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Abstract This paper presents an anisotropic adaptive finite element method (FEM) to
solve the governing equations of steady magnetohydrodynamic (MHD) duct flow. A resid-
ual error estimator is presented for the standard FEM, and two-sided bounds on the error
independent of the aspect ratio of meshes are provided. Based on the Zienkiewicz-Zhu es-
timates, a computable anisotropic error indicator and an implement anisotropic adaptive
refinement for the MHD problem are derived at different values of the Hartmann number.
The most distinguishing feature of the method is that the layer information from some
directions is captured well such that the number of mesh vertices is dramatically reduced
for a given level of accuracy. Thus, this approach is more suitable for approximating
the layer problem at high Hartmann numbers. Numerical results show efficiency of the
algorithm.
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1 Introduction

The flow problem of viscous, incompressible, electrically conducting fluids in the channels
and ducts under a uniform oblique magnetic field is of great interest, because it has many
practical applications in the field of magnetohydrodynamics (MHD), such as the blood flow
control and measurements, MHD flowmeters, MHD power generation, and accelerators. Only
for some very special cases, the problem can be exactly solved. Therefore, for the sake of
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application, an effective numerical method to solve the MHD flow problem becomes an very
important research topic.

It is well-known that, for large values of the Hartmann number, the MHD flow problem
is convection-dominated such that the exact solution may display localized phenomena, such
as interior or boundary layers. For solving the MHD flow problem, there have been many
research works using various numerical methods, such as the finite element, finite difference,
and boundary element methods. The readers car refer to Refs. [1]–[2] and many references
cited therein. Unfortunately, because of the lack of stability or accuracy, most of conventional
numerical methods cannot solve the layer problems efficiently. In Ref. [1], it was pointed out that
the common deficiency among the existing numerical methods is that they produce accurate
results only in several special configurations for the MHD duct flow problems, but the Hartmann
number Ha cannot exceed about 102. However, in many industrial applications, the important
range of the Hartmann number is 102 < Ha < 106. For this reason, some seemingly robust
numerical methods with large Hartmann numbers were suggested, such as the stabilized finite
element method (FEM)[1] and least-squares FEM[2] using residual-free bubble functions. Even
so, for large Hartmann numbers, some spurious oscillations still appear near the boundary
layer regions when these two bubble-stabilized methods are used (see Refs. [1] and [2] or also
the discussion on this in Ref. [3]). Later, a tailored finite point method was proposed[3], and high
accuracy was achieved even for large Hartmann numbers. Beyond that, the boundary elements
method[4] and the two-level element free Galerkin method[5] were also presented for solving
the MHD duct flow problem at high Hartmann numbers, respectively. The theoretical error
analysis of these methods above remains seriously poor except for the least-squares FEM[2]. In
addition, those methods were only investigated on isotropic meshes where the aspect ratio of
mesh elements was uniformly bounded.

For such layer problems, a special anisotropic mesh adaptivity is more desirable, i.e., the
mesh elements should adapt in both size and shape in order to approximate the solution better.
There have been a well-developed literature on a posteriori error estimation but on isotropic
meshes (see Refs. [6] and [7] and the references therein). Some types of the posteriori error esti-
mate have already been extended to anisotropic meshes with large aspect ratio by Kunert[8–10],
but no anisotropic mesh refinements were made. Due to large aspect ratio, there appears
the alignment measure in a posteriori error estimation to quantify the alignment between the
solution and the mesh, which is one of the most important contributions of Kunert.

Based on a priori error estimate, the concept of metrics was mostly used in anisotropic mesh
adaptation[11–12]. A priori error analysis on anisotropic meshes can be found in Refs. [13] and
[14] and the references therein. Moreover, a posteriori error indicator was used in anisotropic
mesh adaptation[15]. The concept of metrics was combined with the solution of a dual prob-
lem and a posteriori error analysis in order to generate an adaptive mesh[16]. The metric
field was directly obtained from a posteriori error estimate and used in the anisotropic mesh
adaptation[17].

In this paper, we present an anisotropic adaptive FEM to solve the MHD duct flow problem
in a straight channel of uniform cross-section. By the analytic tools of Kunert[9], a residual
error estimator is proposed and provides two-sided bounds on the error on anisotropic meshes.
However, the error estimator is not available for anisotropic adaptive refinement, because it
cannot represent the contributions to the whole error in different directions, and the alignment
measure, in which the exact solution is contained, enters the upper error bound. In order to
use the alignment measure as a guide to design a proper anisotropic mesh, we reformulate
its definition and use the well-known Zienkiewicz-Zhu (Z-Z) estimates[6]. Then, a computable
anisotropic error indicator is derived, and the corresponding locally error indicators are used
to adjust the mesh sizes in different directions. Note that an analogous error indicator was
proposed for anisotropic adaptive refinement for elliptic and parabolic problems in Ref. [15].
Finally, we implement an adaptive algorithm using the software FREEFEM++[18] with the
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mesh generator Bamg[19] based on a right metric field obtained by the locally error estimates
and Z-Z estimates of the error gradient matrix. By this method, the layer information from
some directions can be well captured such that the number of mesh vertices is dramatically
reduced for a given level of accuracy. Numerical results confirm the error analysis.

The paper is organized as follows. We first specify our notation and give some prelimi-
nary results in Section 2. Section 3 is devoted to analytical tools, such as inverse inequalities,
alignment measure, and anisotropic interpolation estimates. An error estimator is proposed for
the MHD problem, and the two-sided bounds on the error are derived on anisotropic meshes
in Section 4. In Section 5, we derive an anisotropic error indicator and implement an adap-
tive algorithm. Therein, a series of numerical simulations for three test problems at different
Hartmann numbers are carried out to demonstrate effectiveness of the anisotropic adaptive
FEM.

