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Abstract. In the present paper, adaptive finite element methods are studied for time-harmonic
eddy current problems in the case of three-dimensional isotropic and linear materials. We adopt the
formulation based-on the magnetic field and a magnetic scalar potential in this paper, since it needs
the least number of unknowns. Reliable and efficient a posteriori error estimates are obtained and
the efficiency of the adaptive algorithm is demonstrated by numerical and engineering experiments.
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1. Introduction. Eddy currents appear in almost all electromagnetic devices.
They cause energy loss and may reduce lifespan of devices. The three-dimensional
eddy current problem is an approximate model which describes very low-frequency
electromagnetic phenomena. In this case, displacement currents may be neglected
(see [1] and [5, Ch. 8]). The time-harmonic Maxwell equations read (see [1] and [5,
Ch. 8]):

curl H− σE− Js = 0 in R
3,(1.1a)

iω µH + curlE = 0 in R
3,(1.1b)

div(µH) = 0 in R
3,(1.1c)

where E is the electric field, H is the magnetic field, Js is the source current density
carried by some coils, i is the imaginary unit, ω is angular frequency, µ is the magnetic
permeability, and σ is the electric conductivity of the material and is only nonzero in
conducting regions.

The system (1.1) may be simplified into different forms by virtue of various field
variables (see [15] and references therein). Generally speaking, each of these simplified
formulations contains at least an unknown vector function defined in the conducting
region, plus an unknown vector function or an unknown scalar function defined in the
nonconducting region. From the point of view of numerical computation, the latter
case needs less degrees of freedom and thus is more favorable. In this paper, we adopt
a formulation based on the magnetic field H in the conducting region, denoted by Ωc,
and the magnetic scalar potential ψ in the nonconducting region, denoted by R

3 \Ωc.
When all connected components of the conducting region are simply connected, the
scalar potential ψ belongs to H1(R3 \ Ωc) and the problem is relatively easy to deal
with in the framework of finite element method. Otherwise, in the case of multiply
connected conductors, ψ is discontinuous somewhere in the nonconducting region (see
[2] and [25]) and thus the problem becomes more difficult. We focus on this case and
treat the discontinuities of ψ by making “cuts” in the nonconducting region.
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The eddy current limit and the singularities of the solution were discussed in
[14] and [1]. Clemens investigated the finite integral method for eddy current prob-
lems [13]. In fact, the finite element method is one of the most popular methods in
computational electromagnetics (see [5, Ch.8], [6], and references therein).

The adaptive finite element method is one of most efficient numerical methods.
Based on mathematically rigorous a posteriori error estimates, it equidistributes the
error and may produces quasi-optimal meshes [9] [24] . A posteriori error estimates are
computable quantities in terms of the discrete solution and known datum that measure
the actual discretization errors without the knowledge of the exact solution. Ever since
the pioneering work of Babuška and Rheinboldt [3], adaptive finite element methods
based on a posteriori error estimates have become a central theme in scientific and
engineering computing. The ability to control error and the asymptotically optimal
approximation property (see e.g. [7], [18], and [12]) make the adaptive finite element
method attractive for complicated physical and industrial processes (cf. e.g. [8] and
[10]).

Adaptive finite element methods for electromagnetic problems were investigated
by Monk for Maxwell scattering problems [17], Beck and etc for the electric field-
based formulation of eddy current problems [4], Zheng and etc for time-dependent
eddy current problems [25], Chen and etc for time-harmonic Maxwell’s equations
with singularities [11]. Recently, Sterz et al. investigated the adaptive local multigrid
method for time-harmonic eddy-current problems based on the formula of electric
field [23].

In this paper, we focus on time-harmonic eddy current problems. They are fre-
quently used in practice, since most source fields are periodic and also produce peri-
odic electromagnetic fields. Furthermore, this model comprises almost all difficulties
of linear eddy current problems, except for the iterations in the time direction. We
develop an adaptive finite element method based on reliable and efficient a posteriori
error estimates for eddy current problems in multiply connected conductors.

