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Abstract

Friedrichs- and Poincaré-type inequalities are important and widely used in the area of partial
differential equations and numerical analysis. Most of their proofs appearing in references are the
argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities
in H1(52) and Poincaré-type inequalities in some subspacé’f (2). The dependencies of the
inequality coefficients on the domaia and some sub-domains are illustrated explicitly.
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1. Introduction

Friedrichs-type inequalities and Poincaré-type inequalities are very important tools and
widely used in the area of partial differential equations and numerical analysis. They are
frequently used in proving the existence of the solution of partial differential equation
and in finite element error estimates. These inequalities ensure that the solution is in a
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more suitable space from a numerical viewpoint than the solution space itself. Most proofs
of them in references are by reduction to absurdity [1,3,6]. The method of reduction to
absurdity produces an controlling constant depending on the domain implicitly. It is not
convenient in application to numerical analysis.

J.C. Nédélec [4] proved directly the Poincaré inequality for functions’-lﬂ‘(.(z).
S. Chen et al. [2], A. Zenisek, and M. Vanmaele [5] proved the Friedrichs inequality for
quadrilateral domains. To the best of our knowledge, we have not found other direct proofs
for Friedrichs- or Poincaré-type inequalities. Nearly all existing proofs are by reduction
to absurdity. In this paper, we are going to prove these inequalities by a direct argument.
The constraints which ensure these inequalitie®dr? (£2) vary from body constraints to
boundary constraints.

Let A € R", we denote the closed ball of radi®and centering a#A by B(A, R).

B(0, 1) is the unit ball centering at the origin. Denote= / Zl’.’zlxiz. We define the fol-
lowing exterior cutoff functiorp € C*°(R"):

0, in B(0,1/2);
2
90.1(x) = e11—4»-2, in B(0,1) \ B(0,1/2); (1.1)
1, in R"\ B(0, 1);
—A
®A,R(xX) =<ﬂ0,1<x F ) 1.2)

Let 2 C R" be a bounded and connected open domain. For any multiple dex
(a1, ....an),0; >0,i=1,...,n, definela| :=)"7_;o; and

alol f

—_(x).
8x‘1¥1~~~8x,?”( )

D f(x) =
We assume > 1 throughout this paper. The usual Sobolev sp&€e? (£2) is defined as

WP (82) = {v

/|D°‘v(x)|pdx <00, V]a| < m}
2

It is equipped with the following norm and semi-norm:

1/p
10l :=<Z /|Dav(x>|f’dx> |

lo|<m 0

» 1/p

Vlm.p.2 :=( > /|D°‘v(x)| dx> :
|la|=m o

We also defineL.?(2) := WP (£2) for convenience. In the rest of this paper, we only
concern the results ih? (£2) and W17 ().

Letw be a sub-domain @@ with positive measure. Define the following function spaces
as

WhP(2):={ve WP (2) |vl, =0},  C(R2):={veC®2)]|vl,=0]}.
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Obviously,Cgo(fz) is dense inWal)’p(Q). Denote the diameter a® by dg,, the radius of
the largest inscribed spheredh asrg. Hencedg, > 2rg,.

The rest of the paper is arranged as follows. In Section 2, Poincaré-type inequalities
are proved for functions if1-7(£2) which vanish on the boundadg2 or in . In Sec-
tion 3, Friedrichs-type inequalities are provedWt-? (£2) with respect to two integral
functionals.

2. Poincaré-type inequalities

In the rest of the paper, we will make use of the cutoff functjong to prove our
main results. The following lemma is easy to prove by direct calculations and the scaling
technique.

Lemma2.1.LetA € 2 and B(A, R) C 2. For anyv € WP (2),
|04, R1,00,R" = CoR™?, (2.3)
1 _
wpl1p.e <277 {[vl1p.0 + CoR Hvllo p.5a.r)) (2.4)

whereCo := || V¢o,1l0,00,8(0,1) -

Lemma 2.2.For anyv € W;’(’é’p)(B(O, R)), the following estimate is true

lwnVollg,, go.r) = 5
R -2
x [ r=t(1og£)" " TIVllg, pondrs P=n,

R"(log Rflogp)”*l

lveo g < (2.5)

.p,B(O,R) 1\p— 1RL »
(,’3 n) — ”V””op B(O,R) p=n,
1\p— 1,r— an
(7=)" = IVl sk l<p<n,
wherer > p, n =2 or 3is the dimension oB(0, R), and

1
"(lo —lo n—1 75

W) = [ 1— £ 00T =109 T T _ (2.6)

R*(logR — logp)"

