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ABSTRACT. An adaptive finite element method is presented for the elastic scattering of a time-harmonic plane

wave by a periodic and rigid surface. First, the unbounded physical domain is truncated into a bounded computa-

tional domain by introducing the perfectly matched layer (PML) technique. The well-posedness and exponential

convergence of the solution are established for the truncated PML problem by developing an equivalent transpar-

ent boundary condition. Second, an a posteriori error estimate is deduced for the discrete problem and is used to

determine the mesh for refinements and to determine the PML parameters. Numerical experiments are included

to demonstrate the competitive behavior of the proposed adaptive method.

1. INTRODUCTION

The scattering theory in periodic diffractive structures, which are known as diffraction gratings, has many

significant applications in optical industry [7, 8]. The time-harmonic grating problems have been studied

extensively by many researchers for acoustic, electromagnetic, and elastic waves [1,2,4,5,15,22–24,29,32].

The underlying equations of the waves are the Helmholtz equation, the Maxwell equations, and the Navier

equation, respectively. This paper is concerned with the numerical solution of the elastic wave scattering

problem in a periodic structure. The problem has two fundamental challenges. The first one is to truncate

the unbounded physical domain into a bounded computational domain. The second one is the singularity of

the solution due to nonsmooth grating surfaces. Hence, the goal of this work is two fold. First, we adopt the

perfectly matched layer (PML) technique to handle the domain truncation. Second, we use an a posteriori

error analysis and design a finite element method with adaptive mesh refinements to deal with the singularity

of the solution.

The research on the PML technique has undergone a tremendous development since Bérenger proposed

a PML for solving the time-dependent Maxwell equations [11]. The basis idea of the PML technique is

to surround the domain of interest by a layer of finite thickness fictitious material which absorbs all the

waves propagating from inside the computational domain. When the waves reach the outer boundary of

the PML region, their energies are so small that the simple homogeneous Dirichlet boundary conditions

can be imposed. Various constructions of PML absorbing layers have been proposed and studied for the

acoustic, electromagnetic, and elastic wave scattering problems [10, 12, 13, 18–21, 25, 27, 28, 31]. Combined

with the PML technique, an effective adaptive finite element method was proposed in [6, 16] to solve the

two-dimensional diffraction grating problem. Later, the method was extended to solve the three-dimensional

diffraction grating problem [9], and was adopted to solve the acoustic and electromagnetic obstacle scattering

problems [14,17]. Based on the a posteriori error analysis, the adaptive finite element PML method provides

an effective numerical strategy which can be used to solve many other scattering problems which are imposed

in unbounded domains.
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In this paper, we explore the possibility of applying such an adaptive finite element PML method to solve

the diffraction grating problem of elastic waves. Specifically, we consider the incidence of a time-harmonic

elastic plane wave on a one-dimensional grating surface, which is assumed to be elastically rigid. The open

space, which is above the surface, is assumed to be filled with a homogeneous and isotropic elastic medium.

Using the quasi-periodicity of the solution and the transparent boundary condition, we formulate the scatter-

ing problem equivalently into a boundary value problem in a bounded domain. The conservation of energy

is proved for the model problem and is used to verify our numerical results when the exact solutions are

not available. Following the complex coordinate stretching, we study the truncated PML problem which

is an approximation to the original scattering problem. We develop the transparent boundary condition for

the truncated PML problem and show that it has a unique weak solution which converges exponentially to

the solution of the original scattering problem. Moreover, an a posteriori error estimate is deduced for the

discrete PML problem. It consists of the finite element error and the PML modeling error. The estimate

is used to design the adaptive finite element algorithm to choose elements for refinements and to determine

the PML parameters. Numerical experiments show that the proposed method can effectively overcome the

aforementioned two challenges.

This paper presents a nontrivial application of the adaptive finite element PML method for the grating prob-

lem from the Helmholtz (acoustic) and Maxwell (electromagnetic) equations to the Navier (elastic) equation.

The elastic wave equation is complicated due to the coexistence of compressional and shear waves that have

different wavenumbers and propagate at different speeds. In view of this physical feature, we introduce two

scalar potential functions to split the wave field into its compressional and shear parts via the Helmholtz

decomposition. As a consequence, the analysis is much more sophisticated than that for the Helmholtz equa-

tion or the Maxwell equations. We believe that this work not only enriches the range of applications for the

PML technique but also is a valued contribution to the family of numerical methods for solving elastic wave

scattering problems.

The paper is organized as follows. In section 2, we introduce the model problem of the elastic wave scat-

tering by a periodic surface and formulate it into a boundary value problem by using a transparent boundary

condition. The conservation of the total energy is proved for the propagating wave modes. In section 3, we

introduce the PML formulation and prove the well-posedness and convergence of the truncated PML prob-

lem. Section 4 is devoted to the finite element approximation and the a posteriori error estimate. In section 5,

we discuss the numerical implementation of our adaptive algorithm and present some numerical experiments

to illustrate the performance of the proposed method. The paper is concluded with some general remarks and

directions for future research in section 6.

2. PROBLEM FORMULATION

In this section, we introduce the model problem and present an exact transparent boundary condition to

reduce the problem into a boundary value problem in a bounded domain. The energy distribution will be

studied for the reflected propagating waves of the scattering problem.