2 Preliminaries

In this section, we give some notation and the anisotropic mesh description, present some
preliminary results, and finally introduce the model problem and its conforming discretization.
2.1 Notation

For a bounded domain Ω with the Lipschitz continuous boundary ∂Ω, let S be any given
open subset of Ω. For the spaces L2(S) and L2(S)2, the integral inner product and the norm
are denoted by (·, ·)S and ‖ · ‖S , respectively. If S = Ω, the subscript will be omitted. Let |S|
be the Lebesgue measure of S, and in particular, |s| is the length of a segment s. Pk(S) is the
space of polynomials of order k or less, where k is a given non-negative integer. For simplicity,
instead of x � cy and c1x � y � c2x, we use the abbreviated notation x � y and x ∼ y, where
the constants c, c1, and c2 are independent of x, y, the Hartmann number, and the mesh.

By F = {Th}, we denote a family of triangulations Th of Ω, where any two triangles are
either disjoint or share a common vertex or edge. Let Eh be the set of all edges of Th, let E int

h

be the set of interior, and let Eext
h be the set of boundary. We denote by Nh (N int

h , N ext
h )

the set of all (interior, boundary) vertices of Th. Define for a ∈ Nh, σ ∈ Eh, and K ∈ Th,
Ta := {L ∈ Th; a ∈ L}, Tσ := {L ∈ Th; σ ⊂ L}, and TK := {L ∈ Th; L∩K �= ∅}, respectively.
Furthermore, three auxiliary subdomains need to be defined by

ωa := ∪{L ∈ Ta}, ωσ := ∪{L ∈ Tσ}, ωK := ∪{L ∈ TK}.

Next, the notation nK always denotes the exterior unit normal vector for any given K ∈ Th,
and nσ denotes the unit normal vector for any given edge σ ∈ Eh, of which the orientation is
arbitrarily chosen but coinciding with the exterior normal of the domain Ω for boundary edges
and fixed for interior edges.

For a function ϕ and an edge σ ∈ E int
h shared by two triangles K and L, where nσ points

from K to L, we define the jump operator �·� through σ by

�ϕ� := (ϕ|K)|σ − (ϕ|L)|σ.

For any σ ∈ Eext
h , set �ϕ� := ϕ|σ.

2.2 Anisotropic meshes
For an arbitrary (anisotropic) triangle K ∈ Th, we enumerate its vertices such that P0P1 is

the longest edge and |P1P2| � |P0P2|. Moreover, we define two orthogonal vectors pi with the
length hi,K := |pi| (i = 1, 2), as shown in Fig. 1. Notice that h1,K � h2,K , set hmin,K := h2,K ,
and hmax,K := h1,K . For σ ⊂ ∂K, let

hσ,K :=
2|K|
|σ| .
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Define two 2 × 2 matrices AK and CK by
AK := (P0P1, P0P2), CK := (p1, p2).

Additionally, we require that the mesh Th satisfies the following requirements:
(i) The number of triangles contained in Ta is bounded uniformly for each fixed vertex

a ∈ Nh.
(ii) The dimension of adjacent triangles is close to each other, i.e.,

hi,K ∼ hi,L, K ∩ L �= ∅, i = 1, 2.

For convenience, for the common edge σ shared by two triangles K and L, set

hσ :=
hσ,K + hσ,L

2
, hmin,σ :=

hmin,K + hmin,L

2
.

An advantage of doing this is that they are no longer related to either of K or L but only to σ.
For the boundary edges, the definitions are changed in the obvious way. Obviously, they satisfy
hσ ∼ hσ,K ∼ hσ,L and hmin,σ ∼ hmin,K ∼ hmin,L. For more details on anisotropic meshes, see
Refs. [8] and [9].

Fig. 1 Triangle K

2.3 Definition of problem and its conforming discretization
In a straight channel of a uniform cross-section Ω, we assume that there exists a laminar

fully developed flow of a viscous, incompressible, and electrically conducting fluid. Let u be the
velocity, and let B be the induced magnetic field. Here, the direction of the uniform transverse
applied magnetic field B0 may be arbitrary to the x-axis, and the fields u and B are parallel to
the z-axis. Further, The fluid is driven down by a constant pressure gradient. The governing
equations for the above duct flow in a dimensionless form with suitable boundary conditions
can be posed as follows[4,20]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Δu − Ha a · ∇B = 1 in Ω,

− ΔB − Ha a · ∇u = 0 in Ω,

u = 0 on ∂Ω,

B = 0 on ΓD,

∂B

∂n
= 0 on ΓN,

(1)

where Ha = B0l(δ/ν)1/2 is the Hartmann number, l is the characteristic length of the duct,
B0 is the intensity of the external magnetic field, and ν and δ are the viscosity coefficient and
electric conductivity of the fluid, respectively. a = (cosα, sin α)T, where α is the angle between
the x-axis and the externally applied magnetic field B0. ∂Ω = ΓD ∪ ΓN, where ΓD ∩ ΓN = ∅

and ΓD has a positive measure. We call ΓN the conducting part and ΓD the insulated part of
the boundary ∂Ω.

Let W0B(Ω) := H1
0 (Ω) × H1

B(Ω), where two particular subspaces of H1(Ω) are

H1
0 (Ω) := {v ∈ H1(Ω); v|∂Ω = 0},

H1
B(Ω) := {Q ∈ H1(Ω); Q|ΓD = 0}.
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Due to the Poincaré inequality, the space W0B(Ω) will be equipped with the product norm,

‖(v, Q)‖W :=
(
‖∇v‖2 + ‖∇Q‖2

)1/2
, (v, Q) ∈ W0B(Ω).

The weak form of the problem (1) is to find (u, B) ∈ W0B(Ω) such that

(∇u,∇v) − Ha(a · ∇B, v) + (∇B,∇Q) − Ha(a · ∇u, Q) = (1, v), ∀(v, Q) ∈ W0B(Ω). (2)

In order to define the finite element approximation, let V h(Ω) be a subspace of H1(Ω)
consisting of continuous piecewise affine functions on the mesh Th, and

Wh
0B(Ω) :=

(
V h(Ω) ∩ H1

0 (Ω)
)
×

(
V h(Ω) ∩ H1

B(Ω)
)
.

