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Abstract. In this paper, hp-adaptive finite element methods are studied for time-harmonic
Maxwell’s equations. We propose the parallel hp-adaptive algorithms on conforming
unstructured tetrahedral meshes based on residual-based a posteriori error estimates.
Extensive numerical experiments are reported to investigate the efficiency of the hp-
adaptive methods for point singularities, edge singularities, and an engineering bench-
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performance than the h-adaptive method.
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1 Introduction

Let Ω⊂R3 be a bounded polygonal domain with Lipschitz continuous boundary Γ=∂Ω.
Given a current density f with div f =0, we seek a solution u which satisfies the following
time-harmonic Maxwell’s equations (cf. e.g. [31, Chapter 1])

curl(µ−1
r curlu)−κ2αu= f in Ω, (1.1a)

µ−1
r curlu×n=0 on Γ, (1.1b)

where µr≥1 is the relative magnetic permeability, κ>0 is the constant wave number, and
α is the complex relative dielectric coefficient. Usually u stands for the electric field or the
magnetic vector potential. In this paper, we are interested in two kinds of applications of
(1.1). For α= εr−iσ(ωε0)−1, (1.1) describes the electromagnetic field at moderate or high
frequencies. For α =−iσ(ωε0)−1, (1.1) is the eddy current model which approximates
the Maxwell equations at very low frequency [3]. Here εr ≥ 1 is the physical relative
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dielectric coefficient, ε0 >0 is the dielectric coefficient in the empty space, σ≥0 is the the
electric conductivity, and ω > 0 is the constant angular frequency. For the eddy current
model, we assume that Γ is the truncated boundary of R3 and Ω is simply connected.
The homogeneity of the boundary condition in (1.1b) is not essential for our analysis but
simplifies our proofs.

In this paper, we study the hp-adaptive finite element method for (1.1) on tetrahedral
meshes. Since the pioneering work of Babuška and Rheinboldt [8], the self-adaptive fi-
nite element method based on a posteriori error estimates has been studied over thirty
years. It has become one of the most popular methods in the numerical solution of
partial differential equations and in scientific and engineering computing. As for the
h-adaptive method which reduces the error by local mesh refinements, great successes
have been achieved in the study of a posteriori error analysis (cf. e.g. [11, 16, 38]), mesh
refinement algorithms (cf. e.g. [4, 25, 39]), and convergence and optimal complexity (cf.
e.g. [21, 24, 32]). Recently, Schöberl and coauthors studied h-type a posteriori error esti-
mates for Maxwell’s equations. In [14], Braess and Schöberl proposed the equilibrated
residual error estimator for edge elements with unit reliability constant. In [37], Schöberl
proved the reliability of the residual-based a posteriori error estimate for Maxwell’s equa-
tions via commuting quasi-interpolation operators. Using the idea of error equidistribu-
tion, the h-adaptive method based on a posteriori error estimates could yield a quasi-
optimal approximation with algebraic convergence rate

ηh≈CN
−p/d
h , (1.2)

where ηh is the a posteriori error estimate, d is the spatial dimension, p is the order of
the finite element method, and Nh is the number of degrees of freedom. However, due to
the singularity of the solution, the quasi-optimality (1.2) will degenerate for higher-order
finite elements since the constant C may blow up with increasing p.

The hp-adaptive finite element method reduces the error by both local mesh refine-
ments and local increase of polynomial degrees. It is more efficient than the pure h-
adaptive and p-adaptive methods and could reduce the error exponentially. For example,
the optimal convergence rate of the hp-adaptive method is

ηhp≈Ce
−δN1/3

hp (1.3)

for two dimensional elliptic problems [22], and is also conjectured to be

ηhp≈Ce
−δN1/5

hp (1.4)

for three dimensional elliptic problems [6], where C,δ are positive constants independent
of h and p, ηhp is the a posteriori error estimate for the hp-adaptive method, and Nhp is the
number of degrees of freedom. But for solutions with edge singularities, the meshes lead-
ing to the convergence rate in (1.4) must be obtained by anisotropic refinements, that is,
by using “needle elements” which are parallel to the edges (see [6] for more comments).
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Theoretical studies on hp-adaptive methods arose in the early 1980s (cf. [7, 9]) and now
has attracted more and more attentions.

The implementation of the hp-adaptive method is very challenging for higher di-
mensional problems. Thus most of the works in 1980s focused on theoretical aspects.
From 1990s on, more attention has been paid to the study of hp-adaptive algorithms
and practical implementations. And most of the literature focused on the hp-adaptive
computations of two-dimensional problems (cf. e.g. [2, 23, 27–29, 34]). Recently, using
goal-oriented a posteriori error estimates, Demkowicz and coauthors carried out hp-
adaptive simulations of resistivity logging-while-drilling measurements on hexahedral
meshes [19, 35]. Based on unstructured tetrahedral meshes and MPI, Zhang and Liu im-
plemented a parallel hp-adaptive finite element method for elliptic problems [26, 39].

