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CONVERGENCE OF THE PML SOLUTION FOR ELASTIC WAVE
SCATTERING BY BIPERIODIC STRUCTURES∗

XUE JIANG† , PEIJUN LI‡ , JUNLIANG LV§ , AND WEIYING ZHENG¶

Abstract. This paper is concerned with the analysis of elastic wave scattering of a time-harmonic
plane wave by a biperiodic rigid surface, where the wave propagation is governed by the three-
dimensional Navier equation. An exact transparent boundary condition is developed to reduce the
scattering problem equivalently into a boundary value problem in a bounded domain. The Perfectly
Matched Layer (PML) technique is adopted to truncate the unbounded physical domain into a bounded
computational domain. The well-posedness and exponential convergence of the solution are established
for the truncated PML problem by developing a PML equivalent transparent boundary condition. The
proofs rely on a careful study of the error between the two transparent boundary operators. The work
significantly extends the results from one-dimensional periodic structures to two-dimensional biperi-
odic structures. Numerical experiments are included to demonstrate the competitive behavior of the
proposed method.

Keywords. Elastic wave equation; perfectly matched layer; biperiodic structures; transparent
boundary condition.
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1. Introduction

Scattering theory in periodic structures has many important applications in diffrac-
tive optics [7,8], where the periodic structures are often named as gratings. The scatter-
ing problems have been studied extensively in periodic structures by many researchers
for all the commonly encountered waves including the acoustic, electromagnetic, and
elastic waves [1,2,4,5,15,22–24,30,34]. The governing equations of these waves are known
as the Helmholtz equation, the Maxwell equations, and the Navier equation, respec-
tively. In this paper, we consider the scattering of a time-harmonic elastic plane wave
by a biperiodic rigid surface, which is also called a two-dimensional or crossed grating.
The elastic wave scattering problems have received ever-increasing attention in both en-
gineering and mathematical communities for their important applications in geophysics
and seismology. The elastic wave motion is governed by the three-dimensional Navier
equation. A fundamental challenge of this problem is to truncate the unbounded physi-
cal domain into a bounded computational domain. An appropriate boundary condition
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is needed on the boundary of the truncated domain to avoid artificial wave reflection.
We adopt the perfectly matched layer (PML) technique to handle this issue.

The research on the PML technique has undergone a tremendous development since
Berenger proposed a PML for solving the time-dependent Maxwell equations [11]. The
basic idea of the PML technique is to surround the domain of interest by a layer of finite
thickness fictitious material which absorbs all the waves coming from inside the compu-
tational domain. When the waves reach the outer boundary of the PML region, their
values are so small that the homogeneous Dirichlet boundary conditions can be imposed.
Various constructions of PML absorbing layers have been proposed and investigated for
the acoustic and electromagnetic wave scattering problems [10, 12, 19–21, 26, 28, 33].
In particular, combined with the PML technique, an effective adaptive finite element
method was proposed in [6,16] to solve the two-dimensional diffraction grating problem
where the one-dimensional grating was considered. Due to the competitive numerical
performance, the method was quickly adopted to solve many other scattering problems
including the obstacle scattering problems [14,17] and the three-dimensional diffraction
grating problem [9]. However, the PML technique is much less studied for the elastic
wave scattering problems [25], especially for the rigorous convergence analysis. We refer
to [13, 18] for recent study on convergence analysis of the elastic obstacle scattering
problems.

Recently, we have proposed an adaptive finite element method combining with
the PML technique to solve the elastic scattering problem in one-dimensional periodic
structures [27]. Using the quasi-periodicity of the solution, we develop a transparent
boundary condition and formulate the scattering problem equivalently into a boundary
value problem in a bounded domain. Following the complex coordinate stretching, we
study the truncated PML problem and show that it has a unique weak solution which
converges exponentially to the solution of the original scattering problem.

This paper’s goal is to extend our previous work on one-dimensional periodic struc-
tures in [27] to two-dimensional biperiodic structures. We point out that the extension
is nontrivial because the more complicated three-dimensional Navier equation needs
to be considered. The analysis is mathematically more sophisticated and the numeri-
cal implementation is computationally more intense. This work presents an important
application of the PML method for the scattering problem of elastic waves.

The elastic wave equation is complicated due to the coexistence of compressional
and shear waves that have different wavenumbers. To take into account this feature,
we introduce two potential functions, one scalar and one vector, to split the wave field
into its compressional and shear parts via the Helmholtz decomposition. As a conse-
quence, the scalar potential function satisfies the Helmholtz equation while the vector
potential function satisfies the Maxwell equation. Using these two potential functions,
we develop an exact transparent boundary condition to reduce the scattering problem
from an open domain into a boundary value problem in a bounded domain. The energy
conservation is proved for the propagating wave modes of the model problem and is
used for verification of our numerical results. The well-posedness and exponential con-
vergence of the solution are established for the truncated PML problem by developing
a PML equivalent transparent boundary condition. The proofs rely on a careful study
of the error between the two transparent boundary operators. Two numerical examples
are also included to demonstrate the competitive behavior of the proposed method.

The paper is organized as follows. In Section 2, we introduce the model problem
of the elastic wave scattering by a biperiodic surface and formulate it into a boundary
value problem by using a transparent boundary condition. In Section 3, we introduce
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the PML formulation and prove the well-posedness and convergence of the truncated
PML problem. In Section 4, we discuss the numerical implementation of our numerical
algorithm and present some numerical experiments to illustrate the performance of the
proposed method. The paper is concluded with some general remarks in Section 5.

2. Problem formulation
In this section, we introduce the model problem and present an exact transparent

boundary condition to reduce the problem into a boundary value problem in a bounded
domain. The energy distribution is studied for the diffracted propagating waves of the
scattering problem.

2.1. Navier equation. Let r= (x1,x2)> and x= (x1,x2,x3)>. Consider the
elastic scattering of a time-harmonic plane wave by a biperiodic surface Γf ={x∈
R3 :x3 =f(r)}, where f is a Lipschitz continuous and biperiodic function with pe-
riod (Λ1,Λ2) in (x1,x2). Denote by Ωf ={x∈R3 :x3>f(r)} the open space above Γf
which is assumed to be filled with a homogeneous isotropic linear elastic medium. Let
h be a constant satisfying h>maxr∈R2 f(r). Denote Ω ={x∈R3 : 0<x1<Λ1, 0<x2<
Λ2, f(r)<x3<h} and Γh={x∈R3 : 0<x1<Λ1, 0<x2<Λ2, x3 =h}. Let Ωh={x∈R3 :
0<x1<Λ1, 0<x2<Λ2, x3>h} be the open space above Γh. The problem geometry is
shown in Figure 2.1.

x1

x2

x3

Γf

Ω

Γh

Ωh

Ωf

O

Fig. 2.1. The problem geometry.

The propagation of a time-harmonic elastic wave is governed by the Navier equation:

µ∆u+(λ+µ)∇∇·u+ω2u= 0 in Ωf , (2.1)

where u= (u1,u2,u3)> is the displacement vector of the total elastic wave field, ω>0 is
the angular frequency, µ and λ are the Lamé constants satisfying µ>0 and λ+µ>0.
Assuming that the surface Γf is elastically rigid, we have

u= 0 on Γf . (2.2)

Define

κ1 =
ω

(λ+2µ)1/2
and κ2 =

ω

µ1/2
,
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which are the compressional wavenumber and the shear wavenumber, respectively.
Let the scattering surface Γf be illuminated from above by a time-harmonic com-

pressional plane wave:

uinc(x) =qeiκ1x·q,

where q= (sinθ1 cosθ2, sinθ1 sinθ2,−cosθ1)> is the propagation direction vector, and
θ1,θ2 are called the latitudinal and longitudinal incident angles satisfying θ1∈
[0,π/2),θ2∈ [0,2π]. It can be verified that the incident wave also satisfies the Navier
equation:

µ∆uinc +(λ+µ)∇∇·uinc +ω2uinc = 0 in Ωf . (2.3)

Remark 2.1. The scattering surface may be also illuminated by a time-harmonic
shear plane wave:

uinc =peiκ2x·q,

where p is the polarization vector satisfying p ·q= 0. More generally, the scattering sur-
face can be illuminated by any linear combination of the time-harmonic compressional
and shear plane waves. For clarity, we take the time-harmonic compressional plane wave
as an example since the results and analysis are the same for other forms of the incident
wave.

Motivated by uniqueness, we are interested in a quasi-periodic solution of u, i.e.,
u(x)e−iα·r is biperiodic in x1 and x2 with periods Λ1 and Λ2, respectively. Here
α= (α1,α2)> with α1 =κ1 sinθ1 cosθ2,α2 =κ1 sinθ1 sinθ2. In addition, the following ra-
diation condition is imposed: the total displacement u consists of bounded outgoing
waves plus the incident wave in Ωh.

We introduce some notation and Sobolev spaces. Let u= (u1,u2,u3)> be a vector
function. Define the Jacobian matrix of u:

∇u=

∂x1
u1 ∂x2

u1 ∂x3
u1

∂x1u2 ∂x2u2 ∂x3u2

∂x1
u3 ∂x2

u3 ∂x3
u3

.
Define a quasi-biperiodic functional space

H1
qp(Ω) ={u∈H1(Ω) :u(x1 +n1Λ1,x2 +n2Λ2,x3)

=u(x1,x2,x3)ei(n1α1Λ1+n2α2Λ2), n= (n1,n2)>∈Z2},

which is a subspace of H1(Ω) with the norm ‖·‖H1(Ω). For any quasi-biperiodic function
u defined on Γh, it admits the Fourier series expansion:

u(r,h) =
∑
n∈Z2

u(n)(h)eiα(n)·r,

where α(n) = (α
(n)
1 ,α

(n)
2 )>,α

(n)
1 =α1 +2πn1/Λ1,α

(n)
2 =α2 +2πn2/Λ2, and

u(n)(h) =
1

Λ1Λ2

∫ Λ1

0

∫ Λ2

0

u(r,h)e−iα(n)·rdr.
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We define a trace functional space Hs(Γh) with the norm given by

‖u‖Hs(Γh) =
(

Λ1Λ2

∑
n∈Z2

(1+ |α(n)|2)s|u(n)(h)|2
)1/2

.

