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Abstract

The author gives the explicit form of the Hylleraas-Breit trans-
form(HBT) in the present paper, and applies it to fixed nucleus problems
of helium-like ions. Utilizing the relation between the total angular mo-
mentum and the Hamilton, the six-dimensional Schrödinger equation
is transferred into three-dimensional systems of equations. We use the
Lagrange finite element method to obtain their numerical solutions for
some low-lying S, 1s2p 3P and 1s3d 3D states of the helium atom.
The relative errors of our approximate energies are: O(10−8) a.u. for
S states, O(10−7) a.u. for 1s2p 3P state and O(10−5) a.u. for 1s3d 3D

state.
Keywords: finite element method, Hylleraas-Breit transformation,

Schrödinger equation, generalized eigenvalue problem.
PACS number: 31. 15. -p

1 Introduction

The three-body Coulomb problem is traditional challenging. The failure of theory to
describe precisely the system stimulated many mathematicians and physicists to devote
themselves in using various methods to obtain high-precision energies and other expecta-
tion values. Helium atom and heliumlike ions are typical models.

Some approaches to the problem include various variational methods, the Hartree-
Fock method [1], the finite difference method[2], the correlation-function hyperspherical-
harmonic method[3][4] and etc. Variational method is the most powerful among them.
As for nonrelativistic energies of low-lying states of the helium, their accuracies have
grown very rapidly, with the development of computer power and variational methods.
Hylleraas’ work([5], 1929) yields five significant digits and Kinoshita’s work([6], 1957)
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yields seven significant digits, for the ionization energy of the ground helium. Kono
and Hattori([7], 1985 and [8], 1986) used two sets of basis functions ri

1r
j
2r

k
12e

−ξr1−ηr2A(”ξ
terms”) and ri

1r
j
2r

k
12e

−ζ(r1+r2)A(”ζ terms”) to calculate the energy levels for S, P, D states
in He. A is an appropriate angular factor. The former set of functions is expected to
describe the whole wave function roughly, while another one is expected to describe the
short- and middle- range correlation effect. Their calculations yield 9-10 significant digits
for S states. Kleindienst and etc([9], 1994), Drake and Yan([10], 1994) applied the double
basis set method to S states of helium. Their basis functions are ri

1r
j
2r

k
12e

−ξ1r1−η1r2 and
ri
1r

j
2r

k
12e

−ξ2r1−η2r2 . Drake and Yan employed truncations to ensure numerical stability and
convergence. By complete optimizations of the exponential scale factors α1, β1, α2 and β2,
they achieved more than 15 significant digits. Recently, Drake and etc([11], 2002) obtained
21 significant digits for the ground helium by the triple basis set method. Korobov([12],
2002) even obtained 25 significant digits for the ground helium. It can be used as a
benchmark for other approaches for three-body systems. Their excellent works promote
the development of few-body problems.

The finite element method(FEM) is used initially in elastic mechanics and fluid me-
chanics. It uses local-defined basis functions to approximate unknown functions. The
main works of FEM applied to atomic and molecular problems began in 1970’s, and in
one- or two-dimensional cases. Askar([13], 1975) calculated the energies of hydrogen atom
in the ground state and the first excited state. Then Nordholm and Bacsky([14]) applied
FEM to more general bound state problems. Fridman and Rosenfeld([15], 1977) analyzed
two model problems of two-dimensional Schrödinger equations with FEM. Malik([16],
1980) computed the problem of molecular spectrum with Morse Potential. All these
works showed that FEM was simple and efficient for one- and two-dimensional atomic
and molecular problems.

The first work of FEM applied to three-dimensional case was due to Levin and Shertzer
([17], 1985). They calculated the ionization energy of the ground helium in terms of Hyller-
aas’ coordinates. M.Braun and etc.([18], 1993), Scrinzi([19], 1995) and etc. calculated
the ground state by various finite element scheme. Ackermann and Roitzsch([20], 1993),
Ackermann, Erdmann and Roitzsch([21], 1994), J.Ackermann([22], 1995) did good jobs in
solving Schrödinger equations by multilevel adaptive FEM. Recently, FEM has been ap-
plied to three-body problems in strong external fields. Braun, Schweizer and Elster([23],
1998) developed a method that combines the well known hyperspherical close coupling
and FEM to calculate atomic data for the three-body problem in strong magnetic field.
Schweizer and etc([24]) presented an effective numerical algorithm by combining discrete
variable technique and FEM, applied to hydrogen and helium atom in strong external
fields. Garcke and Griebel([25], 2000) computed the eigenproblems of hydrogen and he-
lium in strong magnetic and electric fields with the sparse grid combination technique.
They deal with the eigenvalue problems in terms of Cartesian coordinates. For a n-
dimensional problem, if we play M grid points on each coordinate direction, the number
of unknowns is O(Mn); but the sparse grid approach employs only O(M(logM)n−1) grid
points. It is a remarkable advantage for high dimensional problems. Furthermore, the
method is feasible on parallel computers. Other references include [26], [27] and the
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references cited therein.
In this paper, we apply FEM to some low-lying S, P,D states of the helium atom. In

