG algorithms with Algorithm 3.1, 3.2, 3.3 as preconditioners respectively. Notice
that Theorem 4.2 presents the convergence rate of Algorithm 3.3. To end this sec-
tion, we conclude the convergence of the multilevel-preconditioned conjugate gradient
methods, namely, LMAA-PCG, SLMAA-PCG, and LMMA-PCG.

Theorem 4.4. Let uh be the finite element solution of (2.2) on TL and uk be the
asymptotic solution at the kth iteration of the LMMA-PCG algorithm, or the LMAA-
PCG with local Jacobi smoothers, or the SLMAA-PCG algorithm. Then there exists
a constant C independent of J (ρ), L, hmin such that

‖uh − uk‖A

‖uh − u0‖A
≤ 2

(
Ch,ρ

d − 1
)m0

(
1− 2

1 + C| log hmin|

)k−m0

, k ≥ m0

where m0 = #I is the cardinality of I in (4.1) and

Ch,ρ
d :=

{
min{| log hmin|2,J (ρ)}, if d = 2,

min{h−1
min,J (ρ)}, if d = 3.

Remark 4.5. In Theorem 4.4, the integer m0 only depends on Ω and the distri-
bution of ρ(x). It may happen that m0 = 0 for some instances. Thus for any k > k0

with k0 satisfying

2
(
Ch,ρ

d − 1
)m0

(
1− 2

1 + C| log hmin|

)k−m0

≤ 1,

the convergence rate of the PCG algorithms is

1− 2
1 + C| log hmin|

.

Remark 4.6. If the ρ(x) is quasi-monotone, the convergence of multilevel meth-
ods can be proved independent of J (ρ), L, hmin (see [47]). We do not elaborate on this
issue in this paper.

5. Verification of the two properties (A1) and (A2). This section is de-
voted to the verification of the two properties (A1) and (A2) of the finite element
spaces. The key ingredient is to construct a local multilevel decomposition of VL

regarding the adaptively refined meshes {Tl}L
l=0.

9



5.1. Quasi-interpolation operator. Local quasi-interpolation operators play
an important role in the analysis of local multilevel decomposition. In this section we
introduce an interpolation operator Πl: L2(Ω) 7→ Vl which is a modification of the
one studied by Hiptmair and Zheng in [28]. For any T ∈ Tl, we define the dual basis
function ψT

i ∈ P1(T ) by the L2(T )-duality to the barycentric coordinate functions λi,
i = 1, . . . , d+ 1 on T which satisfies∫

T

ψT
j (x )λi(x )dx = δij for i, j = 1, . . . , d+ 1. (5.1)

By computing the explicit representation of ψT
j we have

C0 ≤ |T | ‖ψT
j ‖2L2(T ) ≤ C1 and C0 ≤ ‖ψT

j ‖L1(T ) ≤ C1, (5.2)

where C0 and C1 only depend on the shape regularity of Tl, 0 ≤ l ≤ L.
For 0 ≤ l ≤ L, the local quasi-interpolation operators Πl : L2(Ω) 7→ Vl are defined

as follows:

Πlv =
∑

p∈Nl

∫
T l

p

ψ
T l

p
p (x )v(x ) dx · φl

p ∀v ∈ L2(Ω), (5.3)

where φl
p ∈ Vl is the nodal basis function belonging to p, T l

p ∈ Tl satisfies T l
p ⊂ Ωl

p :=

supp(φl
p), and ψ

T l
p

p is the dual basis function defined in (5.1) and belonging to p ∈ Nl.
From (5.1) we are easy to see

Πlv = v ∀ v ∈ Vl. (5.4)

It is clear that the definition of Πl depends on how to select T l
p for each p ∈ Nl. We

shall adapt the selection of T l
p to our multilevel theory regarding the discontinuous

coefficient ρ(x). Notice that ρ(x) is constant on any element of T0. For any p ∈ N0,
we select T 0

p ∈ T0 such that

T 0
p ⊂ Ω0

p and ρ|T 0
p

= max{ρ|T : T ⊂ Ω0
p, T ∈ T0}. (5.5)

For 1 ≤ l ≤ L and p ∈ Nl, we select T l
p successively according to the following policy:

1. For any vertex p ∈ Nl ∩Nl−1, we choose a T l
p ∈ Tl such that T l

p ⊆ T l−1
p .

2. For any vertex p ∈ Nl \ Nl−1, we choose T l
p ∈ Tl such that

T l
p ⊂ Ωl

p and ρ|T l
p

= max{ρ|T , T ⊂ Ωl
p, T ∈ Tl}.

