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Abstract This paper presents an anisotropic adaptive finite element method (FEM) to
solve the governing equations of steady magnetohydrodynamic (MHD) duct flow. A resid-
ual error estimator is presented for the standard FEM, and two-sided bounds on the error
independent of the aspect ratio of meshes are provided. Based on the Zienkiewicz-Zhu es-
timates, a computable anisotropic error indicator and an implement anisotropic adaptive
refinement for the MHD problem are derived at different values of the Hartmann number.
The most distinguishing feature of the method is that the layer information from some
directions is captured well such that the number of mesh vertices is dramatically reduced
for a given level of accuracy. Thus, this approach is more suitable for approximating
the layer problem at high Hartmann numbers. Numerical results show efficiency of the
algorithm.
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1 Introduction

The flow problem of viscous, incompressible, electrically conducting fluids in the channels
and ducts under a uniform oblique magnetic field is of great interest, because it has many
practical applications in the field of magnetohydrodynamics (MHD), such as the blood flow
control and measurements, MHD flowmeters, MHD power generation, and accelerators. Only
for some very special cases, the problem can be exactly solved. Therefore, for the sake of
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application, an effective numerical method to solve the MHD flow problem becomes an very
important research topic.

It is well-known that, for large values of the Hartmann number, the MHD flow problem
is convection-dominated such that the exact solution may display localized phenomena, such
as interior or boundary layers. For solving the MHD flow problem, there have been many
research works using various numerical methods, such as the finite element, finite difference,
and boundary element methods. The readers car refer to Refs.[1]-[2] and many references
cited therein. Unfortunately, because of the lack of stability or accuracy, most of conventional
numerical methods cannot solve the layer problems efficiently. In Ref. [1], it was pointed out that
the common deficiency among the existing numerical methods is that they produce accurate
results only in several special configurations for the MHD duct flow problems, but the Hartmann
number Ha cannot exceed about 102. However, in many industrial applications, the important
range of the Hartmann number is 102 < Ha < 10%. For this reason, some seemingly robust
numerical methods with large Hartmann numbers were suggested, such as the stabilized finite
element method (FEM)!! and least-squares FEM[?! using residual-free bubble functions. Even
so, for large Hartmann numbers, some spurious oscillations still appear near the boundary
layer regions when these two bubble-stabilized methods are used (see Refs. [1] and [2] or also
the discussion on this in Ref. [3]). Later, a tailored finite point method was proposed3!, and high
accuracy was achieved even for large Hartmann numbers. Beyond that, the boundary elements
method!! and the two-level element free Galerkin method[® were also presented for solving
the MHD duct flow problem at high Hartmann numbers, respectively. The theoretical error
analysis of these methods above remains seriously poor except for the least-squares FEM2. In
addition, those methods were only investigated on isotropic meshes where the aspect ratio of
mesh elements was uniformly bounded.

For such layer problems, a special anisotropic mesh adaptivity is more desirable, i.e., the
mesh elements should adapt in both size and shape in order to approximate the solution better.
There have been a well-developed literature on a posteriori error estimation but on isotropic
meshes (see Refs. [6] and [7] and the references therein). Some types of the posteriori error esti-
mate have already been extended to anisotropic meshes with large aspect ratio by Kunert810,
but no anisotropic mesh refinements were made. Due to large aspect ratio, there appears
the alignment measure in a posteriori error estimation to quantify the alignment between the
solution and the mesh, which is one of the most important contributions of Kunert.

Based on a priori error estimate, the concept of metrics was mostly used in anisotropic mesh
adaptation!' 12l A priori error analysis on anisotropic meshes can be found in Refs. [13] and
[14] and the references therein. Moreover, a posteriori error indicator was used in anisotropic
mesh adaptation™®. The concept of metrics was combined with the solution of a dual prob-
lem and a posteriori error analysis in order to generate an adaptive mesh!*6l. The metric
field was directly obtained from a posteriori error estimate and used in the anisotropic mesh
adaptation!”.

In this paper, we present an anisotropic adaptive FEM to solve the MHD duct flow problem
in a straight channel of uniform cross-section. By the analytic tools of Kunert!®), a residual
error estimator is proposed and provides two-sided bounds on the error on anisotropic meshes.
However, the error estimator is not available for anisotropic adaptive refinement, because it
cannot represent the contributions to the whole error in different directions, and the alignment
measure, in which the exact solution is contained, enters the upper error bound. In order to
use the alignment measure as a guide to design a proper anisotropic mesh, we reformulate
its definition and use the well-known Zienkiewicz-Zhu (Z-Z) estimates(®. Then, a computable
anisotropic error indicator is derived, and the corresponding locally error indicators are used
to adjust the mesh sizes in different directions. Note that an analogous error indicator was
proposed for anisotropic adaptive refinement for elliptic and parabolic problems in Ref.[15].
Finally, we implement an adaptive algorithm using the software FREEFEM++!!8 with the
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mesh generator Bamg[!?! based on a right metric field obtained by the locally error estimates
and Z-7Z estimates of the error gradient matrix. By this method, the layer information from
some directions can be well captured such that the number of mesh vertices is dramatically
reduced for a given level of accuracy. Numerical results confirm the error analysis.

The paper is organized as follows. We first specify our notation and give some prelimi-
nary results in Section 2. Section 3 is devoted to analytical tools, such as inverse inequalities,
alignment measure, and anisotropic interpolation estimates. An error estimator is proposed for
the MHD problem, and the two-sided bounds on the error are derived on anisotropic meshes
in Section 4. In Section 5, we derive an anisotropic error indicator and implement an adap-
tive algorithm. Therein, a series of numerical simulations for three test problems at different
Hartmann numbers are carried out to demonstrate effectiveness of the anisotropic adaptive
FEM.

2 Preliminaries

In this section, we give some notation and the anisotropic mesh description, present some
preliminary results, and finally introduce the model problem and its conforming discretization.
2.1 Notation

For a bounded domain € with the Lipschitz continuous boundary 012, let S be any given
open subset of . For the spaces L?(S) and L?(S)?, the integral inner product and the norm
are denoted by (-,-)s and | - || s, respectively. If S = Q, the subscript will be omitted. Let |S|
be the Lebesgue measure of S, and in particular, |s| is the length of a segment s. P(.S) is the
space of polynomials of order k or less, where k is a given non-negative integer. For simplicity,
instead of < ey and c1z < y < cox, we use the abbreviated notation x < y and x ~ y, where
the constants ¢, ¢, and ¢ are independent of x, y, the Hartmann number, and the mesh.