To show the competitive performance of our method, we compute two challenging
numerical experiments. One is an engineering benchmark problem, the Team Work-
shop Problem 7, and the other has analytic solution. The results indicate that our
adaptive method has the following very desirable quasi-optimality property:

ηj ≈ C N
−1/3
j

is valid asymptotically, where ηj is the error estimate andNj is the number of elements
of the mesh Tj with j being the level of Tj .

The rest of the paper is arranged as follows: In section 2, we derive the H –
ψ based formulation of time-harmonic eddy current problems. The equivalent weak
formulation and its well-posedness are also given in this section. In section 3, we
introduce a coupled conforming finite element approximation to the H − ψ based
formulation and prove the Helmholtz decomposition of the variational space. In sec-
tion 4, we derive reliable and efficient residual-based a posteriori error estimates. In
section 5, we report the numerical results for a singular solution and the Team Work-
shop Problem 7, and compare them with experimental values to show the competitive
performance of the method proposed in this paper.

2. Magnetic field and magnetic scalar potential based formulation. Let
Ω ⊂ R

3 be a sufficiently large and convex polyhedral domain which contains all
conductors and coils (see Fig. 2.1 for a typical model with one conductor and one
coil). Denote the conducting domain by Ωc which consists of all conductors and the
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Fig. 2.1. Team Problem 7: A conductor with a hole.

Fig. 2.2. Team Problem 7: Cover the hole by making “cut”.

nonconducting domain by Ω \ Ωc. We assume that Ωc is bounded and each of its
connected components has connected Lipschitz-continuous boundary. Furthermore,
we assume there exist I surfaces Σi, 1 ≤ i ≤ I, called “cuts”, such that (see Fig. 2.2
for I = 1)

• each cut Σi is an open part of some smooth two-dimensional manifold with
Lipschitz-continuous boundary, i = 1, · · · , I,

• the boundary of Σi is contained in ∂Ωc and Σi ∩ Σj = ∅ for i 6= j,
• the open set Ωe := (Ω \ Ωc) \ (∪I

i=1Σi) is a simply connected and pseudo-
Lipschitz domain (see Definition 3.1 of [2] for the definition of pseudo-Lipschitz
domain).

For each Σi, we fix its unit normal vector n pointing to one side.

We make the following general assumptions on material parameters:

µ(x) and σ(x) are all real valued L∞(Ω) functions. There exist positive

constants µmin and σmin such that µ(x) ≥ µmin in Ω and σ(x) ≥ σmin in

Ωc. σ(x) ≡ 0 outside of Ωc.
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These assumptions are reasonable since µ and σ are physical parameters.
We introduce some notation and Sobolev spaces used in this paper. Let L2(Ω)

be the usual Hilbert space of square integrable complex functions equipped with the
following inner product and norm:

(u, v) :=

∫

Ω

u(x) v(x) dx and ‖u‖0,Ω := (u, v)1/2.

Define

Hm(Ω) := {v ∈ L2(Ω) : Dξv ∈ L2(Ω), |ξ| ≤ m}

which is equipped with the following norm and semi-norm

‖v‖m,Ω :=





∑

|ξ|≤m

‖Dξv‖2
0,Ω





1/2

and |v|m,Ω :=





∑

|ξ|=m

‖Dξv‖2
0,Ω





1/2

,

where ξ represents non-negative triple index. As usual, H1
0 (Ω) is the subspace of

H1(Ω) whose functions have zero traces on ∂Ω. Further we define

H1
Σ(Ω) := {v ∈ H1(Ωe) : [v]Σj

= const., 1 ≤ j ≤ I},

where [v]Σj
:= v|Σ+

j
− v|Σ−

j
is the jump of v across Σj . Throughout the paper we

denote vector-valued quantities by boldface notation, such as L2(Ω) := (L2(Ω))3.
The Hilbert spaces of the rotation operator are defined by

H(curl; Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)},

H0(curl; Ω) := {v ∈ H(curl; Ω) : n × v = 0 on ∂Ω}.