2.1. Navier equation. Consider the elastic scattering of a time-harmonic plane wave by a periodic surface

S which is assumed to be Lipschitz continuous and elastically rigid. In this work, we consider the two-

dimensional problem by assuming that the surface is invariant in the z direction. The three-dimensional

problem will be studied as a separate work. Figure 1 shows the problem geometry in one period. Let x =
[x, y]⊤ ∈ R

2. Denote by Γ = {x ∈ R
2 : 0 < x < Λ, y = b} the artificial boundary above the scattering

surface, where Λ is the period and b is a constant. Let Ω be the bounded domain which is enclosed from

below and above by S and Γ, respectively. Finally, denote by Ωe = {x ∈ R
2 : 0 < x < Λ, y > b} the

exterior domain to Ω.

The open space above the surface is assumed to be filled with a homogeneous and isotropic elastic medium

with a unit mass density. The propagation of a time-harmonic elastic wave is governed by the Navier equation

µ∆u+ (λ+ µ)∇∇ · u+ ω2u = 0 in Ω ∪Ωe, (2.1)



ADAPTIVE PML FOR ELASTIC WAVES 3

S

Γ

Ω

y = b

FIGURE 1. Geometry of the scattering problem.

where ω > 0 is the angular frequency, µ and λ are the Lamé constants satisfying µ > 0 and λ+ µ > 0, and

u = [u1, u2]
⊤ is the displacement vector of the total field which satisfies

u = 0 on S. (2.2)

Let the surface be illuminated from above by either a time-harmonic compressional plane wave

uinc(x) = [sin θ, − cos θ]⊤eiκ1(x sin θ−y cos θ),

or a time-harmonic shear plane wave

uinc(x) = [cos θ, sin θ]⊤eiκ2(x sin θ−y cos θ),

where θ ∈ (−π/2, π/2) is the incident angle and

κ1 =
ω√

λ+ 2µ
, κ2 =

ω√
µ

(2.3)

are the compressional and shear wavenumbers, respectively. It can be verified that the incident wave also

satisfies the Navier equation:

µ∆uinc + (λ+ µ)∇∇ · uinc + ω2uinc = 0 in Ω ∪ Ωe. (2.4)

Remark 2.1. Our method works for either the compressional plane incident wave, or the shear plane incident

wave, or any linear combination of these two plane incident waves. For clarity, we will take the compressional

plane incident wave as an example to present the results in our subsequent analysis.

Motivated by uniqueness, we are interested in a quasi-periodic solution of u, i.e., u(x, y)e−iαx is periodic

in x with period Λ where α = κ1 sin θ. In addition, the following radiation condition is imposed: the total

displacement u consists of bounded outgoing waves plus the incident wave uinc in Ωe.

We introduce some notation and Sobolev spaces. Let u = [u1, u2]
⊤ and u be a vector and scalar function,

respectively. Define the Jacobian matrix of u as

∇u =

[

∂xu1 ∂yu1
∂xu2 ∂yu2

]

and two curl operators

curlu = ∂xu2 − ∂yu1, curlu = [∂yu,−∂xu]⊤.
Define a quasi-periodic functional space

H1
S,qp(Ω) = {u ∈ H1(Ω) : u(Λ, y) = u(0, y)eiαΛ, u = 0 on S},

which is a subspace of H1(Ω) with the norm ‖ · ‖H1(Ω). For any quasi-periodic function u defined on Γ, it

admits the Fourier series expansion

u(x) =
∑

n∈Z

u(n)eiαnx, u(n) =
1

Λ

∫ Λ

0
u(x)e−iαnxdx, αn = α+ n

(

2π

Λ

)

.
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We define a trace functional space Hs(Γ) with the norms given by

‖u‖Hs(Γ) =
(

Λ
∑

n∈Z

(1 + α2
n)

s|u(n)|2
)1/2

.

Let H1
S,qp(Ω)

2 and Hs(Γ)2 be the Cartesian product spaces equipped with the corresponding 2-norms of

H1
S,qp(Ω) and Hs(Γ), respectively. It is known that H−s(Γ)2 is the dual space of Hs(Γ)2 with respect to the

L2(Γ)2 inner product

〈u,v〉Γ =

∫

Γ
u · v̄ dx.

2.2. Boundary value problem. We wish to reduce the problem equivalently into a boundary value problem

in Ω by introducing an exact transparent boundary condition on Γ.

The total field u consists of the incident field uinc and the diffracted field v, i.e.,

u = uinc + v. (2.5)

Noting (2.5) and subtracting (2.4) from (2.1), we obtain the Navier equation for the diffracted field v:

µ∆v + (λ+ µ)∇∇ · v + ω2v = 0 in Ωe. (2.6)

For any solution v of (2.6), we introduce the Helmholtz decomposition to split it into the compressional and

shear parts:

v = ∇φ1 + curlφ2, (2.7)

where φ1 and φ2 are scalar potential functions. Substituting (2.7) into (2.6) gives

∇
(

(λ+ 2µ)∆φ1 + ω2φ1
)

+ curl(µ∆φ2 + ω2φ2) = 0,

which is fulfilled if φj satisfy the Helmholtz equation

∆φj + κ2jφj = 0, (2.8)

where κj is the wavenumber defined in (2.3).