By F = {7}}, we denote a family of triangulations 75 of 2, where any two triangles are
either disjoint or share a common vertex or edge. Let &, be the set of all edges of 7y, let £int
be the set of interior, and let £ be the set of boundary. We denote by A} (N, Ngxt)
the set of all (interior, boundary) vertices of 75,. Define for a € Ny, o € &, and K € Tp,
To:={LeTy; ae L}, T, :={L€Ty; o C L}, and Tx :={L € Tp,; LNK # &}, respectively.
Furthermore, three auxiliary subdomains need to be defined by

we =U{LeT,}, we:=U{LeT,}, wg:=U{LeTx}.

Next, the notation ng always denotes the exterior unit normal vector for any given K € 7,
and mn, denotes the unit normal vector for any given edge o € &, of which the orientation is
arbitrarily chosen but coinciding with the exterior normal of the domain Q2 for boundary edges
and fixed for interior edges.

For a function ¢ and an edge o € E}L“t shared by two triangles K and L, where n, points
from K to L, we define the jump operator [-] through o by

[#] = (elx)lo = (#lz)lo-

For any o € £, set [¢] = ¢lo-.
2.2 Anisotropic meshes

For an arbitrary (anisotropic) triangle K € 7y, we enumerate its vertices such that PyP; is
the longest edge and | Py Pa| > |PyP2|. Moreover, we define two orthogonal vectors p; with the
length h; i := |pi| (i = 1,2), as shown in Fig. 1. Notice that hi g > ho i, St Amin,x = ho K,
and hmax k= h1,x. For 0 C 0K, let
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Define two 2 x 2 matrices Ax and Cx by
Ak = (PP, PoP), Cgk = (p1,p2).

Additionally, we require that the mesh 7, satisfies the following requirements:
(i) The number of triangles contained in 7, is bounded uniformly for each fixed vertex
a €N, h-

(ii) The dimension of adjacent triangles is close to each other, i.e.,
hik ~hir, KNL#@, i=12.
For convenience, for the common edge o shared by two triangles K and L, set

o hU,K + hU,L L

Rmi Pmi
ho’ — 5 : hmin,g — min, K + min, L )

2

An advantage of doing this is that they are no longer related to either of K or L but only to o.
For the boundary edges, the definitions are changed in the obvious way. Obviously, they satisfy
he ~ hok ~ ho.r, and Amin,e ~ Pmin, K ~ Rmin,.. For more details on anisotropic meshes, see
Refs. [8] and [9].

P,

V2
Py
P, P,
Fig. 1 Triangle K

2.3 Definition of problem and its conforming discretization

In a straight channel of a uniform cross-section €2, we assume that there exists a laminar
fully developed flow of a viscous, incompressible, and electrically conducting fluid. Let u be the
velocity, and let B be the induced magnetic field. Here, the direction of the uniform transverse
applied magnetic field By may be arbitrary to the x-axis, and the fields u and B are parallel to
the z-axis. Further, The fluid is driven down by a constant pressure gradient. The governing
equations for the above duct flow in a dimensionless form with suitable boundary conditions
can be posed as follows420]:

—Au—Haa-VB=1 in

?

—AB—Haa-Vu=0 in

3

u=0 on 0%, (1)
B=0 on TIp,

B
g_n =0 on I,

where Ha = Byl(§/v)}/? is the Hartmann number, [ is the characteristic length of the duct,
By is the intensity of the external magnetic field, and v and § are the viscosity coefficient and
electric conductivity of the fluid, respectively. @ = (cos o, sin )T, where « is the angle between
the z-axis and the externally applied magnetic field By. 02 = I'p UT'y, where Ip NT'y = @
and I'p has a positive measure. We call I'y the conducting part and I'p the insulated part of
the boundary 0f2.

Let Wop(Q) := H} () x H5(Q2), where two particular subspaces of H'(Q) are

Hy (9) = {v € H'(Q); vloa = 0},
Hp(Q) :={Q € H'(Q); Qlr, = 0}.
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Due to the Poincaré inequality, the space Wyp(€2) will be equipped with the product norm,
10, Q)llw = (IV0l2+ [VQI2) %, (v, Q) € Wom ().
The weak form of the problem (1) is to find (u, B) € Wyp(f2) such that
(Vu,Vv) — Ha(a - VB,v) + (VB,VQ) — Ha(a - Vu,Q) = (1,v), Y(v,Q) € Wop(Q). (2)

1/2
Y

In order to define the finite element approximation, let V"(2) be a subspace of H((2)
consisting of continuous piecewise affine functions on the mesh 75, and

Wo(Q) = (V"(Q) N Hg(Q)) x (V*(Q) N Hp ().
Then, the standard FEM is to find (up, B,) € Wi5(2) such that
(Vup, Voy) — Ha(a - VBp,vp) + (VBL, VQp) — Ha(a - Vup, Qr)
{ = (1,vn), Y(vn, Qn) € Wlis(Q). )
The existence and uniqueness of solutions to (2) and (3) can be easily obtained by the well-
known Lax-Milgram lemma. A priori error analysis can be found in Ref. [21].

3 Analytical tools

In order to treat anisotropic elements, some analytical tools in the anisotropic setting have
to be introduced here, which are taken from Refs. [8] and [9].
3.1 Inverse inequalities

Inverse inequalities for bubble functions are very important in deriving lower error bounds.
As usual, we first introduce the bubble functions(”). For an arbitrary triangle K, denote the
barycentric coordinates by Ak 1, Ax,2, and Ax,3. We define the element bubble function bx by

bK ::27>\K,1>\K,2>\K,3 on K.

Let o be an inner edge shared by K7 and K5. We here enumerate all the vertices of K7 and Ky
such that the two vertices of o are first numbered. We define the edge bubble function b, by

by :=4AKg, 10K, 2 on K; (i=1,2).

Obvious modifications need to be done for boundary edges. For simplicity, bx and b, are
assumed to be extended by zero outside their original domain of definition.

For a given edge o of a triangle K, an extension operator Fuy : Po(0) — Po(K) is defined
as follows:

Fexi (p)(x) := ¢l = const.