Here H(curl; Ω) and H0(curl; Ω) are equipped with the following norm:

‖v‖H(curl;Ω) :=
(

‖v‖2
0,Ω + ‖curl v‖2

0,Ω

)1/2
.

For any ϕ ∈ H1
Σ(Ωe), we can extend ∇ϕ ∈ L2(Ωe) continuously to a function

∇̃ϕ ∈ L2(Ω \ Ωc) such that

(2.1) ∇̃ϕ = ∇ϕ, in Ωe .

Lemma 2.1. [2, Lemma 3.11] Let ϕ ∈ H1(Ωe). Then ϕ ∈ H1
Σ(Ωe) if and only if

(2.2) curl(∇̃ϕ) = 0, in Ω \ Ωc .

With Lemma 2.1, it is easy to show the following lemma.
Lemma 2.2. For any v ∈ L2(Ω \Ωc) satisfying curl v = 0 in Ω \Ωc, there exists

a unique ϕ ∈ H1
Σ(Ωe)/R

1 such that

(2.3) v = ∇̃ϕ, in Ω \ Ωc .
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It is reasonable in practice to assume that div Js(x) = 0, then there exists a
source magnetic field Hs such that

(2.4) Js = curlHs in R
3.

The field Hs can be constructed explicitly for coils in regular shapes or by the Biot-
Savart Law for general coils:

Hs := curlAs where As(x) :=
1

4π

∫

R3

Js(y)

|x − y|
dy.

Define the reaction field by H0 := H−Hs (see also [16, 25]). By (1.1) and (2.4)),
we have

curlH0 = 0, in R
3 \ Ωc .

We assume the total magnetic field H ∈ L2(R3) because of the finite energy of the
field. By Lemma 2.2, there exists a unique potential ψ ∈ H1

Σ(Ωe)/R
1 such that

H0 = ∇̃ψ in Ω \ Ωc .

Since Ω is large enough, we may set the approximate boundary condition by the
non-flux condition on ∂Ω:

µH · n = 0 on ∂Ω .(2.5)

Next we are going to eliminate the electric field E and derive a weak formulation
of (1.1). Since the tangential field H0 × n is continuous across ∂Ωc, we add this
constraint to all test functions and define the test function space by

U =
{

v : v = ∇̃ϕ in Ω \ Ωc and v = w in Ωc such that ∇ϕ× n = w × n on ∂Ωc,

ϕ ∈ H1
Σ(Ωe)/R

1 and w ∈ H(curl; Ωc)
}

.

Clearly U ⊂ H(curl; Ω) and is equipped with the induced inner product and norm of
H(curl; Ω).

For any ϕ ∈ H1
Σ(Ωe), we multiply the second equation of (1.1) by ∇ϕ and inte-

grate it in Ω \ Ωc. Using the formula of integration by part, we have

iω

∫

Ωe

µ (∇ψ + Hs) · ∇ϕ = iω

∫

∂Ωe\∂Ω

µ (∇ψ + Hs) · nϕ(2.6)

= −

∫

∂Ωe\Ω

curlE · nϕ =

I
∑

i=1

∫

Σi

E · [n ×∇ϕ] +

∫

∂Ωc

E · (n ×∇ϕ)

=

∫

∂Ωc

E · (n ×∇ϕ),

where n is the unit normal vector on ∂Ωe pointing to the exterior of Ωe. On the other
hand, integrating the equation in Ωc leads to

iω

∫

Ωc

µH0 · w +

∫

Ωc

σ−1curlH0 · curlw(2.7)