Since v is a quasi-periodic function, we have from (2.7) that φj is also a quasi-periodic function in the x
direction with period Λ and it has the Fourier series expansion

φj(x, y) =
∑

n∈Z

φ
(n)
j (y)eiαnx. (2.9)

Plugging (2.9) into (2.8) yields

d2φ
(n)
j (y)

dy2
+
(

β
(n)
j

)2
φ
(n)
j (y) = 0, y > b, (2.10)

where

β
(n)
j =

{

(κ2j − α2
n)

1/2, |αn| < κj ,

i(α2
n − κ2j)

1/2, |αn| > κj .
(2.11)

Note that β
(0)
1 = β = κ1 cos θ. We assume that κj 6= |αn| for all n ∈ Z to exclude possible resonance.

Noting (2.11) and using the bounded outgoing radiation condition, we obtain the solution of (2.10):

φ
(n)
j (y) = φ

(n)
j (b)eiβ

(n)
j (y−b),

which gives Rayleigh’s expansion for φj :

φj(x, y) =
∑

n∈Z

φ
(n)
j (b)ei

(

αnx+β
(n)
j (y−b)

)

, y > b. (2.12)
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Combining (2.12) and the Helmholtz decomposition (2.7) yields

v(x, y) = i
∑

n∈Z

[

αn

β
(n)
1

]

φ
(n)
1 (b)ei

(

αnx+β
(n)
1 (y−b)

)

+

[

β
(n)
2

−αn

]

φ
(n)
2 (b)ei

(

αnx+β
(n)
2 (y−b)

)

. (2.13)

On the other hand, as a quasi-periodic function, the diffracted field v also has the Fourier series expansion

v(x, b) =
∑

n∈Z

v(n)(b)eiαnx. (2.14)

Substituting (2.14) and (2.13) into (2.7), we obtain a linear system of algebraic equations for φ
(n)
j (b):

[

iαn iβ
(n)
2

iβ
(n)
1 −iαn

] [

φ
(n)
1 (b)

φ
(n)
2 (b)

]

=

[

v
(n)
1 (b)

v
(n)
2 (b)

]

.

Solving the above equations via Cramer’s rule gives

φ
(n)
1 (b) = − i

χ(n)

(

αnv
(n)
1 (b) + β

(n)
2 v

(n)
2 (b)

)

, (2.15a)

φ
(n)
2 (b) = − i

χ(n)

(

β
(n)
1 v

(n)
1 (b)− αnv

(n)
2 (b)

)

, (2.15b)

where

χ(n) = α2
n + β

(n)
1 β

(n)
2 . (2.16)

Plugging (2.15) into (2.13), we obtain Rayleigh’s expansion for the diffracted field v in Ωe:

v(x, y) =
∑

n∈Z

1

χ(n)

[

α2
n αnβ

(n)
2

αnβ
(n)
1 β

(n)
1 β

(n)
2

]

v(n)(b)ei
(

αnx+β
(n)
1 (y−b)

)

+
1

χ(n)

[

β
(n)
1 β

(n)
2 −αnβ

(n)
2

−αnβ
(n)
1 α2

n

]

v(n)(b)ei
(

αnx+β
(n)
2 (y−b)

)

. (2.17)

Given a vector field v = [v1, v2]
⊤, we define a differential operator on Γ:

Dv = µ∂yv + (λ+ µ)[0, 1]⊤∇ · v = [µ∂yv1, (λ+ µ)∂xv1 + (λ+ 2µ)∂yv2]
⊤. (2.18)

Combining (2.18), (2.14), and (2.15), we deduce the transparent boundary condition

Dv = T v :=
∑

n∈Z

M (n)v(n)(b)eiαnx on Γ,

where the matrix

M (n) =
i

χ(n)

[

ω2β
(n)
1 µαnχ

(n) − ω2αn

ω2αn − µαnχ
(n) ω2β

(n)
2

]

.

Equivalently, we have the transparent boundary condition for the total field u:

Du = T u+ f on Γ,

where f = Duinc − T uinc.

The scattering problem can be reduced to the following boundary value problem:










µ∆u+ (λ+ µ)∇∇ · u+ ω2u = 0 in Ω,

u = 0 on S,

Du = T u+ f on Γ.

(2.19)

The weak formulation of (2.19) reads as follows: Find u ∈ H1
S,qp(Ω)

2 such that

a(u,v) = 〈f ,v〉Γ, ∀ v ∈ H1
S,qp(Ω)

2, (2.20)
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where the sesquilinear form a : H1
S,qp(Ω)

2 ×H1
S,qp(Ω)

2 → C is defined by

a(u,v) = µ

∫

Ω
∇u : ∇v̄ dx+ (λ+ µ)

∫

Ω
(∇ · u)(∇ · v̄) dx

−ω2

∫

Ω
u · v̄ dx− 〈Tu,v〉Γ. (2.21)

Here the bar denotes the complex conjugate and A : B = tr(AB⊤) is the Frobenius inner product of square

matrices A and B.

The existence of a unique weak solution u of (2.20) is discussed in [23]. In this paper, we assume that the

variational problem (2.20) admits a unique solution. It follows from the general theory in [3] that there exists

a constant γ1 > 0 such that the following inf-sup condition holds

sup
06=v∈H1

S,qp(Ω)2

|a(u,v)|
‖v‖H1(Ω)2

≥ γ1‖u‖H1(Ω)2 , ∀u ∈ H1
S,qp(Ω)

2. (2.22)

2.3. Energy distribution. We study the energy distribution for the propagating reflected wave modes of the

displacement. The result will be used to verify the accuracy of our numerical method when the analytic

solution is not available.