By standard scaling arguments, we can easily derive the following anisotropic inverse inequali-
ties.
Lemma 1 Assume that ox € Po(K) and ¢, € Po(o), where o C OK. Then,

1632 kel i ~ lleorc e

VxS b xlox |l
15200 llo ~ ll@sllo

1 Fext ()66 |1 ~ h/2 (|00 o

1V (Fext (00)00) | ¢ S 12k ielloolo
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3.2 Alignment measure and anisotropic interpolation estimates

From a heuristic point of view, if the (directional) derivative of the solution displays little
change in some direction, in that direction, we should stretch the mesh elements. The better
the alignment is between the anisotropic mesh and the anisotropy of solution, the more accurate
the error estimates can be. All practical applications intuitively follow this concept. Next, we
should introduce the alignment measure m; (v, 7;,) in order to quantify this alignment.

For v € HY(Q) and a family of triangulations {7}, the alighment measure m; : H(Q) x
{7} — R is defined by

(2 \cTwn?)l/Q
KT min, K K K

ml(vvlfh) = ||V’U||

The alignment measure has the following property:

hmax, K
1<mi(v,T) < max ———.
KeT, hmin,K

The above property implies that, if the mesh 7}, is well aligned with an anisotropic function v,
it leads to a small alignment measure. In practice, for sensible anisotropic meshes, one almost
always obtains mq (v, 7,) ~ 1. In this paper, we should apply this property to anisotropic mesh
adaption (see numerical experiments in Section 5).

Consider a node a € Nj,. The local L?-projection P, : H(w,) — Po(w,) is uniquely defined
by fwa (v — P,v) = 0. Then, the Clément interpolation operator Iy : H}(2) — V(Q) N HL(Q)
is defined by

Iyv = Z (Pyv)(a) g,

int
a€EN})

and Ip : H5(Q) — V*(Q) N HE(Q) by

Q= Y (RQ)@A,

aENPEUNG

where ), is the (piecewise linear) basis function related to the vertex a, and N := {a €
NﬁXt; a € PN}

Finally, we state the anisotropic interpolation error estimates based on the alignment mea-
sure.

Lemma 2 For all functions v € H}(Q) and Q € H5(Q), there hold

7 b llv = I3 < ma(v, 70)2 Vol 1%, (5)
KeTy,
ha 2 2 2
Yo o= Iov]l% S mu, 7)ol (6)
UES;:" min,o
7 btk Q= 15QI% < mi(Q.T)*IVQIP, (7)
KeT,,
ho
Y. le-I5QlE £ m(@Q TVl (8)

0’65,‘“ UE;’“ min,o
3

where EF* := {o € &' o C I'n}.
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4 Residual error estimation

In this section, we present the residual error estimator for the conforming approximation (3)
and show that it provides two-sided bounds on the error ||(u — up, B — By )||lw on anisotropic
meshes.

Let (up, Bp) be the conforming finite element approximation. Here, we define the element
residuals over an element K by

RI,K =1+ Auy, + Ha a - VBy,
RQ’K = ABy, +Haa-Vuh,

and edge residuals by

[[ 8uh
on,
0, others,

: int
]], if o € &n,

Rl,a =

]], if o e&tyes

ong

OB
Ry = [[ -
0

, others.

Obviously, R1 xk = 1+ Ha a-V B}, and Ry xk = Ha a-Vuy, hold for piecewise linear functions
as considered here.

The local residual error estimators 71, x and 72 x for an element K are defined by

1/2
M = hoinie (1Bl + D2 ho I Riol2) (9)
ocCOK
1/2
mesc = hoinic (1 Boiclife + >0 byt Ral2) (10)
ocCOK

and the global terms are

M=) nik, M= Y MW

KeT, KeT,

separately.

Theorem 3 Let (u, B) be the weak solution of problem (1), and let (un, Bp) be the corre-
sponding finite element approximation defined by (3). Then, the error is bounded globally from
above by

[(w—un, B— Bp)llw < m1(u—un, Tn)m + mi(B — By, Tp)n2. (11)

Proof For the convenience of expression, we set e, = u — up and eg = B — Bj,. Since
(a - Vep,e,) = —(a - Vey,ep), due to integration by parts, the Galerkin orthogonality and
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Lemma 2 yield

I(eus eB) v
= (Vey, Ve, — Iney)) — Ha(a - Vep, (e, — Iney))
+ (VeB, V((EB — IBeB)) — Ha(a -Vey, (63 — IBeB)),

y=((1+4+Haa -VBy,e, — lpey) — (Vup, Ve, — Ipey))
+ (Ha a - Vuh,eB — IBeB) — (VBh,V(eB — IB(EB)),

yy = Z (Rl,K; €y — IOeu) - Z Rl,a(eu - IOeu)

KeTy, UES}iLnt g
+ Z (Ra2,kx,ep — Ipep) — Z Ry -(ep — Ipeg),
KeTy, oegintyggxt o
1/2 B 1/2
< (30 RaslBukl) (D0 e — Toeulik)
KeTy, KeTy,
h2 ; 1/2 h 1/2
+ ( Z —n;lm’a ||R1,a||§) ( Z hQ—UHeu - Ioeu||§)
oegint 7 segint  min,o
9 5 \1/2 L 5\ 1/2
+ ( Z hmin,KHRZK”K) ( Z hmin,KHeB - IBeB”K)
KeT, KeT,
h2 . 1/2 h 1/2
+ ( Z IZm’UHRz,aH[Qf) ( Z hQ—aHeB—IBeBH[Q,)
TEEIMUELT 7 cEEIMUE min,o

,S mi (eu7 %)nl +my (637 Th)7727

which concludes the proof.
Theorem 4 Under the assumption of Theorem 3, the error is bounded locally from below

by
mx SV —un)llwx + HallB = Billwg, (12)
M2,k SIV(B = Br)llwx + Hallu — upwy (13)

for all K € Ty,

Proof The proof of lower error bounds needs to use the bubble functions and correspond-
ing anisotropic inverse inequalities (see Lemma 1). Here, we only need to prove the lower bound
(12). The remaining one can be derived analogously.