Lemma 5.1. There exists a constant C > 0 only depending on the domain and
the shape regularity of the meshes such that

‖Π0v‖A ≤ CCh
d ‖v‖A ∀v ∈ VL,

‖Π0v‖A ≤ C ‖v‖A ∀v ∈ ṼL,

where Ch
d = | log hmin| if d = 2 and Ch

d = h−1
min if d = 3.

Proof. For any T ∈ T0 with vertices pi, 1 ≤ i ≤ d + 1, we denote by φi = φ0
pi

,
Ti = T 0

pi
, ψi = ψTi

pi
the nodal basis function, the selected element, and the dual basis

function belonging to pi respectively. From (3.3) we have

‖Π0v‖2A ≤ ‖Π0(I −Qρ
0)v‖

2
A + ‖Qρ

0v‖
2
A .

10



By the definition of Π0, direct calculations show that

‖∇Π0(I −Qρ
0)v‖

2
L2

ρ(T ) = ρT ‖∇Π0(I −Qρ
0)v‖2L2(T )

≤ CρT

d+1∑
i=1

∣∣∣∣∫
Ti

ψi(x )(I −Qρ
0)v(x ) dx

∣∣∣∣2 ‖∇φi‖2L2(T )

≤ CρTh
d−2
T |T |−1

d+1∑
i=1

‖(I −Qρ
0)v‖2L2(Ti)

≤ Ch−2
T ‖(I −Qρ

0)v‖
2
L2

ρ(DT ) ,

where DT = ∪d+1
i=1 Ω0

pi
. Summing the above estimate over all elements in T0 leads to

‖Π0(I −Qρ
0)v‖

2
A ≤ Ch−2

0 ‖(I −Qρ
0)v‖

2
L2

ρ(Ω) ,

where h0 is the mesh size of the initial mesh T0. By the argument in [11, Theorem
4.5], we obtain the following estimate for the weighted L2-projection:

‖Qρ
0v‖

2
A + h2

0 ‖(I −Qρ
0)v‖

2
A ≤ CCh

d ‖v‖
2
A ∀ v ∈ VL,

‖Qρ
0v‖

2
A + h2

0 ‖(I −Qρ
0)v‖

2
A ≤ C ‖v‖2A ∀ v ∈ ṼL.

The proof is completed.

5.2. Local multilevel decomposition. For any v ∈ VL, (5.4) indicates the
following multilevel decomposition of v :

v =
L∑

l=0

vl, v0 = Π0v, vl = (Πl −Πl−1)v, 1 ≤ l ≤ L. (5.6)

From the definition of Πl, it is clear that

vl = (Πl −Πl−1)v =
∑

p∈ eNl

vl
p, vl

p = vl(p)φl
p, 1 ≤ l ≤ L, (5.7)

where Ñl is the set of smoothing nodes defined by

Ñl := (Nl \ Nl−1) ∪ {p ∈ Nl ∩Nl−1 : φl
p 6= φl−1

p or T l
p 6= T l−1

p }.

The local multilevel algorithms in [46, 50] perform local relaxations on the nodes
in (Nl \ Nl−1) and {p ∈ Nl ∩ Nl−1 : φl

p 6= φl−1
p }. While our algorithms perform

additional relaxations on the nodes in {p ∈ Nl ∩ Nl−1 : T l
p 6= T l−1

p } (see Figure 5.1
for the 2D case). Actually, these incremental relaxations do not depress optimality of
the algorithms.

5.3. Stability estimate. The purpose of this section is to prove that the mul-
tilevel decomposition (5.6) satisfies the stability in (A1). The analysis relies on two
assumptions for the meshes.

(H1) The shape regularity measures of the meshes T0, · · · , TL are uniformly bounded,
that is, σ(Tl) ≤ C for all 0 ≤ l ≤ L. Here σ(Tl) stands for the shape regularity
measure of Tl and the constant C is independent of the mesh sizes and the
mesh levels.
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Fig. 5.1. The first figure shows the domain Ω and the distribution of ρ(x) such that ρ1 < ρ2 <
· · · < ρ8 < ρ9. The second figure shows the mesh Tl−1. The third and fourth figures show the mesh

Tl. The black dots in the third figure show the nodes in (Nl\Nl−1) and {p ∈ Nl∩Nl−1 : φl
p 6= φl−1

p }.
The black dots in the fourth figure show the nodes in eNl to which local relaxations are restricted.