In this paper, we first derive an hp-type a posteriori error estimate for the time-
harmonic Maxwell’s equations. The a posteriori error estimate is residual-based and re-
liable with the generic constant C independent of h and p. We also refer to [13, 17, 27, 28]
for hp-type a posteriori error estimates for elliptical problems. Next we propose two
hp-adaptive algorithms for solving (1.1). The first algorithm is an extension of the hp-
adaptive algorithm in [26, Section 5.3.1] to Maxwell’s equations and uses the strategy of
predicted error reductions. The second algorithm is proposed upon using the maximum
strategy. We implemented parallel hp-adaptive edge element methods on unstructured
tetrahedral meshes. We present five numerical experiments to study the efficiency of the
hp-adaptive algorithms. The first experiment is the Fichera problem which has a point
singularity at the reentrant corner of the domain. The hp-adaptive methods show expo-
nential decay of the a posteriori error estimate and the approximation error

ηhp≈Ce
−γN1/5

hp , ‖u−uh‖H(curl,Ω)≈Ce
−γN1/5

hp , γ=0.95.

The second experiment investigates the performance of the hp-adaptive methods for sin-
gle edge singularity. The third experiment compares the hp-adaptive method based on a
posteriori error estimates and the a priori hp-adaptive method based on anisotropic re-
finements along the edge of singularity. The anisotropic hp-adaptive algorithm yields ex-
ponential decay of the error. The isotropic hp-adaptive method performs worse than the
hp-adaptive method using anisotropic refinements, but much better than the h-adaptive
method. The fourth experiment investigates the performance of the hp-adaptive methods
for multiple edge singularities. The last experiment solves an engineering benchmark —
Team Workshop Problem 21-a2. For this example, the hp-adaptive methods show much
better performance than the h-adaptive method.

The rest of the paper is arranged as follows: In Section 2, we present a weak formu-
lation of (1.1) and establish the wellposedness of the problem. In Section 3, we introduce
the hp-edge element approximation to (1.1) and derive the hp-type a posteriori error es-
timates. In Section 4, we propose two hp-adaptive algorithms based on the a posteriori
error estimate. In Section 5, we report five numerical experiments to demonstrate the
competitive behavior of the hp-adaptive methods.
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2 Weak formulation

We start by introducing some notation and Sobolev spaces used in this paper. Let L2(Ω)
be the usual Hilbert space of square integrable functions equipped with the following
inner product and norm:

(u,v) :=
∫

Ω
u(x)v̄(x)dx and ‖u‖L2(Ω) :=(u,v)1/2,

where v̄ is the complex conjugate of v. Let Hm(Ω) :={v∈L2(Ω) : Dξv∈L2(Ω), |ξ|≤m} be
equipped with the following norm and semi-norm

‖u‖Hm(Ω) :=
(

∑
|ξ|≤m

∥

∥

∥
Dξu

∥

∥

∥

2

L2(Ω)

)1/2
and |u|Hm(Ω) :=

(

∑
|ξ|=m

∥

∥

∥
Dξu

∥

∥

∥

2

L2(Ω)

)1/2
,

where ξ represents non-negative triple index. Let H1
0(Ω) be the subspace of H1(Ω) whose

functions have zero traces on Γ. Throughout the paper we denote vector-valued quanti-
ties by boldface notation, such as L2(Ω) :=(L2(Ω))3. Define

H(curl,Ω) :=
{

v∈L2(Ω) : curlv∈L2(Ω)
}

,

H0(curl,Ω) :=
{

v∈H(curl,Ω) : v×n=0 onΓ
}

,

which are equipped with the following norm:

‖v‖H(curl,Ω) :=
(

‖v‖2
L2(Ω)+‖curlv‖2

L2(Ω)

)1/2
.

We denote the conducting domain by Ωc⊂Ω and the insulating domain by Ωi=Ω\Ωc.
For the eddy current model, we denote Σ = ∂Ωc and assume that Ωc⊂Ω and Γ∩Σ = ∅.
Furthermore, we make the following assumptions on the parameters which are mild in
physical settings:

(H1) κ >0 is constant and µ,α are piecewise constant in Ω .

(H2) There are constants µmin,µmax such that 0<µmin≤µ≤µmax in Ω.

(H3) There are constants 0<αmin≤αmax such that

αmin≤Reα≤αmax in Ω or Reα≡0 in Ω,

αmin≤ Imα≤αmax in Ωc and Imα≡0 in Ωi.

To distinguish the two model problems, we shall use α|Ωi
6=0 for the model at moderate

or high frequencies and use α|Ωi
=0 for the eddy current model in the rest of the paper.

Now we present a weak formulation of (1.1): Find u∈H(curl,Ω) such that

a(u,v)=( f ,v) ∀v∈H(curl,Ω), (2.1)
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where the sesquilinear form a: H(curl,Ω)×H(curl,Ω)→C is defined by

a(u,v) :=
∫

Ω
(µ−1curlu·curl v̄−κ2αu ·v̄). (2.2)

For α|Ωi
6=0, the existence and uniqueness of the solution u∈H(curl,Ω) have been estab-

lished in [31, Chapter 4]. If Imα=0, the differential operator in (1.1) could have resonant
modes, and thus problem (1.1) could be ill-posed for some f . We do not elaborate on this
case here.