terms of accuracies, our results are not comparable with those yielded by high-precision
variational calculations mentioned above. But our calculations are valuable in FEM
applied to three-body problems and in the development of FEM. We deal with three-
dimensional system of partial differential equations which are equivalent to the original
six-dimensional Schrödinger equation. The FEM matrices of generalized eigenvalue prob-
lems are banded, and the maximal band-width ¿ the number of unknowns. The finite
element scheme can be applied to other three-dimensional problems directly. We expect
to improve our results by improving our numerical schemes and the computer power. As
for implementation, we only need to change our software slightly to satisfy new schemes
or new problems.

The system of the helium atom is described by the six-dimensional Schrödinger equa-
tion. It is unpractical to be solved directly by FEM. By virtue of Hylleraas’ coordinates
[5], G.Breit transferred the six-dimensional Schrödinger equation into three-dimensional
forms for S states and P states by the Hylleraas-Breit transform(HBT)([28], 1930). The
simplified equation of S states has been widely used in numerical calculations for helium-
like ions.

In the present paper, we give an explicit expression of HBT. Expanding wave func-
tions with respect to eigenfunctions of the square of the angular momentum, we obtain
three-dimensional energy equations, which are equivalent to the original six-dimensional
Schrödinger equation, for all states S, P, D, F, · · · of helium-like ions. Therefore, most
approaches used for the ground state can also be used to solve simplified equations of
excited states.

We give a brief introduction to FEM in this paper. As a more general application to
the helium atom, we calculate nonrelativistic energies of some low-lying states(S-, 1s2p-
and 1s3d-states). Since eigenfunctions of the Hamiltonian are not very smooth due to
the singular potential, it is more efficient to use the Lagrange FEM than the Hermite
FEM. We add no physical assumptions and conditions in the procedure, including the
symmetry and anti-symmetry of wave functions. With pure numerical computations for
the pure partial differential equations, we can see from the figures of wave functions that
our results coincide with known physical properties very well. So we see that FEM is
efficient and reflects some intrinsic information of three-body problems.

The paper is organized as follows. HBT and three-dimensional energy equations of
all states are derived in §2. The weak equations of S, 1s2p and 1s3d states of the he-
lium are given in §3. FEM approximations of these problems are described in §4. Our
computational results and analyses for them are given in §5.

We use atomic unit in this paper, i.e. Bohr Radius a0 for length, Rydberg for energy(we
use Hartree from §3 on for convenience). We consider nonrelativistic and spin-independent
case.
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2 Hylleraas-Breit transform and energy equations

In the Cartesian coordinates, the Schrödinger equation of a helium-like ion is:

Hψ = Eψ, (2.1)

where H is the Hamiltonian defined as

H = −∆1 −∆2 + V, ∆iψ =
∂2ψ

∂x2
i

+
∂2ψ

∂y2
i

+
∂2ψ

∂z2
i

.

(xi, yi, zi) are coordinates of the i-th electron, (ri, θi, φi) are its spherical coordinates(suppose
the nucleus at the origion), i = 1, 2. V = −(2Z)/r1 − (2Z)/r2 + 1/r12 is the Coulomb

potential and Z is the nucleus charge. r12 =
√

r2
1 + r2

2 − 2r1r2 cos θ is the distance between
two electrons, and θ is the inter-electronic angle.

The eigen-equation of the square of the angular momentum M2 is

{[ 2∑

i=1

(
yi

∂

∂zi

− zi
∂

∂yi

)]
2 +

[ 2∑

i=1

(
zi

∂

∂xi

− xi
∂

∂zi

)]
2

+
[ 2∑

i=1

(
xi

∂

∂yi

− yi
∂

∂xi

)]
2 + l(l + 1)

}
ψ = 0, (2.2)

where l = 0, 1, · · ·. We introduce three Euler angles (θ′, φ′, φ), such that (r1, θ
′, φ′) are

the spherical coordinates of the first electron in the space-fixed coordinate o–xyz, i.e.
θ′=θ1,φ

′ = φ1. φ is the interfractial angle between the r1 − z plane and the r1 − r2 plane.
Rotate the system of coordinates, such that ~r1 is the new polar axis ~oz′, and the pro-
jections of unit vectors ~ox, ~oy, ~oz on ~ox′, ~oy′, ~oz′ are (− cos θ′ cos φ′, sin φ′, sin θ′ cos φ′),
(− cos θ′ sin φ′, − cos φ′, sin θ′ sin φ′), (sin θ′, 0, cos θ′) respectively; the spherical coordi-
nates of the second electron in o− x′y′z′ are (r2, θ, π + φ).