(H2) There exists a constant integer z > 0 such that[
ln(hT ′h−1

T )/ ln 2
]
≤ z ∀T ∈ Tl, 1 ≤ l ≤ L,

where T ′ ∈ Tl−1 satisfying T ⊂ T ′ and for any ξ ≥ 0, [ξ] stands for the largest
integer less than or equal to ξ.

Assumption (H1) always holds for the popular bisection algorithms. Assumption
(H2) implies that the adaptive refinement strategy should stop in finite bisections
and are commonly satisfied. We refer to [46] for a detailed proof of (H2) for the
two-dimensional bisection algorithm.

Our theory depends on a close relationship between the adaptively refined meshes
{Tl}L

l=0, and a sequence of quasi-uniformly refined meshes {T̂j}j≥0. Here T̂j is gener-
ated by connecting the edge midpoints of each elements in T̂j−1 starting from T̂0 = T0.
For d = 2, each triangle in T̂j−1 is subdivided into 4 small triangles by connecting the
midpoints of the four edges. For d = 3, each tetrahedron in T̂j−1 is subdivided into 8
small tetrahedrons by connecting the midpoints of the six edges.

For any l ≥ 0 and T ∈ Tl, there exists a T0 ∈ T0 satisfying T ⊂ T0. We define

n(T ) =
[
ln(hT0h

−1
T )/ ln 2

]
. (5.8)

It is easy to see n(T ) = j for any T ∈ T̂j and j ≥ 0. The following lemma describes
the relationship between {Tl}L

l=0 and {T̂j}j≥0 which is used in our analysis.
Lemma 5.2. For any 0 ≤ l ≤ L and T ∈ Tl, there exists a T̂ ∈ T̂n(T ) such that

T ⊂ T̂ and hbT ≤ ChT ,

where C only depends on the shape regularity of the meshes.
Proof. First we consider an arbitrary simplex T and define an initial mesh of T by

M0(T ) = {T}. Let M̂(T ) be generated by a unform refinement of M0(T ), namely,
by connecting the midpoints of the edges of T . Thus M̂(T ) contains smaller elements:

M̂(T ) = {K̂1, · · · , K̂4} for d = 2, M̂(T ) = {K̂1, · · · , K̂8} for d = 3.

Clearly h bK = 2−1hT for any K̂ ∈ M̂(T )(see Figure 5.2 (right) for a 2D illustration).
Furthermore, we generate a family of conforming meshes {Mk(T )}I

k=0 by succes-
sive bisections of T , where Mk(T ) is a refinement of Mk−1(T ). On the final mesh

12
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Fig. 5.2. Two elements satisfying K1 ⊆ bK1, K2 ⊆ bK2 in two dimension.

MI(T ), each triangular face of T is subdivided as in the left picture of Figure 5.2. In
this case, MI(T ) has 6 elements for d = 2 and 22 elements for d = 3:

MI(T ) = {K1, · · · , K6} for d = 2, MI(T ) = {K1, · · · , K22} for d = 3.

It is easy to see that for any K ∈MI(T ), there exists a K̂ ∈ M̂1(T ) such that

K ⊂ K̂ and
[
ln(hTh

−1
K )/ ln 2

]
= 1. (5.9)

According to (5.9), for any 0 ≤ l ≤ L and T ∈ Tl, there exist two sequences of
elements {Ti}m

i=0 and {T̂i}m
i=0 such that T0 = T̂0 ∈ T0 and

Ti ⊂ T̂i ∈ M̂(T̂i−1), M̂(T̂i−1) ⊂ T̂i, 1 ≤ i ≤ m, (5.10)

Ti ∈MI(Ti−1),
[
ln
(
hT0h

−1
Ti

)
/ ln 2

]
= i, 1 ≤ i ≤ m, T ∈

I−1⋃
k=0

Mk(Tm).(5.11)

From (5.10)–(5.11) we conclude that

m =
[
ln
(
hT0h

−1
Tm

)
/ ln 2

]
=
[
ln
(
hT0h

−1
T

)
/ ln 2

]
= n(T ),

T ⊂ Tm ⊂ T̂m ∈ T̂m and hbTm
= 2−mhT0 ≤ ChTm

≤ ChT .

