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Abstract

Friedrichs- and Poincaré-type inequalities are important and widely used in the area of
differential equations and numerical analysis. Most of their proofs appearing in references
argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequ
in H1(Ω) and Poincaré-type inequalities in some subspaces ofW1,p(Ω). The dependencies of th
inequality coefficients on the domainΩ and some sub-domains are illustrated explicitly.
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1. Introduction

Friedrichs-type inequalities and Poincaré-type inequalities are very important too
widely used in the area of partial differential equations and numerical analysis. Th
frequently used in proving the existence of the solution of partial differential equ
and in finite element error estimates. These inequalities ensure that the solution
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more suitable space from a numerical viewpoint than the solution space itself. Most
of them in references are by reduction to absurdity [1,3,6]. The method of reduct
absurdity produces an controlling constant depending on the domain implicitly. It i
convenient in application to numerical analysis.

J.C. Nédélec [4] proved directly the Poincaré inequality for functions inH 1
0 (Ω).

S. Chen et al. [2], A. Ženišek, and M. Vanmaele [5] proved the Friedrichs inequalit
quadrilateral domains. To the best of our knowledge, we have not found other direct
for Friedrichs- or Poincaré-type inequalities. Nearly all existing proofs are by redu
to absurdity. In this paper, we are going to prove these inequalities by a direct argu
The constraints which ensure these inequalities onW1,p(Ω) vary from body constraints t
boundary constraints.

Let A ∈ Rn, we denote the closed ball of radiusR and centering atA by B(A,R).
B(0,1) is the unit ball centering at the origin. Denoter =

√∑n
i=1 x2

i . We define the fol-
lowing exterior cutoff functionϕ ∈ C∞(Rn):

ϕ0,1(x) =




0, in B(0,1/2);

e
1−r2

1−4r2 , in B(0,1) \ B(0,1/2);
1, in Rn \ B(0,1);

(1.1)

ϕA,R(x) = ϕ0,1

(
x − A

R

)
. (1.2)

Let Ω ⊂ Rn be a bounded and connected open domain. For any multiple indexα =
(α1, . . . , αn), αi � 0, i = 1, . . . , n, define|α| := ∑n

i=1 αi and

Dαf (x) = ∂ |α|f
∂x

α1
1 · · · ∂x

αn
n

(x).

We assumep > 1 throughout this paper. The usual Sobolev spaceWm,p(Ω) is defined as

Wm,p(Ω) :=
{
v

∣∣∣∣
∫
Ω

∣∣Dαv(x)
∣∣p dx < ∞, ∀|α| � m

}
.

It is equipped with the following norm and semi-norm:

‖v‖m,p,Ω :=
( ∑

|α|�m

∫
Ω

∣∣Dαv(x)
∣∣p dx

)1/p

,

|v|m,p,Ω :=
( ∑

|α|=m

∫
Ω

∣∣Dαv(x)
∣∣p dx

)1/p

.

We also defineLp(Ω) := W0,p(Ω) for convenience. In the rest of this paper, we o
concern the results inLp(Ω) andW1,p(Ω).

Letω be a sub-domain ofΩ with positive measure. Define the following function spa
as { ∣ } { ∣ }
W1,p
ω (Ω) := v ∈ W1,p(Ω) ∣ v|ω = 0 , C∞

ω (Ω̄) := v ∈ C∞(Ω̄) ∣ v|ω = 0 .
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Obviously,C∞
ω (Ω̄) is dense inW1,p

ω (Ω). Denote the diameter ofΩ by dΩ , the radius of
the largest inscribed sphere inΩ asrΩ . HencedΩ � 2rΩ .

The rest of the paper is arranged as follows. In Section 2, Poincaré-type inequ
are proved for functions inW1,p(Ω) which vanish on the boundary∂Ω or in ω. In Sec-
tion 3, Friedrichs-type inequalities are proved inW1,p(Ω) with respect to two integra
functionals.

2. Poincaré-type inequalities

In the rest of the paper, we will make use of the cutoff functionϕA,R to prove our
main results. The following lemma is easy to prove by direct calculations and the s
technique.