Then, the standard FEM is to find (uh, Bh) ∈ Wh
0B(Ω) such that{

(∇uh,∇vh) − Ha(a · ∇Bh, vh) + (∇Bh,∇Qh) − Ha(a · ∇uh, Qh)

= (1, vh), ∀(vh, Qh) ∈ Wh
0B(Ω).

(3)

The existence and uniqueness of solutions to (2) and (3) can be easily obtained by the well-
known Lax-Milgram lemma. A priori error analysis can be found in Ref. [21].

3 Analytical tools

In order to treat anisotropic elements, some analytical tools in the anisotropic setting have
to be introduced here, which are taken from Refs. [8] and [9].
3.1 Inverse inequalities

Inverse inequalities for bubble functions are very important in deriving lower error bounds.
As usual, we first introduce the bubble functions[7]. For an arbitrary triangle K, denote the
barycentric coordinates by λK,1, λK,2, and λK,3. We define the element bubble function bK by

bK := 27λK,1λK,2λK,3 on K.

Let σ be an inner edge shared by K1 and K2. We here enumerate all the vertices of K1 and K2

such that the two vertices of σ are first numbered. We define the edge bubble function bσ by

bσ := 4λKi,1λKi,2 on Ki (i = 1, 2).

Obvious modifications need to be done for boundary edges. For simplicity, bK and bσ are
assumed to be extended by zero outside their original domain of definition.

For a given edge σ of a triangle K, an extension operator Fext : P0(σ) → P0(K) is defined
as follows:

Fext(ϕ)(x) := ϕ|σ ≡ const.

By standard scaling arguments, we can easily derive the following anisotropic inverse inequali-
ties.

Lemma 1 Assume that ϕK ∈ P0(K) and ϕσ ∈ P0(σ), where σ ⊂ ∂K. Then,

‖b1/2
K ϕK‖K ∼ ‖ϕK‖K ,

‖∇(bKϕK)‖K � h−1
min,K‖ϕK‖K ,

‖b1/2
σ ϕσ‖σ ∼ ‖ϕσ‖σ,

‖Fext(ϕσ)bσ‖K ∼ h1/2
σ ‖ϕσ‖σ,

‖∇(Fext(ϕσ)bσ)‖K � h1/2
σ h−1

min,K‖ϕσ‖σ.
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3.2 Alignment measure and anisotropic interpolation estimates
From a heuristic point of view, if the (directional) derivative of the solution displays little

change in some direction, in that direction, we should stretch the mesh elements. The better
the alignment is between the anisotropic mesh and the anisotropy of solution, the more accurate
the error estimates can be. All practical applications intuitively follow this concept. Next, we
should introduce the alignment measure m1(v, Th) in order to quantify this alignment.

For v ∈ H1(Ω) and a family of triangulations {Th}, the alignment measure m1 : H1(Ω) ×
{Th} → R is defined by

m1(v, Th) :=

( ∑
K∈Th

h−2
min,K‖C�

K∇v‖2
K

)1/2

‖∇v‖ . (4)

The alignment measure has the following property:

1 � m1(v, Th) � max
K∈Th

hmax,K

hmin,K
.

The above property implies that, if the mesh Th is well aligned with an anisotropic function v,
it leads to a small alignment measure. In practice, for sensible anisotropic meshes, one almost
always obtains m1(v, Th) ∼ 1. In this paper, we should apply this property to anisotropic mesh
adaption (see numerical experiments in Section 5).

Consider a node a ∈ Nh. The local L2-projection Pa : H1(ωa) → P0(ωa) is uniquely defined
by

∫
ωa

(v − Pav) = 0. Then, the Clément interpolation operator I0 : H1
0 (Ω) → V h(Ω) ∩ H1

0 (Ω)
is defined by

I0v :=
∑

a∈N int
h

(Pav)(a)λa,

and IB : H1
B(Ω) → V h(Ω) ∩ H1

B(Ω) by

IBQ :=
∑

a∈N int
h ∪N ext

N

(PaQ)(a)λa,

where λa is the (piecewise linear) basis function related to the vertex a, and N ext
N := {a ∈

N ext
h ; a ∈ ΓN}.
Finally, we state the anisotropic interpolation error estimates based on the alignment mea-

sure.
Lemma 2 For all functions v ∈ H1

0 (Ω) and Q ∈ H1
B(Ω), there hold∑

K∈Th

h−2
min,K‖v − I0v‖2

K � m1(v, Th)2‖∇v‖2, (5)

∑
σ∈E int

h

hσ

h2
min,σ

‖v − I0v‖2
σ � m1(v, Th)2‖∇v‖2, (6)

∑
K∈Th

h−2
min,K‖Q − IBQ‖2

K � m1(Q, Th)2‖∇Q‖2, (7)

∑
σ∈E int

h ∪Eext
N

hσ

h2
min,σ

‖Q − IBQ‖2
σ � m1(Q, Th)2‖∇Q‖2, (8)

where Eext
N := {σ ∈ Eext

h ; σ ⊂ ΓN}.
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4 Residual error estimation

In this section, we present the residual error estimator for the conforming approximation (3)
and show that it provides two-sided bounds on the error ‖(u − uh, B − Bh)‖W on anisotropic
meshes.

Let (uh, Bh) be the conforming finite element approximation. Here, we define the element
residuals over an element K by

R1,K := 1 + Δuh + Ha a · ∇Bh,

R2,K := ΔBh + Ha a · ∇uh,

and edge residuals by

R1,σ :=

⎧⎨⎩
� ∂uh

∂nσ

�
, if σ ∈ E int

h ,

0, others,

R2,σ :=

⎧⎨⎩
�∂Bh

∂nσ

�
, if σ ∈ E int

h ∪ Eext
N ,

0, others.