The proof is finished.
Lemma 5.3. Let v =

∑L
l=1

∑
p∈ eNl

vl
p be the decomposition in (5.6)–(5.7). There

exists a constant C > 0 only depending on the shape regularity of the meshes such
that

L∑
l=1

∑
p∈ eNl

∥∥vl
p

∥∥2

A
≤ CCh

d ‖v‖
2
A ∀ v ∈ VL, (5.12)

L∑
l=1

∑
p∈ eNl

∥∥vl
p

∥∥2

A
≤ C| log hmin|2 ‖v‖2A ∀ v ∈ ṼL (5.13)

Proof. For any 1 ≤ l ≤ L and any vertex p ∈ Ñl, we choose an element T ′ ∈ Tl−1

such that p ∈ T ′ and define

Tl(p) = {T ∈ Tl−1 : T ′ ∩ T 6= ∅} and n(l,p) = min{n(T ) : T ∈ Tl(p)},

where n(T ) is defined in (5.8). From Lemma 5.2, for any T ∈ Tl(p), there exists a
T̂ ∈ T̂n(l,p) such that

T ⊂ T̂ and hT ≥ ChbT ≥ C2−n(l,p)h0.
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Let Q̂ρ
m : L2(Ω) 7→ V̂m be the weighted L2-projection and Q̂ρ

m = Q̂ρ
0 if m < 0, where

V̂m is the linear Lagrangian finite element space on T̂m. Clearly Q̂ρ
n(l,p)v is linear on

each element of Tl(p). By the definition of Πl, we have

ΠlQ̂
ρ
n(l,p)v(p) = Q̂ρ

n(l,p)v(p) = Πl−1Q̂
ρ
n(l,p)v(p). (5.14)

Notice that ∥∥vl
p

∥∥2

A
= |vl(p)|2

∥∥φl
p

∥∥2

A
≤ CρT l

p
hd−2

T l
p
|vl(p)|2 ,

where T l
p is the element in (5.3). Combining the above estimate and (5.14) yields

L∑
l=1

∑
p∈ eNl

∥∥vl
p

∥∥2

A
≤ C

L∑
l=1

∑
p∈ eNl

ρT l
p
hd−2

T l
p
|(Πl −Πl−1)v(p)|2

= C
L∑

l=1

∑
p∈ eNl

ρT l
p
hd−2

T l
p

∣∣∣(Πl −Πl−1)
(
v − Q̂ρ

n(l,p)v
)

(p)
∣∣∣2 .

Denote w = v−Q̂ρ
n(l,p)v for convenience. The definition of the quasi-interpolation

operators (5.1)–(5.3) yields

|Πlw(p)| ≤
∣∣∣ ∫

T l
p

ψ
T l

p
p (x)w(x) dx

∣∣∣, |Πl−1w(p)| ≤
∑

q∈Sp

∣∣∣ ∫
T l−1

q

ψ
T l−1

q
q (x)w(x) dx

∣∣∣,
where Sp = {q : q ∈ Ñl ∩Nl−1, p ∈ interior(Ωl−1

q )}. Then using (H1) and (H2) we
have

ρT l
p
hd−2

T l
p
|(Πl −Πl−1)w(p)|2 ≤ Chd−2

T l
p

{ ∣∣T l
p

∣∣−1 ‖w‖2L2
ρ(T l

p) +
∑

q∈Sp

∣∣T l−1
q

∣∣−1 ‖w‖2L2
ρ(T l−1

q )

}
≤ Ch−2

T l−1
p

‖w‖2L2
ρ(Dl

p) ≤ C22n(l,p)h−2
0 ‖w‖2L2

ρ(Dl
p) ,

where the constant C depends on the integer z in (H2) and Dl
p is the union of elements

in Tl(p). For any fixed m ≥ 0, the sub-domains in {Dl
p : 1 ≤ l ≤ L, p ∈ Ñl, n(l,p) =

m} are locally overlapped and their diameters are order of 2−mh0. Thus the union of
these domains is also a subset of Ω. It follows that

L∑
l=1

∑
p∈ eNl

∥∥vl
p

∥∥2

A
≤ C

L∑
l=1

∑
p∈ eNl

4n(l,p)
∥∥∥v − Q̂ρ

n(l,p)v
∥∥∥2

L2
ρ(Dl

p)

≤ C

bL∑
m=0

4m
L∑

l=1

∑
p∈ eNl,

n(l,p)=m

∥∥∥v − Q̂ρ
mv
∥∥∥2

L2
ρ(Dl

p)

≤ C

bL∑
m=0

4m
∥∥∥v − Q̂ρ

mv
∥∥∥2

L2
ρ(Ω)

,

where L̂ = max{n(l,p) : p ∈ Ñl, 1 ≤ l ≤ L}, and we have L̂ ≤ C |log hmin|. Recall the
estimates for the weighted L2-projection on quasi-uniform meshes (cf. [11], Lemma
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3.1-3.3 in [49]) :

bL∑
m=0

4m
∥∥∥v − Q̂ρ

mv
∥∥∥2

L2
ρ(Ω)

≤ C Ch
d ‖v‖

2
A ∀v ∈ VL,

bL∑
m=0

4m
∥∥∥v − Q̂ρ

mv
∥∥∥2

L2
ρ(Ω)

≤ C |log hmin|2 ‖v‖2A ∀v ∈ ṼL.