Lemma 2.1.LetA ∈ Ω andB(A,R) ⊂ Ω . For anyv ∈ W1,p(Ω),

|ϕA,R|1,∞,Rn = C0R
−1, (2.3)

|vϕ|1,p,Ω � 21+ 1
p
{|v|1,p,Ω + C0R

−1‖v‖0,p,B(A,R)

}
, (2.4)

whereC0 := ‖∇ϕ0,1‖0,∞,B(0,1).

Lemma 2.2.For anyv ∈ W
1,p

B(0,ρ)(B(0,R)), the following estimate is true:

∥∥v(x)
∥∥p

0,p,B(0,R)
<




Rn(logR−logρ)n−1

n
‖wn∇v‖n

0,n,B(0,R) − n−1
n

× ∫ R

ρ
rn−1

(
log r

ρ

)n−2‖∇v‖n
0,n,B(0,r) dr, p = n,(p−1

p−n

)p−1 Rp−ρp

p
‖∇v‖p

0,p,B(0,R), p > n,(p−1
n−p

)p−1 ρp−nRn

n
‖∇v‖p

0,p,B(0,R), 1< p < n,

(2.5)

wherer > ρ, n = 2 or 3 is the dimension ofB(0,R), and

wn(x) =
[
1− rn(logr − logρ)n−1

Rn(logR − logρ)n−1

] 1
n

< 1 . (2.6)

Proof. By the density ofC∞
B(0,ρ)(B(0,R)) in W

1,p

B(0,ρ)(B(0,R)), we only need to prove
(2.5) for functionsv ∈ C∞

B(0,ρ)(B(0,R)). For convenience, we only give the proof in t
case ofn = 2 here. The case ofn = 3 can be proved by similar argument. Sincev vanishes
in B(0, ρ), we have∫

B(0,R)

∣∣v(x)
∣∣p dx

=
∫ ∣∣∣∣

x∫
∇v · �τ dt

∣∣∣∣
p

dx �
∫ ( r∫

|∇v|dt

)p

dx
B(0,R)

∣
0

∣
B(0,R) ρ
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�
∫

B(0,R)

( r∫
ρ

t
1

1−p dt

)p−1( r∫
ρ

|∇v|pt dt

)
dx

=




∫ 2π

0

∫ R

ρ
r log r

ρ

∫ r

ρ
|∇v|2t dt dr dθ, p = 2,(p−1

p−2

)p−1 ∫ 2π

0

∫ R

ρ
r(r

p−2
p−1 − ρ

p−2
p−1 )p−1

∫ r

ρ
|∇v|pt dt dr dθ, p > 2,(p−1

2−p

)p−1 ∫ 2π

0

∫ R

ρ
r(ρ

p−2
p−1 − r

p−2
p−1 )p−1

∫ r

ρ
|∇v|pt dt dr dθ, 1< p < 2.

(2.7)

If p = 2, by the formula of integration by part, we have,

R∫
ρ

r log
r

ρ

r∫
ρ

|∇v|2t dt dr

�
R∫

0

r log
r

ρ

r∫
0

|∇v|2t dt dr

= R2

2
log

R

ρ

R∫
0

|∇v|2r dr − 1

2

R∫
0

r2 log
r

ρ
|∇v|2r dr − 1

2

R∫
0

r

r∫
0

|∇v|2t dt dr

= R2

2
log

R

ρ

R∫
ρ

[
1− r2(logr − logρ)

R2(logR − logρ)

]
|∇v|2r dr −

R∫
0

r

2

r∫
0

|∇v|2t dt dr. (2.8)

If p > 2, clearly we have

R∫
ρ

r
(
r

p−2
p−1 − ρ

p−2
p−1

)p−1
r∫

ρ

|∇v|pt dt dr

<

R∫
ρ

rp−1

r∫
ρ

|∇v|2t dt dr <
Rp − ρp

p

R∫
ρ

|∇v|pr dr. (2.9)

