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Abstract

In this article, interface-penalty finite element methods are proposed to solve interface problems in H1,

H(curl), H(div) spaces on unfitted tetrahedral meshes. The transmission conditions across the interface

are derived in a unified framework for three types of interface problems. Usually, the well-posedness of an

H1-elliptic problem requires two transmission conditions for both the solution and the normal flux. The well-

posedness for H(curl)- or H(div)-elliptic problem requires three transmission conditions. This provides the

guideline for designing stable high-order finite element methods on unfitted meshes. Optimal error estimates

are proven in energy norms for interface-penalty finite element methods within a unified framework for H1,

H(curl), and H(div). All error estimates are independent of the location of the interface relative to the mesh.

High-order numerical quadrature rules are employed to compute surface integrals and volume integrals in sub-

domains with curved boundaries which are produced by the intersection of the interface and the tetrahedral

mesh. Numerical examples show optimal convergence of the proposed finite element methods for piecewise

smooth solutions.
Keywords: Interface problem, unfitted mesh, interface-penalty finite element method, Maxwell’s equation,

Nitsche’s method

1. Introduction

Interface problems have a variety of applications in science and engineering. For example, each element

of a phased-array antenna has curved shape (see Figure 1). The partial differential equations describing

these applications usually have discontinuous coefficients across the interfaces. Due to low global regularity of

solution and irregular geometry of interface, it is challenging to design highly efficient numerical methods for5

such equations.

Over the past decades, various numerical approaches have been proposed for solving H1(Ω)-elliptic interface

problems in the literature. In general, these methods can be roughly classified into body-fitted and unfitted

methods. For body-fitted method, meshes aligned with the interface are used so as to resolve the discontinuities,
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and the interface conditions or transmission conditions can be easily incorporated into numerical schemes.10

However, it is usually a nontrivial and time-consuming task to generate body-fitted meshes, especially when

complex and moving interfaces are involved. To remedy the challenge of mesh generation, the so-called unfitted

methods, in which the interface is allowed to cross mesh elements, have gained much attention. Examples of

such methods are the immersed boundary method [14], the immersed interface method [16], the ghost fluid

method [17], the immersed finite element method [15], the multiscale finite element method [18], the penalty15

finite element method [19], the matched interface and boundary method [20], the extended finite element

method [21].

Figure 1: Geometric shape of an antenna element

The unfitted interface-penalty finite element method employ an alternative idea to handle interface prob-

lems, sometimes also known as CutFEM [24, 25] or Nitsche-XFEM [22, 23]. It is firstly proposed by Hansbo

and Hansbo in [4] to solve elliptic interface problems. The idea behind is mainly to double the degrees of20

freedom (DOFs) on interface elements and then add penalty terms to weakly enforce transmission conditions

across the interface. In [4], the authors showed optimal convergence rate without restrictions on the location

of the interface. From this perspective, numerous variants for elliptic interface problems have been extensively

studied in the past few decades. The robust forms of this method were given in [38, 37]. In these papers,

a particular choice of weights for the averaging operator is used which leads to robustness properties both25

with respect to the discontinuous coefficients and the interface location. Meanwhile, Burman et al introduced

an unfitted method with averages and stabilization techniques for arbitrarily high-contrast problems [13]. In

[5], an unfitted interior penalty discontinuous Galerkin method is studied for elliptic interface problems and

optimal h-convergence for arbitrary p is proven in energy norm and L2-norm. An unfitted hp interface-penalty

finite element method for elliptic interface problems is studied for both two and three dimensions in [7]. Re-30

cently, Huang et al used the trick of merging elements to improve the condition number of the stiffness matrix

and adopted the technique of harmonic weighting fluxes to deal with the jump of discontinuous coefficients

[8]. About the literature on unfitted interface-penalty finite element methods, we also refer to [26, 27] for

elasticity problems, to [29, 31, 28, 34] Stokes and Navier-Stokes type problems, to [35, 36] for two-phase and

fluid-structure interaction problems, and to [24, 25] for overviews.35
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In [6], Chen et al proposed an adaptive immersed interface finite element method based on a posteriori

error estimates for elliptic and Maxwell equations with discontinuous coefficients and homogeneous transmis-

sion conditions. The unfitted mesh is locally refined near the interface to reduce the error based on a posterior

error indicators. In [10], Chen et al studied finite element methods for time-dependent Maxwell equations with

discontinuous coefficients on both matching and non-matching meshes. In [11, 12], Hiptmair et al proved opti-40

mal convergence for H(curl,Ω)- and H(div,Ω)-elliptic interface problems with homogeneous jump conditions

across the interface using lowest order face or edge elements.

To our best knowledge, it seems that no work on high-order finite element methods exist in the literature

for H(curl,Ω)- and H(div,Ω)-interface problems. The purpose of this paper is to propose high-order finite

element methods for H1-, H(curl)-, and H(div)-interface problems on unfitted tetrahedral meshes within45

a unified framework. Generally, the well-posedness of H1-elliptic problem needs two transmission conditions

across the interface for both the solution and the normal flux. However, the well-posedness of H(curl)-

or H(div)-elliptic problem needs three transmission conditions across the interface. This inspires us to use

three types of penalty terms in designing high-order finite element methods for H(curl)- and H(div)-elliptic

problems. Another challenging issue in high-order finite element methods for three-dimensional (3D) interface50

problems is to develop high-order numerical quadratures on tetrahedra intersected by the interface. Using

unfitted meshes, one has to compute integrals accurately both on the curved interface and in the volume of a

tetrahedron cut by the interface.

The contributions of the paper are listed as follows:

1. We propose a unified framework for transmission conditions for H1-, H(curl)-, and H(div)-interface55

problems. Different from H1-interface problem, both H(curl)- and H(div)-interface problems require

three types of transmission conditions across the interface. The well-posedness of interface problems is

shown.