For α|Ωi
=0, we introduce a subspace

X =
{

v∈H(curl,Ω) : (v,∇p)=0 ∀p∈H1
c (Ω)

}

,

where H1
c (Ω)=

{

p∈H1(Ω) : p=Const. in Ωc

}

. Define

(u,v)X =
∫

Ωc

u·v̄+
∫

Ω
curlu·curl v̄ and ‖v‖X =

√

(v,v)X . (2.3)

From (H3) and (2.2)–(2.3) we deduce that

|a(v,v)|≥min(µ−1
max,αmin)‖v‖2

X ∀v∈X . (2.4)

It is known that ‖·‖X and ‖·‖H(curl,Ω) are equivalent norms on X (cf. [10, 15] for the case

that X⊂H0(curl,Ω)). Then (2.1) has a unique solution u∈X .
For α|Ωi

6= 0, the existence and uniqueness of (2.1) indicates the following inf-sup
condition (cf. e.g. [5, Chapter 5])

sup
0 6=v∈H(curl,Ω)

|a(w,v)|

‖v‖H(curl,Ω)

≥β‖w‖H(curl,Ω) ∀w∈H(curl,Ω), (2.5)

where β >0 is a constant only depending on µ, κ, α, and Ω. For α|Ωi
=0, using (2.4) and

the norm equivalence on X and setting β small enough, we also have

sup
0 6=v∈X

|a(w,v)|

‖v‖H(curl,Ω)

≥β‖w‖H(curl,Ω) ∀w∈X . (2.6)

Furthermore, (2.5)–(2.6) indicate that the following stability estimate holds :

‖u‖H(curl,Ω)≤C‖ f‖0,Ω . (2.7)

3 Finite element approximations

Let Th be a shape-regular tetrahedral triangulation of Ω in the sense that

max
K∈Th

(hK/ρK)≤C, (3.1)
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where C>0 is a constant independent of Th, hK is the diameter of K, and ρK is the diameter
of the inscribed ball of K. We assume that Th is conforming such that the intersection
K1∩K2 of any two elements K1,K2∈Th is empty, or a vertex, or an edge, or a whole face.
We denote the set of faces, the set of edges, and the set of vertices of D by F(D), E(D),
V(D) respectively, where D may stand for Th, or an element K, or a face F, or an edge E
in different settings.

3.1 The discrete problem

We endow each K ∈ Th with a polynomial degree pK ∈N and collect the polynomial
degrees by Ph :={pK :∀K∈Th}. We assume that Ph satisfies

|pK−pK′ |≤γ ∀K,K′∈Th satisfying K∩K′ 6=∅, (3.2)

where γ is a constant independent of Th. For any v∈V(Th), E∈E(Th), and F∈F(Th), we
also employ the minimum rule [27] to define the the degrees of v, E, and F :

pv =min{pK : v∈V(K)}, pE =min{pK : E∈E(K)}, pF =min{pK : F∈F(K)}. (3.3)

Clearly the definitions in (3.3) are associated with Ph and should be denoted by pv(Ph),
pE(Ph), pF(Ph) for any v, E, and F. Without confusion in specific circumstance, we omit
the dependence on Ph to simplify the notation. Using the minimum rule, the finite ele-
ment spaces of variable order are defined as follows

V(Th,Ph) =
{

v∈H1(Ω) : v|K∈PpK
(K) ∀K∈Th

}

,

U(Th,Ph) =
{

v∈H(curl,Ω) : v|K∈
(

PpK
(K)

)3
∀K∈Th

}

,

where Pm(K)=Span
{

xi
1x

j
2xk

3 : 0≤ i+ j+k≤m, (x1 ,x2,x3)∈K
}

for any integer m≥0.

We also define the finite element spaces of fixed orders

V(Th,m) =
{

v∈H1(Ω) : v|K∈Pm(K) ∀K∈Th

}

,

U(Th,m) =
{

v∈H(curl,Ω) : v|K∈
(

Pm(K)
)3
∀K∈Th

}

.

The definitions are associated with the uniform distribution {pK = m : ∀K∈Th} and also
reflect the minimum rule

pv = pE = pF =m ∀v∈V(Th), E∈E(Th), F∈F(Th).

The Galerkin approximation to (2.1) reads: Find uhp∈U(Th,Ph) such that

a(uhp,v)=( f ,v) ∀vh∈U(Th,Ph). (3.4)

For α|Ωi
6= 0, the existence and uniqueness of uhp ∈U(Th,Ph) can be proved by similar

arguments as in [31, Chapter 7]. We do not elaborate on the details here. For α|Ωi
=0, the

well-posedness of (3.4) is given by the following lemma.
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Lemma 3.1. Suppose α=−iσ(ωε0)−1. Then (3.4) has a unique solution

uhp∈Xhp =
{

v∈U(Th,Ph) : (v,∇ϕ)=0 ∀ϕ∈Vc(Th,Ph+1)
}

, (3.5)

where Vc(Th,Ph+1)=
{

ϕ∈H1
c (Ω) : ϕ|K∈PpK+1(K) ∀K∈Th

}

.

Proof. In view of the definition of a(·,·), we need only prove that ‖·‖X is a norm on Xhp.
Let v∈Xhp satisfy ‖v‖X =0. Then we know that

v=0 in Ωc and curlv=0 in Ω.

Since Ω is simply connected, there exists a ψ ∈ H1
c (Ω)/R such that v = ∇ψ. But v

is piecewise polynomial, hence ψ ∈Vc(Th,Ph+1). The definition of Xhp indicates that
‖∇ψ‖L2(Ω) =0. This yields v=∇ψ=0 in Ω. The proof is completed.