If 1 < p < 2, by the formula of integration by part, we have

R∫
ρ

r
(
ρ

p−2
p−1 − r

p−2
p−1

)p−1
r∫

ρ

|∇v|pt dt dr

> ρp−2

R∫
r

[
1−

(
ρ

) 2−p
p−1

] r∫
|∇v|pt dt dr ∼ O

(
ρp−2), asρ → 0. (2.10)
ρ
r

ρ
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Hence we have the following sharp upper bound in terms of the order ofρ for the
left-hand side of (2.10):

R∫
ρ

r
(
ρ

p−2
p−1 − r

p−2
p−1

)p−1
r∫

ρ

|∇v|pt dt dr <
ρp−2R2

2

R∫
ρ

|∇v|pr dr. (2.11)

Substituting (2.8), (2.9), and (2.11) into (2.7) leads to

∫
B(0,R)

∣∣v(x)
∣∣p dx <




R2(logR−logρ)
2 ‖w2∇v‖2

0,B(0,R)

− 1
2

∫ R

ρ
r‖∇v‖2

0,B(0,r) dr, p = 2,(p−1
p−2

)p−1 Rp−ρp

p
‖∇v‖p

0,p,B(0,R), p > 2,(p−1
2−p

)p−1 ρp−2R2

2 ‖∇v‖p

0,p,B(0,R), 1 < p < 2.

We complete the proof. �
Theorem 2.3.Let Ω ⊂ R

n (n = 2,3) be a bounded domain, the measure ofω ⊂ Ω be
positive, and1 < P < ∞. AssumeΩ is star-shaped[1] with respect toω. Then for any
v ∈ W

1,p
ω (Ω),

‖v‖0,p,Ω �




dΩ(logdΩ − logrω)
n−1
n |v|1,n,Ω, p = n,

p
− 1

p
(p−1

p−n

)1− 1
p dΩ |v|1,p,Ω, p > n,(p−1

n−p

)1− 1
p r

1− n
p

ω d
n
p

Ω |v|1,p,Ω, 1< p < n.

(2.12)

Proof. Since meas(ω) > 0, without loss of generality we assumeB(0, rω) ⊂ ω andrω > 0.
Extend∇v by zero to the exterior ofΩ and denote the extension byw ∈ Lp(B(0, dΩ)).
Then we have

w = ∇v, in Ω; ‖w‖0,p,B(0,dΩ) = ‖∇v‖0,p,Ω.

By Lemma 2.1 and its proof, it is easy to reach (2.12).�
Remark 2.4.The proof of Theorem 2.3 depends much on the extension ofv ∈ W

1,p
ω (Ω)

to a larger ball. Hence the theorem is true for all convex domainsΩ .

Remark 2.5.(2.12) is the so-called Poincaré-type inequality:

‖v‖0,p,Ω � C|v|1,p,Ω, ∀v ∈ W1,p
ω (Ω), 1< p. (2.13)

It gives the explicit dependence of the constantC on Ω andω. An interesting result is
that both (2.5) and (2.12) are independent ofρ = rω whenp > n. In fact, sinceW1,p(Ω) �
C0(Ω̄) for p > n, the point-value functionalA : W1,p(Ω) �→ R

1,
A(v) = v(A), ∀v ∈ W1,p(Ω), (2.14)
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ing

ct

o

is linear and continuous onW1,p(Ω) for anyA ∈ Ω̄ . Hence ifω = {A}, (2.13) is also true
and can be proved by the standard argument of reduction to absurdity (see the proo
Theorem 3.1.1, p. 115]).

If 1 < p � n, the Poincaré constant in the left-hand side of (2.13) increases whω

shrinks. In fact, whenω shrinks to a point, (2.13) is by no means valid. The follow
counterexample supports this proclamation.

Counterexample 2.6.Let n = 2, Ω = B(0,1), andv = rs with 0 < s < 1. Obviously,
v(0) = 0 andv ∈ H 1(Ω). By direct calculations, it is easy to see that

‖v‖2
0,Ω = π

s + 1
, |v|21,Ω = πs. (2.15)

Settings → 0+ in (2.15) leads to the desired contradiction with (2.13).