2. By introducing interface-penalty terms associated with the transmission conditions, we propose a high-order

symmetric interface-penalty finite element method (SIPFEM) and a high-order non-symmetric interface-60

penalty finite element method (NIPFEM). The well-posedness of discrete problems and the stability of

discrete solutions are shown in a unified framework.

3. Optimal error estimates are obtained in energy norms. Moreover, optimal L2-error estimates are obtained

for SIPFEM, while sub-optimal L2-error estimates are obtained for NIPFEM with half an order lower than

the optimal one. The error estimates are independent of the position of interface relative to meshes.65

4. We propose high-order numerical quadrature rules to compute surface integrals and volume integrals in

sub-domains with curved boundaries.

Moreover, by numerical experiments for piecewise smooth solutions, we show that optimal convergence rates

are obtained for discrete solutions in both L2- and energy norms.

The rest of this paper is organized as follows: In Section 2, we propose H1-, H(curl)-, andH(div)-interface70

problems in a unified framework. The well-posedness of the interface problems is proven. In Section 3, we
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propose two interface-penalty finite element methods on unfitted tetrahedral meshes. The well-posedness

of discrete problems is shown. In Section 4, we prove the error estimates for both symmetric and non-

symmetric schemes. In Section 5, we present high-order numerical quadrature rules for surface integrals and

volume integrals in sub-domains with curved boundaries. Numerical examples are provided to show optimal75

convergence rates of discrete solutions. Finally, we conclude the main result in Section 6. Throughout this

paper, we use boldface symbols for vector-valued quantities, such as L2(Ω) = (L2(Ω))3.

2. The model problems

Let Ω ⊂ R3 be a bounded Lipschitz domain with boundary Γ := ∂Ω. Let Σ ⊂ Ω be a C2-smooth

internal interface which separates Ω into two nonintersecting open sub-domains Ω1 and Ω2 (see Figure 2 for80

an illustration). We shall study interface problems proposed on Ω1 ∪ Ω2.

For a bounded domain G ⊂ R3, let L2(G) be the Hilbert space of square-integrable functions and denote

its inner product by (u, v)G. The notation is abbreviated to (u, v) := (u, v)Ω for G = Ω. Define

H(d, G) := {v ∈ L2(G) : dv ∈ L2(Ω)}, d = grad, curl, div .

Figure 2: An illustration of the geometry description

2.1. Trace operators

Suppose ∂G is Lipschitz continuous and let Div, Curl be the surface divergence operator and the surface85

scalar curl operator. From [2], the trace mappings are surjective

γ : H1(G) → H1/2(∂G), γφ = φ on ∂G,

γn : H(div, G) → H−1/2(∂G), γnu = n · u on ∂G,

γt :H(curl, G) →H−1/2(Div, ∂G), γtu = n× u on ∂G,

γT :H(curl, G) →H−1/2(Curl, ∂G), γTu = n× (u× n) on ∂G,
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where n is the unit outer normal to G and

H−1/2(D, ∂G) =
{
ξ ∈H−1/2(∂G) : Dξ ∈ H−1/2(∂G)

}
for D = Div, Curl .

For d ∈ {grad, curl,div}, let γd denote the trace operator on H(d, G), namely,

γgrad = γ, γgrad∗ = γ− div = −γdiv = −γn, γcurl = γT , γcurl∗ = γt,

where d∗ is the dual operator of d. For convenience, we shall use the notations

γgradH
1(G) = H1/2(∂G), γdivH(div, G) = H−1/2(∂G),

γcurlH(curl, G) =H−1/2(Curl, ∂G), γcurl∗H(curl, G) =H−1/2(Div, ∂G).

Conventionally, the kernels of trace operators are also denoted by

H0(d, G) = {v ∈H(d, G) : γdv = 0 on ∂G} .

Since v = (γnv)n+ γTv on ∂G, H0(curl, G) can also be identified with

H0(curl, G) = {v ∈H(curl, G) : γTv = 0 on ∂G} .

2.2. Interface problems

For d ∈ {grad, curl,div}, the H(d)-interface problem is proposed on Ω1 ∪ Ω2 as follows

d∗ (αdu) + βu = fd in Ω1 ∪ Ω2, (1a)

Jγd∗(αdu)K = ψd on Σ, (1b)

JγduK = ϕd on Σ, (1c)q
γd∗

≻
(βu− fd)

y
= 0 on Σ, (1d)

γdu = 0 on Γ, (1e)

where d∗≻ is the succedent operator of d∗ in the sequence {grad, curl,div}, i.e.90

grad≻ = curl, curl≻ = div, div≻ = 0.

Here JwK := w|Ω1
−w|Ω2

denotes the jump of function w across Σ. The coefficients α and β satisfy, for some

constants αj and βj ,

α, β ∈ L∞(Ω), α ≥ αj > 0, β ≥ βj > 0 in Ωj , j = 1, 2.