Obviously, R1,K = 1+Ha a·∇Bh and R2,K = Ha a·∇uh hold for piecewise linear functions
as considered here.

The local residual error estimators η1,K and η2,K for an element K are defined by

η1,K := hmin,K

(
‖R1,K‖2

K +
∑

σ⊂∂K

h−1
σ ‖R1,σ‖2

σ

)1/2

, (9)

η2,K := hmin,K

(
‖R2,K‖2

K +
∑

σ⊂∂K

h−1
σ ‖R2,σ‖2

σ

)1/2

, (10)

and the global terms are

η2
1 :=

∑
K∈Th

η2
1,K , η2

2 :=
∑

K∈Th

η2
2,K ,

separately.

Theorem 3 Let (u, B) be the weak solution of problem (1), and let (uh, Bh) be the corre-
sponding finite element approximation defined by (3). Then, the error is bounded globally from
above by

‖(u − uh, B − Bh)‖W � m1(u − uh, Th)η1 + m1(B − Bh, Th)η2. (11)

Proof For the convenience of expression, we set eu = u − uh and eB = B − Bh. Since
(a · ∇eB, eu) = −(a · ∇eu, eB), due to integration by parts, the Galerkin orthogonality and
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Lemma 2 yield

‖(eu, eB)‖2
W

= (∇eu,∇(eu − I0eu)) − Ha(a · ∇eB, (eu − I0eu))
+ (∇eB ,∇(eB − IBeB)) − Ha(a · ∇eu, (eB − IBeB)),

y = (1 + Ha a · ∇Bh, eu − I0eu) − (∇uh,∇(eu − I0eu))
+ (Ha a · ∇uh, eB − IBeB) − (∇Bh,∇(eB − IBeB)),

yy =
∑

K∈Th

(R1,K , eu − I0eu) −
∑

σ∈E int
h

∫
σ

R1,σ(eu − I0eu)

+
∑

K∈Th

(R2,K , eB − IBeB) −
∑

σ∈E int
h ∪Eext

N

∫
σ

R2,σ(eB − IBeB),

y �
( ∑

K∈Th

h2
min,K‖R1,K‖2

K

)1/2( ∑
K∈Th

h−2
min,K‖eu − I0eu‖2

K

)1/2

+
( ∑

σ∈E int
h

h2
min,σ

hσ
‖R1,σ‖2

σ

)1/2( ∑
σ∈E int

h

hσ

h2
min,σ

‖eu − I0eu‖2
σ

)1/2

+
( ∑

K∈Th

h2
min,K‖R2,K‖2

K

)1/2( ∑
K∈Th

h−2
min,K‖eB − IBeB‖2

K

)1/2

+
( ∑

σ∈E int
h ∪Eext

N

h2
min,σ

hσ
‖R2,σ‖2

σ

)1/2( ∑
σ∈E int

h ∪Eext
N

hσ

h2
min,σ

‖eB − IBeB‖2
σ

)1/2

� m1(eu, Th)η1 + m1(eB, Th)η2,

which concludes the proof.
Theorem 4 Under the assumption of Theorem 3, the error is bounded locally from below

by

η1,K � ‖∇(u − uh)‖ωK + Ha‖B − Bh‖ωK , (12)

η2,K � ‖∇(B − Bh)‖ωK + Ha‖u − uh‖ωK (13)

for all K ∈ Th.
Proof The proof of lower error bounds needs to use the bubble functions and correspond-

ing anisotropic inverse inequalities (see Lemma 1). Here, we only need to prove the lower bound
(12). The remaining one can be derived analogously.

Observe R1,K = 1 + Δuh + Ha a · ∇Bh ∈ P0(K) and set

wK := R1,KbK ∈ P3(K) ∩ H1
0 (K).

The Cauchy-Schwarz inequality and integration by parts yield∫
K

R1,KwK = (∇(u − uh),∇wK)K − Ha(a · ∇(B − Bh), wK)K

= (∇(u − uh),∇wK)K + Ha(B − Bh, a · ∇wK)K

� (‖∇(u − uh)‖K + Ha‖B − Bh‖K)‖∇wK‖K . (14)

The inverse inequalities of Lemma 1 lead to∫
K

R1,KwK = ‖b1/2
K R1,K‖2

K ∼ ‖R1,K‖2
K ,

‖∇wK‖K = ‖∇(bKR1,K)‖K � h−1
min,K‖R1,K‖K ,
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which, together with (14), result in

hmin,K‖R1,K‖ � ‖∇(u − uh)‖K + Ha‖B − Bh‖K . (15)

For an inner edge σ ∈ E int
h , set

wσ := Fext(R1,σ)bσ ∈ P2(ωσ) ∩ H1
0 (ωσ).

Integration by parts and (2) for (v, Q) = (wσ , 0) implies that∫
σ

wσR1,σ =
∑

K∈Tσ

∫
∂K

wσ
∂uh

∂nK

=
∑

K∈Tσ

((∇uh,∇wσ)K + (Δuh, wσ)K)

=
∑

K∈Tσ

(−(∇(u − uh),∇wσ)K + Ha(a · ∇(B − Bh), wσ)K + (RK , wσ)K)

=
∑

K∈Tσ

(−(∇(u − uh),∇wσ)K − Ha(B − Bh, a · ∇wσ)K + (RK , wσ)K)

�
∑

K∈Tσ

(‖∇(u − uh)‖K‖∇wσ‖K

+ Ha‖B − Bh‖K‖∇wσ‖K + ‖RK‖K‖wσ‖K). (16)

Due to Lemma 1, we have the following relations:∫
σ

wσR1,σ = ‖b1/2
σ R1,σ‖2

σ ∼ ‖R1,σ‖2
σ,

‖∇wσ‖L = ‖∇(Fext(R1,σ)bσ)‖L � h1/2
σ h−1

min,L‖R1,σ‖σ, L ∈ Tσ,

‖wσ‖L = ‖Fext(R1,σ)bσ‖K ∼ h1/2
σ ‖R1,σ‖σ, L ∈ Tσ,

which, together with (15) and (16), lead to

hmin,Kh−1
σ ‖R1,σ‖σ � ‖∇(u − uh)‖ωσ + Ha‖B − Bh‖ωσ . (17)

For an edge on the Dirichlet boundary, nothing needs to be done because R1,σ = 0. Hence,
combining (15) and (17), we conclude the lower error bound (12).