Observe Ri g =14 Aup + Ha a - VB), € Po(K) and set

WK = Rl,KbK € Pg(K) n Hé(K)
The Cauchy-Schwarz inequality and integration by parts yield
/ Rl,KwK = (V(U, — uh), V’UJK)K — Ha(a . V(B — Bh), ’LUK)K
K

=(V(u—up),Vwg)k + Ha(B — Bp,a - Vwg )k
SUIV(u = un)lx + Hal| B = Ba| g)[[Vwr | 5 (14)

The inverse inequalities of Lemma 1 lead to
| Ruscwre =10 Rucl ~ | Rucle
K

IVwillx = IV (bk R1.)llk S honin || R x|l ¢
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which, together with (14), result in
hamin i [[ By, k|| S [V (u = un)l[x + Hal|B = Ba| k- (15)
For an inner edge o € £, set
Wo 1= Fext(R1,6)be € Pa(we) N H&(w[,).

Integration by parts and (2) for (v, Q) = (we,0) implies that

8uh
/awaRl,a - Z /{jK waanK

KeT,
= > ((Vun, Ve g + (Aup, we) k)
KeT,
= > (=(V(u—un),Vwy)x + Ha(a - V(B — By),ws)k + (Ri, w) k)
KeT,
= Z (—=(V(u —wup), Vws )k — Ha(B — Bh,a - Vw, )k + (Ri,Ws) k)
KeT,
< Y0 (IV(u—un)llx Vel x
KeT,
+ Hal|B — By || Vwe |k + [ R ||k ||we || x)- (16)

Due to Lemma 1, we have the following relations:

/w“RLa = 65*Riolls ~ | Rioll2,
o

IVwsllz = IV (Fext (Ru,o)bo)llz S he/*honiy | Brollo, L €T,

min, L

|wollz = [[Fext(R1,0)bo || & ~ h}r/2||R1,a||m LeT,,
which, together with (15) and (16), lead to
hmin,xchy | Ruollo S IV (u = un)llw, + HallB = By, - (17)

For an edge on the Dirichlet boundary, nothing needs to be done because R; , = 0. Hence,
combining (15) and (17), we conclude the lower error bound (12).

Remark 1 From Theorems 3 and 4, the lower bounds contain additional L?-error terms
Hallu—up||wx and Ha||B—Bp|lw, that do not appear in the upper error bound (11). Therefore,
the two-sided bounds on the error do not correspond completely. We point out that a very
similar situation can be found for error estimators for the convection-diffusion problem!0:22-23],
Moreover, only if the L2-error terms is dominated by the H'-error terms ||V (u — up)||w, and
IV(B — Bp)|lwk s the upper and lower bounds on the error will be of the same quality. Hence,
the additional L?-error terms are mainly due to the H'-error terms, which is confirmed by our
numerical experiments in the next section.

5 Numerical experiments

5.1 Anisotropic error indicator
Due to the large aspect ratio of anisotropic mesh, the alignment measure mq(-,7;) enters
the upper error bound in order to measure how well the alignment between the solution and
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the mesh does in the sense: the worse the alignment is, the larger the alignment measure is. In
other words, a sufficiently good mesh makes sure that the alignment measure is O(1), i.e.,

my (-, Tp) ~ 1. (18)

In turn, the relation (18) can be used as a guide to design a proper anisotropic mesh. To this
end, the definition (4) of the alignment measure m1 (v, 73) is reformulated by

00 (el s 2200 it oo

KeT,

where 71 and 75 are the corresponding unit vectors of p; and ps on each K € 7y, respectively,
and so Cx = (p1,p2) = (hmax, K71, fmin, kT2). Therefore, the relation (18) holds, provided that

2
2
Z maXKH&“lH mmKHa’l"QH ( O)

KeTy,

This formulation can be used to indicate the direction of adaptive mesh refinement. More
specifically, due to (19), the upper error bound (11) holds as long as we have the following
estimate:

[(w —un, B = Bu)llw <, (21)

where

= ()" + (1),

1 maxK u—’LLh 1/2 maxK B Bh) 2\1/2
() = Y 35 H H ) Z h2 H HK) !
KeT,, min, K Ke min, K
u_uh 1/2 B _ Bh 1/2
) = 3 [T HK) +m( 3 HTT )"
KeT, KeT, 2

The relation (20) implies n(V) ~ 7). However, the estimate (21) is not available, be-
cause the exact solution (u, B) is usually unknown. To overcome this, we use the well-known
Z-7 estimatel®l. The gradient (Vu, VB) of the exact solution can be replaced by a recovered
gradient (VRu, VEB) by local averaging such as an approximate L2-projection of (Vuy, VBy,)
onto VP x VP ie.,

1 1
VRu(a) = m/ Vup, vR B( ) |w |/ V By, a €N,

Numerical experiments in Ref. [24] showed that the averaging technique was quite more reli-
able on anisotropic meshes than expected. After this replacement, we introduce the global
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anisotropic error indicator 77 and the local anisotropic error indicator 1x by

~2 h12nax.K R 2 1/2
= (Y (VR = Vun) - rak )

KeT, min, K

2

hmax 1/2
(Y FEEN(VRB - VB mk)
KeT, hmin,K

(3 1 =) o) (X IVRB VB ml)

KeT, KeT,

o= <~“>> <#K ),
(i) =

(m)” - (m K [[(Vu = Vun) - rall +m2, k[ VEB = VB) - 72 ).

(771 kll(VRu = Vug) - il + 2,5 | (VRB = VBy) - 71|k ),

In conclusion, the relation (18) implies that the adaptive algorithm should be designed such

~1) g ~(2)

that the local anisotropic error indicators 7, and 7, satisfy, on each triangle K,

e s Lo
()" ~ ()" ~ 3k

5.2 Adaptive algorithm

We should implement an adaptive algorithm using the software FREEFEM++8! with the
mesh generator Bamg'®! based on a right metric field which will be built later. The goal of
this adaptive algorithm is to generate a suitable anisotropic mesh so that the relative estimated
error is close to a preset tolerance oL, i.e.,

0.75¢T0oL < T 1 < 1.25¢T0L.

up, Bp)llw

A sufficient condition to generate such an anisotropic mesh is to make sure that for all K € 7,
it holds

WO 752<PTOLH(W,Bh)||W X 77%{ ml 252¢TOLH(uhvBh)”%/Vv (22)

where |7;,| denotes the number of elements in 7, as well as the number |[NV}| of mesh vertices
which will be used later. In order to get data at the mesh vertices, at each vertex a, we introduce
the anisotropic error indicator 7, defined by

o\ 1/4
- (> ik
KeT,

Since

Z _32771(7

a€ENY, KeTy,

there holds (22), whenever we generate a mesh satisfying, for all vertices a € Ny,

3 3
A |20 75%roL || (un, Br) iy < W |21 25%oror || (un, Br) iy
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With the mesh generator Bamg, the metric field M is needed to be given at each vertex a
as continuous P; finite element functions, namely, the two eigenvalues A1 o, A2q (A1,0 < A2,q)
and the corresponding eigenvectors 71 4,72 , such that M = RTAR, where

R(a) := (r1.0,T2.0), A(a)izz[Aaa Aga,}'

Then, in a vicinity of the vertex a, the wanted mesh size can be defined by the metric field M
such that the size h is equal to |z|/\/zT M(a)x in the direction = € R?, where |z| := VzTz.