Proof. By the density ofCB(0 p)(B(O, R)) in Wé’(g’p)(B(O, R)), we only need to prove
(2.5) for functionsv € C; B(0.p) (B(0, R)). For convenience, we only give the proof in the
case ofr = 2 here. The case af= 3 can be proved by similar argument. Sinceanishes
in B(0, p), we have

|v(x)|pdx
B(0,R)

-

B(O,R)

X

/Vv-?dt
0

i< | ( /W) ax

B(O,R)
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r pf]_ r
1
< f (/tﬁ dt) <f|Vv|ptdt> dx
o o

B(O,R)
fOZH prrlogﬁfr V|2t dtdrde, p=2,
(p l)p 1f0 er(r;%i —plrj%i)”flf; |\Vu|Ptdtdrdf, p>2, 2.7)
(=2 1)” Ly er(,oZ%i—rz%i)p_lfprlvmf’tdtdrd@, 1<p<2.
If p =2, by the formula of integration by part, we have,

R

r r 2
rlog— [ |Vv|“tdtdr
P
0

P
R

r r 2
< [ rlog— [ |Vv|“tdtdr
0
0

0
R

R
R? 1 2 1
—|Og /le| rdr——/ |0g—|Vv| rdr — —/
2 2
0 0

R r
2 2100y
=R—Iogﬁf[1— r=(logr —logp) ]|Vv|2rdr—/—/|Vv|2tdtdr. (2.8)
2 0 2
o 0 0

|Vv|?t dt dr

o\\

R2(logR — log p)

If p> 2, clearly we have

R

P_
/ Fre1 = pr1)P” 1/|Vv|”tdtdr
p

r

R R
RP — P
</rp_l/|Vv|2tdtdr< 7p/|Vv|prdr. (2.9)
p
0

p o

If 1 < p < 2, by the formula of integration by part, we have

R

p=2 L
/}’(pP*1 T)PT 1/|Vv|ptdtdr
)

R —p r
p—1
>pp_2/r[1— (é) :|/|Vv|”tdtdr~ 0(p"?), asp—0. (2.10)
P P

SN
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Hence we have the following sharp upper bound in terms of the order fof the
left-hand side of (2.10):

R r
p—2 p—2

p=2 p=2 59 pP—2R? ¢

/r(pﬂ—l —rpr- )p /|Vv|”tdtdr < > /|Vv|"rdr. (2.11)
o P P
Substituting (2.8), (2.9), and (2.11) into (2.7) leads to

R%(logR—lo
(log 5 gp) ”wZVU”(Z),B(o,R)

R
— 3/, Vol 5o dr, p=2,

lo@)| dx <
p=l\P=1RP—p? p
B(O,R) (P—Z) p ”VUHO,p,B(O‘R)’ p>2,
p=1\p—1pr—2R? p
(55 Vol pory L<p<2.

We complete the proof. O

Theorem 2.3.Let 2 C R" (n = 2, 3) be a bounded domain, the measurewof 2 be

positive, andl < P < oco. Assume is star-shaped1] with respect taw. Then for any
1p

RS Wa) (Q)y

n—1
do(logdg —logry) » |vline. p=n,

1 1
-1, 1\1-2
”UHO,p,.Q <3 P p(_i—n) pd_q|v|1,p19, p>n, (212)
1y1-1 -3 %
(rllj—p) Pre pd5|v|l,p,9, l<p<n.

Proof. Since mea@gv) > 0, without loss of generality we assurB€0, r,,) C w andr,, > 0.
ExtendVv by zero to the exterior of2 and denote the extension e L7 (B(0, dg)).
Then we have

w="Vuv, in§2; IWllo, p,B0,do) = IVVllo,p,2-
By Lemma 2.1 and its proof, it is easy to reach (2.12)

Remark 2.4.The proof of Theorem 2.3 depends much on the extensim@Wal;”(Q)
to a larger ball. Hence the theorem is true for all convex dom&ins

Remark 2.5.(2.12) is the so-called Poincaré-type inequality:
lvlop.e <Clvlype, YveWrP(R2), 1<p. (2.13)
It gives the explicit dependence of the const@nin 2 andw. An interesting result is

that both (2.5) and (2.12) are independent ef r, whenp > n. In fact, sincewlr(2) e
CcO(2) for p > n, the point-value functionak : W7 (£2) — R1,

A() =v(A), YveWhP(2), (2.14)
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is linear and continuous oW 17 (£2) for any A € £2. Hence ifw = {A}, (2.13) is also true
and can be proved by the standard argument of reduction to absurdity (see the proof of [3,
Theorem 3.1.1, p. 115]).