Denote by ν = (ν1, ν2)
⊤ and τ = (τ1, τ2)

⊤ the unit normal and tangential vectors on S, where τ1 = ν2

and τ2 = −ν1. Let ∆
(n)
j = |κ2j − α2

n|1/2 and Uj = {n : |αn| < κj}. We point out that U1 and U2 are the

collections of all the propagating modes for the compressional and shear waves, respectively. It is clear to

note that β
(n)
j = ∆

(n)
j for n ∈ Uj and β

(n)
j = i∆

(n)
j for n /∈ Uj .

Consider the Helmholtz decomposition for the total field:

u = ∇ϕ1 + curlϕ2. (2.23)

Substituting (2.23) into (2.1), we may verify that ϕj also satisfies the Helmholtz equation

∆ϕj + κ2jϕj = 0 in Ω ∪Ωe.

Using the boundary condition (2.2), we have

∂νϕ1 − ∂τϕ2 = 0 and ∂νϕ2 + ∂τϕ1 = 0 on S.

Correspondingly, we introduce the Helmholtz decomposition for the incident field:

uinc = ∇ψ1 + curlψ2,

which gives explicitly that

ψ1 = − 1

κ21
∇ · uinc = − i

κ1
ei(αx−βy), ψ2 =

1

κ22
curluinc = 0.

Hence we have

ϕ1 = φ1 + ψ1, ϕ2 = φ2.

Using the Rayleigh expansions (2.12), we get

ϕ1(x, y) = r0e
i(αx−βy) +

∑

n∈Z

r
(n)
1 ei

(

αnx+β
(n)
1 y
)

, (2.24)

ϕ2(x, y) =
∑

n∈Z

r
(n)
2 ei

(

αnx+β
(n)
2 y
)

, (2.25)

where

r0 = − i

κ1
, r

(n)
1 = φ

(n)
1 (b)e−iβ

(n)
1 b, r

(n)
2 = φ

(n)
2 (b)e−iβ

(n)
2 b.
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The grating efficiency is defined by

e
(n)
1 =

β
(n)
1 |r(n)1 |2
β|r0|2

, e
(n)
2 =

β
(n)
2 |r(n)2 |2
β|r0|2

, (2.26)

where e
(n)
1 and e

(n)
2 are the efficiency of the n-th order reflected modes for the compressional wave and the

shear wave, respectively. We have the following conservation of energy.

Theorem 2.2. The total energy is conserved, i.e.,
∑

n∈U1

e
(n)
1 +

∑

n∈U2

e
(n)
2 = 1.

Proof. Consider the following coupled problem:










∆ϕj + κ2jϕj = 0 in Ω,

∂νϕ1 − ∂τϕ2 = 0 on S,

∂νϕ2 + ∂τϕ1 = 0 on S.

(2.27)

It is clear to note that ϕ̄j also satisfies the problem (2.27) since the wavenumber κj is real. Using Green’s

theorem and quasi-periodicity of the solution, we have

0 =

∫

Ω
(ϕ̄1∆ϕ1 − ϕ1∆ϕ̄1) dx+ (ϕ̄2∆ϕ2 − ϕ2∆ϕ̄2) dx

=

∫

S
(ϕ̄1∂νϕ1 − ϕ1∂νϕ̄1) ds+

∫

S
(ϕ̄2∂νϕ2 − ϕ2∂νϕ̄2) ds

+

∫

Γ
(ϕ̄1∂yϕ1 − ϕ1∂yϕ̄1) dx+

∫

Γ
(ϕ̄2∂yϕ2 − ϕ2∂yϕ̄2) dx. (2.28)

It follows from integration by parts and the boundary conditions on S in (2.27) that
∫

S
ϕ̄1∂νϕ1 ds =

∫

S
ϕ̄1∂τϕ2 ds = −

∫

S
ϕ2∂τ ϕ̄1 ds =

∫

S
ϕ2∂νϕ̄2 ds,

∫

S
ϕ̄2∂νϕ2 ds = −

∫

S
ϕ̄2∂τϕ1 ds =

∫

S
ϕ1∂τ ϕ̄2 ds =

∫

S
ϕ1∂νϕ̄1 ds,

which yields after taking the imaginary part of (2.28) that

Im

∫

Γ
(ϕ̄1∂yϕ1 + ϕ̄2∂yϕ2) dx = 0. (2.29)

It follows from (2.24) and (2.25) that we have

ϕ1(x, b) = r0e
i(αx−βb) +

∑

n∈U1

r
(n)
1 e

(

iαnx+i∆
(n)
1 b
)

+
∑

n/∈U1

r
(n)
1 e

(

iαnx−∆
(n)
1 b
)

,

ϕ2(x, b) =
∑

n∈U2

r
(n)
2 e

(

iαnx+i∆
(n)
2 b
)

+
∑

n/∈U2

r
(n)
2 e

(

iαnx−∆
(n)
2 b
)

,

and

∂yϕ1(x, b) = −iβr0e
i(αx−βb) +

∑

n∈U1

i∆
(n)
1 r

(n)
1 e

(

iαnx+i∆
(n)
1 b
)

−
∑

n/∈U1

∆
(n)
1 r

(n)
1 e

(

iαnx−∆
(n)
1 b
)

,

∂yϕ2(x, b) =
∑

n∈U2

i∆
(n)
2 r

(n)
2 e

(

iαnx+i∆
(n)
2 b
)

−
∑

n/∈U2

∆
(n)
2 r

(n)
2 e

(

iαnx−∆
(n)
2 b
)

.