Let H1
qp(Ω)3 and Hs(Γh)3 be the Cartesian product spaces equipped with the corre-

sponding 2-norms of H1
qp(Ω) and Hs(Γh), respectively. It is known that H−s(Γh)3 is

the dual space of Hs(Γh)3 with respect to the L2(Γh)3 inner product

〈u,v〉Γh
=

∫
Γh

u · v̄dr,

where the bar denotes the complex conjugate.

2.2. Boundary value problem. We wish to reduce the problem equivalently
into a boundary value problem in Ω by introducing an exact transparent boundary
condition on Γh.

The total field u consists of the incident field uinc and the diffracted field v, i.e.,

u=uinc +v. (2.4)

Subtracting (2.3) from (2.1) and noting (2.4), we obtain the Navier equation for the
diffracted field v:

µ∆v+(λ+µ)∇∇·v+ω2v= 0 in Ωh. (2.5)

For any solution v of (2.5), we introduce the Helmholtz decomposition to split it into
the compressional and shear parts:

v=∇φ+∇×ψ, ∇·ψ= 0, (2.6)

where φ is a scalar potential function and ψ is a vector potential function. Substituting
(2.6) into (2.5) gives

(λ+2µ)∇
(
∆φ+κ2

1φ
)

+µ∇×(∆ψ+κ2
2ψ) = 0,

which is fulfilled if φ and ψ satisfy the Helmholtz equation:

∆φ+κ2
1φ= 0, ∆ψ+κ2

2ψ= 0. (2.7)

It follows from ∇·ψ= 0 and (2.7) that the vector potential function ψ satisfies the
Maxwell equation:

∇×(∇×ψ)−κ2
2ψ= 0.

By (2.4) and (2.6), we have

v=∇φ+∇×ψ=−uinc on Γf .

Taking the dot product and cross product of the above equation with the unit normal
vector ν on Γf , respectively, we get

∂νφ+(∇×ψ) ·ν=−uinc ·ν, (∇×ψ)×ν+∇φ×ν=−uinc×ν,
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which are the boundary conditions of φ and ψ on Γf . The Helmholtz decomposition
and corresponding boundary conditions for the potential functions can also be found
in [29,31] for the elastic obstacle scattering problems.

Since v is a quasi-biperiodic function, we have from (2.6)–(2.7) that φ and ψ=
(ψ1,ψ2,ψ3)> are also quasi-biperiodic functions. They have the Fourier series expan-
sions:

φ(x) =
∑
n∈Z2

φ(n)(x3)eiα(n)·r, ψ(n)(x) =
∑
n∈Z2

ψ(n)(x3)eiα(n)·r.

Plugging the above Fourier series into (2.7) yields

d2φ(n)(x3)

dx2
3

+
(
β

(n)
1

)2
φ(n)(x3) = 0,

d2ψ(n)(x3)

dx2
3

+
(
β

(n)
2

)2
ψ(n)(x3) = 0,

where

β
(n)
j =

{(
κ2
j−|α(n)|2

)1/2
, |α(n)|<κj ,

i
(
|α(n)|2−κ2

j

)1/2
, |α(n)|>κj ,

(2.8)

j=1,2. Note that β
(0)
1 =β=κ1 cosθ1. We assume that κj 6= |αn| for all n∈Z2 to ex-

clude all possible resonances. Noting (2.8) and using the bounded outgoing radiation
condition, we obtain

φ(n)(x3) =φ(n)(h)eiβ
(n)
1 (x3−h), ψ(n)(x3) =ψ(n)(h)eiβ

(n)
2 (x3−h).

Hence we deduce Rayleigh’s expansions of φ and ψ for x3>h:

φ(x) =
∑
n∈Z2

φ(n)(h)ei
(
α(n)·r+β

(n)
1 (x3−h)

)
,

ψ(x) =
∑
n∈Z2

ψ(n)(h)ei
(
α(n)·r+β

(n)
2 (x3−h)

)
.

Combining the above expansions and the Helmholtz decomposition (2.6) yields

v(x) = i
∑
n∈Z2


α

(n)
1

α
(n)
2

β
(n)
1

φ(n)(h)ei
(
α(n)·r+β

(n)
1 (x3−h)

)

+


α

(n)
2 ψ

(n)
3 (h)−β(n)

2 ψ
(n)
2 (h)

β
(n)
2 ψ

(n)
1 (h)−α(n)

1 ψ
(n)
3 (h)

α
(n)
1 ψ

(n)
2 (h)−α(n)

2 ψ
(n)
1 (h)

ei
(
α(n)·r+β

(n)
2 (x3−h)

)
. (2.9)

On the other hand, as a quasi-biperiodic function, the diffracted field v has the
Fourier series expansion:

v(r,h) =
∑
n∈Z2

v(n)(h)eiα(n)·r. (2.10)
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It follows from (2.9)–(2.10) and ∇·ψ= 0 that we obtain a linear system of algebraic

equations for φ(n)(h) and ψ
(n)
k (h):

i


α

(n)
1 0 −β(n)

2 α
(n)
2

α
(n)
2 β

(n)
2 0 −α(n)

1

β
(n)
1 −α(n)

2 α
(n)
1 0

0 α
(n)
1 α

(n)
2 β

(n)
2




φ(n)(h)

ψ
(n)
1 (h)

ψ
(n)
2 (h)

ψ
(n)
3 (h)

=


v

(n)
1 (h)

v
(n)
2 (h)

v
(n)
3 (h)

0

. (2.11)

Solving the above linear system directly via Cramer’s rule gives

φ(n)(h) =− i

χ(n)

(
α

(n)
1 v

(n)
1 (h)+α

(n)
2 v

(n)
2 (h)+β

(n)
2 v

(n)
3 (h)

)
ψ

(n)
1 (h) =− i

χ(n)

(
α

(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 )v
(n)
1 (h)/κ2

2

+
[
(α

(n)
1 )2β

(n)
2 +(α

(n)
2 )2β

(n)
1 +β

(n)
1 (β

(n)
2 )2

]
v

(n)
2 (h)/κ2

2−α
(n)
2 v

(n)
3 (h)

)
ψ

(n)
2 (h) =− i

χ(n)

(
−
[
(α

(n)
1 )2β

(n)
1 +(α

(n)
2 )2β

(n)
2 +β

(n)
1 (β

(n)
2 )2

]
v

(n)
1 (h)/κ2

2

−α(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 )v
(n)
2 (h)/κ2

2 +α
(n)
1 v

(n)
3 (h)

)
ψ

(n)
3 (h) =− i

κ2
2

(
α

(n)
2 v

(n)
1 (h)−α(n)

1 v
(n)
2 (h)

)
,

where

χ(n) = |α(n)|2 +β
(n)
1 β

(n)
2 . (2.12)

It is shown in Proposition A.1 that χ(n) 6= 0 for n∈Z2.
Given a vector field v= (v1,v2,v3)>, we define a differential operator D on Γh:

Dv=µ∂x3v+(λ+µ)(∇·v)e3, (2.13)

where e3 = (0,0,1)>. Substituting the Helmholtz decomposition (2.6) into (2.13) and
using (2.7), we get

Dv=µ∂x3
(∇φ+∇×ψ)−(λ+µ)κ2

1φe3.

It follows from (2.9) that

(Dv)(n) =−µ


α

(n)
1 β

(n)
1 0 −(β

(n)
2 )2 α

(n)
2 β

(n)
2

α
(n)
2 β

(n)
1 (β

(n)
2 )2 0 −α(n)

1 β
(n)
2

(β
(n)
2 )2 −α(n)

2 β
(n)
2 α

(n)
1 β

(n)
2 0



φ(n)(h)

ψ
(n)
1 (h)

ψ
(n)
2 (h)

ψ
(n)
3 (h)

. (2.14)

By (2.11) and (2.14), we deduce the transparent boundary conditions for the
diffracted field:

Dv=T v :=
∑
n∈Z2

M (n)v(n)(h)eiα(n)·r on Γh,
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where the matrix

M (n) =
iµ

χ(n)
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n) α

(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 ) α
(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )

α
(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 ) (α
(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n) α

(n)
2 β

(n)
2 (β

(n)
1 −β(n)

2 )

−α(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 ) −α(n)
2 β

(n)
2 (β

(n)
1 −β(n)

2 ) κ2
2β

(n)
2

.
Equivalently, we have the transparent boundary condition for the total field u:

Du=T u+g on Γh,

where

g=Duinc−T uinc =−2iω2β
(0)
1

κ1χ(0)
(α1,α2,−β(0)

2 )>ei(α1x1+α2x2−β(0)
1 h).

The scattering problem can be reduced to the following boundary value problem:
µ∆u+(λ+µ)∇∇·u+ω2u= 0 in Ω,

Du=T u+g on Γh,

u= 0 on Γf .