Remark 1 From Theorems 3 and 4, the lower bounds contain additional L2-error terms
Ha‖u−uh‖ωK and Ha‖B−Bh‖ωK that do not appear in the upper error bound (11). Therefore,
the two-sided bounds on the error do not correspond completely. We point out that a very
similar situation can be found for error estimators for the convection-diffusion problem[10,22–23].
Moreover, only if the L2-error terms is dominated by the H1-error terms ‖∇(u − uh)‖ωK and
‖∇(B − Bh)‖ωK , the upper and lower bounds on the error will be of the same quality. Hence,
the additional L2-error terms are mainly due to the H1-error terms, which is confirmed by our
numerical experiments in the next section.

5 Numerical experiments

5.1 Anisotropic error indicator
Due to the large aspect ratio of anisotropic mesh, the alignment measure m1(·, Th) enters

the upper error bound in order to measure how well the alignment between the solution and
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the mesh does in the sense: the worse the alignment is, the larger the alignment measure is. In
other words, a sufficiently good mesh makes sure that the alignment measure is O(1), i.e.,

m1(·, Th) ∼ 1. (18)

In turn, the relation (18) can be used as a guide to design a proper anisotropic mesh. To this
end, the definition (4) of the alignment measure m1(v, Th) is reformulated by

m1(v, Th) :=
( ∑

K∈Th

h−2
min,K

(
h2

max,K

∥∥∥ ∂v

∂r1

∥∥∥2

K
+ h2

min,K

∥∥∥ ∂v

∂r2

∥∥∥2

K

))1/2/
‖∇v‖, (19)

where r1 and r2 are the corresponding unit vectors of p1 and p2 on each K ∈ Th, respectively,
and so CK = (p1, p2) = (hmax,Kr1, hmin,Kr2). Therefore, the relation (18) holds, provided that

∑
K∈Th

h2
max,K

∥∥∥ ∂v

∂r1

∥∥∥2

K
∼

∑
K∈Th

h2
min,K

∥∥∥ ∂v

∂r2

∥∥∥2

K
. (20)

This formulation can be used to indicate the direction of adaptive mesh refinement. More
specifically, due to (19), the upper error bound (11) holds as long as we have the following
estimate:

‖(u − uh, B − Bh)‖W � η, (21)

where

η2 :=
(
η(1)

)2 +
(
η(2)

)2
,

(
η(1)

)2 := η1

( ∑
K∈Th

h2
max,K

h2
min,K

∥∥∥∂(u − uh)
∂r1

∥∥∥2

K

)1/2

+ η2

( ∑
K∈Th

h2
max,K

h2
min,K

∥∥∥∂(B − Bh)
∂r1

∥∥∥2

K

)1/2

,

(
η(2)

)2 := η1

( ∑
K∈Th

∥∥∥∂(u − uh)
∂r2

∥∥∥2

K

)1/2

+ η2

( ∑
K∈Th

∥∥∥∂(B − Bh)
∂r2

∥∥∥2

K

)1/2

.

The relation (20) implies η(1) ∼ η(2). However, the estimate (21) is not available, be-
cause the exact solution (u, B) is usually unknown. To overcome this, we use the well-known
Z-Z estimate[6]. The gradient (∇u,∇B) of the exact solution can be replaced by a recovered
gradient (∇Ru,∇RB) by local averaging such as an approximate L2-projection of (∇uh,∇Bh)
onto V h × V h, i.e.,

∇Ru(a) :=
1

|ωa|

∫
ωa

∇uh, ∇RB(a) :=
1

|ωa|

∫
ωa

∇Bh, a ∈ Nh.

Numerical experiments in Ref. [24] showed that the averaging technique was quite more reli-
able on anisotropic meshes than expected. After this replacement, we introduce the global
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anisotropic error indicator η̃ and the local anisotropic error indicator η̃K by

η̃2 := η1

( ∑
K∈Th

h2
max,K

h2
min,K

‖(∇Ru −∇uh) · r1‖2
K

)1/2

+ η2

( ∑
K∈Th

h2
max,K

h2
min,K

‖(∇RB −∇Bh) · r1‖2
K

)1/2

+ η1

( ∑
K∈Th

‖(∇Ru −∇uh) · r2‖2
K

)1/2

+ η2

( ∑
K∈Th

‖∇RB −∇Bh) · r2‖2
K

)1/2

,

η̃4
K :=

(
η̃
(1)
K

)4 +
(
η̃
(2)
K

)4
,(

η̃
(1)
K

)2 :=
hmax,K

hmin,K

(
η1,K‖(∇Ru −∇uh) · r1‖K + η2,K‖(∇RB −∇Bh) · r1‖K

)
,

(
η̃
(2)
K

)2 :=
(
η1,K‖(∇Ru −∇uh) · r2‖K + η2,K‖∇RB −∇Bh) · r2‖K

)
.

In conclusion, the relation (18) implies that the adaptive algorithm should be designed such
that the local anisotropic error indicators η̃

(1)
K and η̃

(2)
K satisfy, on each triangle K,(

η̃
(1)
K

)4 ∼
(
η̃
(2)
K

)4 ∼ 1
2
η̃4

K .