Moreover, we assume that, for d ∈ {grad, curl,div},

fd ∈ L2(Ω), ϕd ∈ γd,ΣH(d,Ω1), ψd ∈ γd∗,ΣH(d∗,Ω1),

where γd,ΣH(d,Ω1) := {ξ|Σ : ξ ∈ γdH(d,Ω1)}.
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Now we rewrite (1) into the specific forms for d = grad, curl, and div. For d = grad, (1) stands for

second-order elliptic problem. Since d∗≻ = − div≻ = 0, the jump condition (1d) is not needed any more. So

(1) turns out to be

−div (α∇u) + βu = fgrad in Ω1 ∪ Ω2, (2a)

− Jγn(α∇u)K = ψgrad on Σ, (2b)

JγuK = ϕgrad on Σ, (2c)

γu = 0 on Γ. (2d)

For d = curl, (1) turns into

curl (α curlu) + βu = fcurl in Ω1 ∪ Ω2, (3a)

Jγt(α curlu)K = ψcurl on Σ, (3b)

JγTuK = ϕcurl on Σ, (3c)

Jγn(βu− fcurl)K = 0 on Σ, (3d)

γTu = 0 on Γ. (3e)

For d = div, (1) turns into

−∇ (α divu) + βu = fdiv in Ω1 ∪ Ω2, (4a)

− Jγ(α divu)K = ψdiv on Σ, (4b)

JγnuK = ϕdiv on Σ, (4c)

JγT (βu− fdiv)K = 0 on Σ, (4d)

γnu = 0 on Γ. (4e)

2.3. Weak formulation95

To derive a weak formulation for (1), or for (2)–(4), we shall use the space of piecewise regular functions

H(d,Ω1,Ω2) =
{
v ∈ L2(Ω) : v|Ωj

∈H(d,Ωj), j = 1, 2
}
,

H0(d,Ω1,Ω2) = {v ∈H(d,Ω1,Ω2) : γdv = 0 on Γ ∩ ∂Ωj , j = 1, 2} .

The norm on H(d,Ω1,Ω2) is defined by

∥v∥H(d,Ω1,Ω2)
:=

(
∥v∥2H(d,Ω1)

+ ∥v∥2H(d,Ω2)

)1/2

.

Multiplying both sides of (1a) with v ∈H0(d,Ω1,Ω2) and using integration by part, we find that
2∑

j=1

(αdu,dv)Ωj +

∫
Σ

Jγd∗(αdu) · γdvK + (βu,v) = (fd,v).

Let {{ξ}} := (ξ|Ω1
+ ξ|Ω2

)/2 denote the average of ξ on Σ. Note that

Jγd∗(αdu) · γdvK = {{γd∗(αdu)}} · JγdvK + Jγd∗(αdu)K · {{γdv}}
= {{γd∗(αdu)}} · JγdvK +ψd · {{γdv}} .
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We obtain a weak formulation of (1): Find u ∈H0(d,Ω1,Ω2) such that JγduK = ϕd on Σ and

Ad(u,v) = Ld(v) ∀v ∈H0(d,Ω1,Ω2), (5)

where the bilinear form Ad: H0(d,Ω1,Ω2) ×H0(d,Ω1,Ω2) → R and the linear form Ld ∈ [H0(d,Ω1,Ω2)]
′

are defined by

Ad(u,v) :=

2∑
j=1

(αdu,dv)Ωj
+ (βu,v) +

∫
Σ

{{γd∗(αdu)}} · JγdvK , (6)

Ld(v) := (fd,v)−
∫
Σ

ψd · {{γdv}} . (7)

Here
∫
Σ

ξ · η denotes the duality pairing between ξ and η. When ξ,η ∈ L2(Σ), the notation is also used to

denote the L2(Σ)–inner product.

Theorem 2.1. Problem (5) has a unique solution. Moreover, there exists a constant C > 0 depending only100

on Ω1, Ω2 such that

∥u∥H(d,Ω1,Ω2)
≤ C ∥ϕd∥γd,ΣH(d,Ω1)

+ C ∥ψd∥γd∗,ΣH(d∗,Ω1)
+ C ∥f∥L2(Ω) .

Proof. Let ϕ1 be the zero extension of ϕd to ∂Ω1\Σ. Since γdu = 0 on Γ\Σ, we have ϕ1 ∈ γdH(d,Ω1). There

is a lifting w1 ∈H(d,Ω1) such that

γdw1 = ϕ1 on ∂Ω1, ∥w1∥H(d,Ω1)
≤ C ∥ϕ1∥γdH(d,Ω1)

.

Let w be the zero extension of w1 to Ω2. Then we have w ∈ H0(d,Ω1,Ω2) and JwK = JuK on Σ. So

û := u−w ∈H0(d,Ω).105

We can write (5) into an equivalent form: Find û ∈H0(d,Ω) such that

(αdû,dv) + (βû,v) = Ld(v)−
2∑

j=1

(αdw,dv)Ωj − (βw,v) ∀v ∈H0(d,Ω). (8)

The left-hand side provides a continuous and coercive bilinear form and the right-hand side provides a contin-

uous linear functional on H0(d,Ω). So (8) has a unique solution. Therefore, (5) has a unique solution. The

proof for the stability is easy.

3. Finite element approximations

In this section, we propose two unfitted interface-penalty finite element methods for solving (1).110

Let {Th} be a family of conforming, quasi-uniform, and shape-regular partition of Ω into closed tetrahedra.

Let hK = diam (K) denote the diameter of K ∈ Th and h := max
K∈Th

hK the maximal diameter. The set of all

tetrahedra that intersect the interface is denoted by

Th,Σ := {K ∈ Th : area(K ∩ Σ) > 0} .

Clearly Th,Σ generates a partition of Σ which is denoted by

Sh := {f : f = K ∩ Σ, ∀K ∈ Th,Σ} .

It is reasonable to assume that each f ∈ Sh satisfies one of the two cases:115
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• the interior of f is entirely included in the interior of an element Kf ∈ Th, or

• f = ∂Kf
1 ∩ ∂Kf

2 for two tetrahedra Kf
1,K

f
2 ∈ Th.

We also write Kf
j := Kf ∩ Ωj , j = 1, 2 in the first case. So for both cases, we have

f = ∂Kf
1 ∩ ∂Kf

2, Kf
j ⊂ Ω̄j , j = 1, 2. (9)

Naturally, Th generates the partitions of Ω1 and Ω2

Tj = {K ∩ Ωj : ∀K ∈ Th}, j = 1, 2.