Take (r1, r2, θ, θ′, φ, φ′) as new variables, then HBT can be defined as follows:




x1 = r1 sin θ′ cos φ′

y1 = r1 sin θ′ sin φ′

z1 = r1 cos θ′

x2 = r2(sin θ cos θ′ cos φ cos φ′ − sin θ sin φ sin φ′ + cos θ sin θ′ cos φ′)
y2 = r2(sin θ cos φ cos θ′ sin φ′ + sin θ sin φ cos φ′ + cos θ sin θ′ sin φ′)
z2 = r2(cos θ cos θ′ − sin θ sin θ′ cos φ).

(2.3)

Take inner products of the unit vector ~r2 with unit vectors ~r1, ~oz, ~oy respectively, we have




cos θ = cos θ′ cos θ2 + sin θ′ sin θ2 cos(φ2 − φ′),
cos θ2 = cos θ cos θ′ − sin θ sin θ′ cos φ,
sin θ sin φ = sin θ2 sin(φ2 − φ′).

(2.4)

Thank to (2.3) and (2.4), (2.1) and (2.2) can be transfered into the following forms:

L(ψ)− A1(ψ)

r2
1

− A2(ψ)

r2
2

= Eψ, (2.5)
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[
∂2

∂θ′2
+ ctgθ′

∂

∂θ′
+

1

sin2 θ′
∂2

∂φ2
− 2

cos θ′

sin2 θ′
∂2

∂φ∂φ′
+

1

sin2 θ′
∂2

∂φ′2
+ l(l + 1)

]
ψ = 0, (2.6)

where

L(ψ) = −
2∑

i=1

1

r2
i

∂

∂ri

(
r2
i

∂ψ

∂ri

)
−

(
1

r2
1

+
1

r2
2

)
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ V ψ,

A1(ψ) = M2(ψ) + 2ctgθB1(ψ) + 2
∂

∂θ
B2(ψ)− 2B3(ψ) + (ctg2θ − 1)

∂2ψ

∂φ2
,

A2(ψ) =
1

sin2 θ

∂2ψ

∂φ2
, B1(ψ) = ctgθ′ cos φ

∂2ψ

∂φ2
+ sin φ

∂2ψ

∂φ∂θ′
,

B2(ψ) = ctgθ′ sin φ
∂ψ

∂φ
− cos φ

∂ψ

∂θ′
, B3(ψ) =

sin φ

sin θ′
∂2ψ

∂θ∂φ′
+

ctgθ cos φ

sin θ′
∂2ψ

∂φ∂φ′
.

By quantum mechanics, all common eigenfunctions of

Mz = −i
2∑

i=1

(xi
∂

∂yi

− yi
∂

∂xi

) = −i
∂

∂φ′
(2.7)

and M2 construct a complete basis of the square integrable function space(i is the imagi-
nary unit). So any eigenfunction of (2.5) can be expanded with them.

Since eigenvalues of (2.6) are combined with the magnetic quantum number m, we only
need to think of the case m = 0, i.e., to find those eigenfunctions of (2.6) satisfying ∂ψ

∂φ′ = 0.

They are[29] Dk±
l , k = 0, 1, · · · , l; l = 0, 1, · · · ; where Dk+

l = F k
l (θ′) sink θ′ cos kφ, Dk−

l =
F k

l (θ′) sink θ′ sin kφ and F k
l (θ′) = F (k− l, k + l + 1; k + 1; sin2 θ′

2
) are the hypergeometric

functions[30]. In view of the expression of F k
l and the hypergeometric equation[30], we

have 



dF k
l

dθ′
= Clk sin θ′F k+1

l ,

Clk sin2 θ′F k+1
l = 2kF k−1

l − 2k cos θ′F k
l ,

(2.8)

where Clk = (k−l)(k+l+1)
2(k+1)

. Thank to (2.8) and definitions of operators L,A1, A2, B1, B2 and
B3, by direct calculations, the following relations are true:





D0+
l = F 0

l (θ′), B2(D
0+
l ) = −Cl0D

1+
l ,

B1(D
0+
l ) = B3(D

0+
l ) = A2(D

0+
l ) = 0,

B1(D
k±
l ) =

kClk

2
D

(k+1)±
l − k2D

(k−1)±
l , when k ≥ 1;

B2(D
k±
l ) = −Clk

2
D

(k+1)±
l − kD

(k−1)±
l , when k ≥ 1;

B3(D
k±
l ) = 0, when k ≥ 1.