AssumeΩ,Ω1,Ω2 ⊂ Rn andΩ1 ⊂ Ω ; define

C(Ω1,Ω2) := {
y ∈ Rn

∣∣ y = tx1 + (1− t)x2, ∀t ∈ [0,1], x1 ∈ Ω1, x2 ∈ Ω2
}
,

S(Ω1,Ω) := {
x ∈ Ω

∣∣ C
({x},Ω1

) ⊂ Ω
}
. (2.16)

Clearly,C({x},Ω1) is the cone with vertexx and bottomΩ1, S(Ω1,Ω) is the maximal
star-shaped subset ofΩ with respect toΩ1.

Definition 2.7. Ω is M-ball star-shaped with respect toB1,B2, . . . ,BM , if there exist at
leastM ballsB1, . . . ,BM such that

• Ω = ⋃M
i=1 S(Bi,Ω);

• for anyBi , there existsBj �= Bi such thatBi ⊂ S(Bj ,Ω).

Obviously, if Ω is star-shaped with respect toB, it is 1-ball star-shaped with respe
to B.

Theorem 2.8. Let Ω be a bounded domain. The measure ofω ⊂ Ω is positive.B1
is the maximal inscribed ball ofω. AssumeΩ is M-ball star-shaped with respect t
B1,B2, . . . ,BM . Then there exists a positive constantC depending only onn andC0 such
that for anyv ∈ W

1,p
ω (Ω),

‖v‖0,p,Ω �
{

CdΩ

∑M
i=1

(
log 2dΩ

ri

) n−1
n

∑i
k=1 αik|v|1,n,Ω, p = n,

C
∑M

i=1
∑i

k=1 βik|v|1,p,Ω, 1< p < n,
(2.17)

where fori = 1, . . . ,M , ri is the radius ofBi , and all coefficients are defined to be

αii := 1, βii =
(

p − 1

n − p

)1− 1
p

r
1− n

p

i d
n
p

Ω, (2.18)

αik :=
(

log
2dΩ

) n−1
n

i∏ dΩ
, (2.19)
rk
m=k+1

rm
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by

d and

ses
e

d. The

ke
βik :=
(

p − 1

n − p

)(i+1−k)(1−1/p)

r
1− n

p

k d
n
p

Ω

i∏
m=k+1

(
dΩ

rm

) n
p

, (2.20)

1� k � i − 1.

Proof. Denoteri := rBi
andϕi := ϕBi,ri for convenience. We will prove the theorem

the argument of induction. Without loss of generality, we may assumeBi ⊂ S(Bi+1,Ω).
HenceBi+1 ⊂ S(Bi,Ω), 1� i � M − 1.

We begin the induction fromS(B1,Ω). By Theorem 2.3, it follows that

‖v‖0,p,S(B1,Ω) �




dΩ(logdΩ − logr1)
n−1
n |v|1,n,Ω, p = n,(p−1

n−p

)1− 1
p r

1− n
p

1 d
n
p

Ω |v|1,p,Ω, 1< p < n.
(2.21)

Applying (2.1) and (2.2) toϕ2v leads to

‖ϕ2v‖0,p,S(B2,Ω) �




CdΩ

(
log 2dΩ

r2

) n−1
n

(|v|1,n,Ω + 1
r2

‖v‖0,n,B2

)
, p = n,

C
(p−1

n−p

)1− 1
p r

1− n
p

2 d
n
p

Ω

(|v|1,Ω + 1
r2

‖v‖0,p,B2

)
, 1 < p < n,

�




CdΩ

(
log 2dΩ

r2

) n−1
n

[
1+ dΩ

r2

(
log dΩ

r1

) n−1
n

]|v|1,n,Ω, p = n,

C
(p−1

n−p

)1− 1
p r

1− n
p

2 d
n
p

Ω |v|1,p,Ω

+ C
(p−1

n−p

)2− 2
p
(

dΩ

r2

) n
p r

1− n
p

1 d
n
p

Ω |v|1,p,Ω, 1< p < n,

whereC is a generic positive constant depending only onn andC0. Since all balls link
each other withS( · ,Ω), similarly, we can prove that for 2� i � M ,