3.2 A posteriori error estimates

The hp-type interpolation operator plays an important role in a posterior error estimates.
In [27], Melenk constructed two-dimensional hp-interpolation operators onto the H1(Ω)-
conforming finite element space. Here we present an hp-interpolation operator in three
dimension. The proofs are similar to those in [27] and we do not elaborate on the details.

Theorem 3.1. Let Th be a shape-regular mesh and let Ph be a polynomial degree distribution on
Th satisfying (3.2). Then there exists a constant C>0 such that

∥

∥u−Πhpu
∥

∥

L2(K)
+

hK

pK

∥

∥∇(u−Πhpu)
∥

∥

L2(K)
≤C

hK

pK
‖∇u‖L2(ΩK) ∀K∈Th,

∥

∥u−Πhpu
∥

∥

L2(F)
≤C

( hF

pF

)1/2
‖∇u‖L2(ΩF) ∀F∈F(Th),

where

ΩK =
(

⋃
{

K′ : K′∈Th, K∩K′ 6=∅
}

)◦
, ΩF =

(

⋃
{

K′ : K′∈Th, F∩K′ 6=∅
}

)◦
.

Now we derive the a posteriori error estimates for hp-adaptive finite element method.
Let u and uhp be the solutions of (2.1) and (3.4) respectively. Define the error function by
ehp =u−uhp. For α|Ωi

6=0, from (2.5) we know that

∥

∥ehp

∥

∥

H(curl,Ω)
≤β−1 sup

v∈H0(curl,Ω)

∣

∣a(ehp,v)
∣

∣

‖v‖H(curl,Ω)

. (3.6)

For α|Ωi
= 0, we let uhp ∈Xhp be the unique solution. Notice that uhp /∈X, we let ψhp ∈

H1
c (Ω)/R be the unique solution of the variational problem:

(∇ψhp,∇ϕ)=(uhp,∇ϕ) ∀ϕ∈H1
c (Ω)/R. (3.7)



8

Then uhp =uhp−∇ψhp∈X . From (2.6) we know that

∥

∥

∥
u−uhp

∥

∥

∥

H(curl,Ω)
≤β−1sup

v∈X

∣

∣a(u−uhp,v)
∣

∣

‖v‖H(curl,Ω)

=β−1sup
v∈X

∣

∣a(ehp,v)
∣

∣

‖v‖H(curl,Ω)

≤β−1 sup
v∈H(curl,Ω)

∣

∣a(ehp,v)
∣

∣

‖v‖H(curl,Ω)

.

It follows that

∥

∥ehp

∥

∥

X
=

∥

∥

∥
u−uhp

∥

∥

∥

X
≤β−1 sup

v∈H(curl,Ω)

∣

∣a(ehp,v)
∣

∣

‖v‖H(curl,Ω)

. (3.8)

For any face F∈F(Th), assuming F = ∂K1∩∂K2 with K1,K2∈Th, we denote the jump
of a function v across F by [v]F := v|K1

−v|K2
. For convenience in notation, we define the

residual functions on each K∈Th and F∈F(Th) as follows

RK =div( f +κ2αuhp|K), RK = f +κ2αuhp−curl(µ−1
r curluhp|K), (3.9)

JF =[( f +κ2αuhp)·n]F, JF =[µ−1
r curluhp×n]F. (3.10)

Hereafter we extend uhp, f by zero to the exterior of Ω.

Theorem 3.2. Let (H1)–(H3) be satisfied. There exists a constant C only depending on the inf-
sup constant β in (2.5)–(2.6) and the local quasi-uniformity of (Th,Ph) such that

∥

∥ehp

∥

∥

H(curl,Ω)
≤Cηhp if α|Ωi

6=0 and
∥

∥ehp

∥

∥

X
≤Cηhp if α|Ωi

=0, (3.11)

where ηhp is the a posteriori error estimate defined by

η2
hp = ∑

K∈Th

( hK

pK

)2
{

‖RK‖
2
L2(K)+‖RK‖

2
L2(K)

}

+ ∑
F∈F (Th)

hF

pF

{

‖JF‖
2
L2(F)+‖JF‖

2
L2(F)

}

. (3.12)

Proof. For any v∈H(curl,Ω), by the Birman-Solomyak decomposition [12,20], there exist
ϕ∈H1(Ω), vs∈H1(Ω) such that

v=∇ϕ+vs, ‖ϕ‖H1(Ω)+‖vs‖H1(Ω)≤C‖v‖H(curl,Ω) . (3.13)

Since∇Πhp ϕ+Πhpvs∈U(Th,Ph), by the Galerkin orthogonality, we have

a(ehp,v)= a(ehp,∇ϕ−∇Πhpϕ)+a(ehp,vs−Πhpvs). (3.14)

By similar arguments as in [11, 16] and using Lemma 3.1, we deduce that

∣

∣a(ehp,∇ϕ−∇Πhp ϕ)
∣

∣ ≤ C
{

∑
K∈Th

( hK

pK

)2

‖RK‖
2
L2(K)+ ∑

F∈F (Th)

hF

pF
‖JF‖

2
L2(F)

}1/2

‖ϕ‖H1(Ω),

∣

∣a(ehp,vs−Πhpvs)
∣

∣ ≤ C
{

∑
K∈Th

( hK

pK

)2

‖RK‖
2
L2(K)+ ∑

F∈F (Th)

hF

pF
‖JF‖

2
L2(F)

}1/2

‖vs‖H1(Ω).