We finish the proof.
In [50], it is proved that any v ∈ VL admits a multilevel decomposition v =

ṽ0 +
∑L

l=1

∑
p∈ eNl

ṽl
p, ṽ0 ∈ V0, ṽl

p ∈ span{φl
p} satisfying

‖ṽ0‖2A +
L∑

l=1

∑
p∈ eNl

∥∥ṽl
p

∥∥2

A
≤ CJ (ρ) ‖v‖2A . (5.15)

Clearly Assumption (A1) follows from (5.15), Lemma 5.1, and Lemma 5.3.

5.4. Global strengthened Cauchy-Schwarz inequality. The strengthened
Cauchy-Schwarz inequality has been established in [43] on quasi-uniform meshes. On
adaptively refined meshes we need to establish a global strengthened Cauchy-Schwarz
inequality. The following proof is different from [46] and [50] and does not elaborate
on the meshes.

Lemma 5.4. There exists a constant C > 0 only depending on the shape regularity
of the meshes such that, for any functions

vl
i, w

l
i ∈ V l

i , 1 ≤ i ≤ ñl, 1 ≤ l ≤ L,

the global strengthened Cauchy-Schwarz inequality holds

L∑
l=1

enl∑
i=1

l−1∑
k=1

enk∑
j=1

a(vl
i, w

k
j ) ≤ C

( L∑
l=1

enl∑
i=1

∥∥vl
i

∥∥2

A

) 1
2
( L∑

l=1

enl∑
i=1

∥∥wl
i

∥∥2

A

) 1
2
.

Proof. For convenience we introduce the generation of an element T , G(T ), by
the number of bisections for generating T from one element in T0. It is reasonable to
assume that

C0θ
m ≤ hT ≤ C1θ

m, m = G(T ), ∀T ∈
L⋃

l=0

Tl,

where 0 < θ < 1 is a constant and only depends on T0 and the shape regularity of the
meshes. For the bisection algorithm that we are considering, θ ≈ 2

1
1−2d .

Then, we have

I0 :=
L∑

l=1

enl∑
i=1

l−1∑
k=1

enk∑
j=1

a(vl
i, w

k
j ) =

L∑
l=1

l−1∑
k=1

∞∑
m,n=0

∑
T∈Tl\Tl−1
G(T )=m

∑
K∈Tk\Tk−1
G(K)=n

∑
p∈N (T ),
q∈N (K)

a(ṽl
p, w̃

k
q),

(5.16)
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where N (T ) is the set of vertices of T and

ṽl
p =

{
vl

p/Nl(p), if p ∈ Ñl ,

0, otherwise,

and Nl(p) is the number of elements contained in Tl \ Tl−1 which share p ∈ Ñl. We
note that w̃k

q is defined analogously.
Suppose m ≤ n and set

w̃n :=
l−1∑
k=1

∑
K∈Tk\Tk−1
G(K)=n

∑
q∈N (K)

w̃k
q .

For any T ∈ Tl \ Tl−1,G(T ) = m ≤ n,p ∈ N (T ), we can derive that

a(ṽl
p, w̃n) ≤ Cθ

n−m
2 ‖∇ṽl

p‖L2
ρ(Ωl

p)‖∇w̃n‖L2
ρ(Ωl

p). (5.17)

Indeed, there exists a constant t0 depending only on the shape regularity of the meshes
such that

max
T ′∈Tl,T ′⊂Ωl

p

G(T ′) ≤ min
T ′∈Tl,T ′⊂Ωl

p

G(T ′) + t0.

If n − m ≤ t0, (5.17) holds true by the Cauchy-Schwarz inequality. For the case
n−m > t0, we note that w̃n is piecewise linear in any T ′ ∈ Tl, T

′ ⊂ Ωl
p and set

w̃n = ξn :=
l−1∑
k=1

∑
K∈Tk\Tk−1
G(K)=n

∑
q∈N (K)∩∂T ′

w̃k
q on ∂T ′.