If 1 < p < n, the Poincaré constant in the left-hand side of (2.13) increases when
shrinks. In fact, wheno shrinks to a point, (2.13) is by no means valid. The following
counterexample supports this proclamation.

Counterexample 2.6.Let n = 2, 2 = B(0,1), andv = r® with 0 < s < 1. Obviously,
v(0) =0 andv € H1(£2). By direct calculations, it is easy to see that

lfe = vld o =ms. (2.15)

s+ 1
Settings — 0™ in (2.15) leads to the desired contradiction with (2.13).

Assumes?, 21, 2o C R" and$21 C £2; define

C(21.22):={yeR"|y=tx1+ (A —t)xz, V1 €[0,1], x1 € 21, x2 € 22},
S(821,2) :={x e 2| C({x}, 1) C 2}. (2.16)

Clearly, C({x}, £21) is the cone with vertex and bottoms2;, S(£21, £2) is the maximal
star-shaped subset &f with respect ta2;.

Definition 2.7. £2 is M-ball star-shaped with respect 81, Bo, ..., By, if there exist at
leastM balls By, ..., By such that

o 2=U"L 5B, 2);
o forany B;, there exists3; # B; such thatB; C S(Bj, £2).

Obviously, if £2 is star-shaped with respect B it is 1-ball star-shaped with respect
to B.

Theorem 2.8.Let 2 be a bounded domain. The measure«ot- §2 is positive. By
is the maximal inscribed ball ob. Assumes2 is M-ball star-shaped with respect to
Bi, Ba, ..., By . Then there exists a positive constahtlepending only on and Cg such

that for anyv € Wa? (),

M 2do\ 5t i B
”UHO 0.2 < { CdQ Zi:l.(log Tg) Z;(:laiklvll,n.ﬂa p=n, (217)
CZ?LlZZ:lﬂiHMLp,Qy 1<p<n,
where fori =1, ..., M, r; is the radius ofB;, and all coefficients are defined to be
1-1
p— 1 p 1-o
ai=1 pi= <n _p> r, Tdg, (2.18)

n—=1 i

iy = <|ong_;> | do. (2.19)

14
m=k+1 "™
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1 (i+1-k)(1-1/p) 1-1n n
Bik :=<p ) r, "db ]_[ ( > (2.20)

m=k+1

1<k<i—1

Proof. Denoter; :=rp, andg; := ¢gp, », for convenience. We will prove the theorem by
the argument of induction. Without loss of generality, we may assBme S(B;1, £2).
HenceB; 1 C S(B;i, £2),1<i <M —1.

We begin the induction fron§ (B3, £2). By Theorem 2.3, it follows that

n—1
dg(logdg —logry) 7« |[vline, p=n,
”vHO,P,S(B]_,.Q) g [7—1 1_; 1_% % (221)
(nfp) prl dg|v|1,p,.(2, 1<p<n.
Applying (2.1) and (2.2) tgv leads to

n=1

Cdo(log22) ™ (jv|ine + 2lvlons,). p=n,
llp2vllo, p,s(Bs,2) <

n

p-1y1-3 7%
C(8=5) 7y Tdh(vle + 5 ||v||op32) 1<p<n,

Cdg(long2 ) " [1+d9(|09d”) " ]|U|ln9s p=n,

< p-1\1-3 1= b b
= C(nfp) Pry d_Q|v|po
1\2—2 /4 -2z
7 J
+C(5=; p) ( Q)prl d(lz|v|1,p,:z, l<p<n,

whereC is a generic positive constant depending onlyroand Cy. Since all balls link
each other witts (-, £2), similarly, we can prove that forZ i < M,

2do\ 5L i
Cdg(log Tg) Y ke QiklVline, p=n;
CY i 1 Biklvlip.e. l<p<n.
Adding (2.21) to the total sum of (2.22) with respecite 2, ..., M gives (2.17). O

lwivllo,p.sB;.2) < { (2.22)

Remark 2.9. At the first glance, the estimate (2.17) seems much more complicated and
worse than (2.12). In many cases, evef2ifis not convex, the number of ball® in
Theorem 2.8 is very smalk{ = 2, 3), hence (2.17) may have a much simpler form.
Furthermore, if the topology a2 is not very complicated, we can chose the radiuses
r2,...,ry > 0dg in Theorem 2.8 withp > 7L Therefore the main contribution to the

1-
coefficient in (2.17) is due tdg; Iog (p = n) orry » ds’; (L<p<n).

Remark 2.10. The worst case for (2.17) is tha is a circular ring with very narrow
bandwidth. Then all analyses in Remark 2.9 are not true and (2.17) becomes very bad. The
improvement of Theorem 2.8 will be our future work.