(2.9)

Clearly, all function spaces V ±
l =span{Dk±

l , k = 0, 1, · · · , l} are invariant subspaces under
the operator H. For any eigen-state of H with angular number l, we can construct the
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wave function as: ψ±l =
∑l

k=0 uk±
l (r1, r2, θ)D

k±
l . Substitute ψ±l into (2.5). Since Dk±

l are
independent solutions of (2.6), in view of (2.9), we have

L(uk±
l ) +

[
l(l + 1) + k2(ctg2θ − 1)

r2
1

+
k2

r2
2 sin2 θ

]
uk±

l

− Cl,k−1(k − 1)(1− δk0)ctgθ

r2
1

u
(k−1)±
l +

2(k + 1)2(1− δkl)ctgθ

r2
1

u
(k+1)±
l

+
Cl,k−1(1− δk0)(1 + δk1)

r2
1

∂u
(k−1)±
l

∂θ
+

2(k + 1)(1− δkl)

r2
1

∂u
(k+1)±
l

∂θ

= Euk±
l , (2.10)

where δij = 1, if i = j; δij = 0, if i 6= j.
Since D0−

l = 0, we set u0−
l = 0. For any given l ≥ 0, (2.10) are two independent

systems of equations. The unknown functions of one are u0+
l , u1+

l , · · · , ul+
l satisfying l + 1

equations(the index k varies from 0 to l in (2.10)). Those of another are u1−
l , u2−

l , · · · , ul−
l

satisfying l equations(k = 1, 2, · · · , l). They are used for different stationary state prob-
lems.

3 Weak forms of energy equations

By the discussion in section 2, the magnetic number m = 0 means that the z-component
Mz of the angular momentum M is zero, so ∂ψ/∂φ′ = 0 by (2.7). If l = 0 (S-state), (2.6)
has only constant solutions, so V +

0 consists of all square integrable functions depending
on r1, r2, θ. If l = 1 (P -state), all independent solutions of (2.6) are

cos θ′, sin θ′ cos φ, sin θ′ sin φ, (3.1)

so V +
1 = span{cos θ′, sin θ′ cos φ} and V −

1 = span{sin θ′ sin φ}. If l = 2 (D-state), all
independent solutions of (2.6) are

3 cos2 θ′ − 1, sin2 θ′ sin 2φ, sin2 θ′ cos 2φ, sin 2θ′ sin φ, sin 2θ′ cos φ, (3.2)

so V +
2 = span{3 cos2 θ′ − 1, sin 2θ′ cos φ, sin2 θ′ cos 2φ} and V −

2 = span{sin2 θ′ sin 2φ,
sin 2θ′ cos φ}. Since each of the five spaces is invariant under the Hamiltonian H, any
eigenfunction ψp of P states must be in V +

1 or V −
1 . Similar results hold for S and D

states. Now we show that the wave functions ψp and ψd of 1s2p and 1s3d states belong
to V +

1 and V +
2 respectively.

If we assume one electron is in a s-state and neglect the interaction between two
electrons, the angular part of any wave function is a linear combination of the following
functions:

const. (S states), cos θ1, cos θ2 (P states),
3 cos2 θ1 − 1

2
,
3 cos2 θ2 − 1

2
(D states). (3.3)
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So the conclusion is true in view of the following relations:




cos θ1 = cos θ′

cos θ2 = cos θ cos θ′ − sin θ sin θ′ cos φ
1

2
(3 cos2 θ1 − 1) =

1

2
(3 cos2 θ′ − 1)

1

2
(3 cos2 θ2 − 1) =

3 cos2 θ − 1

4
(3 cos2 θ′ − 1) +

3 sin2 θ

4
sin2 θ′ cos 2φ

−3 sin2 θ

4
sin 2θ′ cos φ.

(3.4)

We construct the wave functions of the S, 1s2p and 1s3d states as follows:




ψs = us(r1, r2, θ)
ψp = u1p cos θ1 − u2p cos θ2 = (u1p − u2p cos θ) cos θ′ + u2p sin 2θ sin θ′ cos φ
ψd = u1d(3 cos2 θ′ − 1) + u2d sin 2θ sin 2θ′ cos φ + u3d sin2 θ sin2 θ′ cos 2φ,

(3.5)

where all coefficient functions u depend only on three variables r1, r2, θ.
Substituting (3.5) into (2.5) gives

L(us) = Es · us, (3.6)




L(u1p) +
1

r2
1

(
u1p − ctgθ

∂u1p

∂θ

)
− 1

r2
2 sin θ

∂u2p

∂θ
= Ep · u1p

L(u2p) +
1

r2
2

(
u2p − ctgθ

∂u2p

∂θ

)
− 1

r2
1 sin θ

∂u1p

∂θ
= Ep · u2p,

(3.7)





L(u1d) +
3u1d

r2
1

+
(6 cos2 θ − 2)u2d

r2
2

+
sin 2θ

r2
1

∂u2d

∂θ
= Ed · u1d

L(u2d)− 2

(
1

r2
1

+
1

r2
2

)
ctg2θ

∂u2d

∂θ
− 3

r2
1 sin 2θ

∂u1d

∂θ
+

tgθ

2r2
1

∂u3d

∂θ

+

(
5

r2
1

+
3

r2
2

)
u2d +

2u3d

r2
1

= Ed · u2d

L(u3d)− 2

(
1

r2
1

+
1

r2
2

)
ctgθ

∂u3d

∂θ
− 2ctgθ

r2
1

∂u2d

∂θ
+

2u2d

r2
1

+

(
1

r2
1

+
1

r2
2

)
u3d

sin2 θ
+

u3d

r2
2

= Ed · u3d

(3.8)