Then, the adaptive algorithm is designed. First, the values 77((11) and ﬁ,(f) at all the vertices
a of the mesh are defined by

= (@) A= (X @)Y

Ke7, KeT,

1/4 1/4

Thus, the error at each vertex a in the direction of maximum stretching can be represented
(1
by 75
by %2). Second, we compute the value of mesh size hy, (h2q) for all vertices a € N}, by
averaging all the values Amax k' (Amin, k) corresponding to the neighboring triangles K in 7.
The algorithm is carried out as follows. For i = 1,2, if
3

~(i)\ 4
2()" < W0'754¢%OLH(uhvBh)H%V7

then the value of J; , is set to (%hm)_l. If

, whereas the error at each vertex a in the direction of minimum stretching is denoted

2(70)" >

1.25%mor | (un, Bu)llw

3
[N l?
then the value of \; 4 is set to be (%hm)_l. Otherwise, \; , is set to be h;; Finally, for all
vertices a € Ny, let 1, and 72, be, respectively, the unit eigenvectors corresponding to the
smallest and largest eigenvalues of the Z-Z estimates G, of the error gradient matrix defined
by an average

~ 1

Gy = —
Tl L, 7.
With the resulting metric M, we build a new anisotropic mesh using Bamg, which should insure
mP(u —up, 7)) ~ 1 and m¥(B — By, Tp,) ~ 1, where m¥(u — up,, 7p,) and m¥(B — By, 7p,) are

the Z-Z estimates of mq(u — up,7y) and m1(B — B, 7s) obtained by replacing the gradient
(Vu, VB) of the exact solution by the recovered one (VRu, VEB), i.e.,

1/2
(3 bk sl CE (V™ = Vun)%)

(VRu — V) (VRu — V)T +

/ (VRB - VBy)(VYB - VBy)".

R KET,
— Th) =
mi (u — up, Tp) V0 = Van| ,
) 1/2
> hadlICE(VRB = VB %)
R KeT,
B — B, Ty) :=
"B ) "B VB |
respectively. According to the numerical results of the next subsection, it always holds that both

mB(u—wup, 7,) and m¥ (B — By, Tp,) are close to 1, which indicates that the anisotropy of meshes

is well adapted to the exact solution of the problem. Therefore, an efficient error estimation is
to be expected. In the future, we plan to extend such an efficient anisotropic adaptive FEM to
other problems, e.g., nonconforming FEMs[2% 26 for fourth-order elliptic singular perturbation
problems with boundary layers27].
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5.3 Numerical results

In this subsection, for the three test problems, a series of numerical simulations are performed
by the anisotropic adaptive FEM developed in this paper. In all the test problems, we consider
the domain €2 = (0,1) x (0,1) and set the tolerance o1, = 0.01.

Example 1 (The Shercliff problem) For this example, there exists an analytic solution, and
the numerical data are available in Refs. [1] and [2] such that a comparison can be done between
the approximate solution and the exact solution. Here, the walls of the channel are insulated
(B = 0 on 0f2), and on the solid walls, the velocity is zero (v = 0 on 0). The external
magnetic field By is applied in the z-axis (o = 0) (see Fig. 2).

Yy
1llu=B=0
u=B=0
By
-1 [9) 1 x
u=B=0
-1{u=B=0

Fig. 2 Boundary conditions of Shercliff problem

For the Hartmann numbers Ha = 100 and Ha = 500, the comparisons are done between
the approximate solution (un, Bp) and the exact solution (u, B) in Tables 1 and 2, respectively.
One can see that two results are comparable. In addition, Table 3 presents the corresponding
mesh information and Z-Z estimates of the alignment measures after some iterations during the
adaptation process. For the sake of comparison, the corresponding meshes and contour plots
for approximate solutions are shown in Figs.3—4 for Ha = 100 and Ha = 500, respectively. It
is worth mentioning that the use of anisotropic adaptive FEM can capture the boundary or
interior layers in some directions and allow the number of vertices dramatically reduced for a
given level of accuracy. In the next two examples, the superior performance will be further
demonstrated for much larger Hartmann numbers, such as 103, 10, and 10°.

Table 1 Approximate and exact solutions for Shercliff problem at Ha = 100

T Yy Up, U By, B

0.00 0.00 0.0100000 0.0100000 0.000 0000 0.000 0000
0.25 0.00 0.0100000 0.0100000 —-0.002 5000 —-0.002 5000
0.50 0.00 0.0100000 0.0100000 —0.005 0000 —0.005 0000
0.75 0.00 0.0100000 0.0100000 —0.007 5000 —0.007 5000
0.00 0.25 0.0100000 0.0100000 0.000 0000 0.000 0000
0.25 0.25 0.0100000 0.0100000 —-0.002 5000 —-0.002 5000
0.50 0.25 0.0100000 0.0100000 —0.0050000 —0.005 0000
0.75 0.25 0.0100000 0.0099999 —0.007 5000 —0.007 4999
0.00 0.50 0.009999 5 0.009999 2 0.000 0000 0.000 0000
0.25 0.50 0.009998 3 0.009998 1 —0.002 498 2 —0.002 498 2
0.50 0.50 0.009994 6 0.009994 4 —0.004 994 6 —0.004 994 4
0.75 0.50 0.0099870 0.009 986 8 —0.0074870 —0.007 486 8
0.00 0.75 0.009 7613 0.009 761 4 0.000 0000 0.000 0000
0.25 0.75 0.009 7158 0.009716 3 —-0.002303 3 —-0.002 3030
0.50 0.75 0.009 5855 0.009 5858 —0.004 602 3 —0.004 602 4