The proof is completed upon using (3.13)–(3.14) and the inf-sup conditions (3.6) and (3.8).
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Remark 3.1. Using similar arguments as in [11], we can prove the lower bound estimate

ηhp≤C
∥

∥ehp

∥

∥

H(curl,Ω)
+C ∑

K∈Th

h2
K‖ f−QK f‖2

L2(K) ,

where QK: L2(K)→PpK
(K) is the L2–projection operator. But the generic constant C will

depend on the polynomial degree distribution Ph here. We also refer to [27,28] for similar
discussions.

4 Hp–adaptive finite element algorithms

Let T0≺T1≺···≺TL be a sequence of adaptively refined meshes and let Pl be the polyno-
mial degree distribution over Tl. For any element K∈Tl , we define the local a posteriori
error estimator ηK by

ηK =
hK

pK

(

‖RK‖L2(K)+‖RK‖L2(K)

)

+
1

2 ∑
F∈F (K)

( hF

pF

)1/2
(

‖JF‖L2(F)+‖JF‖L2(F)

)

. (4.1)

The global error estimate and the maximal element error estimate over Tl are defined by

ηl :=
(

∑
K∈Tl

η2
K

)1/2
, ηmax =max

T∈Tl

ηK.

4.1 Predicted error decrease strategy

The predicted error decrease strategy (PEDS) assumes that the solution is locally smooth
and the optimal convergence can be obtained by either local h-refinement or local p-
refinement. Then on each marked element K for refinement, an error decrease factor λK

is computed to judge which of the h-refinement and p-refinement should be performed.
We refer to [23, 26, 28] for various smooth-prediction strategies for the Poisson equation.

We shall extend the hp-adaptive algorithm of [26, Section 5.3.1] to Maxwell’s equa-
tions. Assume that the solution u of (1.1) is smooth enough. Let T̂h be a tetrahedral mesh
of Ω with maxK∈T̂h

= h and let ûh∈U(T̂h,p) be the best approximation to u with respect

to ‖·‖H(curl,Ω). Since
(

V(T̂h,p)
)3
⊂U(T̂h,p), we have

‖u−ûh‖H(curl,Ω) = inf
vh∈U(T̂h,p)

‖u−vh‖H(curl,Ω)≤ inf
vh∈(V(T̂h,p))3

‖u−vh‖H(curl,Ω)

≤Chmin(p,m)p−m‖u‖Hm+1(Ω) ∀m>0. (4.2)

We are seeking for the discrete solution uh ≈ ûh by the hp-adaptive algorithm.
For any K∈Tl , we let T∈Tl−1 be its parent element satisfying K⊆T. If K∈Tl−1∩Tl

is not refined in the (l−1)-level, we define T :=K. We assume that pT =2m holds locally
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on T. Notice that the PEDS hp-adaptive algorithm starts from the uniform distribution
of p=1. If pT <2m, it will perform more p-refinements to achieve pT≈2m. Then by (4.2),
the local error decrease factors are heuristically defined by

λK =

(

pT

pK

)pT/2(

|K|

|T|

)pT/3

≈

‖u−ul‖H(curl,T)

‖u−ul−1‖H(curl,T)

∀K∈Tl, (4.3)

where ul ∈U(Tl,Pl),ul−1 ∈U(Tl−1,Pl−1) are the discrete solutions of (3.4). We refer to
[26] for further discussions on the PEDS hp-adaptive algorithm for the Poisson equation.
Using ul−1, we define the error indicator ηT on T as follows

η2
T = h2

T

(∥

∥

∥
f +κ2αul−1−curl(µ−1

r curlul−1)
∥

∥

∥

2

L2(T)
+

∥

∥div( f +κ2αul−1)
∥

∥

2

L2(T)

)

(4.4)

+
1

2 ∑
F∈F (T)

hF

(∥

∥

∥
[µ−1

r curlul−1×n]F

∥

∥

∥

2

L2(F)
+

∥

∥[( f +κ2αul−1)·n]F

∥

∥

2

L2(F)

)

.

Algorithm 4.1 (PEDS). Given a tolerance ǫ>0 and the initial hp-pair (T0,P0). Set l=0 and
θ1∈ (0,1).

1. Solve the discrete problem (3.4) for uhp ∈U(Tl,Pl). If α|Ωi
= 0, compute the L2(Ω)-

projection ∇ψhp∈∇Vc(Tl,Pl +1) of uhp and set uhp←uhp−∇ψhp.

2. Compute the local error estimators ηK for all K∈Tl, the global error estimate ηl, and
the maximal error estimate ηmax.

3. While ηl >ǫ do

(a) Let T̂l =
{

K∈Tl : ηK > θ1ηmax

}

be the set of elements marked for refinement.

(b) Refine T̂l according to the predicted error decrease strategy:

For any K∈T̂l, compute λK by (4.3) and ηT by (4.4), do

pK← pK +1, if ηK≤λKηT,

refining K using the bisection algorithm (see [25, 30]), otherwise.

Set l← l+1.

(c) Solve the discrete problem (3.4) for uhp∈U(Tl,Pl). If α|Ωi
=0, set uhp←uhp−∇ψhp

where ∇ψhp∈∇Vc(Tl,Pl +1) is the L2(Ω)-projection of uhp.