Remark: Systems of equations (3.6)-(3.8) are equivalent to (2.10) and to (2.1). With
(3.6)-(3.8), it is convenient to find proper trial spaces for variational equations of the S,
1s2p and 1s3d states respectively.
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Let µ = cos θ and R > 0 large enough, denote ~vp = (v1p, v2p)
T , ~vd = (v1d, v2d, v3d)

T ,
Ω = {(r1, r2, µ)|0 ≤ r1, r2 ≤ R,−1 ≤ µ ≤ 1}. Define

(us, vs) =
∫

Ω
usvsr

2
1r

2
2dr1dr2dµ, ( ~up, ~vp) =

∫

Ω
(u1pv1p + u2pv2p)r

2
1r

2
2dr1dr2dµ,

( ~ud, ~vd) =
∫

Ω
(u1dv1d + µu2dv2d + u3dv3d)r

2
1r

2
2dr1dr2dµ;

‖~vt‖2
0 = (~vt, ~vt), t = s, p, d; ‖~vp‖2

p = ‖v1p‖2
s + ‖v2p‖2

s,

‖vs‖2
s = ‖vs‖2

0 +
∫

Ω

[ 2∑

i=1

(
∂vs

∂ri

)2

r2
1r

2
2 + (r2

1 + r2
2)(1− µ2)

(
∂vs

∂µ

)2 ]
dr1dr2dµ,

‖~vd‖2
d = ‖v1d‖2

s + ‖v3d‖2
s +

∫

Ω

[
r2
1r

2
2µu2

2d + r2
1r

2
2µ

(
∂u2d

∂r1

)2

+r2
1r

2
2µ

(
∂u2d

∂r2

)2

+ (r2
1 + r2

2)(µ− µ3)

(
∂u2d

∂µ

)2 ]
dr1dr2dµ ,

where ~vs = vs. Define

Ut = {~vt(r1, r2, µ)|‖~vt‖t < +∞, ~vt|r1=R = ~vt|r2=R = ~0}, t = s, p, d. (3.9)

The weak forms of eigenvalue problems (3.6)–(3.8) are: Find (Et, ~ut) ∈ R × Ut and
~ut 6= 0, such that

at(~ut, ~vt) = Et · (~ut, ~vt), ∀~vt ∈ Ut, t = s, p, d; (3.10)

where

as(us, vs) =
∫

Ω

[
1

2
r2
1r

2
2

(
∂us

∂r1

∂vs

∂r1

+
∂us

∂r2

∂vs

∂r2

)
+

1

2
(r2

1 + r2
2)(1− µ2)

∂us

∂µ

∂vs

∂µ

+


 r2

1r
2
2√

r2
1 + r2

2 − 2r1r2µ
− 2r2

1r2 − 2r1r
2
2


 usvs

]
dr1dr2dµ,

ap( ~up, ~vp) =
∫

Ω

[
1

2
r2
1r

2
2

(
∂u1p

∂r1

∂v1p

∂r1

+
∂u1p

∂r2

∂v1p

∂r2

+
∂u2p

∂r1

∂v2p

∂r1

+
∂u2p

∂r2

∂v2p

∂r2

)

+
1

2
(r2

1 + r2
2)(1− µ2)

(
∂u1p

∂µ

∂v1p

∂µ
+

∂u2p

∂µ

∂v2p

∂µ

)

+


 r2

1r
2
2√

r2
1 + r2

2 − 2r1r2µ
− 2r2

1r2 − 2r1r
2
2


 (u1pv1p + u2pv2p)

+r2
2u1pv1p + r2

1u2pv2p +

(
µr2

2

∂u1p

∂µ
+ r2

1

∂u2p

∂µ

)
v1p

+

(
µr2

1

∂u2p

∂µ
+ r2

2

∂u1p

∂µ

)
v2p

]
dr1dr2dµ,
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ad( ~ud, ~vd) =
∫

Ω

{
1

2
r2
1r

2
2

(
∂u1d

∂r1

∂v1d

∂r1

+
∂u1d

∂r2

∂v1d

∂r2

+ µ
∂u2d

∂r1

∂v2d

∂r1

+µ
∂u2d

∂r2

∂v2d

∂r2

+
∂u3d

∂r1

∂v3d

∂r1

+
∂u3d

∂r2

∂v3d

∂r2

)

+
1

2
(r2

1 + r2
2)(1− µ2)

(
∂u1d

∂µ

∂v1d

∂µ
+ µ

∂u2d

∂µ

∂v2d

∂µ
+

∂u3d

∂µ

∂v3d

∂µ

)