(2.15)

The weak formulation of (2.15) reads as follows: to find u∈H1
qp(Ω)3 such that

a(u,v) = 〈g,v〉Γh
, ∀v∈H1

qp(Ω)3, (2.16)

where the sesquilinear form a :H1
qp(Ω)3×H1

qp(Ω)3→C is defined by

a(u,v) =µ

∫
Ω

∇u :∇v̄dx+(λ+µ)

∫
Ω

(∇·u)(∇· v̄)dx

−ω2

∫
Ω

u · v̄dx−〈T u,v〉Γh
. (2.17)

Here A :B= tr(AB>) is the Frobenius inner product of square matrices A and B.
In this paper we assume that the variational problem (2.16) admits a unique solu-

tion. It follows from the general theory in [3] that there exists a constant γ1>0 such
that the following inf-sup condition holds:

sup
06=v∈H1

qp(Ω)3

|a(u,v)|
‖v‖H1(Ω)3

≥γ1‖u‖H1(Ω)3 , ∀u∈H1
qp(Ω)3. (2.18)

2.3. Energy distribution. We study the energy distribution for the scattering
problem. The result can be used to verify the accuracy of our numerical method for
examples where the analytical solutions are not available. In general, the energy is
distributed away from the scattering surface through propagating wave modes.

Consider the Helmholtz decomposition for the total field:

u=∇φt +∇×ψt, ∇·ψt = 0. (2.19)
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Substituting (2.19) into (2.1), we can similarly verify that the scalar potential function
φt and the vector potential function ψt satisfy

∆φt +κ2
1φ

t = 0, ∇×(∇×ψt)−κ2
2ψ

t = 0 in Ωf .

We also introduce the Helmholtz decomposition for the incident field:

uinc =∇φinc +∇×ψinc, ∇·ψinc = 0,

which gives explicitly that

φinc =− 1

κ2
1

∇·uinc =− i

κ1
ei(α·r−βx3), ψinc =

1

κ2
2

∇×uinc = 0.

Hence we have

φt =φinc +φ, ψt =ψ.

Using the Rayleigh expansions, we get

φt(x) =a0e
i(α·r−βx3) +

∑
n∈Z2

a
(n)
1 ei

(
α(n)·r+β

(n)
1 x3

)
(2.20)

ψt(x) =
∑
n∈Z2

b(n)ei
(
α(n)·r+β

(n)
2 x3

)
, (2.21)

where

a0 =− i

κ1
, a

(n)
1 =φ(n)(h)e−iβ

(n)
1 h, b(n) =ψ(n)(h)e−iβ

(n)
2 h.

The grating efficiency is defined by

e
(n)
1 =

β
(n)
1 |a

(n)
1 |2

β|a0|2
, e

(n)
2 =

β
(n)
2 |b

(n)|2

β|a0|2
, (2.22)

where e
(n)
1 and e

(n)
2 are the efficiency of the n-th order reflected modes for the compres-

sional wave and the shear wave, respectively. In practice, the grating efficiency (2.22)
can be computed from (2.11) once the scattering problem is solved and the diffracted
field v is available on Γh.

Theorem 2.1. The total energy is conserved, i.e.,∑
n∈U1

e
(n)
1 +

∑
n∈U2

e
(n)
2 = 1,

where Uj ={n∈Z2 : |α(n)|≤κj}, j∈{1,2}.

Proof. It follows from the boundary condition (2.2) and the Helmholtz decompo-
sition (2.19) that

∇φt +∇×ψt = 0 on Γf ,

which gives

ν ·∇φt +ν ·(∇×ψt) = 0, ν×∇φt +ν×(∇×ψt) = 0.
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Here ν is the unit normal vector on Γf .
Consider the following coupled problem:{

∆φt +κ2
1φ

t = 0, ∇×(∇×ψt)−κ2
2ψ

t = 0 in Ω,

ν ·∇φt +ν ·(∇×ψt) = 0, ν×∇φt +ν×(∇×ψt) = 0 on Γf .
(2.23)

Note that (φ̄t,ψ̄
t
) also satisfies the problem (2.23) since the wavenumbers κj are real.

Using Green’s theorem and quasi-periodicity of the solution, we get

0 =

∫
Ω

(φ̄t∆φt−φt∆φ̄t)dx−
∫

Ω

(ψ̄
t ·∇×(∇×ψt)−ψt ·∇×(∇×ψ̄t

))dx

=

∫
Γf

(φ̄t∂νφ
t−φt∂ν φ̄

t)dγ−
∫

Γf

(ψ̄
t ·(ν×∇×ψt)−ψt ·(ν×∇×ψ̄t

))dγ

+

∫
Γh

(φ̄t∂x3
φt−φt∂x3

φ̄t)dr

−
∫

Γh

(ψ̄
t ·(e3×∇×ψt)−ψt ·(e3×∇×ψ̄

t
))dr. (2.24)

It follows from the integration by parts and the boundary conditions in (2.23) that∫
Γf

∂νφ
tφ̄tdγ=−

∫
Γf

ν ·(∇×ψt)φ̄tdγ

=

∫
Γf

ψt ·(ν×∇φ̄t)dγ=−
∫

Γf

ψt ·(ν×(∇×ψ̄t
))dγ,

which gives, after taking the imaginary part of (2.24), that

Im

∫
Γh

(φ̄t∂x3φ
t−ψ̄t ·(e3×∇×ψt))dr= 0. (2.25)

Let ∆
(n)
j = |κ2

j−|α(n)|2|1/2. Note that β
(n)
j = ∆

(n)
j for n∈Uj and β

(n)
j = i∆

(n)
j for

n /∈Uj . It follows from (2.20) and (2.21) that we have

φt(r,h) =a0e
i(α·r−βh) +

∑
n∈U1

a
(n)
1 e

(
iα(n)·r+i∆

(n)
1 h
)

+
∑
n/∈U1

a
(n)
1 e

(
iα(n)·r−∆

(n)
1 h
)
,

ψt(r,h) =
∑
n∈U2

b(n)e

(
iα(n)·r+i∆

(n)
2 h
)

+
∑
n/∈U2

b(n)e

(
iα(n)·r−∆

(n)
2 h
)
,

and

∂x3
φt(r,h) =− iβa0e

i(α·r−βh) +
∑
n∈U1

i∆
(n)
1 a

(n)
1 e

(
iα(n)·r+i∆

(n)
1 h
)

−
∑
n/∈U1

∆
(n)
1 a

(n)
1 e

(
iα(n)·r−∆

(n)
1 h
)
,

e3×(∇×ψt(r,h)) =
∑
n∈U2

iα
(n)
1 b

(n)
3 − i∆

(n)
2 b

(n)
1

iα
(n)
2 b

(n)
3 − i∆

(n)
2 b

(n)
2

0

e(iα(n)·r+i∆
(n)
2 h
)
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+
∑
n/∈U2

iα
(n)
1 b

(n)
3 +∆

(n)
2 b

(n)
1

iα
(n)
2 b

(n)
3 +∆

(n)
2 b

(n)
2

0

e(iα(n)·r−∆
(n)
2 h
)
,

where b(n) = (b
(n)
1 ,b

(n)
2 ,b

(n)
3 )>. Substituting the above four functions into (2.25), using

the orthogonality of the Fourier series and the divergence free condition, we obtain

β|a0|2 =
∑
n∈U1

∆
(n)
1 |a

(n)
1 |2 +

∑
n∈U2

∆
(n)
2 |b

(n)|2,

which completes the proof.

3. The PML problem
In this section, we introduce the PML formulation for the scattering problem and

establish the well-posedness of the PML problem. An error estimate will be shown for
the solutions between the original scattering problem and the PML problem.

3.1. PML formulation. Now we turn to the introduction of an absorbing
PML layer. The domain Ω is covered by a PML layer of thickness δ in Ωh. Let
ρ(τ) =ρ1(τ)+iρ2(τ) be the PML function which is continuous and satisfies

ρ1 = 1, ρ2 = 0 for τ <h and ρ1≥1, ρ2>0 otherwise.

We introduce the PML by complex coordinate stretching:

x̂3 =

∫ x3

0

ρ(τ)dτ. (3.1)

Let x̂= (r,x̂3). Introduce the new field

û(x) =

{
uinc(x)+(u(x̂)−uinc(x̂)), x∈Ωh,

u(x̂), x∈Ω.
(3.2)

It is clear to note that û(x) =u(x) in Ω since x̂=x in Ω. It can be verified from (2.1)
and (3.1) that û satisfies

L (û−uinc) = 0 in Ωf .

Here the PML differential operator

Lu= (w1,w2,w3)>,

where

w1 =(λ+2µ)∂2
x1x1

u1 +µ(∂2
x2x2

u1 +ρ−1(x3)∂x3(ρ−1(x3)∂x3u1))

+(λ+µ)(∂2
x1x2

u2 +ρ−1(x3)∂2
x1x3

u3)+ω2u1,

w2 =(λ+2µ)∂2
x2x2

u2 +µ(∂2
x1x1

u2 +ρ−1(x3)∂x3
(ρ−1(x3)∂x3

u2))

+(λ+µ)(∂2
x1x2

u1 +ρ−1(x3)∂2
x2x3

u3)+ω2u2

w3 =(λ+2µ)ρ−1(x3)∂x3
(ρ−1(x3)∂x3

u3)+µ(∂2
x1x1

u3 +∂2
x2x2

u3))

+(λ+µ)ρ−1(x3)(∂2
x1x3

u1 +∂2
x2x3

u2)+ω2u3.
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Define the PML regions

ΩPML ={x∈R3 : 0<x1<Λ1, 0<x2<Λ2, h<x3<h+δ}.

It is clear to note from (3.2) that the outgoing wave û(x)−uinc(x) in Ωh decay expo-
nentially as x3→+∞. Therefore, the homogeneous Dirichlet boundary condition can
be imposed on

ΓPML ={x∈R3 : 0<x1<Λ1, 0<x2<Λ2, x3 =h+δ}

to truncate the PML problem. Define the computational domain for the PML problem
D= Ω∪ΩPML. We arrive at the following truncated PML problem: to find a quasi-
periodic solution û such that 

L û=g in D,

û=uinc on ΓPML,

û= 0 on Γf ,

(3.3)

where

g=

{
Luinc in ΩPML,

0 in Ω.