Substituting the above four functions into (2.29) and using the orthogonality of Fourier series, we get
∑

n∈U1

∆
(n)
1 |r(n)1 |2 +

∑

n∈U2

∆
(n)
2 |r(n)2 |2 = β|r0|2,
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FIGURE 2. Geometry of the PML problem.

which completes the proof. �

In practice, the grating efficiencies (2.26) can be computed from (2.15) once the scattering problem is

solved and the diffracted field v is available on Γ.

3. THE PML PROBLEM

In this section, we shall introduce the PML formulation for the scattering problem and establish the well-

posedness of the PML problem. An error estimate will be shown for the solutions between the original

scattering problem and the PML problem.

3.1. PML formulation. Now we turn to the introduction of an absorbing PML layer. As is shown in Figure

2, the domain Ω is covered by a chunck of PML layer of thickness δ in Ωe. Let ρ(τ) = ρ1(τ) + iρ2(τ) be the

PML function which is continuous and satisfies

ρ1 = 1, ρ2 = 0 for τ < b and ρ1 ≥ 1, ρ2 > 0 otherwise.

We introduce the PML by complex coordinate stretching:

ŷ =

∫ y

0
ρ(τ)dτ. (3.1)

Let x̂ = (x, ŷ). Introduce the new field

û(x) =

{

uinc(x) + (u(x̂)− uinc(x̂)), x ∈ Ωe,

u(x̂), x ∈ Ω.
(3.2)

It is clear to note that û(x) = u(x) in Ω since x̂ = x in Ω. It can be verified from (2.1) and (3.1) that û

satisfies

L (û− uinc) = 0 in Ω ∪Ωe.

Here the PML differential operator

Lu :=

[

(λ+ 2µ)∂x(ρ(y)∂xu1) + µ∂y(ρ
−1(y)∂yu1) + (λ+ µ)∂2xyu2 + ω2ρ(y)u1

µ∂x(ρ(y)∂xu2) + (λ+ 2µ)∂y(ρ
−1(y)∂yu2) + (λ+ µ)∂2xyu1 + ω2ρ(y)u2

]

.

Define the PML region

ΩPML = {x ∈ R
2 : 0 < x < Λ, b < y < b+ δ}.

Clearly, we have from (3.2) and (2.17) that the outgoing wave û(x)−uinc(x) in Ωe decays exponentially as

y → ∞. Therefore, the homogeneous Dirichlet boundary condition can be imposed on

ΓPML = {x ∈ R
2 : 0 < x < Λ, y = b+ δ}
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to truncate the PML problem. Define the computational domain for the PML problem D = Ω ∪ ΩPML. We

arrive at the following truncated PML problem: Find a quasi-periodic solution û such that










L û = g in D,

û = uinc on ΓPML,

û = 0 on S,

(3.3)

where

g =

{

Luinc in ΩPML,

0 in Ω.

Define H1
0,qp(D) = {u ∈ H1

qp(D) : u = 0 on S ∪ ΓPML}. The weak formulation of the PML problem

(3.3) reads as follows: Find û ∈ H1
S,qp(D)2 such that û = uinc on ΓPML and

b(û,v) = −
∫

D
g · v̄dx, ∀ v ∈ H1

0,qp(D)2, (3.4)

where the sesquilinear form b : H1
qp(D)2 ×H1

qp(D)2 → C is defined by

b(u,v) =

∫

D
(λ+ 2µ)(ρ∂xu1∂xv̄1 + ρ−1∂yu2∂y v̄2) + µ(ρ−1∂yu1∂y v̄1 + ρ∂xu2∂xv̄2)

+(λ+ µ)(∂xu2∂yv̄1 + ∂xu1∂y v̄2)− ω2ρ(u1v̄1 + u2v̄2) dx.

We will reformulate the variational problem (3.4) in the domain D into an equivalent variational formu-

lation in the domain Ω, and discuss the existence and uniqueness of the weak solution to the equivalent

weak formulation. To do so, we need to introduce the transparent boundary condition for the truncated PML

problem.

3.2. Transparent boundary condition of the PML problem. Let v̂(x) = v(x̂) = u(x̂) − uinc(x̂). It is

clear to note that v̂ satisfies the Navier equation in the complex coordinate

µ∆
x̂
v̂ + (λ+ µ)∇

x̂
∇

x̂
· v̂ + ω2v̂ = 0 in ΩPML, (3.5)

where ∇
x̂
= [∂x, ∂ŷ]

⊤ with ∂ŷ = ρ−1(y)∂y .