(d) Compute the local error estimators ηK for all K∈Tl, the global error estimate ηl,
and the maximal error estimate ηmax.

end while.
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4.2 The maximum strategy

We propose the the maximum strategy (MS) of the hp-adaptive algorithm. The heuristics
behind the hp-adaptive algorithm is that

1. a subset of elements is marked for refinements on which the error is “large”;

2. on each marked element K, if the solution is strongly singular (ηK is very large), do
h-refinement; otherwise (weak singularity), do p-refinement.

Although the algorithm is simple, it shows good performances in our numerical experi-
ments.

Algorithm 4.2 (MS). Given a tolerance ǫ >0 and the initial hp-pair (T0,P0). Set l =0 and
0< θ1≤ θ2 <1. Replace Step 3 (b) in Algorithm 4.1 by Step (b)∗ :

(b)∗ Refine T̂l according to the maximum strategy:

Compute the average estimator η̄ =
(

∑K∈T̂l
η2

K

)1/2(

∑K∈T̂l
1
)−1/2

.

For any K∈T̂l, do

pK← pK +1, if ηK≤max
{

θ2ηmax, θ−2
2 η̄

}

,

bisection of K, otherwise.

Set l← l+1.

5 Numerical experiments

In the following, we report four numerical experiments to demonstrate the behavior
of the hp-adaptive algorithms. Our implementation uses the hierarchical basis of the
H(curl,Ω)-conforming edge element spaces [1] and the parallel adaptive finite element
package PHG [39] which is based on unstructured meshes and MPI. We set the maximal
polynomial degree as max{pK∈Pl : l≥0}=7. The number of degrees of freedom (DOFs)
is denoted by Nhp =dimU(Th,Ph).

In all numerical experiments, the experimental parameters are set by θ1 = θ2 =0.7 for
the h-adaptive method, θ1 = 0.3 for the hp-adaptive method using Algorithm 4.1, and
θ1 =0.3,θ2 =0.7 for the hp-adaptive method using Algorithm 4.2. In fact, setting

θ1 =0.2, 0.3 and θ2 =0.6, 0.7, 0.8

also yields exponential convergence of the hp-adaptive methods. But (θ1,θ2) = (0.3,0.7)
seems more efficient in our computations.
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Example 5.1. The first example is the Fichera problem. We set Ω = (−1,1)3\[0,1]3 and
µr = k=α=1 in (1.1). The righthand side f is so chosen that the exact solution of (1.1) is

u(x)=∇ψ, ψ=
(

|x|2+ǫ
)1/4

, ǫ=10−6.

Here ǫ is introduced to avoid accuracy loss of numerical integrations. In computations,
we find that the accuracy of numerical integrations influences the optimality of the adap-
tive methods greatly.

Figure 1: Graph of |u| on the slice x3 =0 (Example 5.1).

Figure 1 shows the graph of |u| in the x1x2-plane. Clearly the solution has strong
singularity in the neighborhood of the origin. We use this experiment to demonstrate
the efficiency of the hp-adaptive finite element methods for point singularities. The hp-
adaptive iterations start from an initial mesh T0 with 336 elements and the polynomial
degree distribution P0 ={pK =1 : ∀K∈T0}.

Figure 2 shows the decreasing rates of the a posteriori error estimate and the approxi-
mation error. The curves are obtained by the h-adaptive method for p=1, the PEDS of the
hp-adaptive method (Algorithm 4.1), and the MS of the hp-adaptive method (Algorithm
4.2). We find that the hp-adaptive methods performs much better than the h-adaptive
method. Moreover, the exponential decay of both the a posteriori error estimate and the
approximation error holds asymptotically

ηhp≈Ce
−δN1/5

hp ,
∥

∥u−uhp

∥

∥

H(curl,Ω)
≈Ce

−δN1/5
hp , δ=0.95.

Figure 3 shows two adaptively refined meshes using the PEDS algorithm and the MS
algorithm. Figure 4 shows the polynomial degree distributions of the two meshes on the
slice Σ = {x∈Ω : x1 =−0.001}. They display very fine meshes near the singularity. The
right picture of Figure 4 shows that the MS algorithm uses lower-order polynomials near
the singularity and high order polynomials elsewhere.
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Figure 2: Convergence plots for the Fichera problem (Example 5.1).

Figure 3: Adaptively refined meshes (Example 5.1). Left: 12169 elements by PEDS. Right: 9583 elements by
MS.

Figure 4: Polynomial degree distributions on the slice x1 =0 (Example 5.1). Left: PEDS. Right: MS
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Example 5.2. Let Ω=(−1,1)3\
(

[0,1]×[0,1]×[−1,1]
)

be an L-shaped domain and set µr =
k=α=1 in (1.1). The righthand side f is so chosen that the exact solution of (1.1) is

u(x)=∇ψ, ψ=
( r−x1

2

)1/2
,

where r=
√

x2
1+x2

2+ǫ and ǫ=10−6. Similarly the parameter ǫ is used to keep the accuracy

of numerical integrations. Figure 5 and 6 show the graphs of |u| on the x1x2-plane, the
x2x3-plane, and the x1x3-plane respectively. Clearly the solution u has an edge singularity
along the x3-axis.