Define H1
0,qp(D) ={u∈H1

qp(D) :u= 0 on ΓPML∪Γf}. The weak formulation of the

PML problem (3.3) reads as follows: to find û∈H1
qp(D)3 such that û=uinc on ΓPML

and

bD(û,v) =−
∫
D

g · v̄dx, ∀v∈H1
0,qp(D)3. (3.4)

Here for any domain G⊂R3, the sesquilinear form bG :H1
qp(G)3×H1

qp(G)3→C is de-
fined by

bG(u,v) =

∫
G

(λ+2µ)(∂x1
u1∂x1

v̄1 +∂x2
u2∂x2

v̄2 +(ρ−1)2∂x3
u3∂x3

v̄3)

+µ(∂x2
u1∂x2

v̄1 +∂x1
u2∂x1

v̄2 +∂x1
u3∂x1

v̄3 +∂x2
u3∂x2

v̄3)

+µ(ρ−1)2(∂x3u1∂x3 v̄1 +∂x3u2∂x3 v̄2)+(λ+µ)(∂x2u2∂x1 v̄1 +∂x1u1∂x2 v̄2)

+(λ+µ)ρ−1(∂x3
u3∂x1

v̄1 +∂x3
u3∂x2

v̄2 +∂x1
u1∂x3

v̄3 +∂x2
u2∂x3

v̄3)

−ω2(u1v̄1 +u2v̄2 +u3v̄3)dx.

We will reformulate the variational problem (3.4) in the domain D into an equivalent
variational formulation in the domain Ω, and discuss the existence and uniqueness of
the weak solution to the equivalent weak formulation. To do so, we need to introduce
the transparent boundary condition for the truncated PML problem.

3.2. Transparent boundary condition of the PML problem. Let v̂(x) =
v(x̂) =u(x̂)−uinc(x̂) in ΩPML. It is clear to note that v̂ satisfies the Navier equation
in the complex coordinate:

µ∆x̂v̂+(λ+µ)∇x̂∇x̂ · v̂+ω2v̂= 0 in ΩPML, (3.5)

where ∇x̂= (∂x1
,∂x2

,∂x̂3
)> with ∂x̂3

=ρ−1(x3)∂x3
.



X. JIANG, P. LI, J. LV, AND W. ZHENG 999

We introduce the Helmholtz decomposition for the solution of (3.5):

v̂=∇x̂φ̂+∇x̂×ψ̂, ∇x̂ ·ψ̂= 0, (3.6)

Plugging (3.6) into (3.5) gives

∆x̂φ̂+κ2
1φ̂= 0, ∆x̂ψ̂+κ2

2ψ̂= 0. (3.7)

Due to the quasi-periodicity of the solution, we have the Fourier series expansions

φ̂(x) =
∑
n∈Z2

φ̂(n)(x3)eiα(n)·r,

and

ψ̂(x) =
∑
n∈Z2

(
ψ̂

(n)
1 (x3),ψ̂

(n)
2 (x3),ψ̂

(n)
3 (x3)

)>
eiα(n)·r.

Substituting the above Fourier series expansions into (3.7) yields

ρ−1 d

dx3

(
ρ−1 d

dx3
φ̂(n)(x3)

)
+(β

(n)
1 )2φ̂(n)(x3) = 0

and

ρ−1 d

dx3

(
ρ−1 d

dx3
ψ̂

(n)
k (x3)

)
+(β

(n)
2 )2ψ̂

(n)
k (x3) = 0, k= 1,2,3.

The general solutions of the above equations are{
φ̂(n)(x3) =A(n)eiβ

(n)
1

∫ x3
h ρ(τ)dτ +B(n)e−iβ

(n)
1

∫ x3
h ρ(τ)dτ ,

ψ̂
(n)
k (x3) =C

(n)
k eiβ

(n)
2

∫ x3
h ρ(τ)dτ +D

(n)
k e−iβ

(n)
2

∫ x3
h ρ(τ)dτ .

(3.8)

Define

ζ=

∫ h+δ

h

ρ(τ)dτ, ζ(x3) =

∫ x3

h

ρ(τ)dτ. (3.9)

The coefficients A(n), B(n), C
(n)
k ,D

(n)
k can be uniquely determined by solving the fol-

lowing linear system:

A(n)X(n) =V(n), (3.10)

where

X(n) =
(
A(n),B(n),C

(n)
1 ,D

(n)
1 ,C

(n)
2 ,D

(n)
2 ,C

(n)
3 ,D

(n)
3

)>
,

V(n) =−i
(
v

(n)
1 (h),v

(n)
2 (h),v

(n)
3 (h),0,0,0,0,0

)>
,

and

A(n) =

[
A

(n)
11 A

(n)
12

A
(n)
21 A

(n)
22

]
.
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Here the block matrices are

A
(n)
11 =


α

(n)
1 α

(n)
1 0 0

α
(n)
2 α

(n)
2 β

(n)
2 −β(n)

2

β
(n)
1 −β(n)

1 −α(n)
2 −α(n)

2

α
(n)
1 eiβ

(n)
1 ζ α

(n)
1 e−iβ

(n)
1 ζ 0 0

,

A
(n)
12 =


−β(n)

2 β
(n)
2 α

(n)
2 α

(n)
2

0 0 −α(n)
1 −α(n)

1

α
(n)
1 α

(n)
1 0 0

−β(n)
2 eiβ

(n)
2 ζ β

(n)
2 e−iβ

(n)
2 ζ α

(n)
2 eiβ

(n)
2 ζ α

(n)
2 e−iβ

(n)
2 ζ

,

A
(n)
21 =



α
(n)
2 eiβ

(n)
1 ζ α

(n)
2 e−iβ

(n)
1 ζ β

(n)
2 eiβ

(n)
2 ζ −β(n)

2 e−iβ
(n)
2 ζ

β
(n)
1 eiβ

(n)
1 ζ −β(n)

1 e−iβ
(n)
1 ζ −α2e

iβ
(n)
2 ζ −α2e

−iβ
(n)
2 ζ

0 0 α
(n)
1 α

(n)
1

0 0 α
(n)
1 eiβ

(n)
2 ζ α

(n)
1 e−iβ

(n)
2 ζ


,

A
(n)
22 =


0 0 −α(n)

1 eiβ
(n)
2 ζ −α(n)

1 e−iβ
(n)
2 ζ

α
(n)
1 eiβ

(n)
2 ζ α

(n)
1 e−iβ

(n)
2 ζ 0 0

α
(n)
2 α

(n)
2 β

(n)
2 −β(n)

2

α
(n)
2 eiβ

(n)
2 ζ α

(n)
2 e−iβ

(n)
2 ζ β

(n)
2 eiβ

(n)
2 ζ −β(n)

2 e−iβ
(n)
2 ζ

.

To obtain the above linear system (3.10), we have used the Helmholtz decomposition
(3.6) and the homogeneous Dirichlet boundary condition

v̂(r,h+δ) = 0 on ΓPML

due to the PML absorbing layer.

Using the Helmholtz decomposition (3.6) and (3.8), we get

v̂(x) = i
∑
n∈Z2


α

(n)
1

α
(n)
2

β
(n)
1

A(n)ei
(
α(n)·r+β

(n)
1

∫ x3
h ρ(τ)dτ

)

+


α

(n)
1

α
(n)
2

−β(n)
1

B(n)ei
(
α(n)·r−β(n)

1

∫ x3
h ρ(τ)dτ

)
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+


α

(n)
2 C

(n)
3 −β(n)

2 C
(n)
2

β
(n)
2 C

(n)
1 −α(n)

1 C
(n)
3

α
(n)
1 C

(n)
2 −α(n)

2 C
(n)
1

ei
(
α(n)·r+β

(n)
2

∫ x3
h ρ(τ)dτ

)

+


α

(n)
2 D

(n)
3 +β

(n)
2 D

(n)
2

−β(n)
2 D

(n)
1 −α(n)

1 D
(n)
3

α
(n)
1 D

(n)
2 −α(n)

2 D
(n)
1

ei
(
α(n)·r−β(n)

2

∫ x3
h ρ(τ)dτ

)
. (3.11)

It follows from (3.11) that we have

D v̂=µ∂x3
v̂+(λ+µ)(∇· v̂)e3 =

∑
n∈Z2

µP(n)X(n)eiα(n)·x on Γh,

where

P(n) =
−α(n)

1 β
(n)
1 α

(n)
1 β

(n)
1 0 0 (β

(n)
2 )2 (β

(n)
2 )2 −α(n)

2 β
(n)
2 α

(n)
2 β

(n)
2

−α(n)
2 β

(n)
1 α

(n)
2 β

(n)
1 −(β

(n)
2 )2 −(β

(n)
2 )2 0 0 α

(n)
1 β

(n)
2 −α(n)

1 β
(n)
2

−(β
(n)
2 )2 −(β

(n)
2 )2 α

(n)
2 β

(n)
2 −α(n)

2 β
(n)
2 −α(n)

1 β
(n)
2 α

(n)
1 β

(n)
2 0 0

.
Combining (3.11) and (3.10), we derive the transparent boundary condition for the

PML problem:

D v̂=T PMLv̂ :=
∑
n∈Z2

M̂(n)v̂(n)(h)eiα(n)·r on Γh,

where the matrix

M̂(n) =


m̂

(n)
11 m̂

(n)
12 m̂

(n)
13

m̂
(n)
21 m̂

(n)
22 m̂

(n)
23

m̂
(n)
31 m̂

(n)
32 m̂

(n)
33

.
Here the entries of M̂(n) are

m̂
(n)
11 =

iµ

χ(n)χ̂(n)