‖ϕiv‖0,p,S(Bi ,Ω) �
{

CdΩ

(
log 2dΩ

ri

) n−1
n

∑i
k=1 αik|v|1,n,Ω, p = n;

C
∑i

k=1 βik|v|1,p,Ω, 1< p < n.
(2.22)

Adding (2.21) to the total sum of (2.22) with respect toi = 2, . . . ,M gives (2.17). �
Remark 2.9. At the first glance, the estimate (2.17) seems much more complicate
worse than (2.12). In many cases, even ifΩ is not convex, the number of ballsM in
Theorem 2.8 is very small (m = 2,3), hence (2.17) may have a much simpler form.

Furthermore, if the topology ofΩ is not very complicated, we can chose the radiu
r2, . . . , rM > θdΩ in Theorem 2.8 withθ 
 r1

dΩ
. Therefore, the main contribution to th

coefficient in (2.17) is due todΩ log dΩ

r1
(p = n) or r

1− n
p

1 d
n
p

Ω (1< p < n).

Remark 2.10. The worst case for (2.17) is thatΩ is a circular ring with very narrow
bandwidth. Then all analyses in Remark 2.9 are not true and (2.17) becomes very ba
improvement of Theorem 2.8 will be our future work.

The proof of the Poincaré inequality inW1,p

0 (Ω) is much easier, since we may ma

use of the density ofC∞

0 (Ω) in W
1,p

0 (Ω) and extend all functions by zero to the exterior
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to

.1)
of Ω . A similar argument to the proof of [4, Lemma 2.5.5, p. 57 ], shows the follow
theorem.

Theorem 2.11.Let 1< p < ∞, then the following inequality is true:

‖v‖0,p,Ω � dΩ |v|1,p,Ω, ∀v ∈ W
1,p

0 (Ω). (2.23)

3. Friedrichs-type inequalities

In this section, we give some direct demonstrations for Friedrichs-type inequalit
H 1(Ω). Since the extension of our proof is not straightforward, it becomes very tedio
the case ofW1,p(Ω) for general 1< p < ∞. We restrict our analysis top = 2 because o
its extensive applications in numerical analysis. The following definition is needed fi

Definition 3.1.Ω is N -point connected with respect toA1,A2, . . . ,AN , if Ω is connected
and there exist at leastN points such thatΩ = ⋃N

i=1 S({Ai},Ω).

Theorem 3.2.Ω is a bounded andN -point connected, then there exists a constantC > 0
independent ofΩ andN such that

‖v‖0,Ω � (N + 1)dΩ

√
ndn

Ω

2|Ω| |v|1,Ω + |Ω|− 1
2

∣∣∣∣
∫
Ω

v(x)dx

∣∣∣∣, ∀v ∈ H 1(Ω), (3.1)

where|Ω| is the measure ofΩ .

Proof. Without loss of generality, we assume thatΩ is N -point connected with respect
A1,A2, . . . ,AN andΩ ⊂ [0, dΩ ]n. We expand∇v by 0 to the exterior ofΩ , denote the
extension byw ∈ L2([0, dΩ ]n). By the argument of density, we only need to prove (3
for functions inC∞(Ω̄). For the sake of convenience in notation, we refer tow(tj ) as the
function of thej th component oft while fixing the others.