=

∫

∂Ωc

σ−1(curlH0 × n) · w − iω

∫

Ωc

µHs ·w

=

∫

∂Ωc

E · (n × w) − iω

∫

Ωc

µHs ·w,
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where n is the unit normal vector on ∂Ωc pointing to the exterior of Ωc. By the
tangential continuity of E and adding (2.6) to (2.7), we have

iω

∫

Ωe

µ∇ψ · ∇ϕ+ iω

∫

Ωc

µH0 ·w +

∫

Ωc

σ−1curlH0 · curlw(2.8)

= −iω

∫

Ω

µHs · v +

∫

∂Ωc

Et · (w × n −∇ϕ× n)

= −iω

∫

Ω

µHs · v,

where n is the unit outer normal vector of ∂Ωc and Et := (n × E)×n is the tangential
part of E.

Thanks to (2.8), we obtain the variational problem based on the magnetic field
and scalar magnetic potential: Find u ∈ U such that

(2.9) a(u, v) = −iω (µHs, v), ∀v ∈ U,

where the bilinear form is defined by

a(u, v) := iω (µu, v) +

∫

Ωc

σ−1 curl u · curl v .

Theorem 2.3. Let Hs ∈ L2(Ω), then problem (2.9) has unique solution u ∈ U

and there exists a constant C only depending on Ω and material parameters such that

‖u‖H(curl; Ω) ≤ C‖Hs‖0,Ω.

Proof. The theorem can be proved by similar arguments to the proof of [5,
Proposition 8.1]. We omit the proof here.

3. Finite element approximations. We consider a family of nested regular
tetrahedral triangulations of Ω, {Tk}K

k=0, generated by local refinements. For any
mesh Tk, we assume that T c

k := Tk|Ωc
and T e

k := Tk|Ωe
are triangulations of Ωc and

Ωe respectively.

Let Vk ⊂ H1(Ω) and V e
k ⊂ H1(Ωe) be the conforming linear Lagrangian finite

element spaces over Tk and T e
k respectively, and Vc

k ⊂ H(curl; Ωc) be the Nédélec
edge element space of the lowest order over T c

k [19]. We introduce the finite element
space Uk ⊂ U by

Uk =
{

v : v = ∇̃ϕ in Ω \ Ωc and v = w in Ωc such that ∇ϕ× n = w × n on ∂Ωc,

ϕ ∈ H1
Σ(Ωe)

⋂

V e
k and w ∈ Vc

k

}

.

The discrete problem on Uk reads: Find uk ∈ Uk such that

(3.1) a(uk, vk) = −iω (µHs, vk), ∀vk ∈ Uk,

In the following we are going to explain how to implement the basis functions of
Uk in real computations.
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Let Ek(D) and Vk(D) be the set of edges and vertices of Tk contained in some
subset D ⊂ Ω. For any edge E ∈ Ek(Ω), the canonical basis function of the Nédélec
edge element space with respect to E is defined by

supp(wE) =
⋃

{T : E ⊂ ∂T, T ∈ Tk},

wE = λT
2 ∇λ

T
1 − λT

1 ∇λ
T
2 in T ⊂ supp(wE),

where λT
1 , . . . , λ

T
4 are barycentric coordinates of T . The nodal edge element interpo-

lation operator Πk is defined by

(3.2) Πkv =
∑

E∈Ek(Ω)

∫

E

v · τdEwE ∀v ∈ Dom(Πk).

Denote by ΦA the canonical basis function of Vk with respect to A ∈ Vk(Ω). Clearly
the following identity holds

Πk(∇ΦA) = ∇ΦA ∀A ∈ Vk(Ω).

Since the scalar potential is discontinuous across every “cut”, we need additional
piecewisely defined functions representing these continuities. For each “cut” Σi, let
qi be the H1(Ωe)-conforming linear finite element function on T e

0 satisfying

(3.3) [qi]Σj
= δij , 1 ≤ j ≤ I, and qi(A) = 0, for any node A ∈ V0(Ω) not on Σi.