[
χ(n)

(
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
(ε(n) +1)

+4(α
(n)
2 )2β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)−2(α

(n)
1 )2β

(n)
1 κ2

2η
(n)
]
,

m̂
(n)
12 =m̂

(n)
21 =

iµα
(n)
1 α

(n)
2

χ(n)χ̂(n)

[
χ(n)(β

(n)
1 −β(n)

2 )(ε(n) +1)−2χ(n)β
(n)
1 η(n)

−4β
(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)−2β

(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )γ(n)
]
,

m̂
(n)
13 =−m̂(n)

31 =
iµα

(n)
1 β

(n)
2

χ(n)χ̂(n)

[
χ(n)(β

(n)
1 −β(n)

2 )+2β
(n)
1 (κ2

2−2(β
(n)
2 )2)θ(n)

]
,

m̂
(n)
22 =

iµ

χ(n)χ̂
(n)
n

[
χ(n)[(α

(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)](ε(n) +1)
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+4(α
(n)
1 )2β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)−2(α

(n)
2 )2β

(n)
1 κ2

2η
(n)
]
,

m̂
(n)
23 =−m̂(n)

32 =
iµα

(n)
2 β

(n)
2

χ(n)χ̂(n)

[
χ(n)(β

(n)
1 −β(n)

2 )+2β
(n)
1 (κ2

2−2(β
(n)
2 )2)θ(n)

]
,

m̂
(n)
33 =

iµβ
(n)
2 κ2

2

χ(n)χ̂(n)

[
χ(n)(ε(n) +1)−2β

(n)
1 β

(n)
2 η(n)

]
,

where

ε(n) =2eiβ
(n)
2 ζ/(e−iβ

(n)
2 ζ−eiβ

(n)
2 ζ),

θ(n) =(eiβ
(n)
2 ζ−eiβ

(n)
1 ζ)2/((1−e2iβ

(n)
1 ζ)(1−e2iβ

(n)
2 ζ)),

η(n) =(e2iβ
(n)
2 ζ−e2iβ

(n)
1 ζ)/((1−e2iβ

(n)
1 ζ)(1−e2iβ

(n)
2 ζ)),

γ(n) =(e2iβ
(n)
1 ζ +e4iβ

(n)
2 ζ)2/((1−e2iβ

(n)
1 ζ)(1−e2iβ

(n)
2 ζ)2),

χ̂(n) =χ(n) +4
(
(α

(n)
1 )2 +(α

(n)
2 )2

)
β

(n)
1 β

(n)
2 θn/χ

(n).

Equivalently, we have the transparent boundary condition for the total field û:

Dû=T PMLû+gPML on Γh,

where gPML =Dûinc−T PMLûinc.

The PML problem can be reduced to the following boundary value problem:
µ∆uPML +(λ+µ)∇∇·uPML +ω2uPML = 0 in Ω,

DuPML =T PMLuPML +gPML on Γh,

uPML = 0 on Γf .

(3.12)

The weak formulation of (3.12) is to find uPML∈H1
qp(Ω)3 such that

aPML(uPML,v) = 〈gPML,v〉Γh
∀v∈H1

qp(Ω)3, (3.13)

where the sesquilinear form aPML :H1
qp(Ω)3×H1

qp(Ω)3→C is defined by

aPML(u,v) =µ

∫
Ω

∇u :∇v̄dx+(λ+µ)

∫
Ω

(∇·u)(∇· v̄)dx

−ω2

∫
Ω

u · v̄dx−〈T PMLu,v〉Γh
. (3.14)

The following lemma establishes the relationship between the variational problem
(3.13) and the weak formulation (3.4). The proof is straightforward based on our con-
structions of the transparent boundary conditions for the PML problem. The details of
the proof are omitted for simplicity.

Lemma 3.1. Any solution û of the variational problem (3.4) restricted to Ω is a
solution of the variational (3.13); conversely, any solution uPML of the variational
problem (3.13) can be uniquely extended to the whole domain to be a solution û of the
variational problem (3.4) in D.
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3.3. Convergence of the PML solution. Now we turn our attention to
estimate the error between uPML and u. The key is to estimate the error of the boundary
operators T PML and T .

Let

∆−j = min{∆(n)
j :n∈Uj}, ∆+

j = min{∆(n)
j :n /∈Uj},

where

∆
(n)
j = |κ2

j−|α(n)|2|1/2, Uj ={n : |α(n)|<κj}.

Denote

K=
48(49+κ2

2)7/2

κ2
1

×max

{
1

e∆−1 Imζ−1
,

1

(e
1
2 ∆−1 Imζ−1)2

,
1

(e
1
3 ∆−1 Imζ−1)3

,

1

e∆+
2 Reζ−1

,
1

(e
1
2 ∆+

2 Reζ−1)2
,

1

(e
1
3 ∆+

2 Reζ−1)3
,

1

e∆−2 Imζ−1
,

(e−∆+
1 Reζ +e−∆−2 Imζ)2

(1−e−2∆+
1 Imζ)(1−e−2∆−2 Reζ)2

,

}
.

The constant K can be used to control the modeling error between the PML problem
and the original scattering problem. Once the incoming plane wave uinc is fixed, the
quantities ∆−j ,∆

+
j are fixed. Thus the constant K approaches to zero exponentially as

the PML parameters Reζ and Imζ tend to infinity. Recalling the definition of ζ in (3.9),
we know that Reζ and Imζ can be calculated by the medium property ρ(x3), which is
usually taken as a power function:

ρ(x3) = 1+σ

(
x3−h
δ

)m
if x3≥h, m≥1.

Thus we have

Reζ=

(
1+

Reσ

m+1

)
δ, Imζ=

(
Imσ

m+1

)
δ.

In practice, we may pick some appropriate PML parameters σ and δ such that Reζ≥1.

Lemma 3.2. For any u,v∈H1
qp(Ω)3, we have

|〈(T PML−T )u,v〉Γh
|≤ K̂‖u‖L2(Γh)3‖v‖L2(Γh)3 ,

where K̂= 11µ2K/κ4
1.

Proof. For any u,v∈H1
qp(Ω)3, we have the following Fourier series expansions:

u(r,h) =
∑
n∈Z2

u(n)(h)eiα(n)·r, v(r,h) =
∑
n∈Z2

v(n)(h)eiα(n)·r,

which gives

‖u‖2L2(Γh)3 = Λ1Λ2

∑
n∈Z2

|u(n)(h)|2, ‖v‖2L2(Γh)3 = Λ1Λ2

∑
n∈Z2

|v(n)(h)|2.
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It follows from the orthogonality of Fourier series, the Cauchy–Schwarz inequality, and
Proposition A.3 that we have

|〈(T PML−T )u,v〉Γh
|=
∣∣∣∣Λ1Λ2

∑
n∈Z2

(
(M (n)−M̂ (n))u(n)(h)

)
· v̄(n)(h)

∣∣∣∣
≤
(

Λ1Λ2

∑
n∈Z2

‖M (n)−M̂ (n)‖2F |u(n)(h)|2
)1/2(

Λ1Λ2

∑
n∈Z2

|v(n)(h)|2
)1/2

≤ K̂‖u‖L2(Γh)3‖v‖L2(Γh)3 ,

which completes the proof.

Let a= min{f(x) :x∈Γf}. Denote Ω̃ ={x∈R3 : 0<x1<Λ1, 0<x2<Λ2, a<x3<
h}.

Lemma 3.3. For any u∈H1
qp(Ω)3, we have

‖u‖L2(Γh)3 ≤‖u‖H1/2(Γh)3 ≤γ2‖u‖H1(Ω)3 ,

where γ2 = (1+(h−a)−1)1/2.

Proof. A simple calculation yields

(h−a)|u(h)|2 =

∫ h

a

|u(x3)|2dx3 +

∫ h

a

∫ h

x3

d

dt
|u(t)|2dtdx3

≤
∫ h

a

|u(x3)|2dx3 +(h−a)

∫ h

a

2|u(t)||u′(t)|dt,

which gives by applying the Young’s inequality that

(1+ |α(n)|2)1/2|u(h)|2≤γ2
2(1+ |α(n)|2)

∫ h

a

|u(t)|2dt+

∫ h

a

|u′(t)|2dt.

Given u∈H1
qp(Ω)3, we consider the zero extension

ũ=

{
u in Ω,

0 in Ω̃\Ω̄,

which has the Fourier series expansion

ũ(x) =
∑
n∈Z2

ũ(n)(x3)eiα(n)·r in Ω̃.

By definition, we have

‖ũ‖2H1/2(Γh)3 = Λ1Λ2

∑
n∈Z2

(1+ |α(n)|2)1/2|ũ(n)(h)|2

and

‖ũ‖2H1(Ω)3 = Λ1Λ2

∑
n∈Z2

∫ h

a

(1+ |α(n)|2)|ũ(n)(x3)|2 + |u(n)′(x3)|2dx3.
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The proof is completed by combining the above estimates and noting ‖u‖2
H1/2(Γh)3

=

‖ũ‖2
H1/2(Γh)3

and ‖u‖2H1(Ω)3 =‖ũ‖2
H1(Ω̃)3

.

Theorem 3.1. Let γ1 and γ2 be the constants in the inf-sup condition (2.18) and in
Lemma 3.3, respectively. If K̂γ2

2 <γ1, then the PML variational problem (3.13) has a
unique weak solution uPML, which satisfies the error estimate

‖u−uPML‖Ω := sup
06=v∈H1

qp(Ω)3

|a(u−uPML,v)|
‖v‖H1(Ω)3

≤γ2K̂‖uPML−uinc‖L2(Γh)3 , (3.15)

where u is the unique weak solution of the variational problem (2.16).