+


 r2

1r
2
2√

r2
1 + r2

2 − 2r1r2µ
− 2r2

1r2 − 2r1r
2
2


 (u1dv1d + µu2dv2d + u3dv3d)

+

[
3r2

2u1d + r2
2(6µ

2 − 2)u2d + 2r2
2(µ

3 − µ)
∂u2d

∂µ

]
v1d

+

[
r2
1 + r2

2

2
(3µ2 − 1)

∂u2d

∂µ
+

3r2
2

2

∂u1d

∂µ
+

r2
2

2
(µ2 − 1)

∂u3d

∂µ

+2r2
2µu3d + (3r2

1 + 5r2
2)µu2d

]
v2d +

[
2r2

2µ
∂u2d

∂µ
+ 2(r2

1 + r2
2)µ

∂u3d

∂µ

+2r2
2µu2d +

(
r2
1 +

r2
1 + r2

2

1− µ2

)
u3d

]
v3d

}
dr1dr2dµ.

4 Finite-element approximations

FEM is a numerical algorithm that uses local interpolation functions to solve partial
differential equations describing boundary-value problems[31]. It is a generalization of
traditional variational methods and finite difference methods. For a variational problem
on a function space V : Find u ∈ V such that

a(u, v) = (f, v) ∀v ∈ V,

where a(·, ·) is a continuous bilinear form on V × V and f is a continuous linear form on
V . The approximate problem called discrete problem is: Find uh ∈ Vh such that

ah(uh, vh) = (f, vh) ∀vh ∈ Vh,

where Vh is a finite dimensional space which is included in V (conforming FEM) or
not (nonconforming FEM). Then FEM is characterized by three basic aspects in the
construction of Vh and the finite-element interpolation operator πh defined over V . First,
a subdivision Th of the set Ω, i.e. the set Ω is written as a finite union of finite elements
K ∈ Th. Secondly, the function of vh ∈ Vh are piecewise polynomials, in the sense that
for each K ∈ Vh, the spaces PK = {vh|K : vh ∈ Vh} consist of polynomials. Thirdly, there
should exist a basis of Vh whose functions have small support. πh is characterized as: (1),
∀v ∈ V, πhv ∈ Vh; (2), ∀K ∈ Th, let ΣK = {lK1 , . . . , lKd } whose elements are defined for
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v be a basis of (PK)′, then operator πK is defined by: πKv ∈ PK , lKi (πKv) = lKi (v); (3),
πhv|K = πKv.

We construct the Lagrange finite-element approximation[31] of (3.12), i.e. for any
p ∈ PK , the linear functional lKi defined as: lKi (p) = p(aK

i ), where aK
i is some point in K

called node. Let {Th} be a non-degenerate family of subdivisions of Ω. ∀K ∈ Th, K is a
cube. Let K̂ = [0, 1]3 be the reference element. FK is an affine transformation from K̂ to
K defined as: 




r1 = rK
1 + hK

1 ξ,

r2 = rK
2 + hK

2 η, (ξ, η, ζ) ∈ K̂,
µ = µK + hK

3 ζ,

(4.1)

where (rK
1 , rK

2 , µK) is some vertex of K, and hK
1 , hK

2 , hK
3 are edge lengthes of K. Let

âijk = (ξj, ηi, ζk) be the nodes in K̂, ξj, ηi, ζk ∈ {0, 1/3, 2/3, 1}.

pijk =
4∏

l,m,n=1

l 6=i,m6=j,n6=k

(ξ − ξm)(η − ηl)(ζ − ζn)

(ξj − ξm)(ηi − ηl)(ζk − ζn)
1 ≤ i, j, k ≤ 4.

Obviously we have

pijk(âlmn) = δijk,lmn =

{
1, (i, j, k) = (l, m, n),
0, else.

We define the interpolation function on K as:

∀v, πKv(x) =
4∑

i,j,k=1

v(aK
i,j,k)pijk(F

−1
K (x)), ∀x ∈ K.

where aK
i,j,k = FK(âi,j,k) are nodes on K. Define ΣK = {aK

i,j,k : 1 ≤ i, j, k ≤ 4}, PK =

{pi,j,k ◦ F−1
K : 1 ≤ i, j, k ≤ 4}. πK~vp = (πKv1p, πKv2p)

T , πK~vd = (πKv1d, πKv2d, πKv3d)
T .

Clearly, (πK~vt)(a
K
i,j,k) = ~vt(a

K
i,j,k), 1 ≤ i, j, k ≤ 4. The global interpolation operator πh on

Ω is defined as: (πh~vt)|K = πK~vt. The finite element spaces are

Uh
t = {~vt ∈ C0(Ω) : ~vt|K ∈ PK ; ~vt|r1=R = ~vt|r2=R = 0}.