For simplicity, we also assume that α and β are piecewise constants in the neighborhood of Σ, more precisely,

there are constants αj > 0, βj > 0 such that

α ≡ αj , β ≡ βj in K ∩ Ωj , ∀K ∈ Th,Σ, j = 1, 2. (10)

3.1. Interface-penalty finite element methods

For any integer k ≥ 0, let Pk denote the space of polynomials of degrees no more than k and define

P k = (Pk)
3. The unfitted finite element space for the discretization of (5) is defined by

Uh(k; d) := {v ∈H0(d,Ω1,Ω2) : v|K ∈ P k(K), ∀K ∈ T1 ∪ T2} .

The interface-penalty finite element approximation to problem (5) reads: Find uh ∈ Uh(k; d) such that

A h
d (uh,vh) = Lh

d(vh) ∀vh ∈ Uh(k; d), (11)

where the discrete bilinear form A h
d is defined by

A h
d (uh,vh) :=

2∑
j=1

(αduh,dvh)Ωj
+ (βuh,vh) +

2∑
j=0

Jj(uh,vh)

+
∑
f∈Sh

∫
f

({{γd∗(αduh)}} · JγdvhK + s {{γd∗(αdvh)}} · JγduhK) ,
J0(uh,vh) :=λ

∑
f∈Sh

k2

h

∫
f

JγduhK · JγdvhK ,
J1(uh,vh) :=

∑
f∈Sh

h

k2

∫
f

Jγd∗(αduh)K · Jγd∗(αdvh)K ,
J2(uh,vh) :=

∑
f∈Sh

1

k2h

∫
f

q
γd∗

≻
(βuh)

y
·
q
γd∗

≻
(βvh)

y
,

and the discrete linear form Lh
d is defined by

Lh
d(vh) :=

∫
Ω

fd · vh +

2∑
j=0

Jj(vh) +
∑
f∈Sh

∫
f

(sϕd · {{γd∗(αdvh)}} −ψd · {{γdvh}}) ,

J0(vh) :=λ
∑
f∈Sh

k2

h

∫
f

ϕd · JγTvhK ,
J1(vh) :=

∑
f∈Sh

h

k2

∫
f

ψd · Jγd∗(αdvh)K ,
J2(vh) :=

∑
f∈Sh

1

k2h

∫
f

q
γd∗

≻
(fd)

y q
γd∗

≻
(βvh)

y
.
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Here we assume γd∗
≻
(fd) ∈

[
C1(f)

]′ for any f ∈ Sh. This justifies the discrete functional J2 on Uh(k; d).120

For s = 1, A h
d is symmetric and the method is thus called symmetric interface-penalty finite element

method (SIPFEM). For s = −1, the method is called non-symmetric interface-penalty finite element method

(NIPFEM). In this paper, we only consider the two cases s = ±1. The theories can be extended to s ̸= ±1

straightforwardly. Here Jj , j = 0, 1, 2, are penalty terms added to control the interface jumps in (1b)-(1d)

and insure the coercivity of A h
d , and Jj are consistent terms associated with Jj . The stabilization parameter125

λ > 0 is assumed to be large enough but independent of h.

Using (3b)-(3d) and (5), it is easy to see that the exact solution u satisfies

A h
d (u,vh) = Lh

d(vh) ∀vh ∈ Uh(k; d). (12)

This yields the Galerkin orthogonality

A h
d (u− uh,vh) = 0 ∀vh ∈ Uh(k; d). (13)

3.2. The well-posedness of (11)

Now we prove the existence, uniqueness, and stability of the discrete solution uh. By the Lax-Milgram

lemma, it suffices to prove the coercivity and continuity of A h
d and the continuity of Lh

d under the discrete

norm ∥| · |∥1,h which is defined by

∥|v|∥21,h := ∥v∥21,h +
∑
f∈Sh

h

λk2
∥{{γd∗(αdv)}}∥2

L2(f)
,

∥v∥21,h :=

2∑
j=1

∥∥∥α1/2dv
∥∥∥2
L2(Ωj)

+
∥∥∥β1/2v

∥∥∥2
L2(Ω)

+

2∑
j=0

Jj(v,v).

First we cite [8] for the trace inequalities on Ih. They play an important role in proving error estimates for

discrete solutions.

Lemma 3.1. Suppose Σ is C2-smooth. There exists an h0 > 0 depending only on Σ and the shape regularity

of meshes such that, for any h ∈ (0, h0] and any f ∈ Sh,

∥v∥L2(f) ≤ C1h
−1/2 ∥v∥L2(Kf

j)
∀v ∈ Pk

(
Kf

j

)
, (14)

∥v∥L2(f) ≤ C2

(
h−1/2 ∥v∥L2(Kf

j)
+ ∥v∥1/2

L2(Kf
j)
∥∇v∥1/2

L2(Kf
j)

)
∀v ∈ H1(Kf

1,K
f
2), (15)

for either j = 1 or 2, where Kf
1, Kf

2 are defined in (9). The constants C1, C2 are independent of h and the130

location of the interface relative to the mesh.