Proof. It suffices to show the coercivity of the sesquilinear form aPML defined
in (3.14) in order to prove the unique solvability of the weak problem (3.13). Using
Lemmas 3.2, 3.3 and the assumption K̂γ2

2 <γ1, we get for any u,v in H1
qp(Ω)3 that

|aPML(u,v)|≥ |a(u,v)|−〈(T PML−T )u,v〉Γh
|

≥ |a(u,v)|−K̂γ2
2‖u‖H1(Ω)3‖v‖H1(Ω)3

≥
(
γ1−K̂γ2

2

)
‖u‖H1(Ω)3‖v‖H1(Ω)3 .

It remains to show the error estimate (3.15). It follows from (2.16)–(2.17) and (3.13)–
(3.14) that

a(u−uPML,v) =a(u,v)−a(uPML,v)

= 〈f ,v〉Γh
−〈fPML,v〉Γh

+aPML(uPML,v)−a(uPML,v)

= 〈(T PML−T )uinc,v〉Γh
−〈(T PML−T )uPML,v〉Γh

= 〈(T −T PML)(uPML−uinc),v〉Γh
,

which completes the proof after using Lemmas 3.2 and 3.3.

We remark that the PML approximation error can be reduced exponentially by
either enlarging the thickness δ of the PML layers or enlarging the medium parameters
Reσ and Imσ.

4. Numerical experiments

In this section, we present two examples to demonstrate the numerical performance
of the PML solution. The first-order linear element is used to solve the problem. Our
implementation is based on parallel hierarchical grid (PHG) [32], which is a toolbox
for developing parallel adaptive finite element programs on unstructured tetrahedral
meshes. The linear system resulted from finite element discretization is solved by the
Supernodal LU (SuperLU) direct solver, which is a general purpose library for the direct
solution of large, sparse, nonsymmetric systems of linear equations.

Example 1. We consider the simplest periodic structure, a straight line,
where the exact solution is available. We assume that a plane compressional
plane wave uinc =qei(α·r−βx3) is incident on the straight line x3 = 0, where
α= (α1,α2)>,α1 =κ1 sinθ1 cosθ2,α2 =κ1 sinθ1 sinθ2,β=κ1 cosθ1,q= (q1,q2,q3),q1 =
sinθ1 cosθ2,q2 = sinθ1 sinθ2,q3 =−cosθ1,θ1∈ [0,π/2),θ2∈ [0,2π] are incident angles. It
follows from the Navier equation and the Helmholtz decomposition that we obtain the
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Fig. 4.1. The mesh and surface plots of the amplitude of the associated solution for the scattered
field vPML

h for Example 1: (left) the amplitude of the real part of the solution |RevPML
h |; (right) the

amplitude of the imaginary part of the solution |ImvPML
h |.
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Fig. 4.2. Grating efficiencies and robustness of grating efficiency for Example 1.
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Fig. 4.5. Grating efficiencies and robustness of grating efficiency for Example 2.

Fig. 4.6. The mesh and surface plots of the amplitude of the associated solution for the scattered
field vPML

h for Example 2: (left) the amplitude of the real part of the solution |RevPML
h |; (right) the

amplitude of the imaginary part of the solution |ImvPML
h |.

exact solution:

u(x) =uinc(x)+i

α1

α2

β

aei(α·r+βx3) +i

α2b3−β(0)
2 b2

β
(0)
2 b1−α1b3
α1b2−α2b1

ei(α·r+β
(0)
2 x3),

where (a,b1,b2,b3) is the solution of the following linear system:

i


α1 0 −β(0)

2 α2

α2 β
(0)
2 0 −α1

β −α2 α1 0

0 α1 α2 β
(0)
2



a

b1

b2

b3

=−


q1

q2

q3

0

.

Solving the above equations via Cramer’s rule gives

a=
i

χ

(
α1q1 +α2q2 +β

(0)
2 q3

)
b1 =

i

χ

(
α1α2(β−β(0)

2 )q1/κ
2
2 +
[
(α1)2β

(0)
2 +(α2)2β+β(β

(0)
2 )2

]
q2/κ

2
2−α2q3

)
b2 =

i

χ

(
−
[
(α1)2β+(α2)2β

(0)
2 +β(β

(0)
2 )2

]
q1/κ

2
2−α1α2(β−β(0)

2 )q2/κ
2
2 +α1q3

)
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b3 =
i

κ2
2

(
α2q1−α1q2

)
,

where

χ= (|α|2 +ββ
(0)
2 ).

In our experiment, the parameters are chosen as λ= 1,µ= 2,θ1 =θ2 =π/6,ω= 2π.
The computational domain Ω = (0,1)×(0,1)×(0,0.6) and the PML domain is ΩPML =
(0,1)×(0,1)×(0.3,0.6), i.e., the thickness of the PML layer is 0.3. We choose σ= 25.39
and m= 2 for the medium property to ensure the constant K is so small that the PML
error is negligible compared to the finite element error. The mesh and surface plots of the
amplitude of the field vPML

h are shown in Figure 4.1. The mesh has 57600 tetrahedrons
and the total number of degrees of freedom (DoFs) on the mesh is 60000. The grating
efficiencies are displayed in Figure 4.2, which verifies the conservation of the energy in
Theorem 2.1. Figure 4.3 shows the curves of Nk versus ‖u−uk‖0,Ω, i.e., L2-error, and
‖∇(u−uk)‖0,Ω, i.e., H1-error, where Nk is the total number of DoFs of the mesh. It
indicates that the meshes and the associated numerical complexity are quasi-optimal:

‖u−uk‖0,Ω =O(N
−2/3
k ) and ‖∇(u−uk)‖0,Ω =O(N

−1/3
k ) are valid asymptotically.

Example 2. This example concerns the scattering of the time-harmonic com-
pressional plane wave uinc on a flat grating surface with two square bumps, as seen
in Figure 4.4. The parameters are chosen as λ= 1,µ= 2,θ1 =θ2 =π/6, ω= 2π. The
computational domain is Ω =(0,1)×(0,1)×(0,1) and the PML domain is ΩPML =
(0,1)×(0,1)×(0.5,1.0), i.e., the thickness of the PML layer is 0.5. Again, we choose
σ= 28.57 and m= 2 for the medium property to ensure that the PML error is neg-
ligible compared to the finite element error. Since there is no analytical solution for
this example, we plot the grating efficiencies against the DoFs in Figure 4.5 to verify
the conservation of the energy. Figure 4.6 shows the mesh and the amplitude of the
associated solution for the scattered field vPML

h when the mesh has 49968 nodes.

5. Concluding remarks
We have studied a variational formulation for the elastic wave scattering problem

in a biperiodic structure and adopted the PML to truncate the physical domain. The
scattering problem is reduced to a boundary value problem by using transparent bound-
ary conditions. We prove that the truncated PML problem has a unique weak solution
which converges exponentially to the solution of the original problem by increasing the
PML parameters. Numerical results show that the proposed method is effective to solve
the scattering problem of elastic waves in biperiodic structures. Although the paper
presents the results for the rigid boundary condition, the method is applicable to other
boundary conditions or the transmission problem where the structures are penetrable.
This work considers only the uniform mesh refinement. We plan to incorporate the
adaptive mesh refinement with a posteriori error estimate for the finite element method
to handle the problems where the solutions may have singularities. The progress will
be reported elsewhere in a future work.

Appendix A. Technical estimates. In this section, we present the proofs for
some technical estimates which are used in our analysis for the error estimate between
the solutions of the PML problem and the original scattering problem.

Proposition A.1. For any n∈Z2, we have κ2
1< |χ(n)|<κ2

2.

Proof. Recalling (2.12) and (2.8), we consider three cases:
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(i) For n∈U1, β
(n)
1 = (κ2

1−|α(n)|2)1/2 and β
(n)
2 = (κ2

2−|α(n)|2)1/2. We have

χ(n) = |α(n)|2 +β
(n)
1 β

(n)
2 = |α(n)|2 +(κ2

1−|α(n)|2)1/2(κ2
2−|α(n)|2)1/2.

Noting that κ1<κ2, one can get κ2
1<χ

(n)<κ2
2.

(ii) For n∈U2 \U1, β
(n)
1 = i(|α(n)|2−κ2

1)1/2,β
(n)
2 = (κ2

2−|α(n)|2)1/2. We have

χ(n) = |α(n)|2 +i(|α(n)|2−κ2
1)1/2(κ2

2−|α(n)|2)1/2

and

|χ(n)|2 = (κ2
1 +κ2

2)|α(n)|2−(κ1κ2)2,

which gives κ2
1< |χ(n)|<κ2

2.

(iii) For n /∈U2, β
(n)
1 = i(|α(n)|2−κ2

1)1/2,β
(n)
2 = i(|α(n)|2−κ2

2)1/2. We have

χ(n) = |α(n)|2−(|α(n)|2−κ2
1)1/2(|α(n)|2−κ2

2)1/2.

Again using the fact κ1<κ2 yields κ2
1<χ

(n)<κ2
2.

Combining the above estimates, we get κ2
1< |χ(n)|<κ2

2 for any n∈Z2.

Proposition A.2. The function g1(t) = tk/e(t2−s2)1/2 satisfies g1(t)≤ (s2 +k2)k/2 for
any t>s>0, k∈R1.

Proof. Using the change of variables τ = (t2−s2)1/2, we have

ĝ1(τ) =
(τ2 +s2)k/2

eτ
.