0.75 0.75 0.009 387 2 0.009 386 3 —0.006 887 6 —0.006 886 9
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Table 2 Approximate and exact solutions for Shercliff problem at Ha = 500
T Y Up, u By, B

0.00 0.00 0.002 000 0 0.002 0000 0.000 000 O 0.000 0000
0.25 0.00 0.002 0000 0.0020000 —0.000 500 0 —0.000 5000
0.50 0.00 0.002 0000 0.0020000 —0.000999 9 —0.001 0000
0.75 0.00 0.002 0000 0.002 0000 -0.0015000 —0.001 5000
0.00 0.25 0.002 0000 0.0020000 0.000 0000 0.000 0000
0.25 0.25 0.002 0000 0.002 0000 —0.0005000 —0.000 5000
0.50 0.25 0.002 0000 0.002 0000 —0.001 0000 —0.001 0000
0.75 0.25 0.002 0000 0.002 0000 -0.0015000 —0.001 5000
0.00 0.50 0.002 0000 0.0020000 0.000 0000 0.000 0000
0.25 0.50 0.0020000 0.002 0000 —0.000 500 0 —-0.000 5000
0.50 0.50 0.002 0000 0.002 0000 —0.001 0000 —0.001 0000
0.75 0.50 0.0020000 0.002 0000 —0.001 5000 —-0.001 5000
0.00 0.75 0.002 0001 0.0020000 0.000 0000 0.000 0000
0.25 0.75 0.0019999 0.0019999 —0.000499 9 —0.000499 9
0.50 0.75 0.0019997 0.001999 7 —0.000999 7 —0.000999 7
0.75 0.75 0.0019991 0.001999 2 -0.001499 1 —0.001 499 2

Table 3 Mesh information and Z-Z estimates of alignment measures for Shercliff problem

Ha Number of vertices Maximal aspect ratio mlf(u —up,7p) mlf(B — By, Tp)
100 37266 5.3x103 1.36 1.41
500 21799 3.7x10% 1.36 1.40

Fig. 3

Iso value
0.000 250 005 = ——

0.000 750 016

0.001 250 030
=0.001 750 040
=0.002 250 050
=0.002 750 060
0.003 250 070
0.003 750 080
=0.004 250 090
=0.004 750 100
0.005 250 120
W 0.005 750 130
=(0.006 250 140
=0.006 750 150
m0.007 250 160
m0.007 750 170
m0.008 250 180
=0.008 750 190
=(.009 250 200
m(0.009 750 210 e

Corresponding meshes for Shercliff problem at Ha = 100 (left) and Ha = 500 (right)

Iso value

0.000 050 002 9

0.000 150 009 0

0.000 250 014 0
®0.000 350 020 0
m0.000 450 026 0
=0.000 550 032 0
=0.000 650 037 0
=0.000 750 043 0
=0.000 850 049 0
=0.000 950 0550
=0.001 050 060 0
=(0.001 150 070 0
m(0.001 250 070 0
m0.001 350 080 0
=(.001 450 080 0
=(.001 550 090 0
=(0.001 650 090 0
=(0.001 750 100 0

~| ®0.001 850 110 0

=(.001 950 1100

Fig. 4 Approximate velocity fields for Shercliff problem at Ha = 100 (left) and Ha = 500 (right)
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Iso value Iso value

-0.008 968 300 -0.001 872 670 0

—0.008 024 260 I -0.001 675 550 0

~0.007 080 230 —0.001 478 420 0
=-0.006 136 190 =-0.001 281 290 0
=-0.005 192 160 =-0.001 084 170 0
m-0.004 248 120 m-0.000 887 040 0
=-0.003 304 080 m-0.000 689 913 0
=-0.002 360 050 =-0.000 492 786 0
®-0.001 416 010 =-0.000 295 659 0
=-0.000 471 977 =-0.000 098 532 7
=0.000 472 059 =0.000 098 594 0
=0.001 416 090 =(.000 295 721 0
=0.002 360 130 =(.000 492 847 0
=(0.003 304 170 =(.000 689 974 0
|(.004 248 200 m0.000 887 101 0
=0.005 192 240 =(.001 084 230 0
=0.006 136 270 =(.001 281 350 0
=0.007 080 310 =(.001 478 480 0
=0.008 024 350 I =(.001 675610 0
|(0.008 968 380 =(.001 872 730 0

Fig. 5 Approximate magnetic fields for Shercliff problem at Ha = 100 (left) and Ha = 500 (right)

Example 2 (The two-dimensional square-channel flow with an oblique applied magnetic
field) The same MHD problem as Example 1 is considered, except that the externally applied
magnetic field By has various positive angles a with the a-axis (see Fig.6). Here, for the values
of @ = 0,7/4, and 7/3, numerical computations are carried out at different Hartmann numbers.
The resulting meshes and contour plots for approximate solutions generated by the anisotropic
adaptive FEM are presented at Hartmann numbers Ha = 103, 10%, and 10°, respectively, in
Figs. 7-15. The numerical results show that when Hartmann number increases, the boundary or
interior layers are well dealt with by anisotropic meshes. The corresponding mesh information
and approximate alignment measures are presented in Tables 4-6.

Yy
1lu=B=0
u=B=0
B,
v
-1 0 1 x
u=B=0
-1lu=B=0

Fig. 6 Boundary conditions of Example 2

Table 4 Mesh information and Z-Z estimates of alignment measures for Example 2 at Ha = 10°

« Number of vertices Maximal aspect ratio m?(u —up,Tp) m?(B — Bp,Tn)
0 19950 7.4x10% 1.38 1.40
w/4 43135 4.1x103 1.34 1.34
w/3 42652 2.9x10% 1.35 1.35

Table 5 Mesh information and Z-Z estimates of alignment measures for Example 2 at Ha = 10*

a Number of vertices Maximal aspect ratio m?(u —up,7p) m?(B — By, 7Tp)
0 65 502 9.7x10° 1.31 1.33
w/4 68 042 1.1x10° 1.36 1.36

/3 63 904 4.5%x10* 1.32 1.32
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Table 6 Mesh information and Z-Z estimates of alignment measures for Example 2 at Ha = 10°