~v ∈ PK means that all components of ~v are in PK , t = s, p, d; and so does ~v ∈ C0(Ω).
The approximations of (3.12) are: Find (Eh

t , ~uh
t ) ∈ R1 × Uh

t and ~uh
t 6= ~0, such that

at(~u
h
t , ~v

h
t ) = Eh

t · (~uh
t , ~v

h
t ), ∀~vh

t ∈ Uh
t , t = s, p, d. (4.2)

Since Uh
t are finite dimensional spaces, let Nt=dim(Uh

t ). We can choose the basis

{~Φt
1, · · · , ~Φt

Nt
} of Uh

t such that supp~Φt
i =

⋃
K∈Th,ai∈ΣK

K where ai is a node of Ω. Let

~uh
t =

∑Nt
i=1 αt

i
~Φt

i, and ~vh
t = ~Φt

i, 1 ≤ i ≤ Nt in (4.2). Then we obtain the equivalent
generalized eigenvalue problems:

AtXt = Eh
t MtXt, t = s, p, d, (4.3)
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where Xt = (αt
1, · · · , αt

Nt
)T , At = (at(~Φ

t
i,

~Φt
j))Nt×Nt , Mt = ((~Φt

i,
~Φt

j))Nt×Nt .
In practice, we calculate all element stiffness matrices AK

t , MK
t first, then assemble

them into At, Mt according to some rules[32][33]. For example,

(AK
s )ijk,lmn =

hK
2 hK

3

2hK
1

∫

K̂

∂pijk

∂ξ

∂plmn

∂ξ
r2
1r

2
2dξdηdζ +

hK
1 hK

3

2hK
2

∫

K̂

∂pijk

∂η

∂plmn

∂η
r2
1r

2
2dξdηdζ

+
hK

1 hK
2

2hK
3

∫

K̂

∂pijk

∂ζ

∂plmn

∂ζ
(1− µ2)(r2

1 + r2
2)dξdηdζ

+ hK
1 hK

2 hK
3

∫

K̂
pijkplmn


 r2

1r
2
2√

r2
1 + r2

2 − 2r1r2µ
− 2r2

1r2 − 2r1r
2
2


 dξdηdζ,

(MK
s )ijk,lmn = hK

1 hK
2 hK

3

∫

K̂
pijkplmnr

2
1r

2
2dξdηdζ, 1 ≤ i, j, k, l,m, n ≤ 4.

Since all ~Φt
i have small support, all global stiffness matrices At and mass matrices Mt are

large and banded. As, Mt are symmetric, t = s, p, d; but Ap, Ad are unsymmetrical. For
symmetric matrices, we only need to store up the nonzero elements of their lower triangular
part. But for unsymmetrical matrices, we need extra storage spaces for the upper part.
Furthermore, 1s2p-state doubles and 1s3d-state triples the number of unknowns (or degree
of freedoms) of S states for the same nodes. So we will get higher precision for S states with
the same number of nodes. We use inverse iteration method[32] to solve the generalized
eigenvalue problems (4.3).

5 Numerical results

We carried out our computations on PC: Intel PIII750 with 1G SDRAM. The experiment
shows that: (1) the energy errors decrease with R or the number of nodes increasing; (2)
with excited states becoming higher, R should be larger; and more nodes far from the
nucleus be needed; (3) very large R has not remarkable improvement to the precision.

The main error is concerning about the potential V = − 2
r1
− 2

r2
+ 1

r12
. For triplets,

their wave functions are antisymmetric; so two electrons can not be very close to each
other. That is to say, when r12 is very small, the wave functions u tend to zero. When we
calculate

∫
Ω

u2

r12
dr1dr2dµ with Gaussian integration formulas[34], the errors for triplets are

much smaller than those for singlets with same number of Gaussian points. Furthermore,
from the figures below, we can see that the wave function |u| for the ground state is much
larger than those for excited states when r12 is small and in the neighborhood of the
nucleus where the singularities are. So we use more and more Gaussian points and grid
points along µ when the states varies from triplets, singlets to the ground state. But with
the number of Gaussian points increasing, the computing time increases.

All matrix elements are computed by standard Gaussian integration formulas. The
numbers of Gaussian points are: 9 × 9 × 9 for triplets, 21 × 21 × 21 for singlets, and
27× 27× 27 for the ground state. We place grid points symmetrically along r1 and r2 for
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all states. The grid points are:
1s1s 1S : 0.0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.6,

2.0, 2.6, 3.2, 4.2, 6.0, 9.0, 15.0;
− 1.0, −0.6, −0.2, 0.2, 0.6, 1.0;

1s2s 1S : 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0,
2.2, 2.4, 2.6, 3.0, 3.4, 3.8, 4.2, 4.8, 5.6, 8.0, 11.5, 15.0, 20.0;
− 1.0, −0.5, 0.5, 1.0;

1s2s 3S : 0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6,
1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 4.0, 4.5, 5.5, 7.0, 10.0, 13.0,
16.0, 20.0, 25.0;
− 1.0, 0.0, 1.0;