Lemma 3.2. Suppose the penalty parameter λ ≥ 2 + 8C2
1k

−2. Then A h
d satisfies, for any u,v ∈ Uh(k; d),

A h
d (vh,vh) ≥

1

4
∥|vh|∥21,h ,

∣∣A h
d (uh,vh)

∣∣ ≤ 2 ∥|uh|∥1,h ∥|vh|∥1,h . (16)

9



Proof. We prove the coercivity first. The definition of A h
d shows that

A h
d (vh,vh) = ∥vh∥21,h + (1 + s)

∑
f∈Sh

∫
f

{{γd∗(αdvh)}} · JγdvhK
= ∥|vh|∥21,h −

∑
f∈Sh

h

λk2
∥{{γd∗(αdv)}}∥2

L2(f)

+ (1 + s)
∑
f∈Sh

∫
f

{{γd∗(αdvh)}} · JγdvhK . (17)

For any f ∈ Sh, assume Lemma 3.1 holds for j = 1 without loss of generality. Then

{{γd∗(αdvh)}} = γd∗
(
(αdvh)|Kf

1

)
− 1

2
Jγd∗(αdvh)K on f.

Since α is constant in Kf
1 by (10), an application of (14) yields∥∥∥γd∗

(
(αdvh)|Kf

1

)∥∥∥
L2(f)

≤
∥∥∥(αdvh)|Kf

1

∥∥∥
L2(f)

≤ C1h
−1/2

∥∥∥α1/2dvh

∥∥∥
L2(Kf

1)
. (18)

By the Cauchy-Schwarz inequality, we deduce that

∥{{γd∗(αdvh)}}∥2L2(f)
≤ 2C2

1h
−1

∥∥∥α1/2dvh

∥∥∥2
L2(Kf

1)
+ 1/2 ∥Jγd∗(αdvh)K∥2L2(f)

.

Summing the contributions from f ∈ Sh and using λ ≥ 2 + 8C2
1k

−2, we have∑
f∈Sh

h

λk2
∥{{γd∗(αdv)}}∥2

L2(f)
≤ max

(
2C2

1

λk2
,
1

2λ

)
∥vh∥21,h ≤ 1

4
∥|vh|∥21,h . (19)

Using (18) and arguments similar to (19), we obtain∣∣∣∣∫
f

{{γd∗(αdvh)}} · JγdvhK∣∣∣∣ ≤ ∥{{γd∗(αdvh)}}∥L2(f) ∥JγdvhK∥L2(f)

≤ 1

8

∥∥∥α1/2dvh

∥∥∥2
L2(Kf

1)
+

1

8
k−2h Jγd∗(αdvh)K2

+
1

8

(
4 + 16C2

1k
−2

)
k2h−1 ∥JγdvhK∥2

L2(f)
.

Summing the contributions from f ∈ Sh and using λ ≥ 2 + 8C2
1k

−2 again, we have∑
f∈Sh

∣∣∣∣∫
f

{{γd∗(αdvh)}} · JγdvhK∣∣∣∣ ≤ 1

4
∥vh∥21,h . (20)

The first inequality in (16) is proven by inserting (19) and (20) into (17).135

The second inequality in (16) can be proven by similar arguments and the Cauchy-Schwarz inequality.

Theorem 3.3. Suppose the penalty parameter λ ≥ 2 + 8C2
1k

−2. The discrete problem (11) has a unique

solution.

Proof. Since (11) is a linear and finite-dimensional problem, the existence and uniqueness of the solution come

directly from Lemma 3.2.140

Remark 3.4. For the NIPFEM, the last term in (17) vanishes. The coercivity of A h
d holds for any λ > 0.

While in the SIPFEM, the coercivity of A h
d relies on “sufficiently large” λ.
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4. A priori error estimates

This section is devoted to error estimates for finite element solutions. First we introduce the space of

piecewise regular functions

Hr(Ω1,Ω2) =
{
v ∈ L2(Ω) : v|Ωj

∈Hr(Ωj), j = 1, 2
}
,

∥v∥Hr(Ω1,Ω2)
:=

(
∥v∥2Hr(Ω1)

+ ∥v∥2Hr(Ω2)

)1/2

, ∀ r ≥ 1.

4.1. Approximation property

In this subsection, we prove that the extended finite element space Uh(k; d) has optimal approximation145

property to Hr+1(Ω1,Ω2). First we cite [1] for the Sobolev extension and [9] for the approximation property

of Uh(k; d) to Hr+1(Ω).

Lemma 4.1 (Sobolev extension). Let r ≥ 1. There exist two extension operators Ei :Hr+1(Ωi) →Hr+1 (Ω),

i = 1, 2, such that for each ui ∈ Hr+1(Ω), Eiui = ui in Ωi and ∥Eiui∥Hr+1(Ω) ≤ C ∥ui∥Hr+1(Ωi)
with the

constant C = C(r,Ωi).150

Lemma 4.2. Suppose 1 ≤ r ≤ k and 0 ≤ m ≤ r. There exist an interpolation operator Πd: Hr+1(Ω) →

Uh(k; d) and a constant C > 0 independent of h such that, for any u ∈Hr+1(Ω) and any K ∈ Th,

∥u−Πdu∥Hm(K) + h∥d(u−Πdu)∥Hm(K) ≤ Chr+1−m∥u∥Hr+1(K).

Now we define the interpolation operator Πd,X onto the extended finite element space Uh(k; d). For

any u ∈ Hr+1(Ω1,Ω2), let ui = Ei (u|Ωi
) ∈ Hr+1(Ω) be the extension of u|Ωi

to Ω. The interpolation

Πd,Xu ∈ Uh(k; d) is defined by

Πd,Xu = Πdui in Ωi, i = 1, 2. (21)

Lemma 4.3. Suppose r ≥ 1. There is a constant C independent of h such that

∥|u−Πd,Xu|∥1,h ≤ Chmin(k,r)∥u∥Hr+1(Ω1,Ω2)
∀u ∈Hr+1(Ω1,Ω2).

Proof. Let ui = Ei (u|Ωi
) be the extension of u|Ωi

to Ω. Set ζ = u − Πd,Xu and ζi = ui − Πh
dui, i = 1, 2.