5.2 Adaptive algorithm
We should implement an adaptive algorithm using the software FREEFEM++[18] with the

mesh generator Bamg[19] based on a right metric field which will be built later. The goal of
this adaptive algorithm is to generate a suitable anisotropic mesh so that the relative estimated
error is close to a preset tolerance ϕTOL, i.e.,

0.75ϕTOL � η̃

‖(uh, Bh)‖W
� 1.25ϕTOL.

A sufficient condition to generate such an anisotropic mesh is to make sure that for all K ∈ Th,
it holds

1
|Th|

0.752ϕ2
TOL‖(uh, Bh)‖2

W � η̃2
K � 1

|Th|
1.252ϕ2

TOL‖(uh, Bh)‖2
W , (22)

where |Th| denotes the number of elements in Th, as well as the number |Nh| of mesh vertices
which will be used later. In order to get data at the mesh vertices, at each vertex a, we introduce
the anisotropic error indicator η̃a defined by

η̃a :=
( ∑

K∈Ta

η̃4
K

)1/4

.

Since ∑
a∈Nh

η̃4
a = 3

∑
K∈Th

η̃4
K ,

there holds (22), whenever we generate a mesh satisfying, for all vertices a ∈ Nh,

3
|Nh|2

0.754ϕTOL
4‖(uh, Bh)‖4

W � η̃4
a � 3

|Nh|2
1.254ϕTOL

4‖(uh, Bh)‖4
W .
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With the mesh generator Bamg, the metric field M is needed to be given at each vertex a
as continuous P1 finite element functions, namely, the two eigenvalues λ1,a, λ2,a (λ1,a � λ2,a)
and the corresponding eigenvectors r1,a, r2,a such that M = RTΛR, where

R(a) := (r1,a, r2,a), Λ(a) :=
[
λ1,a 0
0 λ2,a,

]
.

Then, in a vicinity of the vertex a, the wanted mesh size can be defined by the metric field M
such that the size h is equal to |x|/

√
xTM(a)x in the direction x ∈ R

2, where |x| :=
√

xTx.
Then, the adaptive algorithm is designed. First, the values η̃

(1)
a and η̃

(2)
a at all the vertices

a of the mesh are defined by

η̃(1)
a :=

( ∑
K∈Ta

(
η̃
(1)
K

)4
)1/4

, η̃(2)
a :=

( ∑
K∈Ta

(
η̃
(2)
K

)4
)1/4

.

Thus, the error at each vertex a in the direction of maximum stretching can be represented
by η̃

(1)
a , whereas the error at each vertex a in the direction of minimum stretching is denoted

by η̃
(2)
a . Second, we compute the value of mesh size h1,a (h2,a) for all vertices a ∈ Nh by

averaging all the values hmax,K (hmin,K) corresponding to the neighboring triangles K in Ta.
The algorithm is carried out as follows. For i = 1, 2, if

2
(
η̃(i)

a

)4
<

3
|Nh|2

0.754ϕ4
TOL‖(uh, Bh)‖4

W ,

then the value of λi,a is set to (3
2hi,a)−1. If

2
(
η̃(i)

a

)4
>

3
|Nh|2

1.254ϕ4
TOL‖(uh, Bh)‖4

W ,

then the value of λi,a is set to be (2
3hi,a)−1. Otherwise, λi,a is set to be h−1

i,a . Finally, for all
vertices a ∈ Nh, let r1,a and r2,a be, respectively, the unit eigenvectors corresponding to the
smallest and largest eigenvalues of the Z-Z estimates G̃a of the error gradient matrix defined
by an average

G̃a :=
1

|Ta|

∫
ωa

(∇Ru −∇uh)(∇Ru −∇uh)T +
1

|Ta|

∫
ωa

(∇RB −∇Bh)(∇RB −∇Bh)T.

With the resulting metric M, we build a new anisotropic mesh using Bamg, which should insure
mR

1 (u − uh, Th) ∼ 1 and mR
1 (B − Bh, Th) ∼ 1, where mR

1 (u − uh, Th) and mR
1 (B − Bh, Th) are

the Z-Z estimates of m1(u − uh, Th) and m1(B − Bh, Th) obtained by replacing the gradient
(∇u,∇B) of the exact solution by the recovered one (∇Ru,∇RB), i.e.,

mR
1 (u − uh, Th) :=

( ∑
K∈Th

h−2
min,K‖C�

K(∇Ru −∇uh)‖2
K

)1/2

‖∇Ru −∇uh‖
,

mR
1 (B − Bh, Th) :=

( ∑
K∈Th

h−2
min,K‖C�

K(∇RB −∇Bh)‖2
K

)1/2

‖∇RB −∇Bh‖
,

respectively. According to the numerical results of the next subsection, it always holds that both
mR

1 (u−uh, Th) and mR
1 (B−Bh, Th) are close to 1, which indicates that the anisotropy of meshes

is well adapted to the exact solution of the problem. Therefore, an efficient error estimation is
to be expected. In the future, we plan to extend such an efficient anisotropic adaptive FEM to
other problems, e.g., nonconforming FEMs[25–26] for fourth-order elliptic singular perturbation
problems with boundary layers[27].
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5.3 Numerical results
In this subsection, for the three test problems, a series of numerical simulations are performed

by the anisotropic adaptive FEM developed in this paper. In all the test problems, we consider
the domain Ω = (0, 1) × (0, 1) and set the tolerance ϕTOL = 0.01.

Example 1 (The Shercliff problem) For this example, there exists an analytic solution, and
the numerical data are available in Refs. [1] and [2] such that a comparison can be done between
the approximate solution and the exact solution. Here, the walls of the channel are insulated
(B = 0 on ∂Ω), and on the solid walls, the velocity is zero (u = 0 on ∂Ω). The external
magnetic field B0 is applied in the x-axis (α = 0) (see Fig. 2).