For any two pointsx, y ∈ Ω , denote the vectory −x by −→xy. Our proof is going to follow
a similar argument to that in the proof of [2, Lemma 3.2]. SinceΩ = ⋃N

i=1 S({Ai},Ω),

v(x)2 + v(y)2 − 2v(x)v(y)

= [
v(x) − v(y)

]2 =
(

N+1∑
i=1

∫
−−−−−→
Ai−1Ai

∇v · �τ dt

)2

=
(

N+1∑
i=1

n∑
j=1

∫
−−−−−→
Ai−1Ai

wj τj dt

)2

=
(

N+1∑
i=1

n∑
j=1

Ai,j∫
Ai−1,j

wj (tj ) dtj

)2

� n(N + 1)

N+1∑ n∑
|Ai,j − Ai−1,j |

Ai,j∫ ∣∣wj(tj )
∣∣2 dtj , (3.2)
i=1 j=1 Ai−1,j
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y
ed
whereA0 = x andAN+1 = y. Integrating both sides of (3.2) overx andy onΩ , we have

2|Ω|‖v‖2
0,Ω − 2

∣∣∣∣
∫
Ω

v(x)dx

∣∣∣∣
2

� n(N + 1)

∫
Ω

dx

∫
Ω

dy

N+1∑
i=1

n∑
j=1

|Ai,j − Ai−1,j |
Ai,j∫

Ai−1,j

∣∣wj(tj )
∣∣2 dtj

� n(N + 1)

∫
[0,dΩ ]n

dx

∫
[0,dΩ ]n

dy

N+1∑
i=1

n∑
j=1

∣∣xi
j − xi−1

j

∣∣
xi
j∫

xi−1
j

∣∣wj(tj )
∣∣2 dtj

� n(N + 1)2d2+n
Ω ‖w‖2

0,[0,dΩ ]n
= n(N + 1)2d2+n

Ω |v|21,Ω . (3.3)

Hence we obtain (3.1) by (3.3).�
Remark 3.3.The finite-point connection constantN in Theorem 3.2 is very small for man
domains. Obviously,N = 1 for convex domains. Hence we obtain the following improv
result for convex domains.

Corollary 3.4. LetΩ be a bounded convex domain, then

‖v‖0,Ω � 3d
1+ n

2
Ω |Ω|− 1

2 |v|1,Ω + |Ω|− 1
2

∣∣∣∣
∫
Ω

v(x)dx

∣∣∣∣, ∀v ∈ H 1(Ω). (3.4)

Theorem 3.5.Ω is a bounded domain.ω ⊂ Ω is N -point connected and|ω| > 0. If Ω

is star-shaped with respect toω, then there exists a positive constantC independent ofΩ
andω such that for anyv ∈ H 1(Ω),

‖v‖2
0,Ω � Cd2

Ω log
2dΩ

rω
|v|21,Ω + C(N + 1)2 d4

ω

|ω|
(

d2
Ω

r2
ω

log
2dΩ

rω
+ 1

)
|v|21,ω

+ C

|ω|
(

d2
Ω

r2
ω

log
2dΩ

rω
+ 1

)∣∣∣∣
∫
ω

v(x) dx

∣∣∣∣
2

, n = 2 (3.5)

‖v‖2
0,Ω � C

d3
Ω

rω
|v|21,Ω + C(N + 1)2 d5

ω

|ω|
(

d3
Ω

r3
ω

+ 1

)
|v|21,ω

+ C

|ω|
(

d3
Ω

r3
ω

+ 1

)∣∣∣∣
∫
ω

v(x) dx

∣∣∣∣
2

, n = 3. (3.6)

Proof. Without loss of generality, we may assume thatB(0, rω) ⊂ ω. Defineu = vϕ0,rω .
By (3.3), Theorems 2.3 and 3.2, there exists a constantC > 0 independent ofΩ andω
such that
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York,

ateral

oblems,

ments,
‖u‖2
0,Ω � Cd2

Ω log
2dΩ

rω

(|v|21,Ω + r−2
ω ‖v‖2

0,B(0,rω)

)
, n = 2, (3.7)

‖u‖2
0,Ω � Cd3

Ωr−1
ω

(|v|21,Ω + r−2
ω ‖v‖2

0,B(0,rω)

)
, n = 3, (3.8)

‖v‖2
0,ω � n(N + 1)2

2

d2+n
ω

|ω| |v|21,ω + |ω|−1
∣∣∣∣
∫
ω

v(x) dx

∣∣∣∣
2

. (3.9)

Substituting (3.9) into (3.7) and (3.8) leads to (3.5) and (3.6).�
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