We shall use this experiment to study the efficiency of the hp-adaptive finite element
methods for single edge singularity. A shortcoming of shape-regular meshes is that it
overrefines the mesh along singular edges so that the adaptive finite element method
may not be optimal, especially for high-order finite elements. Therefore, anisotropic
meshes are recommended near the edge singularities (cf. e.g. [6]). The optimality of
the h-adaptive linear finite element method bas been demonstrated for edge singularities
and the lowest order finite elements (see e.g. [16, 40]).

Figure 5: Graph of |u| on the slice x3 =0 (Example 5.2).

Since the hp-adaptive finite element method has varying polynomial degrees, the al-
gebraic system from the discrete Maxwell’s equations is difficult to solve. At present
we use the parallel sparse direct solver MUMPS [33] to solve the algebraic system and
can only deal with about 2 millions of unknowns. To study the efficiency of hp-adaptive
methods for large-scale computations, we consider the discrete elliptic problem

Find ψh∈V(Th,Ph) :
∫

Ω
∇ψh ·∇ϕh =−

∫

Ω
f ·∇ϕh ∀ϕh∈V(Th,Ph). (5.1)
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Figure 6: Graph of |u| on two slices. Left: x1 =0. Right: x2 =0 (Example 5.2).

It amounts to solve the discrete Maxwell equation (3.4) in a subspace ∇V(Th,Ph) ⊂
U(Th,Ph). We use the following hp-type a posteriori error estimate for (5.1)

ηhp :=
(

∑
K∈Th

η2
K

)1/2
, ηmax =max

T∈Th

ηK, (5.2)

where the local error indicators are defined by

ηK =hK‖div( f +∇ψh)‖L2(K)+
1

2 ∑
F∈F (K)

h1/2
F ‖[ f +∇ψh]F ·n‖L2(F) ∀K∈Th. (5.3)
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Figure 7: Convergence plots for the hp-adaptive finite element methods (Example 5.2).

Figure 7 shows the decreasing rates of the a posteriori error estimate ηhp and the
approximation error ‖∇(ψ−ψh)‖L2(Ω). The curves are obtained by the h-adaptive nodal
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element method with p=1 for solving (5.1), the PEDS of the hp-adaptive nodal element
method for solving (5.1), and the MS of the hp-adaptive nodal element method for solving
(5.1), the PEDS of the hp-adaptive edge element method for solving (3.4), and the MS of
the hp-adaptive edge element method for solving (3.4). In our computations, the numbers
of DOFs for the hp-adaptive methods are as follows

maxNhp =1.83×108 for nodal elements,

maxNhp =2.03×106 for edge elements.

We find that the hp-adaptive methods perform much better than the h-adaptive method.
Figure 8 shows two adaptively refined meshes obtained by the PEDS algorithm and the
MS algorithm. Figure 9 shows the polynomial degree distributions on the slice x1 =0.

Figure 8: Adaptively refined meshes (Example 5.2). Left: 204288 elements by PEDS. Right: 208896 elements
by MS.

Figure 9: Polynomial degree distributions on the slice x1 =0 (Example 5.2). Left: PEDS. Right: MS
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Example 5.3. The setting of this example is same to Example 5.2. To solve (5.1), we
shall use a priori hp-adaptive finite element method based on anisotropic refinements
along the edge of singularity. By comparing the numerical results with Example 5.2, we
shall investigate the influence of the over-refinements on the efficiency of the isotropic
hp-adaptive method.

First we partition Ω into cuboid meshes, and then subdivide each cuboid into six
tetrahedrons [36]. We choose the nodes in both the x1-direction and the x2-direction as
follows (see Figure 10)

0.0, ±0.2J , ±0.2J−1, ··· , ±0.22, ±0.2, ±1.0 ,

for some integer J >0. The nodes in the x3-direction are chosen as

0.0, ±0.2, ±0.4, ±0.6, ±0.8, ±1.0 .

The polynomial degrees are defined as follows

pK =[1+ j·s] ∀K∈Th and K⊂Ωj, 0≤ j≤ J, (5.4)

where [a] denotes the closest integer to a and

Ω0 :=
{

x∈Ω : |x1|≤0.2J , |x2|≤0.2J
}

,

Ωj :=
{

x∈Ω : 0.2J+1−j≤|x1|≤0.2J−j, 0.2J+1−j≤|x2|≤0.2J−j
}

, j=1,··· , J.

In our computations, we choose the parameters in (5.4) as s = 0.5,1.0 and J = 1,2,··· ,10
respectively. We refer to [6] for more discussions on this anisotropic refinement strategy.

Figure 10: An anisotropic mesh and the distribution of polynomial degrees on the slice x3 = 0. From left to
right: the figures are zoomed in successively near the singularity (Example 5.3).



18

0 5 10 15 20 25 30 35 40
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

N
hp
1/5 

 lo
g

(|
|∇

(ψ
−

ψ
h

p
)|

| L
2
(Ω

)) 

 

 

anisotropic hp−adaptivity (s=0.5)
anisotropic hp−adaptivity (s=1)
isotropic hp−adaptive PEDS
isotropic hp−adaptive MS
h−adaptive method
a line with slope −0.7

Figure 11: Decrease rates of the error produced by the anisotropic hp-adaptive method, the isotropic hp-adaptive
methods, and the h-adaptive method (Example 5.3).