We remark that Uk can be defined equivalently by

Uk = Span
{

wE , E ∈ Ek(Ωc); Πk(∇ΦA|Ωe
), A ∈ Vk

(

Ωe

)

;(3.4)

Π0(∇qi), 1 ≤ i ≤ I} ,

where Ωe = Ω \ Ωc and we extend ∇ΦA|Ωe
and ∇qi by zero to the interior of Ωc. In

fact, the following theorem indicates that (3.4) defines a good approximation to U.
Theorem 3.1. Let Th be a quasi-uniform triangulation of Ω and h be the maximal

diameter of all elements in Th. Then for any v ∈ U,

lim
h→0

min
vh∈Uh

‖v − vh‖H(curl;Ω) = 0.

Proof. In this proof, all notation with subscript h have similar meanings to those
with subscript k in the preceding part.

To begin, by using Theorem 3.3, we split every v ∈ U into

v = ∇v + v0 + vs v ∈ H1(Ω), v0 ∈ Uh, vs ∈ H1
0(Ωc),

‖v‖H1(Ω) + ‖v0‖H(curl;Ω) + ‖vs‖H(curl;Ωc)
≤ C ‖v‖

H(curl;Ω) ,

where C only depends on Ωe and the initial mesh T0. Thus we only need to prove

lim
h→0

min
vh∈Uh

‖vh −∇v − vs‖H(curl;Ω) = 0.

For any ǫ > 0, by the density of C∞(Ω̄) in H1(Ω) and C∞
0 (Ωc) in H1

0(Ωc), there
exist v∞ ∈ C∞(Ω̄) and v∞ ∈ C∞

0 (Ωc) such that

‖v − v∞‖1,Ω + ‖vs − v∞‖H(curl; Ωc) < ǫ.
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Note that the linear Lagrangian element interpolation Lhv∞ and the Nédélec edge
element interpolation Πhv∞ belong to Uh. We find

lim
h→0

min
vh∈Uh

‖vh −∇v − vs‖H(curl;Ω) < ǫ.

The arbitrariness of ǫ concludes the proof.
The above theorem merely claim that we have chosen the right finite element

space. But due to the poor regularity of the solution u, we cannot afford uniform
mesh refinement. This justifies the necessity of adaptive mesh refinements.

To end this section, we are going to prove the Hemholtz-type decomposition of
U. Hemholtz-type decompositions are frequently used in theoretical and numerical
analyses of Maxwell’s equations. To define a bounded finite element interpolation
operator on H(curl; Ω), we need to decompose every function in H(curl; Ω) into the
sum of an irrotational part and an H1-smooth part and deal with them in the policy
of “divide and conquer”.

Theorem 3.2. [11] If D is a bounded Lipschitz domain, the following space
decomposition is stable in the norm of H(curl; D):

H0(curl; D) = ∇H1
0 (D) + H1

0(D).(3.5)

In the next, we will introduce a decomposition of U. Since both Ωc and Ω \ Ωc

are multiply connected, it is difficult to find a scalar function ψ with constant jumps
across all “cuts” to define the irrotational part. In stead, we introduce a finite element
function to deal with these discontinuities.

Theorem 3.3. Let T0 be the initial regular triangulation of Ω and U0 be the finite
element space with respect to T0. The following decomposition of spaces is stable:

(3.6) U = ∇H1(Ω) + U0 + H1
0(Ωc),

where the functions in H1
0(Ωc) are understood to vanish outside Ωc.

Proof. By the definition of U, for any function v ∈ U, there exists a ϕe ∈
H1

Σ(Ωe)/R
1 such that v = ∇̃ϕe in Ω \ Ωc. We define

(3.7) ϕ0 :=
I

∑

i=1

[ϕe]Σi
qi and v0 := Π0(∇̃ϕ0),

where Π0 is the nodal edge element interpolation in (3.2) which are defined on T0. In
view that

|[ϕe]Σi
| =

1

|Σi|

∫

Σi

|[ϕe]Σi
| ≤ C‖ϕe‖1,Ωe

1 ≤ i ≤ I,

there exists a constant C depending on T0 and Ωe such that

‖ϕ0‖1,Ωe
≤ C‖ϕe‖1,Ωe

and ‖v0‖H(curl; Ω) ≤ C‖ϕe‖1,Ωe
.(3.8)