From Lemma 4.1, Lemma 4.2, and (21), we find that

∥ζi∥L2(Ω) + h ∥dζi∥L2(Ω) ≤ Chµ+1∥u∥Hr+1(Ωi)
, i = 1, 2,

where µ = min(k, r). Since ζ = ζi in Ωi, this shows
2∑

j=1

∥∥∥α1/2dζ
∥∥∥2
L2(Ωj)

+
∥∥∥β1/2ζ

∥∥∥2
L2(Ω)

≤ Ch2µ∥u∥2Hr+1(Ω1,Ω2)
. (22)

The trace inequality in (15) shows

J0(ζ, ζ) ≤ Ch−1
∑
f∈Sh

2∑
i=1

(
h−1 ∥ζi∥

2
L2(Kf ) + ∥ζi∥L2(Kf ) ∥∇ζi∥L2(Kf )

)

≤ Ch2µ
∑
f∈Sh

2∑
i=1

∥ui∥2Hr+1(Kf ) ≤ Ch2µ∥u∥2Hr+1(Ω1,Ω2)
. (23)
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Using similar arguments and replacing γdζ with γd∗
≻
(βζ), we also have

J2(ζ, ζ) =
∑
f∈Sh

k2

h

∥∥∥q
γd∗

≻
(βζ)

y∥∥∥2
L2(f)

≤ Ch2µ∥u∥2Hr+1(Ω1,Ω2)
. (24)

To estimate the rest terms in ∥|ζ|∥1,h, we recall from (10) that α is constant in K ∩ Ωj for any K ∈ Th,Σ.

Then Lemma 4.2 and (15) yield

∥γd∗(αdζ|Ωi)∥
2
L2(f) ≤ C

(
h−1 ∥αdζi∥

2
L2(Kf ) + ∥αdζi∥L2(Kf ) ∥∇ (αdζi)∥L2(Kf )

)
≤ Ch2µ−1∥ui∥2Hr+1(Kf ).

Counting all f ∈ Sh and using the definition of J1, we infer that

J1(ζ, ζ) +
∑
f∈Sh

h

λk2
∥{{γd∗(αdζ)}}∥2L2(f) ≤ Ch2µ∥u∥2Hr+1(Ω1,Ω2)

. (25)

The proof is completed by inserting (22)–(25) into the definition of ∥|ζ|∥21,h.

4.2. Error estimates in discrete energy norm

First we provide a modified Céa’s lemma for the approximation error. The proof follows the same lines as

in the well-known Céa’s lemma.

Lemma 4.4. Let u, uh be the solutions to (1) and (11) respectively. Then

∥|u− uh|∥1,h ≤ 9 inf
vh∈Uh(k;d)

∥|u− vh|∥1,h .

Proof. For any vh ∈ Uh(k; d), write ηh = uh−vh. Using Lemma 3.2 and the Galerkin orthogonality (13), we

find that

∥|ηh|∥
2
1,h ≤ 4A h

d (ηh,ηh) = 4A h
d (u− vh,ηh) ≤ 8 ∥|u− vh|∥1,h ∥|ηh|∥1,h ,

This shows ∥|ηh|∥1,h ≤ 8 ∥|u− vh|∥1,h. Then the proof is finished by using the triangle equality and the155

arbitrariness of vh.

Choosing vh = Πd,Xu in Lemma 4.4 and using Lemma 4.3, we immediately get the error estimate for both

SIPFEM and NIPFEM.

Theorem 4.5. There is a constant C independent of h such that

∥|u− uh|∥1,h ≤ Chmin(k,r)∥u∥Hr+1(Ω1,Ω2)
, r ≥ 1.

4.3. L2-error estimate for SIPFEM

We will use the duality technique to estimate the error e = u − uh in L2-norm. Consider the auxiliary

problem:

Find w ∈H0(d,Ω) : (αdw,dv) + (βw,v) = (βe,v) ∀v ∈H0(d,Ω). (26)

The Lax-Milgram lemma shows that (26) has a unique solution. Moreover, the arbitrariness of v implies that

Jγd∗(αdw)K = 0,
q
γd∗

≻
(βw − βe)

y
= 0 on Σ. (27)
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Theorem 4.6. Assume the solution of (26) is piecewise regular and satisfies

∥w∥H2(Ω1,Ω2)
≤ C ∥e∥L2(Ω) . (28)

There exists a constant C independent of h such that

∥u− uh∥L2(Ω) ≤ Chmin(k,r)+1∥u∥Hr+1(Ω1,Ω2)
.

Proof. Since w ∈H2(Ω1,Ω2)∩H0(d,Ω), taking v = e in (26) and using (27) and the Galerkin orthogonality

(13), we find that

(βe, e) + J2(e, e) = A h
d (w, e) = A h

d (e,w −Πd,Xw). (29)

Using Lemma 4.3 and Theorem 4.5, we obtain160

(βe, e) ≤ 2 ∥|e|∥1,h ∥|w −Πd,Xw|∥1,h ≤ Ch1+min(k,r)∥w∥H2(Ω1,Ω2)
∥u∥Hr+1(Ω1,Ω2)

.

The proof is finished by using (28).

4.4. L2-error estimate for NIPFEM

Let e = u− uh be the error function for the NIPFEM and w ∈ H0(d) be the solution of (26) associated

with e.

Theorem 4.7. Suppose assumption (28) holds. There exists a constant C independent of h such that

∥u− uh∥L2(Ω) ≤ Chmin(k,r)+1/2∥u∥Hr+1(Ω1,Ω2)
.