The proof of the Poincaré mequallty iW "P(£2) is much easier, since we may make
use of the density of 3°(£2) in W0 P(£2) and extend all functions by zero to the exterior
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of £2. A similar argument to the proof of [4, Lemma 2.5.5, p. 57 ], shows the following
theorem.

Theorem 2.11.Letl < p < oo, then the following inequality is true

1
Ivllo.p.e <delvlipe, Yve Wy (£2). (2.23)

3. Friedrichs-type inequalities

In this section, we give some direct demonstrations for Friedrichs-type inequalities in
H1(£2). Since the extension of our proof is not straightforward, it becomes very tedious in
the case oW -7 (£2) for general 1< p < co. We restrict our analysis tp = 2 because of
its extensive applications in numerical analysis. The following definition is needed first.

Definition 3.1. £2 is N-point connected with respect &, Ao, ..., Ay, if £2 is connected
and there exist at leaat points such thaf2 = U,N=1 S({A;}, 2).

Theorem 3.2.£2 is a bounded an@-point connected, then there exists a constant 0
independent of2 and N such that

/v(x) dx|,

2

}’l

1
29 voe HY(2), (3.1)

lvllo,e < (N +Ddg

L lvlre +121” :

where|$2| is the measure af2.

Proof. Without loss of generality, we assume tliatis N-point connected with respect to
A1, A, ..., Ay and 2 C [0,de]". We expandVuv by 0 to the exterior of2, denote the
extension byw e L2([0, d]"). By the argument of density, we only need to prove (3.1)
for functions inC*(§2). For the sake of convenience in notation, we refev{o) as the
function of thejth component of while fixing the others.

For any two points, y € £2, denote the vector — x by x3. Our proof is going to follow
a similar argument to that in the proof of [2, Lemma 3.2]. Sitze- U,N=1 S{A;}, 2),

V()% 4+ v(y)? = 20(x)v(y)

N+1
— [ — v (Z [ v m)

i l*,
A1

N+1 n N+1 n A
(ZZ f w,r,dr) (ZZ f ,(r,)dr,)
i=1j 1 i=1j 1A
N+1 n Aij )
gn(N+1)ZZ|Ai,,~—A,~_1,,~| / lw; ()| dt;. (3.2)

i=1j=1 Ai_1j
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whereAg =x andAy4+1 = y. Integrating both sides of (3.2) overandy on £2, we have

2
2|.Q|||v||(2)’9—2‘/v(x)dx
N+1 n
<n(N+1)/dx/dyZZ|A” Ai—1jl / lwj ()] dt;
i=1j=1
Ai- 1j
N+1 n
<n(N+1) / dx / dyZZ|x —x’ 1|/|w](tj)| dt;
[0del  [0dey ==t

<n(N + 125" WIS 0,401
=n(N + 125" )3 5. (3.3)
Hence we obtain (3.1) by (3.3).0

Remark 3.3.The finite-point connection constantin Theorem 3.2 is very small for many
domains. Obviouslyy = 1 for convex domains. Hence we obtain the following improved
result for convex domains.

Corollary 3.4. Let 2 be a bounded convex domain, then
1+% _1 _1
lvlloe <3dg “182| 2Jvlre + [2]72] | v(x)dx|,
2

Theorem 3.5.82 is a bounded domainw C §2 is N-point connected anflv| > 0. If 2

is star-shaped with respect to, then there exists a positive const@hindependent of2
andw such that for any € H1(£2),

Vv e HY(2). (3.4)

d* (d%4 2d
101§, < Cdg log—— |U|1Q+C(N+1)2|a(j|(r9 Iog—”+1>|v|1w
w
C d2
+—( =% log —+1 /v(x)dx , n=2 (3.5)
|\ r2

d5 R
lvlg.q < c= |v|1Q+C(N+1) |w| E 1)L,

+ £(— +1)‘/v(x)dx
ol

Proof. Without loss of generality, we may assume ti840, r,,) C . Defineu = veg .

By (3.3), Theorems 2.3 and 3.2, there exists a congfantO independent of2 and w
such that

. n=3. (3.6)
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2do _
lullf o < Cdglog == (1vl{ o +75°IVIG s0r,)): 7=2, 3.7)
w
lullg o < Cddro (Wi o + 15210115 sor)). 7=3. (3.8)
n(N + 1)2 g2+ _ 2
1180 < =——— o i, + o™t /v(x)dx (3.9)

0]

Substituting (3.9) into (3.7) and (3.8) leads to (3.5) and (3.6).
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