Fig. 2 Boundary conditions of Shercliff problem

For the Hartmann numbers Ha = 100 and Ha = 500, the comparisons are done between
the approximate solution (uh, Bh) and the exact solution (u, B) in Tables 1 and 2, respectively.
One can see that two results are comparable. In addition, Table 3 presents the corresponding
mesh information and Z-Z estimates of the alignment measures after some iterations during the
adaptation process. For the sake of comparison, the corresponding meshes and contour plots
for approximate solutions are shown in Figs. 3–4 for Ha = 100 and Ha = 500, respectively. It
is worth mentioning that the use of anisotropic adaptive FEM can capture the boundary or
interior layers in some directions and allow the number of vertices dramatically reduced for a
given level of accuracy. In the next two examples, the superior performance will be further
demonstrated for much larger Hartmann numbers, such as 103, 104, and 105.

Table 1 Approximate and exact solutions for Shercliff problem at Ha = 100

x y uh u Bh B

0.00 0.00 0.010 000 0 0.010 000 0 0.000 000 0 0.000 000 0

0.25 0.00 0.010 000 0 0.010 000 0 –0.002 500 0 –0.002 500 0

0.50 0.00 0.010 000 0 0.010 000 0 –0.005 000 0 –0.005 000 0

0.75 0.00 0.010 000 0 0.010 000 0 –0.007 500 0 –0.007 500 0

0.00 0.25 0.010 000 0 0.010 000 0 0.000 000 0 0.000 000 0

0.25 0.25 0.010 000 0 0.010 000 0 –0.002 500 0 –0.002 500 0

0.50 0.25 0.010 000 0 0.010 000 0 –0.005 000 0 –0.005 000 0

0.75 0.25 0.010 000 0 0.009 999 9 –0.007 500 0 –0.007 499 9

0.00 0.50 0.009 999 5 0.009 999 2 0.000 000 0 0.000 000 0

0.25 0.50 0.009 998 3 0.009 998 1 –0.002 498 2 –0.002 498 2

0.50 0.50 0.009 994 6 0.009 994 4 –0.004 994 6 –0.004 994 4

0.75 0.50 0.009 987 0 0.009 986 8 –0.007 487 0 –0.007 486 8

0.00 0.75 0.009 761 3 0.009 761 4 0.000 000 0 0.000 000 0

0.25 0.75 0.009 715 8 0.009 716 3 –0.002 303 3 –0.002 303 0

0.50 0.75 0.009 585 5 0.009 585 8 –0.004 602 3 –0.004 602 4

0.75 0.75 0.009 387 2 0.009 386 3 –0.006 887 6 –0.006 886 9
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Table 2 Approximate and exact solutions for Shercliff problem at Ha = 500

x y uh u Bh B

0.00 0.00 0.002 000 0 0.002 000 0 0.000 000 0 0.000 000 0
0.25 0.00 0.002 000 0 0.002 000 0 –0.000 500 0 –0.000 500 0
0.50 0.00 0.002 000 0 0.002 000 0 –0.000 999 9 –0.001 000 0
0.75 0.00 0.002 000 0 0.002 000 0 –0.001 500 0 –0.001 500 0
0.00 0.25 0.002 000 0 0.002 000 0 0.000 000 0 0.000 000 0
0.25 0.25 0.002 000 0 0.002 000 0 –0.000 500 0 –0.000 500 0
0.50 0.25 0.002 000 0 0.002 000 0 –0.001 000 0 –0.001 000 0
0.75 0.25 0.002 000 0 0.002 000 0 –0.001 500 0 –0.001 500 0
0.00 0.50 0.002 000 0 0.002 000 0 0.000 000 0 0.000 000 0
0.25 0.50 0.002 000 0 0.002 000 0 –0.000 500 0 –0.000 500 0
0.50 0.50 0.002 000 0 0.002 000 0 –0.001 000 0 –0.001 000 0
0.75 0.50 0.002 000 0 0.002 000 0 –0.001 500 0 –0.001 500 0
0.00 0.75 0.002 000 1 0.002 000 0 0.000 000 0 0.000 000 0
0.25 0.75 0.001 999 9 0.001 999 9 –0.000 499 9 –0.000 499 9
0.50 0.75 0.001 999 7 0.001 999 7 –0.000 999 7 –0.000 999 7
0.75 0.75 0.001 999 1 0.001 999 2 –0.001 499 1 –0.001 499 2

Table 3 Mesh information and Z-Z estimates of alignment measures for Shercliff problem

Ha Number of vertices Maximal aspect ratio mR
1 (u − uh, Th) mR

1 (B − Bh,Th)

100 37 266 5.3×103 1.36 1.41
500 21 799 3.7×104 1.36 1.40

Fig. 3 Corresponding meshes for Shercliff problem at Ha = 100 (left) and Ha = 500 (right)

Fig. 4 Approximate velocity fields for Shercliff problem at Ha = 100 (left) and Ha = 500 (right)
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Fig. 5 Approximate magnetic fields for Shercliff problem at Ha = 100 (left) and Ha = 500 (right)

Example 2 (The two-dimensional square-channel flow with an oblique applied magnetic
field) The same MHD problem as Example 1 is considered, except that the externally applied
magnetic field B0 has various positive angles α with the x-axis (see Fig. 6). Here, for the values
of α = 0, π/4, and π/3, numerical computations are carried out at different Hartmann numbers.
The resulting meshes and contour plots for approximate solutions generated by the anisotropic
adaptive FEM are presented at Hartmann numbers Ha = 103, 104, and 105, respectively, in
Figs. 7–15. The numerical results show that when Hartmann number increases, the boundary or
interior layers are well dealt with by anisotropic meshes. The corresponding mesh information
and approximate alignment measures are presented in Tables 4–6.