Proof. The proof follows closely that of Theorem 4.6. We only present the sketch here. As done in (29),

(βe, e) + J2(e, e) = A h
d (w, e) = A h

d (e,w) + 2
∑
f∈Sh

∫
f

{{γd∗(αdw)}} JγdeK
= A h

d (e, ew) + 2
∑
f∈Sh

∫
f

{{γd∗(αdw)}} JγdeK , (30)

where ew = w −Πd,Xw. Similar to the proof of Theorem 4.6, the first term on the right-hand side satisfies

A h
d (e, ew) ≤ Chmin(k,r)+1∥u∥Hr+1(Ω1,Ω2)

∥w∥H2(Ω1,Ω2)
. (31)

Using the trace inequality (15), the second term can be estimated as follows:∣∣∣∣∣∑
f∈Sh

∫
f

{{γd∗(αdw)}} JγdeK
∣∣∣∣∣ ≤ ∑

f∈Sh

∥{{γd∗(αdw)}}∥
L2(f)

JγdeK
≤ C

h1/2

kλ1/2
J0 (e, e)

1/2 ∥{{γd∗(αdw)}}∥
L2(Σ)

≤ Chmin(k,r)+1/2∥u∥Hr+1(Ω1,Ω2)
∥w∥H2(Ω1,Ω2)

. (32)

The proof is finished by inserting (31) and (32) into (30) and using (28).165

It is worth remarking that the L2-error estimate for the SIPFEM is optimal with respect to h, while it

is suboptimal for the NIPFEM with half an order deteriorated. However, the optimal convergence rate of

NIPFEM are observed in L2(Ω)-norm for all numerical experiments.
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5. Numerical experiments

The purpose of this section is to verify the optimal h-convergence rates of the proposed finite element170

methods for H(d; Ω)-elliptic interface problems. Our implementation is based on the adaptive finite element

package “ Parallel Hierarchical Grid ” (PHG) [40] and the computations are carried out on the cluster LSSC-IV

of the State Key Laboratory on Scientific and Engineering Computing, Chinese Academy of Sciences.

Note that Th is a quasi-uniform tetrahedral mesh of Ω. The intersection of the curved interface with Th can

yield very general shapes of sub-domains. Numerical quadratures on curved domains and curved interfaces play175

a very important role in designing high-order finite element methods. In [3], we have developed highly accurate

numerical quadratures to deal with these issues. The numerical quadratures are used in the implementation

of the numerical experiments here. The order of numerical quadratures is set to p = 2k + 3 for Uh(k, d).

We only present the numerical results for NIPFEM. The results of SIPFEM are similar. The computational

domain is set to Ω = (0, 1)3 which is subdivided successively into tetrahedral finite element meshes Th (Fig. 3).

The interface Σ for Example 5.1–5.3 is the sphere of radius 0.25 and centered at (0.5, 0.5, 0, 5) (see Fig. 2), where

the one for Fig. 5.4 consists of two touching spheres of radius 0.1 and centered at (0.4, 0.5, 0.5), (0.6, 0.5, 0.5)

respectively (Fig. 4). The coefficients of partial differential equations are set by

α = β = 1 in Ω1, α = β = 100 in Ω2.

The penalty parameter is set by λ = 1.

The convergence rates are tested for

Θ0 :=
∥∥∥√β(u− uh)

∥∥∥
L2(Ω)

∥∥∥√βu
∥∥∥−1

L2(Ω)
, Θ1 := ∥|u− uh|∥H(d,Ω) ∥|u|∥

−1
H(d,Ω) ,

where ∥|v|∥2H(d,Ω) :=
∑2

i=1 ∥
√
αdv∥2L2(Ωi)

+
∥∥√β(u− uh)

∥∥2
L2(Ω)

. On each mesh, the number of tetrahedra is180

denoted by Nele and the number of degrees of freedom is denoted by Ndof .

Figure 3: A tetrahedral mesh of the computational domain Ω.
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Example 5.1. The purpose of this example is to verify the convergence rate of the finite element method for

H1–interface problem, that is, d = grad. The analytical solution is given by

u(x, y, z) =

 exyz in Ω1,

sin(x+ y + z) in Ω2.

Table 1 shows that, both relative errors decay optimally with respect to mesh size for polynomial degrees

k = 1, 2, 3, namely,

Θ0 ∼ hk+1 ∼ N
−(k+1)/3
ele , Θ1 ∼ hk ∼ N

−k/3
ele .

This confirms the theoretical results in Theorem 4.5 and Theorem 4.7. For the relative ∥|·|∥L2(Ω)–error, we

observe a super convergence of order O
(
h1/2

)
compared to the theoretical result. We note that this super185

convergence is also observed in [39].

Table 1: Convergence rates for H1-interface problem (Example 5.1)

k = 1

Nele Ndof Θ1 Order Θ0 Order

768 189 2.142e-01 — 2.258e-02 —

6,144 1,241 1.058e-01 1.02 8.247e-03 1.45

49,152 9,009 4.151e-02 1.35 1.140e-03 2.85

393,216 68,705 1.800e-02 1.21 2.766e-04 2.04

k = 2

Nele Ndof Θ1 Order Θ0 Order

768 1,241 3.568e-03 – 1.436e-04 –

6,144 9,009 8.187e-04 2.12 1.427e-05 3.33

49,152 68,705 1.959e-04 2.06 1.606e-06 3.15

393,216 536,769 4.830e-05 2.02 1.785e-07 3.17

k = 3

Nele Ndof Θ1 Order Θ0 Order

768 3,925 2.696e-04 — 5.485e-06 —

6,144 58,898 3.433e-05 2.97 3.019e-07 4.18

49,152 228,241 4.328e-06 2.99 1.798e-08 4.07

393,216 179,7409 5.427e-07 3.00 1.078e-09 4.06

Example 5.2. The purpose of this example is to verify the convergence rate of the finite element method for

H(curl)–interface problem. The exact solution is given by

u =

 u1 in Ω1,

u2 in Ω2,

15



where

u1(x, y, z) =
(
− cosx2e−y2

sin(2πz),− cos y2e−x2

sin(2πz), cos y2e−z2

sin(2πx)
)⊤

,

u2(x, y, z) =
(
− sinx2ey

2

cos(2πz),− sin y2ex
2

cos(2πz), sin y2ez
2

cos(2πx)
)⊤

.