@ Number of vertices Maximal aspect ratio mP(u — up, 7p,) mB(B - By, T)
0 134734 2.1x108 1.27 1.28

w/4 107130 2.7x10% 1.27 1.28

w/3 102 643 1.9x106 1.26 1.26

Fig. 7 Corresponding meshes for Example 2 at Ha = 10* with a = 0 (left), « = 7/4 (middle), and
o = /3 (right)

Iso value . Isovalue . lsovalue

s 0.000 025 002 5 .000 034 552 0.000 028 870 1

I 0.000 075 4 .000 103 657 0.000 086 610 2
=0.000 125 0 =0.000 172 762 =0.000 144 350 0
=0.000 175 0| .000 241 867 =0.000 202 090 0
=0.000 225 0| .000 3109720 | =0.000 259 830 0
=0.000 275 0| .000 380 0770 | =0.000 317 571 0
=0.000 325 0 .000 449 1820 | =0.000 3753110
=0.000 375 0 .000 518 287 =0.000 433 051 0
=0.000 4250420 | .000 587 392 =0.000 490 791 0
=0.000 475 047 0 .000 656 497 0 | =0.000 548 531 0
=0.000 525 0 .000 725 602 =0.000 606 271 0
=0.000 575 0 .000 794 707 =(.000 664 011 0
=0.000 625 0 .000 863 812 =(.000 721 751 0
=0.000 0 .000 932 917 =0.000 779 491 0
=0.000 725 0 .001 002 020 =(.000 837 232 0
=0.000 775 0 .001 071 130 =(.000 894 972 0
=0.000 825 0 .001 140 230 =0.009 527 120 0
=0.000 875 0 .001 209 340 =(.001 010 450 0

L JIO 00 925 0 .001 278 440 =(.001 068 190 0
=0.000 975 (|} TS E TS .001 347 550 =(.001 125930 0

Fig. 8 Approximate velocity fields for Example 2 at M = 10 with a = 0 (left), a = /4 (middle),
and o = m/3 (right)
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Fig. 9 Approximate magnetic fields for Example 2 at M = 10® with o = 0 (left), o = 7/4 (middle),
and a = /3 (right)

Fig. 10 Corresponding meshes for Example 2 at Ha = 10* with o = 0 (left), @ = 7/4 (middle), and
o =m/3 (right)
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Iso value " Iso value ~ 1so value
2.50026 X 10
7.500 78 x 10_,

= 6.064 08 x 1

= 5.486 54 x 10,
= 6.641 61x 10,

Fig. 11 Approximate velocity fields for Example 2 at Ha = 10* with oo = 0 (left), o = w/4 (middle),
and a = /3 (right)

Iso value
-0.000 109 581,
804 67 x 8,

=
&
3
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=
X
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4
=23
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S
3
X

[andhandrany

o e XOXOXOXOXOXXX XX

Fig. 12 Approximate magnetic fields for Example 2 at Ha = 10* with o = 0 (left), @ = 7/4 (middle),
and a = /3 (right)

Fig. 13 Corresponding meshes for Example 2 at Ha = 10° with a = 0 (left), a = 7/4 (middle), and
o =m/3 (right)

1so value 1so value , 1so value

2524 11x 107" 3529 05 107, 2.888 74 x 10
7.57232x10, 1.058 71 107, .666 22X 107
1262 05 10" =1.764 52 % 107, = 144437310,
REE | e
3 X107, =317761x 107
=3 x1077 =3.75536x 107
53,786 16 x 107 =433311x10,
#4290 98X 10, =491086x 10
L5500 o L it ine
#5805 44 % 10, - 644 10x 107
e e hih
2731991 x 1070 =837734x 10,
7, X107 =8.95509x 10,
g X107 =953284x 10,
ug. X107 = 1.01106% 10’
#0339 19x 107 = 106883107
%9844 01 x 10 = 11126 61 1

Fig. 14 Approximate velocity fields for Example 2 at Ha = 10° with o = 0 (left), o = 7/4 (middle),
and o = /3 (right)
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Iso value

39x 107,
850 107,
83 79 x 10

6

a3

2464
31469 00x 10,
447380x 10 ;

=5.478 60 10_;
1648340 10,
#7488 1910
28,492 99x 107,
®9.497 79 x 10

Iso value 5
~1.340 76 x 10",
~1119964x 1077
~1.058 52 x 10’

=-9.174 05 x 10

6

X107
=103782% 107
263190110,

=1.19938x 10,
=1:34049x 10

Iso value R
~1.097 02x 107,
73.5515 44107

31x 10
=2.887 09 x 1077
=4.04186x 107
=5.196 64 x 10,
=6.35141x 10
=7.50619x 10
=8.660 96 % 10,
=9.815 74 x 10_;
=1.097 05x 10

Fig. 15 Approximate magnetic fields for Example 2 at Ha = 10° with o = 0 (left), o = 7/4 (middle),

and a = m/3 (right)

Example 3 (The two-dimensional square-channel flow with a partly conducting boundary)
Here, the external magnetic field By is perpendicular to the wall at x = —1 (i.e., « = 0). For
a length 21 at the center, the wall is electrically insulated (see Fig.16). In Figs.17-25, the
anisotropic meshes and contour plots for approximate solutions are presented for [ = 0.2,0.5,
and 0.7 at different Hartmann numbers (Ha = 103, 10%, and 10%), respectively. The correspond-
ing mesh information and approximate alignment measures are presented in Tables 7-9.