Taking the derivative of ĝ1 gives

ĝ′1(τ) =− (τ2−kτ+s2)(τ2 +s2)
k
2−1

eτ
.

(i) If s≥k/2, then ĝ′1≤0 for τ >0. The function ĝ1 is decreasing and reaches its
maximum at τ = 0, i.e.,

g1(t)≤ ĝ1(0) =sk.

(ii) If s<k/2, then ĝ′1<0 for τ ∈ (0,(k−(k2−4s2)1/2)/2)∪((k+(k2−
4s2)1/2)/2,∞) and ĝ1>0 for τ ∈ ((k−(k2−4s2)1/2)/2,(k+(k2−4s2)1/2)/2).
Thus ĝ1 reaches its maximum at either τ1 = 0 or τ2 = (k+(k2−4s2)1/2)/2.
Thus we have

g1(t) = ĝ1(τ)≤max{ĝ1(τ1), ĝ1(τ2)}≤ (s2 +k2)k/2.

The proof is completed by combining the above estimates.

Proposition A.3. For any n∈Z2, we have ‖M (n)−M̂ (n)‖F ≤ K̂, where K̂=
11µK/κ4

1.

Proof. We consider the three cases:
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(i) For n∈U1, we have |α(n)|<κ1,β
(n)
1 = ∆

(n)
1 <κ1,β

(n)
2 = ∆

(n)
2 <κ2, and ∆

(n)
1 <

∆
(n)
2 . Using the facts that κ1<κ2, ∆

(n)
i ≥∆−i for n∈U1, we obtain from (2.12)

and Proposition A.1 and A.2 that

|ε(n)|≤ 2e−∆
(n)
2 Imζ

e∆
(n)
2 Imζ−e−∆

(n)
2 Imζ

≤ 2

e2∆
(n)
2 Imζ−1

≤ 2

e∆
(n)
1 Imζ−1

≤ 2

e∆−1 Imζ−1
,

|θ(n)|≤ (e−∆
(n)
2 Imζ +e−∆

(n)
1 Imζ)2

(1−e−2∆
(n)
1 Imζ)(1−e−2∆

(n)
2 Imζ)

≤ 4e−2∆−1 Imζ

(1−e−2∆−1 Imζ)2
≤ 4

(e
1
2 ∆−1 Imζ−1)2

,

|η(n)|≤ e−2∆
(n)
2 Imζ +e−2∆

(n)
1 Imζ

(1−e−2∆
(n)
1 Imζ)(1−e−2∆

(n)
2 Imζ)

≤ 2e−2∆−1 Imζ

(1−e−2∆−1 Imζ)2
≤ 2

(e
1
2 ∆−1 Imζ−1)2

,

|γ(n)|≤ e−2∆
(n)
1 Imζ +e−4∆

(n)
2 Imζ

(1−e−2∆
(n)
1 Imζ)(1−e−2∆

(n)
2 Imζ)2

≤ 2e−2∆
(n)
1 Imζ

(1−e−2∆
(n)
1 Imζ)3

≤ 2

(e
1
3 ∆−1 Imζ−1)3

,

|θ(n)(ε(n) +1)|≤ 4e−2∆
(n)
1 Imζ

(1−e−2∆
(n)
1 Imζ)2

e∆
(n)
2 Imζ +e−∆

(n)
2 Imζ

e∆
(n)
2 Imζ−e−∆

(n)
2 Imζ

≤ 4e−2∆
(n)
1 Imζ

(1−e−2∆
(n)
1 Imζ)2

2

1−e−2∆
(n)
1 Imζ

≤ 8

(e
1
3 ∆−1 Imζ−1)3

,

|χ̂(n)−χ(n)|≤4κ2
2|θ(n)|≤F,

max
{
|
(
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
χ(n)ε(n)|,

|α(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 )χ(n)ε(n)|,

|
(
(α

(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
χ(n)ε(n)|,

|β(n)
2 κ2

2χ
(n)ε(n)|

}
≤3κ5

2|ε(n)|≤F,

max
{
|
(
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
(χ̂(n)−χ(n))|,

|α(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|,

|
(
(α

(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
(χ̂(n)−χ(n))|,

|α(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|,

|α(n)
2 β

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|, |β(n)
2 κ2

2(χ̂(n)−χ(n))|
}

≤12κ5
2|θ(n)|≤F,

max
{
|4(α

(n)
2 )2β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)|, |4α(n)

1 α
(n)
2 β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)|,
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|4(α
(n)
1 )2β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)|

}
≤4κ5

2|θ(n)(ε(n) +1)|≤F,

max
{
|2(α

(n)
1 )2β

(n)
1 κ2

2η
(n)|, |2α(n)

1 α
(n)
2 β

(n)
1 χ(n)η(n)|,

2(α
(n)
2 )2β

(n)
1 κ2

2η
(n)|,|2β(n)

1 (β
(n)
2 )2κ2

2η
(n)|
}
≤2κ5

2|η(n)|≤F,

|2α(n)
1 α

(n)
1 β

(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )γ(n)|≤4κ5
2|γ(n)|≤F,

max
{
|2α(n)

1 β
(n)
1 β

(n)
2 (κ2

2−2(β
(n)
2 )2)θ(n)|,

|2α(n)
2 β

(n)
1 β

(n)
2 (κ2

2−2(β
(n)
2 )2)θ(n)|

}
≤6κ5

2|θ(n)|≤F,

(ii) For n∈U2 \U1, we have |α(n)|<κ2,β
(n)
1 = i∆

(n)
1 ,β

(n)
2 = ∆

(n)
2 <κ2, ∆

(n)
1 < (κ2

2−
κ2

1)1/2<κ2. Using the facts that ∆
(n)
1 ≥∆+

1 ,∆
(n)
2 ≥∆−2 for n∈U2 \U1, we get

from Proposition A.1 and A.2 that

|ε(n)|= 2e−∆
(n)
2 Imζ

e∆
(n)
2 Imζ−e−∆

(n)
2 Imζ

≤ 2

e2∆
(n)
2 Imζ−1

≤ 2

e2∆−2 Imζ−1
≤ 2

e∆−2 Imζ−1
,

|θ(n)|≤ (e−∆
(n)
2 Imζ +e−∆

(n)
1 Reζ)2

(1−e−2∆
(n)
1 Reζ)(1−e−2∆

(n)
2,j Imζ)

≤ (e−∆−2 Imζ +e−∆+
1 Reζ)2

(1−e−2∆+
1 Reζ)(1−e−2∆−2 Imζ)

,

|η(n)|≤ e−2∆
(n)
2 Imζ +e−2∆

(n)
1 Reζ

(1−e−2∆
(n)
1 Reζ)(1−e−2∆

(n)
2 Imζ)

≤ e−2∆−2 Imζ +e−2∆+
1 Reζ

(1−e−2∆+
1 Reζ)(1−e−2∆−2 Imζ)

≤ (e−∆−2 Imζ +e−∆+
1 Reζ)2

(1−e−2∆+
1 Reζ)(1−e−2∆−2 Imζ)

,

|γ(n)|≤ e−2∆
(n)
1 Reζ +e−4∆

(n)
2 Imζ

(1−e−2∆
(n)
1 Reζ)(1−e−2∆

(n)
2 Imζ)2

≤ e−2∆+
1 Reζ +e−4∆−2 Imζ

(1−e−2∆+
1 Reζ)(1−e−2∆−2 Imζ)2

≤ (e−∆−2 Imζ +e−∆+
1 Reζ)2

(1−e−2∆+
1 Reζ)(1−e−2∆−2 Imζ)

,

|θ(n)(ε(n) +1)|≤ (e−∆
(n)
2 Imζ +e−∆

(n)
1 Reζ)2

(1−e−2∆
(n)
1 Reζ)(1−e−2∆

(n)
2 Imζ)

2

1−e−2∆
(n)
2 Imζ

≤ 2(e−∆−2 Imζ +e−∆+
1 Reζ)2

(1−e−2∆+
1 Reζ)(1−e−2∆−2 Imζ)2

,

|χ̂(n)−χ(n)|≤ 4κ4
2

κ2
1

|θ(n)|≤F,

max
{
|
(
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
χ(n)ε(n)|,

|α(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 )χ(n)ε(n)|,
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|
(
(α

(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
χ(n)ε(n)|,|β(n)

2 κ2
2χ

(n)ε(n)|
}

≤3κ5
2|ε(n)|≤F,

max
{
|
(
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
(χ̂(n)−χ(n))|,

|α(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2,j )(χ̂(n)−χ(n))|,

|
(
(α

(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
(χ̂(n)−χ(n))|,

|α(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|,

|α(n)
2 β

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|,|β(n)
2 κ2

2(χ̂(n)−χ(n))|
}

≤ 12κ7
2

κ2
1

|θ(n)|≤F,

max
{
|4(α

(n)
2 )2β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)|, |4α(n)

1 α
(n)
2 β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)|,

|4(α
(n)
1 )2β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)|

}
≤4κ5

2|θ(n)(ε(n) +1)|

≤F,

max
{
|2(α

(n)
1 )2β

(n)
1 κ2

2η
(n)|,|2α(n)

1 α
(n)
2 β

(n)
1 χ(n)η(n)|,

|2(α
(n)
2 )2β

(n)
1 κ2

2η
(n)|,|2β(n)

1 (β
(n)
2 )2κ2

2η
(n)|
}

≤2κ5
2|η(n)|≤F,

|2α(n)
1 α

(n)
2 β

(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )γ(n)|≤4κ5
2|γ(n)|≤F,

max
{
|2α(n)

1 β
(n)
1 β

(n)
2 (κ2

2−2(β
(n)
2 )2)θ(n)|, |2α(n)

2 β
(n)
1 β

(n)
2 (κ2

2−2(β
(n)
2 )2)θ(n)|

}
≤6κ5

2|θ(n)|≤F.