It is easy to see ϕe−ϕ0 ∈ H1(Ω\Ωc). By Stein’s extension theorem [22, Theorem
5, page 181] and (3.8), there exists an extension of ϕe−ϕ0 denoted by ϕe0 ∈ H1(Ω)/R1

such that

ϕe0 = ϕe − ϕ0, in Ω \ Ωc,(3.9)

‖ϕe0‖1,Ω ≤ C‖ϕe − ϕ0‖1,Ω\Ωc
≤ C‖ϕe‖1,Ωe

≤ C‖∇ϕe‖0,Ωe
.(3.10)
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Now (3.7) and (3.9) indicate v − ∇ϕe0 − v0 ∈ H0(curl; Ωc). By Theorem 3.2, there
exist p ∈ H1

0 (Ωc) and vs ∈ H1
0(Ωc) such that

v −∇ϕe0 − v0 = ∇p+ vs, in Ωc,(3.11)

‖p ‖1,Ωc
+ ‖vs‖1,Ωc

≤ C‖v −∇ϕe0 − v0‖H(curl; Ωc) ≤ C‖v‖H(curl; Ω).(3.12)

Extend p and vs by zero to the exterior of Ωc and still denote the extensions by p
and vs. It follows that

v = ∇(ϕe0 + p) + v0 + vs in Ωc.

In view of (3.8), (3.10), and (3.12), this yields the desired stable decomposition.

4. Residual based a posteriori error estimators. Unless otherwise stated,
we assume that the generic constant C only depends on Ω, material parameters µ and
σ, and the initial mesh T0 in the rest of this paper. For the sake of convenience, we
neglect iterative errors in real computations.

Let u and uk be the solutions of (2.9) and (3.1) respectively. The total error is
defined by ek := u − uk. By Theorem 3.3, there exist φ ∈ H1(Ω), e0 ∈ U0, and
es ∈ H1

0(Ωc) such that

ek = ∇φ+ e0 + es,(4.1)

‖φ‖1,Ω + ‖e0‖H(curl; Ω) + ‖es‖1,Ω ≤ C‖ek‖H(curl; Ω).(4.2)

Multiply both sides of (2.9) by 1 − i, we have

‖ek‖
2
H(curl; Ω) ≤ C Re{(1 − i) a(ek, ek)} ≤ C|a(ek, ∇φ)| + C|a(ek, es)|,(4.3)

wherein we have used the Galerkin orthogonality a(ek, e0) = 0.
To deduce the a posteriori error estimate, we introduce the Scott-Zhang Operator

Ik[21] : H1(Ω) → Vk and the BHHW-Operator Λk[4] : H1
0(Ωc) → Vc

k, which
satisfy the following approximation and stability properties: for any φh ∈ Vk, φ ∈
H1(Ω), wh ∈ Uk, and w ∈ H1

0(Ωc),



















Ikφh = φh,

‖∇Ikφ‖0,T ≤ C |φ|1,DT
,

‖φ− Ikφ‖0,T ≤ C hT |φ|1,DT
,

‖φ− Ikφ‖0,F ≤ C h
1/2
F |φ|1,DF

,

(4.4)



















Λkwh = wh,

‖Λkw‖H(curl; T ) ≤ C ‖w‖1,DT
,

‖w − Λkw‖0,T ≤ C hT |w|1,DT
,

‖w − Λkw‖0,F ≤ C h
1/2
F |w|1,DF

,

(4.5)

where DA is the union of elements in Tk with non-empty intersection with A, A = T
or F .