We introduce the Helmholtz decomposition to the solution of (3.5):

v̂ = ∇
x̂
φ̂1 + curl

x̂
φ̂2, (3.6)

where curl
x̂
= [∂ŷ,−∂x]⊤ and φ̂j(x) = φj(x̂) satisfies the Helmholtz equation

∆
x̂
φ̂j + κ2j φ̂j = 0. (3.7)

Due to the quasi-periodicity of the solution, we have the Fourier series expansion

φ̂j(x, y) =
∑

n∈Z

φ̂
(n)
j (y)eiαnx. (3.8)

Substituting (3.8) into (3.7) yields

ρ−1 d

dy

(

ρ−1 d

dy
φ̂
(n)
j (y)

)

+ (β
(n)
j )2φ̂

(n)
j (y) = 0. (3.9)

The general solutions of (3.9) is

φ̂
(n)
j (y) = A

(n)
j eiβ

(n)
j

∫ y
b
ρ(τ)dτ +B

(n)
j e−iβ

(n)
j

∫ y
b
ρ(τ)dτ .

Denote by

ζ =

∫ b+δ

b
ρ(τ)dτ. (3.10)
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The coefficients A
(n)
j and B

(n)
j can be uniquely determined by solving the following linear equations

















αn αn β
(n)
2 −β(n)2

β
(n)
1 −β(n)1 −αn −αn

αne
iβ

(n)
1 ζ αne

−iβ
(n)
1 ζ β

(n)
2 eiβ

(n)
2 ζ −β(n)2 e−iβ

(n)
2 ζ

β
(n)
1 eiβ

(n)
1 ζ −β(n)1 e−iβ

(n)
1 ζ −αne

iβ
(n)
2 ζ −αne

−iβ
(n)
2 ζ

































A
(n)
1

B
(n)
1

A
(n)
2

B
(n)
2

















=















−iv̂
(n)
1 (b)

−iv̂
(n)
2 (b)

0

0















, (3.11)

where we have used the Helmholtz decomposition (3.6) and the homogeneous Dirichlet boundary condition

v̂(x, b+ δ) = 0 on ΓPML

due to the PML absorbing layer. Solving the linear equations (3.11), we obtain

A
(n)
1 =

i

2χ(n)χ̂(n)

{

− χ(n)(ε
(n)
1 + 2)(αnv̂

(n)
1 (b) + β

(n)
2 v̂

(n)
2 (b))

+ 2β
(n)
2 (ε

(n)
1 + 2δ

(n)
1 )(1 + δ

(n)
2 − η(n))(αnβ

(n)
1 v̂

(n)
1 (b) + α2

nv̂
(n)
2 (b))

}

,

B
(n)
1 =

i

2χ(n)χ̂(n)

{

χ(n)ε
(n)
1 (αnv̂

(n)
1 (b)− β

(n)
2 v̂

(n)
2 (b))

+ 2(ε
(n)
1 δ

(n)
2 + 2(δ

(n)
1 + δ

(n)
1 δ

(n)
2 )(αnβ

(n)
1 β

(n)
2 v̂

(n)
1 (b)− α2

nβ
(n)
2 v̂

(n)
2 (b))

}

,

A
(n)
2 =

i

2χ(n)χ̂(n)

{

χ(n)[ε
(n)
1 η(n) − 2(ε

(n)
1 + 1)(1 + δ

(n)
2 )](β

(n)
1 v̂

(n)
1 (b)− αnv̂

(n)
2 (b))

+ 2ε
(n)
1 (1 + δ

(n)
2 − η(n))((β

(n)
1 )2β

(n)
2 v̂

(n)
1 (b)− α3

nv̂
(n)
2 (b))

}

,

B
(n)
2 =

i

2χ(n)χ̂(n)

{

χ(n)[2δ
(n)
2 (ε

(n)
1 + 1)− ε

(n)
1 η(n)](β

(n)
1 v̂

(n)
1 (b) + αnv̂

(n)
2 (b))

− 2δ
(n)
2 (ε

(n)
1 + 2)((β

(n)
1 )2β

(n)
2 v̂

(n)
1 (b) + α3

nv̂
(n)
2 (b))

}

,

where














ε
(n)
j = coth(−iβ

(n)
j ζ)− 1,

δ
(n)
j = (eiβ

(n)
2 ζ − eiβ

(n)
1 ζ)/(e−iβ

(n)
j ζ − eiβ

(n)
j ζ),

η(n) = δ
(n)
2 /δ

(n)
1 = (e−iβ

(n)
1 ζ − eiβ

(n)
1 ζ)/(e−iβ

(n)
2 ζ − eiβ

(n)
2 ζ)

(3.12)

and

χ̂(n) = χ(n) + 4(δ
(n)
2 − δ

(n)
1 − δ

(n)
1 δ

(n)
2 )α2

nβ
(n)
1 β

(n)
2 /χ(n). (3.13)

Here, the hyperbolic cotangent function is defined as

coth(t) = (et + e−t)/(et − e−t).