Y
1] Insulated
Insulated
ing| 2 Insulated
B{(fonductmg Tl
—1 ll (0] 1 x
Conducting| Y
Insulated
—1| Insulated

Fig. 16 Boundary conditions of Example 3

Table 7 Mesh information and Z-Z estimates of alignment measures for Example 3 at Ha = 10°

l Number of vertices Maximal aspect ratio mB(u — up, Tp) mB(B — By, Tp)
0.2 66753 3.3x10% 1.37 1.39
0.5 82971 1.7x10% 1.38 1.41
0.7 107763 1.3x10% 1.38 1.41

Table 8 Mesh information and Z-Z estimates of alignment measures for Example 3 at Ha = 10*

l Number of vertices Maximal aspect ratio mB(u — up, Tp) mB(B — By, Tp)
0.2 66 662 2.1x10° 1.33 1.35
0.5 72563 1.4x105 1.34 1.36
0.7 83 369 7.9x10* 1.36 1.38

Table 9 Mesh information and Z-Z estimates of alignment measures for Example 3 at Ha = 10°

l Number of vertices Maximal aspect ratio m?(u —up,Tp) m?(B — By, Tn)
0.2 107933 1.5x108 1.28 1.30
0.5 101 330 9.4x10° 1.29 1.31
0.7 118050 6.1x10° 1.30 1.32
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Fig. 17 Corresponding meshes for Example 3 at Ha = 10® with I = 0.2 (left), I = 0.5 (middle), and
[ =0.7 (right)

—~ - Iso value - 1so value - 1so value

0.000 025 000 8 .000 025 001
0.000 075 002 3 .00
0.000 125 004 0

™
|

t

.000 7'
=0.000 825 0: .000 0250 - =
=0.000 875 04 .000 875 027 0 = = — 875 035
1=0.000 925 04 0.000 925028 0 | | 925 037
wai= 0.000 975 04 0.000 975030 0 & 975 039

RS S 85 G188 06 G 19 SO N > B R o=
o T e e I

Fig. 18 Approximate velocity fields for Example 3 at Ha = 10® with I = 0.2 (left), I = 0.5 (middle),
and [ = 0.7 (right)

Iso value I Iso vgl%cg 73800 Iso V:‘(IJ%C‘IOG 760
, -0.1 : -0.000 9 6
0,000 767 864 0 00007678710 57493 0
-0.000 618 392 0 0 618 362 0 89 ()

=-0.000 468 879 0| 0 468 853 0 46 0

=-0.000 319 366 0 S 0 319 344 0 .000 310 602 0

=-0.000 169 854 0 0 169 835 0 .000 161 658 0

=_0.000 020 341 1 020 326 1 =—-0.000 012 714 9

— =0.000 123 917 2 291830 =0.000 136 229 0

=0.000 278 684 0 278 692 0 =0.000 285 172 0

=0.000 428 197 0 28 201 0 : 60

=0.000 577 709 0 77710 0 59 0

[ =0.000 727 222 0 7272190 003 0

=0.000 876 735 0 876 728 0 70

=0.001 026 250 0 0262400 890 0

=0.001 175 760 0 s 175750 0 00

=0.001 325 270 0 3252600 0 0

=0.001 474 790 0 4760 0 i 00

=0.001 624 300 0 2700 00

=(.001 773 810 0 773 780 0 0

-=0.001 923 32 32900 & 0

Fig. 19 Approximate magnetic fields for Example 3 at Ha = 10 with I = 0.2 (left), I = 0.5 (middle),
and | = 0.7 (right)

Fig. 20 Corresponding meshes for Example 3 at Ha = 10* with [ = 0.2 (left), [ = 0.5 (middle), and
I = 0.7 (right)
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Iso value

£
0o
S=
3

SRNRSSER

1 1 00~ DO O =110 O OO O i -t CO =

]
S
XX

=9.750 660

Fig. 21 Approximate velocity fields for Example 3 at Ha = 10* with I = 0.2 (left), I = 0.5 (middle),
and | = 0.7 (right)

1so value n 1
29.241 4 ¥

z

o value a Iso value
-9.240 84 x -9.2:

LLISEEEEEE

=0.000 192 61

Fig. 22 Approximate magnetic fields for Example 3 at Ha = 10" with [ = 0.2 (left), I = 0.5 (middle),
and | = 0.7 (right)

Fig. 23 Corresponding meshes for Example 3 at Ha = 10° with [ = 0.2 (left), [ = 0.5 (middle), and
[ = 0.7 (right)

Fr— " lsovalue | —— —— lIsovalue - T lsovalue .
464 24 x 1077 ATT 92X 1077 47531% 10 ;
467 97X 10_; 480 47X 10_; 477 37X 10

=124717% 107, = 1.248 30X 107 =1.24794% 107,
=174754% 107, = 1748 56X 107 =1748 15% 10,
2224791 x 10, =2.248 81x 107, 22124836 100
2374829 % 10, =2.749 07x 107 =2.748 56 x 107,
=31248 66 % 10 , =3.249 32 x 10°; =3.248 77 107,
=3.749 03x 10, =3.749 58 x 10 =3.748 97x 10_,
=4.249 40 x 10°, =4.249 84 10°; =4.249 18 X 10_;
=474978x 107, = 4.750 09X 10 =474939% 107,
55250 15% 10, =5.25035% 107 =5.249 50 x 107,
— =5750 52 % 10, =5.750 60 x 10°; =5.749 80 x 107,
=6.250 89 x 107, =6.250 86X 107, =6.250 00X 107,
=6.751 27X 10, =6.751 11x10 =6.750 21 x 10,
=7.251 64X 10 ; - =7.25137x 10, 2725042 % 10_;
= 7752 01% 10, 75162 %107 =7.750 62 107,
=8252 38 % 10, 25188 107, =8.250 83 % 107,
=8752 5% 10, 752 13x 107 =8.751 03x 10",
29253 13x 10, =9.25239 X 10_; =9.251 24 10,
=9.753 50 X L .752 65 | m9.75145x10

Fig. 24 Approximate velocity fields for Example 3 at Ha = 10° with I = 0.2 (left), I = 0.5 (middle),
and | = 0.7 (right)
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Fig.

Iso value Iso value

-9.249 63x 107, -9.249 88X 10°s N
S S 1’
4745 38X 10°¢ -y X10°

4.746 21 x 107
99

PSS

8 I 0 8 | 6358 1070
764 81 x 1077

=1.026 60 x 107

et bl ool = 1176 73 107

w1777 59X 1072
2102773 10

25 Approximate magnetic fields for Example 3 at Ha = 10° with I = 0.2 (left), I = 0.5 (middle),
and | = 0.7 (right)

6 Conclusions

In this paper, an anisotropic adaptive FEM is proposed to solve the MHD duct flow at high
Hartmann numbers. The most distinguish feature of this method is that the layer information
from some directions is captured well such that the number of mesh vertices is dramatically
reduced for a given level of accuracy. Further, an adaptive algorithm is implemented for several
examples on a rectangular domain, where it is shown that even for high values of the Hartmann
number, this method gives accurate and stable results. Finally, we note that the anisotropic
adaptive FEM can be applied to channels with arbitrary cross-sections.
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