It is clear that

supp(ξn) ∩ T ′ = ΓT ′ :=
⋃
{K ∈ T̂n : K ⊂ T ′ and ∂K ∩ ∂T ′ 6= ∅}

is a narrow strip along the boundary of T ′. Since ṽl
p is linear in T ′, using Green’s

formula we have∫
T ′
ρ∇ṽl

p · ∇w̃n =
∫

∂T ′
ρ
∂ṽl

p

∂n
w̃n =

∫
∂T ′

ρ
∂ṽl

p

∂n
ξn =

∫
T ′∩ΓT ′

ρ∇ṽl
p · ∇ξn

≤ |ρT ′ | ‖∇ṽl
p‖L2(ΓT ′ )

‖∇ξn‖L2(ΓT ′ )
≤ Cθ

n−m
2
∥∥∇ṽl

p

∥∥
L2

ρ(T ′)
‖∇w̃n‖L2

ρ(T ′) .

Summing over all T ′ ⊂ Ωl
p gives (5.17). Applying (5.17) and the local overlapping of

the supports of w̃k
q and ṽl

p, we have

I1 : =
∞∑

m=0

∞∑
n=m

L∑
l=1

∑
T∈Tl\Tl−1
G(T )=m

∑
p∈N (T )

a(ṽl
p,

l−1∑
k=1

∑
K∈Tk\Tk−1
G(K)=n

∑
q∈N (K)

w̃k
q)

≤ C
∞∑

m=0

∞∑
n=m

θ
n−m

2

L∑
l=1

∑
T∈Tl\Tl−1
G(T )=m

∑
p∈N (T )

∥∥∇ṽl
p

∥∥
L2

ρ(Ω)

·
( l−1∑

k=1

∑
K∈Tk\Tk−1
G(K)=n

∑
q∈N (K)

∥∥∇w̃k
q

∥∥2

L2
ρ(Ωl

p)

) 1
2
.
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It is known that the matrix
(
θ|m−n|/2

)∞
m,n=0

has the finite spectrum radius depending
only on θ. Thus,

I1 ≤ C
∞∑

m=0

∞∑
n=m

θ
n−m

2

( L∑
l=1

∑
T∈Tl\Tl−1
G(T )=m

∑
p∈N (T )

∥∥∇ṽl
p

∥∥2

L2
ρ(Ω)

) 1
2

·
( L∑

k=1

∑
K∈Tk\Tk−1
G(K)=n

∑
q∈N (K)

∥∥∇w̃k
q
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If m > n, the same arguments show that the remaining terms I0 − I1 of the left
hand side of (5.16) can also be bounded as follows

I0 − I1 ≤ C
( L∑
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) 1
2
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A

) 1
2
. (5.19)

Inserting (5.18) and (5.19) into (5.16) yields the stated result. This completes the
proof.

Now we come to the property (A2) in the previous section.
Theorem 5.5. There exists a constant C > 0 only depending on the shape

regularity of the meshes such that, for any functions

vl
i, w

l
i ∈ V l

i , 1 ≤ i ≤ ñl, 0 ≤ l ≤ L,

the global strengthened Cauchy-Schwarz inequality holds
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Proof. Note that
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An application of Lemma 5.4 shows that

‖
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Then we complete the proof combining the above estimate, (5.20), Lemma 5.4 and
the Cauchy-Schwarz inequality.
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6. Numerical results. We present several numerical examples to demonstrate
our convergence theory of multilevel methods. The implementation is based on the
FFW toolbox [13] and the adaptive finite element package ALBERTA [38], [39].

In real computations, we have used the newest vertex bisection algorithm and the
local error estimator defined in [20]. Given a finite element approximation uh, for any
T ∈ Th, the a posteriori error estimator is defined as

η2
T := h2

T ΛT ‖ρ
− 1

2
T f‖2L2(T ) +

hT

2

∑
F⊂∂T

ΛF ‖ρ
− 1

2
F [ρ∇uh] · ν‖2L2(F ), (6.1)

where F is a face of T if d = 3, and F is an edge of T if d = 2, [ρ∇uh] is the jump of
ρ∇uh across F . The parameters ΛT ,ΛF , ρF in (6.1) are given by

ΛT =

{
maxT ′∈ΩT

{ ρT

ρT ′
}, if T has one singular node (cf. [20]),

1, otherwise,

ΛF = maxT∈ΩF
{ΛT }, ρF = maxT⊂ΩF

{ρT }, where ΩT = {T ′ ∈ Th : T ′ ∩ T 6= ∅}
and ΩF = {T ∈ Th : ∂T ∩ F 6= ∅}. The global a posteriori error estimator on Th is

defined by ηh :=
(∑

T∈Th
η2

T

) 1
2
. Based on the above a posteriori error estimator and

the AFEM algorithm in [16], we can mark and refine Th adaptively.
In the following experiments, Algorithm LMMA and LMAA are mainly used as

preconditioners for the conjugate gradient method. Let the discrete problem on TL

be

ALUL = FL.