(iii) For n /∈U2, we have κ2< |α(n)|,β(n)
1 = i∆

(n)
1 ,β

(n)
2 = i∆

(n)
2 , and ∆

(n)
2 <∆

(n)
1 <

|α(n)|. Noting Reζ≥1, we obtain from Proposition A.2 that

|ε(n)|≤ 2e−∆
(n)
2 Reζ

e∆
(n)
2 Reζ−e−∆

(n)
2 Reζ

≤ 2

e∆
(n)
2 Reζ

1

e∆
(n)
2 Reζ−1

≤ 2

e(|α(n)|2−κ2
2)1/2

1

e∆+
2 Reζ−1

,

|θ(n)|≤ (e−∆
(n)
2 Reζ +e−∆

(n)
1 Reζ)2

(1−e−2∆
(n)
1 Reζ)(1−e−2∆

(n)
2 Reζ)

≤ 4e−2∆
(n)
2 Reζ

(1−e−2∆
(n)
2 Reζ)2

≤ 4

e∆
(n)
2 Reζ

e−∆
(n)
2 Reζ

(1−e−2∆
(n)
2 Reζ)2

≤ 4

e∆
(n)
2

1

(e
1
2 ∆

(n)
2 Reζ−1)2
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≤ 4

e(|α(n)|2−κ2
2)1/2

1

(e
1
2 ∆+

2 Reζ−1)2
,

|η(n)|≤ e−2∆
(n)
2 Reζ +e−2∆

(n)
1 Reζ

(1−e−2∆
(n)
1 Reζ)(1−e−2∆

(n)
2 Reζ)

≤ 2e−2∆
(n)
2 Reζ

(1−e−2∆
(n)
2 Reζ)2

≤ 2

e∆
(n)
2 Reζ

e−∆
(n)
2 Reζ

(1−e−2∆
(n)
2 Reζ)2

≤ 2

e∆
(n)
2

1

(e
1
2 ∆

(n)
2 Reζ−1)2

≤ 2

e(|α(n)|2−κ2
2)1/2

1

(e
1
2 ∆+

2 Reζ−1)2
,

|γ(n)|≤ e−2∆
(n)
1 Reζ +e−4∆

(n)
2 Reζ

(1−e−2∆
(n)
1 Reζ)(1−e−2∆

(n)
2 Reζ)2

≤ 2e−2∆
(n)
2 Reζ

(1−e−2∆
(n)
2 Reζ)3

≤ 2

e∆
(n)
2 Reζ

e−∆
(n)
2 Reζ

(1−e−2∆
(n)
2 Reζ)3

≤ 2

e∆
(n)
2

1

(e
1
3 ∆

(n)
2 Reζ−1)3

≤ 2

e(|α(n)|2−κ2
2)1/2

1

(e
1
3 ∆+

2 Reζ−1)3
,

|θ(n)(ε(n) +1)|≤ 4e−2∆
(n)
2 Reζ

(1−e−2∆
(n)
2 Reζ)2

2

1−e−2∆
(n)
2 Reζ

≤ 8

e∆
(n)
2 Reζ

e−∆
(n)
2 Reζ

(1−e−2∆
(n)
2 Reζ)3

≤ 8

e∆
(n)
2

1

(e
1
3 ∆

(n)
2 Reζ−1)3

≤ 8

e(|α(n)|2−κ2
2)1/2

1

(e
1
3 ∆+

2 Reζ−1)3
,

|χ̂(n)−χ(n)|≤4|α(n)|4|θ(n)|
κ2

1

≤ 16

κ2
1

|α(n)|4

e(|α(n)|2−κ2
2)1/2

1

(e
1
2 ∆+

2 Reζ−1)2

≤ 16(κ2
2 +16)2

κ2
1(e

1
2 ∆+

2 Reζ−1)2
≤F,

max
{
|
(
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
χ(n)ε(n)|,

|α(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 )χ(n)ε(n)|,

|
(
(α

(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n))χ(n)ε(n)|, |β(n)

2 κ2
2χ

(n)ε(n)|
}

≤3κ2
2|α(n)|3|ε(n)|≤ |α(n)|3

e(|α(n)|2−κ2
2)1/2

6κ2
2

e∆+
2 Reζ−1

≤ 6κ2
2(κ2

2 +9)3/2

e∆+
2 Reζ−1

≤F,

max
{
|
(
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n)

)
(χ̂(n)−χ(n))|,

|α(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|,

|
(
(α

(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n))(χ̂(n)−χ(n))|,

|α(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|,

|α(n)
2 β

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|, |β(n)
2 κ2

2(χ̂(n)−χ(n))|
}

≤12|α(n)|7|θ(n)|
κ2

1

≤ 48

κ2
1

|α(n)|7

e(|α(n)|2−κ2
2)1/2

1

(e
1
2 ∆+

2 Reζ−1)2
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≤ 48(κ2
2 +49)7/2

κ2
1(e

1
2 ∆+

2 Reζ−1)2
≤F,

max
{
|4(α

(n)
2 )2β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)|, |4α(n)

1 α
(n)
2 β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)|,

|4(α
(n)
1 )2β

(n)
1 (β

(n)
2 )2θ(n)(ε(n) +1)|

}
≤4|α(n)|5|θ(n)(ε(n) +1)|≤ 32|α(n)|5

e(|α(n)|2−(κ2
2)1/2

1

(e
1
3 ∆+

2 Reζ−1)3

≤ 32(κ2
2 +25)5/2

(e
1
3 ∆+

2 Reζ−1)3
≤F,

max
{
|2(α

(n)
1 )2β

(n)
1 κ2

2η
(n)|,|2α(n)

1 α
(n)
2 β

(n)
1 χ(n)η(n)|,

|2(α
(n)
2 )2β

(n)
1 κ2

2η
(n)|, |2β(n)

1 (β
(n)
2 )2κ2

2η
(n)|
}

≤2κ2
2|α(n)|3|η(n)|≤4κ2

2

|α(n)|3

e(|α(n)|2−κ2
2)1/2

1

(e
1
2 ∆+

2 Reζ−1)2

≤ 4κ2
2(κ2

2 +9)3/2

(e
1
2 ∆+

2 Reζ−1)2
≤F,

|2α(n)
1 α

(n)
2 β

(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )γ(n)|≤4|α(n)|5|γ(n)|

≤ 8|α(n)|5

e(|α(n)|2−κ2
2)1/2

1

(e
1
3 ∆+

2 Reζ−1)3
≤ 8(κ2

2 +25)5/2

(e
1
3 ∆+

2 Reζ−1)3
≤F,

max
{
|2α(n)

1 β
(n)
1 β

(n)
2 (κ2

2−2(β
(n)
2 )2)θ(n)|, |2α(n)

2 β
(n)
1 β

(n)
2 (κ2

2−2(β
(n)
2 )2)θ(n)|

}
≤6|α(n)|5|θ(n)|≤ |α(n)|5

e(|α(n)|2−κ2
2)1/2

24

(e
1
2 ∆+

2 Reζ−1)2
≤ 24((κ2)2 +25)

5
2

(e
1
2 ∆+

2 Reζ−1)2
≤F,

where we have used the estimate for g3 and the facts that ∆
(n)
i ≥∆+

i for n /∈U2.

It follows from Proposition A.1 and the estimate |χ̂(n)−χ(n)|≤K that κ2
1−K≤

|χ̂(n)|≤κ2
2 +K. Again, we may choose some proper PML parameters σ and δ such that

K≤κ2
1/2, which gives |χ̂(n)|≥κ2

1/2. Using the matrix Frobenius norm and combining
all the above estimates, we get

‖M (n)−M̂ (n)‖2F ≤
4µ2

κ8
1

(
|
(
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n))χ(n)ε(n)|2+ |2(α(n)

1 )2β
(n)
1 κ2

2η
(n)|2

+ |
(
(α

(n)
1 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n))(χ̂(n)−χ(n))|2+ |4(α(n)

2 )2β
(n)
1 (β

(n)
2 )2θ(n)(ε(n)+1)|2

+2|α(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 )χ(n)ε(n)|2+2|α(n)
1 α

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|2

+2|2α(n)
1 α

(n)
2 β

(n)
1 χ(n)η(n)|2+2|4α(n)

1 α
(n)
2 β

(n)
1 (β

(n)
2 )2θ(n)(ε(n)+1)|2+ |2(α(n)

2 )2β
(n)
1 κ2

2η
(n)|2

+2|2α(n)
1 α

(n)
2 β

(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )γ(n)|2+2|α(n)
1 β

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|2

+2|2α(n)
1 β

(n)
1 β

(n)
2 (κ2

2−2(β
(n)
2 )2)θ(n)|2+ |

(
(α

(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n))χ(n)ε(n)|2

+ |
(
(α

(n)
2 )2(β

(n)
1 −β(n)

2 )+β
(n)
2 χ(n))(χ̂(n)−χ(n))|2+ |4(α(n)

1 )2β
(n)
1 (β

(n)
2 )2θ(n)(ε(n)+1)|2

+2|α(n)
2 β

(n)
2 (β

(n)
1 −β(n)

2 )(χ̂(n)−χ(n))|2+2|2α(n)
2 β

(n)
1 β

(n)
2 (κ2

2−2(β
(n)
2 )2)θ(n)|2
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+ |β(n)
2 κ2

2χ
(n)ε(n)|2+ |β(n)

2 κ2
2(χ̂

(n)−χ(n))|2+ |2β(n)
1 (β

(n)
2 )2κ2

2η
(n)|2

)
≤ 116µ2

κ8
1

K2,

which completes the proof.
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