Following the Helmholtz decomposition (3.6) again, we have

v̂(x, y) = i
∑

n∈Z

[

αn

β
(n)
1

]

A
(n)
1 ei

(

αnx+β
(n)
1

∫ y
b
ρ(τ)dτ

)

+

[

αn

−β(n)1

]

B
(n)
1 ei

(

αnx−β
(n)
1

∫ y
b
ρ(τ)dτ

)

[

β
(n)
2

−αn

]

A
(n)
2 ei

(

αnx+β
(n)
2

∫ y
b
ρ(τ)dτ

)

−
[

β
(n)
2

αn

]

B
(n)
2 ei

(

αnx−β
(n)
2

∫ y
b
ρ(τ)dτ

)

. (3.14)

Recall the differential operator D on Γ:

D v̂ = µ∂yv̂ + (λ+ µ)[0, 1]⊤∇ · v̂ = [µ∂y v̂1, (λ+ µ)∂xv̂1 + (λ+ 2µ)∂y v̂2]
⊤. (3.15)
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Combining (3.14) and (3.15), we derive the transparent boundary condition for the PML problem on Γ:

D v̂ = T
PMLv̂ :=

∑

n∈Z

M̂ (n)v̂(n)(b)eiαnx,

where the matrix

M̂ (n) =

[

m̂
(n)
11 m̂

(n)
12

m̂
(n)
21 m̂

(n)
22

]

.

Here the entries are

m̂
(n)
11 =

iω2β
(n)
1

χ̂(n)
+

iω2β
(n)
1

χ(n)χ̂(n)

[

ε
(n)
1 α2

n + (ε
(n)
1 η(n) + 2δ

(n)
2 )β

(n)
1 β

(n)
2

]

,

m̂
(n)
12 = iµαn − iω2αn

χ̂(n)
− iω2αnβ

(n)
1 β

(n)
2

χ(n)χ̂(n)

[

ε
(n)
1 (1 + 2δ

(n)
2 − η(n)) + 2δ

(n)
2

]

,

m̂
(n)
21 = −iµαn +

iω2αn

χ̂(n)
− iω2αnβ

(n)
1 β

(n)
2

χ(n)χ̂(n)

[

ε
(n)
1 (1 + 2δ

(n)
2 − η(n)) + 2(2δ

(n)
1 + 2δ

(n)
1 δ

(n)
2 − δ

(n)
2 )
]

,

m̂
(n)
22 =

iω2β
(n)
2

χ̂(n)
+

iω2β
(n)
2

χ(n)χ̂(n)

[

ε
(n)
1 β

(n)
1 β

(n)
2 + (ε

(n)
1 η(n) + 2δ

(n)
2 )α2

n

]

.

Equivalently, we have the transparent boundary condition for the total field û on Γ:

Dû = T
PMLû+ fPML,

where fPML = Dûinc − T PMLûinc.

The PML problem can be reduced to the following boundary value problem:











µ∆uPML + (λ+ µ)∇∇ · uPML + ω2uPML = 0 in Ω,

uPML = 0 on S,

DuPML = T PMLuPML + fPML on Γ.

(3.16)

The weak formulation of (3.16) is to find uPML ∈ H1
S,qp(Ω)

2 such that

aPML(uPML,v) = 〈fPML,v〉Γ, ∀ v ∈ H1
S,qp(Ω)

2, (3.17)

where the sesquilinear form aPML : H1
S,qp(Ω)

2 ×H1
S,qp(Ω)

2 → C is defined by

aPML(u,v) = µ

∫

Ω
∇u : ∇v̄dx+ (λ+ µ)

∫

Ω
(∇ · u)(∇ · v̄) dx

−ω2

∫

Ω
u · v̄ dx− 〈TPMLu,v〉Γ. (3.18)

The following lemma establishes the relationship between the variational problem (3.17) and the weak

formulation (3.4). The proof is straightforward based on our constructions of the transparent boundary con-

ditions for the PML problem. The details of the proof is omitted.

Lemma 3.1. Any solution û of the variational problem (3.4) restricted to Ω is a solution of the variational

(3.17); conversely, any solution uPML of the variational problem (3.17) can be uniquely extended to the

whole domain to be a solution û of the variational problem (3.4) in D.
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3.3. Convergence of the PML solution. Now we turn to estimating the error between uPML and u. The

key is to estimate the error of the boundary operators T PML and T .

Let

∆−
j = min{∆(n)

j : n ∈ Uj}, ∆+
j = min{∆(n)

j : n /∈ Uj}.
Denote

F =max
j=1,2

(

∆−
j

e
1
2
∆−

j Imζ − 1
,

∆+
j

e
1
2
∆+

j Reζ − 1

)

×max

{

12κ2, 16κ
4
2, 8 + 2κ22,

16κ32
κ21

,
24(16 + κ22)

2

κ21

}

.

The constant F will be used to control the modeling error between the PML problem and the original scatter-

ing problem. Once the incoming plane wave uinc is fixed, the quantities ∆−
j ,∆

+
j are fixed. Thus the constant

F approaches to zero exponentially as the PML parameters Reζ and Imζ tend to infinity. Recalling the def-

inition of ζ in (3.10), we know that Reζ and Imζ can be calculated by the medium property ρ(y), which is

usually taken as a power function:

ρ(y) = 1 + σ

(

y − b

δ

)m

if y ≥ b, m ≥ 1.

Thus we have

Reζ =

(

1 +
Reσ

m+ 1

)

δ, Imζ =

(

Imσ

m+ 1

)

δ.

In practice, we may pick some appropriate PML parameters σ and δ such that Reζ ≥ 1.

Lemma 3.2. For any u,v ∈ H1
S,qp(Ω)

2, we have

|〈(T PML − T )u,v〉Γ| ≤ F̂‖u‖L2(Γ)2‖v‖L2(Γ)2 ,

where F̂ = 17ω2F/κ41.