Lemma 4.1. There exists a positive constant C such that

|a(ek,∇ϕ)| ≤ C‖ek‖H(curl; Ω)

(

∑

T∈Tk

η2
0,T +

∑

F∈Fk(Ω)

η2
0,F +

∑

F∈Fk(∂Ω)

η2
0,B,F

)1/2

,(4.6)
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where Fk(D) is the set of edges contained in D, D = Ω, ∂Ω, and

η0,T := ωhT ‖div(µHs + µuk)‖0,T ,

η0,F := ω
√

hF ‖[µHs + µuk]F · n‖0,F ,

η0,B,F := ω
√

hF ‖(µHs + µuk) · n‖0,F .

Proof. By (2.9) and the formula of integration by part, we have

a(ek,∇ϕ) = a(ek,∇ϕ−∇Ikϕ) = iω(µHs + µuk, ∇Ikϕ−∇ϕ)

= iω
∑

T∈Tk

∫

T

div(µHs + µuk) (ϕ− Ikϕ)

+ iω
∑

F∈Fk(Ω)

∫

F

[µHs + µuk]F · n (Ikϕ− ϕ)

+ iω
∑

F∈Fk(∂Ω)

∫

F

(µHs + µuk) · n (Ikϕ− ϕ).

In view of (4.4), we complete the proof by using Schwartz’s inequality.

Lemma 4.2. There exists a positive constant C such that

(4.7) |a(ek, es)| ≤ C‖ek‖H(curl; Ω)

(

∑

T∈T c
k

η2
1,T +

∑

F∈Fk(Ωc)

η2
1,F

)1/2

,

where

η1,F :=
√

hF

∥

∥

∥

[

σ−1curl uk × n
]

J,F

∥

∥

∥

0,F
,

η1,T := hT ‖iω µ (Hs + uk) + curl(σ−1 curl uk)‖0,T .

Proof. By the Galerkin orthogonality and (2.9), we have

a(ek, es) = a(ek, es − Λkes) = iω

∫

Ω

µHs · (Λkes − es) + a(uk,Λkes − es)

=
∑

T∈T c
k

∫

T

{

iω µ (Hs + uk) + curl(σ−1 curl uk)
}

· (Λkes − es)

+
∑

F∈FΩc
k

∫

F

[

σ−1 curl uk × n

]

F
· (es − Λkes).

We finish the proof by (4.5) and Schwartz’s inequality.
We remark that η1,T and η0,T are respectively the residuals of the second and third

equations of (1.1), η1,F and η0,F reflect the interface conditions of the electric field
and the magnetic flux respectively, η0,B,F is the boundary residual of (2.5). In view
of Lemma 4.1 and 4.2, we have actually proved the following upper bound estimate:

Theorem 4.3. There exists a generic positive constant C depending only on Ω,
the initial mesh T0, and material parameters µ, σ such that

‖ek‖H(curl; Ω) ≤ C ηk,(4.8)

10



where the a posteriori error estimate ηk is defined by

(4.9) η2
k :=

∑

T∈Tk

η2
0,T +

∑

F∈Fk(Ω)

η2
0,F +

∑

F∈Fk(∂Ω)

η2
0,B,F +

∑

T∈T c
k

η2
1,T +

∑

F∈Fk(Ωc)

η2
1,F .

Let QD: L2(D) → P1(D) be the L2-projection, QF
div: H(div; D) → P1(D) be

the H(div)-projection with ‖·‖2
H(div;D) := ‖·‖2

L2(D) + ‖div ·‖2
L2(D), where P1(D) is the

space of linear vector polynomials defined onD. To insure the efficiency of a posteriori
error estimators on the righthand side of (4.9), we obtain the lower bound by similar
arguments to those in [4].

Theorem 4.4. There exists a generic positive constant C depending only on Ω,
the initial mesh T0, and material parameters µ and σ such that

η2
k ≤C

{

‖ek‖
2
H(curl; Ω) + ω2

∑

F∈Fk(Ω)

hF ‖(I −QF ) [µHs · n]F ‖
2
0,F(4.10)

+ω2
∑

T∈Tk

h2
T ‖(I −QT )div(µHs)‖

2
0,T + ω2

∑

T∈T c
k

h2
T ‖(I −QT )(µHs)‖

2
0,T

}

.