We set the initial guess U0
L by the solution of the previous level, i.e., U0

L = IL−1UL−1,
where IL−1 : RNL−1 7→ RNL is the transfer matrix. Let rk = FL − ALUk

L be the
residual of the equation at the kth iteration. The PCG algorithm stops when

‖rk‖/‖r0‖ ≤ 10−6, (6.2)

where ‖v‖ is the l2-norm of the vector v. We define the average error reduction factor
of the PCG algorithm by

α = (
√
ek/

√
e0)1/iter,

where iter is the number of iterations required to achieve (6.2) and

e0 = (r0)tBLr0, ek = (rk)tBLrk, k ≥ 1.

Here BL can be any of the local multilevel algorithms in Algorithm 3.1–3.3. We shall
use local Gauss-Seidel smoothers in Algorithm 3.1–3.3 for all the examples.

Example 6.1. We consider (1.1)–(1.2) in two dimension with

f = 2π2 sin(4πx1) cos(4πx2), Ω = (−1, 1)× (−1, 1).

The coefficient ρ(x) is piecewise constant and has a checkerboard distribution on Ω,
where R is a positive constant (see Figure 6.1).

In Figure 6.1, the left picture shows the distribution of the coefficient ρ(x ) which
takes value 1 in the white regions and value R in the shadow regions. The middle
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Fig. 6.1. The distribution of ρ(x) (left). A locally refined mesh of Ω (middle). The surface
plot of the discrete solution (right).

Fig. 6.2. Average error reduction factor of LMMA-PCG (left) and SLMAA-PCG (right).

picture shows a locally refined mesh at the 6th adaptive iteration for R = 106. The
right picture shows a surface plot of the discrete solution. We find that the mesh is
refined considerably in the regions where the solution is singular.

In Figure 6.2 and Table 6.1, the reduction factors and the number of iterations of
algorithms LMMA-PCG and SLMAA-PCG are shown for different coefficients R =
10i, i = 0, 4, 6, 8. When R = 1, both algorithms present uniform convergence with
respect to mesh sizes and mesh levels. When R = 10i, i = 4, 6, 8, the convergence
rates of LMMA-PCG and SLMAA-PCG increase slightly with respect to the number
of mesh levels. However we can see that the convergence rates for these three cases are
almost the same and regardless of the jumps of ρ. The convergence rates agree well
with our theoretical results, i.e. 1 − 2

C| log hmin|+1 . From Table 6.1, we also note that
the multiplicative algorithm LMMA-PCG performs much better than the additive
algorithm SLMAA-PCG.

Example 6.2. We consider (1.1) with inhomogeneous boundary condition. Here
Ω is an “L-shaped” domain

Ω = (−1, 1)3 \ (0, 1)× (−1, 0)× (−1, 1).
19



Table 6.1
Example 6.1: Average error reduction factor and the number of iterations of PCG.

R = 1.0

Level 6 7 8 9 10 11
DOFs 10153 22745 48440 101376 199012 408490

LMMA α 0.0907 0.0960 0.0860 0.0937 0.0849 0.0885
-PCG iter 6 6 6 6 6 6

SLMAA α 0.4743 0.4802 0.4744 0.4996 0.4893 0.5056
-PCG iter 19 19 18 20 19 20

R = 104

Level 7 9 10 12 14 16
DOFs 28811 69568 94270 128905 169872 220619

LMMA α 0.2656 0.3177 0.3349 0.3852 0.4311 0.4598
-PCG iter 12 13 14 16 17 19

SLMAA α 0.6324 0.7125 0.7311 0.7686 0.7928 0.8092
-PCG iter 33 46 47 55 61 67

R = 106

Level 7 9 10 12 14 15
DOFs 28745 73571 96955 137204 196927 224420

LMMA α 0.2356 0.2805 0.3006 0.3509 0.3854 0.4007
-PCG iter 13 14 15 15 18 19

SLMAA α 0.6339 0.6886 0.7033 0.7445 0.7665 0.7755
-PCG iter 40 48 49 54 63 66

R = 108

Level 7 9 10 12 14 15
DOFs 28744 73533 96913 139119 182107 208732

LMMA α 0.2140 0.2521 0.2748 0.3161 0.3515 0.3688
-PCG iter 14 15 16 17 18 19

SLMAA α 0.6163 0.6723 0.6831 0.7240 0.7494 0.7594
-PCG iter 43 51 53 59 66 69

The coefficient function is defined by

ρ(x) =

{
ε, if x ∈ (0, 1)× (0, 1)× (−1, 1)

⋃
(−1, 0)× (−1, 0)× (−1, 1),

1, elsewhere.