Figure 10 shows an anisotropic mesh and the distribution of polynomial degrees over
this mesh. Figure 11 shows the decrease rates of the error obtained by the anisotropic
hp-adaptive method, the isotropic hp-adaptive method, and the h-adaptive method. For
the case that s=1 in (5.4), we find that the anisotropic hp-adaptive method leads to expo-
nential decay of the error

∥

∥∇(ψ−ψhp)
∥

∥

L2(Ω)
≈Ce

−δN1/5
hp , δ=0.7 .

We also find that the isotropic hp-adaptive method is less efficient than the anisotropic
hp-adaptive method but still more efficient than the h-adaptive method.

Example 5.4. Set Ω=(−1,1)3\[0,1]3 and µr =k=α=1 in (1.1). The righthand side f is so
chosen that the exact solution of (1.1) is

u(x)=∇ψ, ψ=
3

∑
i=1

( ri−xi

2

)1/2
, ri =

(

x2
i +x2

i+1+ǫ
)1/2

,

where x4 := x1 and ǫ = 10−6. Figure 12 shows the graph of |u| in the x1x2-plane. The
solution u has singularities along three axes. We shall use this experiment to demonstrate
the efficiency of the hp-adaptive methods for multiple edge singularities.

We still solve the discrete Maxwell’s equations (3.4) and the elliptic problem (5.1)
by hp-adaptive finite element methods. The a posteriori error estimate for (5.1) is de-
fined in (5.2) and (5.3). Figure 13 shows the decreasing rates of the a posteriori error
estimate ηhp and the approximation error ‖∇(ψ−ψh)‖L2(Ω). The curves are obtained by
the h-adaptive nodal element method for p = 1, the PEDS of the hp-adaptive nodal el-
ement method, and the MS of the hp-adaptive nodal element method, the PEDS of the
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Figure 12: Graph of |u| on the slice x3 =0 (Example 5.4).
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Figure 13: Convergence plots for the hp-adaptive finite element methods (Example 5.4).

Figure 14: Adaptively refined meshes (Example 5.4). Left: 234029 elements by PEDS. Right: 220883 elements
by MS.
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Figure 15: Polynomial degree distributions on the slice x1 =0 (Example 5.4). Left: PEDS. Right: MS

hp-adaptive edge element method, and the MS of the hp-adaptive edge element method.
In our computations, the numbers of DOFs for the hp-adaptive methods are as follows

maxNhp =1.62×108 for nodal elements,

maxNhp =2.62×106 for edge elements.

From Figure 13, we still find that the hp-adaptive methods performs much better than
the h-adaptive method. Figure 14 shows two adaptively refined meshes obtained by the
PEDS algorithm and the MS algorithm. Figure 15 shows the polynomial degree distri-
butions on the slice x1 = 0. Near the singular edges, the hp-adaptive methods generate
very fine mesh and use lower-order polynomials, while it uses higher order polynomials
away from the edge singularities.

Example 5.5. The fourth example is Team Benchmark Problem 21-a2 (see [18]). This
problem consists of a non-magnetic steel plate with two slits and two racetrack shaped
coils (see Figure 16). The steel plate has a conductivity of 1.3889×106 Siemens/Metre.
The sinal driving current for each coil is 3000 Ampere/Turn and has a frequency of 50
Hz. The driving currents for the two coils are in opposite directions. We solve the discrete
Maxwell’s equations (3.4) by hp-adaptive finite element methods.

Figure 17 shows the decreasing rates of the a posteriori error estimate by the h-adaptive
method for p = 1, the PEDS of the hp-adaptive method, and the MS of the hp-adaptive
method. We find that the hp-adaptive methods show great superiority over the h-adaptive
method in reducing the error. Again we find that the exponential decay of the a posteriori
error estimate holds asymptotically :

ηhp≈Ce
−δN1/5

hp , δ=0.3 .
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Figure 16: The geometry of Team Workshop Problem 21-a2 (Example 5.2).
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Figure 17: Convergence plots for the eddy current problem (Example 5.5).
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22

Figure 19: Eddy current distribution on a slice of the steel plate (MS).

Figure 18 shows the values of the first component of the magnetic flux B along two
lines

{x : x1 =0.00676, x2 =0.0} and {x : x1 =−0.00476, x2 =0.0}

which correspond to the two lines {x : x1 =±0.00576, x2 =0.0} in [18] respectively. Figure
19 shows the eddy current distribution on a slice of the steel plate. The numerical data
are computed by Algorithm 4.2 and coincide very well with the experimental values.

Figure 20: Polynomial degree distribution on the slice x1 =0.005999. Left: (T48,P48) by the PEDS algorithm.
Right: (T47,P47) by the MS algorithm. (Example 5.2)

Figure 20 shows the hp-pairs (T48,P48) by Algorithm 4.1 and (T47,P47) by Algorithm
4.2 on the slice Σ1 ={x∈Ω : x1 =0.005999}, where

dimU(T48,P48)=1801958 for Algorithm 4.1,

dimU(T47,P47)=1729148 for Algorithm 4.2.

The two algorithms yield very similar distributions of elements and polynomial degrees.
From the figures, we find roughly that the hp-adaptive methods use
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Figure 21: An adaptively refined mesh after 47 hp-adaptive iterations from the initial mesh (Example 5.2).

1. lower order elements near the boundary where the error is very small,

2. lower order elements in the conducting domain where the solution varies rapidly,

3. and high order elements in the insulating region away from the boundary where
the error is moderate.

Since the solution varies rapidly in the conducting domain, T47 displays a fine mesh there
in Figure 21.
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