Fig. 6 Boundary conditions of Example 2

Table 4 Mesh information and Z-Z estimates of alignment measures for Example 2 at Ha = 103

α Number of vertices Maximal aspect ratio mR
1 (u − uh, Th) mR

1 (B − Bh,Th)

0 19 950 7.4×104 1.38 1.40
π/4 43 135 4.1×103 1.34 1.34
π/3 42 652 2.9×104 1.35 1.35

Table 5 Mesh information and Z-Z estimates of alignment measures for Example 2 at Ha = 104

α Number of vertices Maximal aspect ratio mR
1 (u − uh, Th) mR

1 (B − Bh,Th)

0 65 502 9.7×105 1.31 1.33
π/4 68 042 1.1×105 1.36 1.36
π/3 63 904 4.5×104 1.32 1.32
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Table 6 Mesh information and Z-Z estimates of alignment measures for Example 2 at Ha = 105

α Number of vertices Maximal aspect ratio mR
1 (u − uh, Th) mR

1 (B − Bh,Th)

0 134 734 2.1×106 1.27 1.28
π/4 107 130 2.7×105 1.27 1.28
π/3 102 643 1.9×106 1.26 1.26

Fig. 7 Corresponding meshes for Example 2 at Ha = 103 with α = 0 (left), α = π/4 (middle), and
α = π/3 (right)

Fig. 8 Approximate velocity fields for Example 2 at M = 103 with α = 0 (left), α = π/4 (middle),
and α = π/3 (right)

Fig. 9 Approximate magnetic fields for Example 2 at M = 103 with α = 0 (left), α = π/4 (middle),
and α = π/3 (right)

Fig. 10 Corresponding meshes for Example 2 at Ha = 104 with α = 0 (left), α = π/4 (middle), and
α = π/3 (right)
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Fig. 11 Approximate velocity fields for Example 2 at Ha = 104 with α = 0 (left), α = π/4 (middle),
and α = π/3 (right)

Fig. 12 Approximate magnetic fields for Example 2 at Ha = 104 with α = 0 (left), α = π/4 (middle),
and α = π/3 (right)

Fig. 13 Corresponding meshes for Example 2 at Ha = 105 with α = 0 (left), α = π/4 (middle), and
α = π/3 (right)

Fig. 14 Approximate velocity fields for Example 2 at Ha = 105 with α = 0 (left), α = π/4 (middle),
and α = π/3 (right)
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Fig. 15 Approximate magnetic fields for Example 2 at Ha = 105 with α = 0 (left), α = π/4 (middle),
and α = π/3 (right)

Example 3 (The two-dimensional square-channel flow with a partly conducting boundary)
Here, the external magnetic field B0 is perpendicular to the wall at x = −1 (i.e., α = 0). For
a length 2l at the center, the wall is electrically insulated (see Fig. 16). In Figs. 17–25, the
anisotropic meshes and contour plots for approximate solutions are presented for l = 0.2, 0.5,
and 0.7 at different Hartmann numbers (Ha = 103, 104, and 105), respectively. The correspond-
ing mesh information and approximate alignment measures are presented in Tables 7–9.

Fig. 16 Boundary conditions of Example 3

Table 7 Mesh information and Z-Z estimates of alignment measures for Example 3 at Ha = 103

l Number of vertices Maximal aspect ratio mR
1 (u − uh,Th) mR

1 (B − Bh, Th)

0.2 66 753 3.3×104 1.37 1.39
0.5 82 971 1.7×104 1.38 1.41
0.7 107 763 1.3×104 1.38 1.41

Table 8 Mesh information and Z-Z estimates of alignment measures for Example 3 at Ha = 104

l Number of vertices Maximal aspect ratio mR
1 (u − uh,Th) mR

1 (B − Bh, Th)

0.2 66 662 2.1×105 1.33 1.35
0.5 72 563 1.4×105 1.34 1.36
0.7 83 369 7.9×104 1.36 1.38

Table 9 Mesh information and Z-Z estimates of alignment measures for Example 3 at Ha = 105

l Number of vertices Maximal aspect ratio mR
1 (u − uh,Th) mR

1 (B − Bh, Th)

0.2 107 933 1.5×106 1.28 1.30
0.5 101 330 9.4×105 1.29 1.31
0.7 118 050 6.1×105 1.30 1.32
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Fig. 17 Corresponding meshes for Example 3 at Ha = 103 with l = 0.2 (left), l = 0.5 (middle), and
l = 0.7 (right)

Fig. 18 Approximate velocity fields for Example 3 at Ha = 103 with l = 0.2 (left), l = 0.5 (middle),
and l = 0.7 (right)

Fig. 19 Approximate magnetic fields for Example 3 at Ha = 103 with l = 0.2 (left), l = 0.5 (middle),
and l = 0.7 (right)

Fig. 20 Corresponding meshes for Example 3 at Ha = 104 with l = 0.2 (left), l = 0.5 (middle), and
l = 0.7 (right)
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Fig. 21 Approximate velocity fields for Example 3 at Ha = 104 with l = 0.2 (left), l = 0.5 (middle),
and l = 0.7 (right)

Fig. 22 Approximate magnetic fields for Example 3 at Ha = 104 with l = 0.2 (left), l = 0.5 (middle),
and l = 0.7 (right)

Fig. 23 Corresponding meshes for Example 3 at Ha = 105 with l = 0.2 (left), l = 0.5 (middle), and
l = 0.7 (right)

Fig. 24 Approximate velocity fields for Example 3 at Ha = 105 with l = 0.2 (left), l = 0.5 (middle),
and l = 0.7 (right)
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Fig. 25 Approximate magnetic fields for Example 3 at Ha = 105 with l = 0.2 (left), l = 0.5 (middle),
and l = 0.7 (right)

6 Conclusions

In this paper, an anisotropic adaptive FEM is proposed to solve the MHD duct flow at high
Hartmann numbers. The most distinguish feature of this method is that the layer information
from some directions is captured well such that the number of mesh vertices is dramatically
reduced for a given level of accuracy. Further, an adaptive algorithm is implemented for several
examples on a rectangular domain, where it is shown that even for high values of the Hartmann
number, this method gives accurate and stable results. Finally, we note that the anisotropic
adaptive FEM can be applied to channels with arbitrary cross-sections.
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