1s2p 3P : 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.2, 2.6, 3.0, 3.6, 5.0, 7.0,
10.0, 15.0, 20.0, 25.0;
− 1.0, 0.0, 1.0;

1s3d 3D : 0.0, 0.2, 0.4, 0.6, 1.0, 1.6, 2.2, 3.0, 4.0, 6.0, 9.0, 13.0, 18.0, 24.0, 30.0;
− 1.0, 0.0, 1.0;

Table 1: Computational efforts.
state 1s1s 1S 1s2s 1S 1s2s 3S 1s2p 3P 1s3d 3D

number of 57472 65320 68243 44954 36246
unknowns

Table 2: FEM results for the helium atom(a.u.).

state 1s1s 1S 1s2s 1S 1s2s 3S 1s2p 3P 1s3d 3D

results in -2.90372437703411959 -2.1459740460544 -2.1752293782367 -2.133164190 -2.055636309453

references 83111594(4) [12] 188(21) [10] 913037(13) [10] 77927(1) [35] 261(4) [35]

this work -2.903724106 -2.1459740042 -2.1752293277 -2.1331633824 -2.05558078

Now, we show the behaviors of wave functions in a special case µ = 1(θ = 0◦). From
Figure 1-5, we can see that the domain where electrons appear frequently is considerably
small, so it is reasonable to solve the Schrödinger equation in bounded domains. Fur-
thermore, we can see that the figures of wave functions ψs, ψp constructed in (3.6) are
symmetric or antisymmetric according to singlets or triplets respectively. We didn’t add
this assumption a priori.

Acknowledgements: The authors are grateful to the anonymous referees for their
valuable comments and advices for our paper. The authors also thank professor Peizhu
Ding of Jilin University for discussing the problem with us and reading this paper.
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[9] H.Kleindienst, A.Lüchow and H.-P.Merckens, Chem. Phys. Letters, 218, 441-
444(1994).

[10] G.W.F.Drake and Z.-C. Yan, Chem. Phys. Letters, 229, 486-490(1994).

[11] G.W.F.Drake, M.M.Cassar and R.A.Nistor, Phys. Rev. A, 65, 054501(2002).

[12] V.I.Korobov, Phys. Rev. A, 66, 024501(2002).

[13] A.Askar, J. Chem. Phys., 62(1975),732.

[14] S.Nordholm and G.Bacsky, Chem.Phys.Lett., 42, 253-258, 259-263(1976).

[15] M.Fridman, Y.Rosenfeld, A.Rabinovitch and R.Thieberger, J. Comput. Phys., 26,
269(1978).

[16] D.J.Malik, J.Ecceles and D.Secreet, J. Chem. Phys., 38, 187(1980).

[17] F.S.Levin and J.Shertzer, Phys. Rev. A, 32, 3285(1985).



15

[18] M.Braun, W.Schweizer and H.Herold, Phys. Rev. A, 48, 1916(1993).

[19] A.Scrinzi, Comput. Phys. Commun. 86, 67(1995).

[20] J.Ackermann and R.Roitzsch, Chem. Phys. Lett., 214, 109-117(1993).

[21] J.Ackermann, B.Erdmann and R.Roitzsch, J. Chem. Phys., 101(9), 7643-
7650(1994).

[22] J.Ackermann, Phys. Rev. A, 52(3), 1968-1975(1995).

[23] M.Braun, W.Schweizer and H. Elster, Phys. Rev. A, 57(5), 3739-3747(1998).

[24] W.Schweizer, P.Faßbinder and etc, Journal of Computational and Applied Mathe-
matics, 109, 95-112(1999).

[25] J.Garcke and M.Griebel, J. Comp. Phys., 165(2), 694-716(2000).

[26] N.Elander and E.Yarevsky, Phys. Rev. A, 56, 1855-1864(1997); 57, 2256(1998).

[27] T.Alferova and etc, Adv. quantum chem., 40, 323-344(2001).

[28] G.Breit, Phys. Rev., 35, 569-578(1930).

[29] A.K.Bhatia and A.Temkin, Rev. Mod. Phys., 36, 1050(1964).

[30] Z.Wang and D.Guo, The Introduction to Special Functions, Peking University Press,
China(2000).

[31] P.G.Ciarlet, The Finite Element Method For Elliptic Problems, North-Holland, Am-
sterdam, New York, Oxford(1978).

[32] K.Bathe and E.Wilson,Numerical Methods in Finite Element Analysis, Prentice-
Hall, New Jersey(1973).

[33] O.C.Zienkiewicz and R.L.Taylor, The Finite Element Method, Vol.1, 4th ed.,
McGraw-Hill, London(1989).

[34] A.H.Stroud, Approximate Calculation of Multipole Integrals, Prentice-Hall, Engle-
wood Cliffs, NJ(1971).

[35] G.W.F.Drake and Z.-C.Yan, Phys. Rev. A, 46(5), 2378-2409(1992).