The Dirichlet boundary condition and the right-hand side f are so chosen that the
exact solution is u = r2/3 sin( 2

3θ) in the cylindrical coordinates (r, θ, z).

Fig. 6.3. A locally refined mesh with 1, 537, 132 elements for the case of ε = 10−6.

Figure 6.4 and Table 6.2 show that the convergence rate α of LMMA is uniform
with respect the choices of ε or the jumps of coefficient. We also observe that 1−α ∝
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Fig. 6.4. Convergence of LMMA (left) and LMMA-PCG (right).

Table 6.2
Example 6.2: Average error reduction factor and the number of iterations of LMMA and

LMMA-PCG.

ε = 10−4

Level 8 9 10 11 12 13
Nel 48572 96612 193596 385880 770316 1537432

LMMA
α 0.7555 0.7847 0.8089 0.8289 0.8457 0.8603

iter 30 33 37 40 44 48
LMMA α 0.2963 0.3255 0.3472 0.3758 0.4044 0.4200
-PCG iter 12 13 15 16 17 17

ε = 10−6

Level 8 9 10 11 12 13
Nel 48572 96612 193596 385880 770316 1537132

LMMA
α 0.7556 0.7848 0.8089 0.8290 0.8458 0.8600

iter 30 33 37 40 44 48
LMMA α 0.2964 0.3256 0.3472 0.3759 0.4045 0.4271
-PCG iter 12 13 15 16 17 19

ε = 10−8

Level 8 9 10 11 12 13
Nel 48572 96612 193596 385880 770316 1537132

LMMA
α 0.7556 0.7848 0.8089 0.8290 0.8458 0.8600

iter 30 33 37 40 44 48
LMMA α 0.2964 0.3256 0.3472 0.3759 0.4045 0.4271
-PCG iter 12 13 15 16 17 19

N
−1/3
el where Nel is the number of elements of the underlying mesh. We also note

that the LMMA-PCG converges much faster than the LMMA. Figure 6.3 shows a
locally refined mesh with 1, 537, 132 elements for ε = 10−6 and reveals intensively
local refinements near the reentrant corner.

Example 6.3. We consider (1.1) defined on a domain with an inner screen:

Ω := (−1, 1)3 \ Γ, Γ = {(0, y, z) : y, z ∈ [−1/3, 1/3]}.

We set the right-hand side by f = 1.0 and the Dirichlet boundary condition by u|Γ = 0,
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u|∂Ω\Γ = 1.0. The coefficient is defined as follows (cf. Figure 6.5):

ρ(x) =

{
ε, in ∪4

i=1 Ωi,

1, elsewhere,

where

Ω1 = (−1/3, −2/3)× (0, 1/3)× (0, 1/3),
Ω2 = (−1/3, −2/3)× (−1/3, 0)× (−1/3, 0),
Ω3 = (1/3, 2/3)× (0, 1/3)× (0, 1/3),
Ω4 = (1/3, 2/3)× (−1/3, 0)× (−1/3, 0).

Fig. 6.5. The domain Ω, subdomains Ω1, . . . , Ω4, and the inner screen Γ.

Our computations show that the LMMA needs more than one thousand iterations
to achieve (6.2) for ε ≤ 10−4. Thus the LMMA is unfavorable for this example and
we only show the numerical results from the LMMA-PCG.

Figure 6.6 displays four sections of a locally refined mesh with 1, 154, 472 elements
for ε = 10−6, three of which are at x = 2/3, 0,−2/3 and the other one is at y = 0. We
observe that the mesh is locally refined near the boundary of the “screen” and the
sub-domains Ω1, . . . ,Ω4. Table 6.3 shows the convergence results of the LMMA-PCG.
Although LMMA presents unpleasant convergence property for ε ≤ 10−4, it proves
to be an efficient and robust preconditioner for the conjugate gradient method. This
again justifies our theoretical analysis.

Remark 6.4. After the submission of this paper, we found another work on the
same topic by Chen and et al [18] which appeared on the internet from June, 2010.
The two works are fully independent. The local multilevel method in [18] is based on
the mesh hierarchy obtained by some coarsening strategy for bisection grids, while our
method is based on adaptively refined meshes using a posteriori error estimates. This
also results in different proofs for the uniform convergence of the multilevel method.
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Fig. 6.6. An locally refined mesh with 1, 154, 472 elements for ε = 10−6. Three sections at
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