Table 2 shows that Θ0 and Θ1 satisfy the asymptotic behaviors

Θ0 ∼ hk+1 ∼ N
−(k+1)/3
ele , Θ1 ∼ hk ∼ N

−k/3
ele , k = 1, 2, 3.

The results confirm the theoretical results in Theorem 4.5 and Theorem 4.7 for H(curl,Ω1,Ω2)–interface

problems.190

Table 2: Convergence rates for H(curl)-interface problem (Example 5.2)

k = 1

Nele Ndof Θ1 Order Θ0 Order

768 2,104 3.155e-01 — 1.604e+00 —

6,144 15,536 1.205e-01 1.39 4.197e-01 1.93

49,152 119,392 4.845e-02 1.31 1.062e-01 1.98

393,216 936,128 2.196e-02 1.14 2.696e-02 1.98

k = 2

Nele Ndof Θ1 Order Θ0 Order

768 8,052 5.205e-02 — 2.100e-01 —

6,144 61,320 9.146e-03 2.50 2.510e-02 3.06

49,152 478,608 1.981e-03 2.20 3.236e-03 2.96

393,216 3,781,920 4.687e-04 2.07 4.124e-04 2.97

k = 3

Nele Ndof Θ1 Order Θ0 Order

768 20,336 4.519e-03 — 1.316e-02 —

6,144 157,024 5.597e-04 3.01 9.648e-04 3.77

49,152 1,234,112 6.543e-05 3.10 6.187e-05 3.96

Example 5.3. The purpose of this example is to verify the convergence rate of the finite element method for

H(div)–interface problem. The exact solution u is same to the solution in Example 5.2.

Again Table 3 shows that Θ0 and Θ1 satisfy the asymptotic behaviors

Θ0 ∼ hk+1 ∼ N
−(k+1)/3
ele , Θ1 ∼ hk ∼ N

−k/3
ele , k = 1, 2, 3.

The results confirm the theoretical results in Theorem 4.5 and Theorem 4.7 for H(div,Ω1,Ω2)–interface

problems.195
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Table 3: Convergence rates for H(div)-interface problem (Example 5.3)

k = 1

Nele Ndof Θ1 Order Θ0 Order

768 4,896 2.857e-01 — 7.669e-01 —

6,144 3,8016 7.371e-02 1.95 1.929e-01 1.99

49,152 299,520 1.910e-02 1.94 4.934e-02 1.97

393,216 2,377,728 5.609e-03 1.77 1.240e-02 1.99

k = 2

Nele Ndof Θ1 Order Θ0 Order

768 14,400 4.453e-02 — 6.240e-02 —

6,144 112,896 7.789e-03 2.52 7.896e-03 2.98

49,152 893,952 1.415e-03 2.46 9.846e-04 3.00

393,216 7,114,752 3.079e-04 2.20 1.234e-04 2.99

k = 3

Nele Ndof Θ1 Order Θ0 Order

768 31,680 3.969e-03 — 5.275e-03 —

6,144 249,600 4.225e-04 3.23 3.243e-04 4.02

49,152 1,981,440 4.956e-05 3.09 2.065e-05 3.97

Example 5.4 (Two tangential spheres). This example investigates the NIPFEM for the H(curl,Ω)–interface

problem with complicated interface. Here the interface Σ is the union of two touching spheres which have

radius 0.1 and are centered at (0.4, 0.5, 0.5)⊤ and (0.6, 0.5, 0.5)⊤ respectively (see Fig. 4). The exact solution

is same to the solution in Example 5.2.

Figure 4: The interface consists of two touching spheres.

In this example, Ω1 is a non-convex domain and is the union of two open balls tangential to each other200

at (0.5, 0.5, 0.5). Table 4 displays the relative errors and the convergence rates. Once more we get optimal

convergence rates of discrete solutions in both L2(Ω)-norm and energy norm.
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Table 4: Convergence rates of of NIPFEM for H(curl,Ω) problem II (Example 5.4)

k = 1

Nele Ndof Θ1 Order Θ0 Order

768 2,104 4.426e-01 — 2.894e+00 —

6,144 15,536 1.424e-01 1.64 7.686e-01 1.91

49,152 119,392 5.063e-02 1.49 1.884e-01 2.03

393,216 936,128 2.205e-02 1.20 4.694e-02 2.00

k = 2

Nele Ndof Θ1 Order Θ0 Order

768 8,052 5.679e-02 — 2.804e-01 —

6,144 61,320 9.111e-03 2.64 3.202e-02 3.13

49,152 478,608 1.975e-03 2.21 3.985e-03 3.01

393,216 3,781,920 4.681e-04 2.08 4.910e-04 3.02

k = 3

Nele Ndof Θ1 Order Θ0 Order

768 20,336 5.924e-03 — 3.205e-02 —

6,144 157,024 5.406e-04 3.45 1.082e-03 4.89

49,152 1,234,112 6.462e-05 3.06 6.661e-05 4.02

6. Conclusion

In this paper, we propose a unified framework for analyzing high-order interface penalty finite element

methods for H1-, H(curl)-, and H(div)-elliptic interface problems on unfitted meshes. We supplement the205

continuous with appropriate interface conditions which guarantees the well-posedness of continuous problems

and inspires us to add adequate interface penalties to the bilinear forms of discrete variational problems.

Optimal convergence rates of the finite element methods are proven in both energy norm and L2-norm by

means of duality techniques. All finite element error estimates are independent of the location of the interface

relative to the meshes. Extensive numerical experiments with smooth solutions are presented to verify the210

optimal convergence of discrete solutions.
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