Remark 4.5. The last three terms on the righthand side of (4.10) embody the
oscillation of known information µHs on the current mesh. They are higher order
terms compared with ηk if µHs is element-wisely smooth and normally continuous
across all faces.

5. Numerical results. In the adaptive algorithm, we control the mesh refine-
ments by the error estimate ηk defined in Theorem 4.3. The implementation of our
algorithm is based on the adaptive finite element package ALBERT [20] and carried
out on Origin 3800.

In the following, we report two numerical experiments to demonstrate the com-
petitive performance of the proposed method.

Example 5.1. We consider the real-valued problem: Find u ∈ U such that
∫

Ω

αu · v +

∫

Ωc

curl u · curl v =

∫

Ω

f · v ∀v ∈ U,

where f = (1, 1, 1)T , α = 1000 in Ωc and α = 1 elsewhere, Ω = (0, 1)3, Ωc =
D × {(0.2, 0.4) ∪ (0.6, 0.8)} with D = (0.2, 0.8)2 \ [0.4, 0.6]2 (see Fig. 5.1).

Fig.5.2 shows the curve of log ηk versus logNk, whereNk is the number of elements
in Tk. It indicates that the adaptive mesh and the associated numerical complexity
are quasi-optimal, i.e.

ηk ≈ C N
−1/3
k .(5.1)

It also shows that adaptive mesh refinements are obviously superior to uniform mesh
refinements.

Example 5.2. The second experiment is a benchmark problem in electrical
engineering — the Team Workshop Problem 7. This problem consists of an aluminum
plate with a hole above which a racetrack shaped coil is placed (see Fig.5.3). The
aluminum plate has a conductivity of 3.526 × 107 S/m and the sinusoidal driving
current of the coil is 2742 AT. The frequency of the driving current is ω = 2π × 50
Hz.
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Fig. 5.1. Multiply connected Ωc for Example 5.1.
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Fig. 5.2. Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimate
(Example 5.1).

We set Ω to be a cubic domain with one-meter edges and compare the numerical
values of the vertical magnetic flux Bz = µHz with measured values on some points,
where Hz is the third component of H = Re(uk +Hs) and uk is the solution of (3.1).
These points are located at y = 72mm, z = 34mm, and x = (18 × i)mm where
i = 0, · · · , 16 (see Fig. 5.3).

Fig.5.4 shows the curve of log ηk versus logNk. It indicates that the adaptive
method based on the a posteriori error estimates satisfies the very desirable quasi-
optimality property in (5.1).

Fig.5.5 – 5.7 show the numerical values of Bz by adaptive finite element method.
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Fig. 5.3. The geometry of Team Workshop Problem 7 in frontal view with specified positions.
All geometry dimensions are given in mm.
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Fig. 5.4. Quasi-optimality of the adaptive mesh refinements of the total a posteriori error
estimate (Example 5.2).
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Fig. 5.5. Numerical values of µHz on an adaptive mesh with the number of degrees of freedom
being 19,762 (Example 5.2).
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Fig. 5.6. Numerical values of µHz on an adaptive mesh with the number of degrees of freedom
being 32,851 (Example 5.2).
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Fig. 5.7. Numerical values of µHz on an adaptive mesh with the number of degrees of freedom
being 71,201 (Example 5.2).

Fig. 5.8. An adaptively refined mesh of 202,640 elements after 6 adaptive iterations from
19,440 initial elements (Example 5.2).
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With the number of degrees of freedom increasing, the agreement with experimental
values become better and better.

Fig. 5.8 shows an adaptively refined mesh of 202,640 elements after 6 adaptive
iterations from 19,440 initial elements. We observe that the mesh is locally refined on
the surface of the conductor.
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