Proof. For any u,v ∈ H1
S,qp(Ω)

2, we have the following Fourier series expansions:

u(x, b) =
∑

n∈Z

u(n)(b)eiαnx, v(x, b) =
∑

n∈Z

v(n)(b)eiαnx,

which gives

‖u‖2L2(Γ)2 = Λ
∑

n∈Z

|u(n)(b)|2, ‖v‖2L2(Γ)2 = Λ
∑

n∈Z

|v(n)(b)|2.

It follows from the orthogonality of Fourier series, the Cauchy–Schwarz inequality, and Proposition A.4 that

we have

|〈(T PML − T )u,v〉Γ| = Λ
∑

n∈Z

(

(M (n) − M̂ (n))u(n)(b)
)

· v̄(n)(b)

≤
(

Λ
∑

n∈Z

‖M (n) − M̂ (n)‖22 |u(n)(b)|2
)1/2(

Λ
∑

n∈Z

|v(n)(b)|2
)1/2

≤ F̂‖u‖L2(Γ)2‖v‖L2(Γ)2 ,

which completes the proof. �

Let a = miny{x ∈ S}. Denote Ω̃ = {x ∈ R
2 : 0 < x < Λ, a < y < b}.

Lemma 3.3. For any u ∈ H1
S,qp(Ω)

2, we have

‖u‖L2(Γ)2 ≤ ‖u‖H1/2(Γ)2 ≤ γ2‖u‖H1(Ω)2 ,

where γ2 = (1 + (b− a)−1)1/2.
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Proof. First we have

(b− a)|u(b)|2 =

∫ b

a
|u(y)|2dy +

∫ b

a

∫ b

y

d

dt
|u(t)|2dtdy

≤
∫ b

a
|u(y)|2dy + (b− a)

∫ b

a
2|u(y)||u′(y)|dy,

which gives by applying the Cauchy–Schwarz inequality that

(1 + α2
n)

1/2|u(b)|2 ≤ γ22(1 + α2
n)

∫ b

a
|u(y)|2dy +

∫ b

a
|u′(y)|2dy.

Given u ∈ H1
S,qp(Ω)

2, we consider the zero extension

ũ =

{

u in Ω,

0 in Ω̃ \ Ω̄,
which has the Fourier series expansion

ũ(x, y) =
∑

n∈Z

ũ(n)(y)eiαnx in Ω̃.

By definitions, we have

‖ũ‖2
H1/2(Γ)2

= Λ
∑

n∈Z

(1 + α2
n)

1/2|ũ(n)(b)|2

and

‖ũ‖2
H1(Ω̃)2

= Λ
∑

n∈Z

∫ b

a
(1 + α2

n)|ũ(n)(y)|2 + |u(n)′(y)|2dy.

Noting ‖u‖H1/2(Γ)2 = ‖ũ‖H1/2(Γ)2 and ‖u‖H1(Ω)2 = ‖ũ‖H1(Ω̃)2 , we complete the proof by combining the

above estimates. �

Theorem 3.4. Let γ1 and γ2 be the constants in the inf-sup condition (2.22) and in Lemma 3.3, respectively.

If F̂ γ22 < γ1, then the PML variational problem (3.17) has a unique weak solution uPML, which satisfies the

error estimate

‖u− uPML‖Ω := sup
06=v∈H1

S,qp(Ω)2

|a(u− uPML,v)|
‖v‖H1(Ω)2

≤ F̂ γ2‖uPML − uinc‖L2(Γ)2 , (3.19)

where u is the unique weak solution of the variational problem (2.20).

Proof. It suffices to show the coercivity of the sesquilinear form aPML defined in (3.18) in order to prove the

unique solvability of the weak problem (3.17). Using Lemmas 3.2, 3.3 and the assumption F̂ γ22 < γ1, we get

for any u,v in H1
S,qp(Ω)

2 that

|aPML(u,v)| ≥ |a(u,v)| − |〈(T PML − T )u,v〉Γ|
≥ |a(u,v)| − F̂ γ22‖u‖H1(Ω)2‖v‖H1(Ω)2

≥
(

γ1 − F̂ γ22
)

‖u‖H1(Ω)2‖v‖H1(Ω)2 .

It remains to show the error estimate (3.19). It follows from (2.20)–(2.21) and (3.17)–(3.18) that

a(u− uPML,v) = a(u,v)− a(uPML,v)

= 〈f ,v〉Γ − 〈fPML,v〉Γ + aPML(uPML,v)− a(uPML,v)

= 〈(T PML − T )uinc,v〉Γ − 〈(T PML − T )uPML,v〉Γ
= 〈(T − T

PML)(uPML − uinc),v〉Γ,
which completes the proof upon using Lemmas 3.2 and 3.3. �
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We remark that the error estimate (3.19) is a posteriori in nature as it depends only on the PML solu-

tion uPML, which makes a posteriori error control possible. Moreover, the PML approximation error can

be reduced exponentially by either enlarging the thickness δ of the PML layers or enlarging the medium

parameters Reσ and Imσ.

4. FINITE ELEMENT APPROXIMATION

In this section, we consider the finite element approximation of the PML problem (3.4) and the a posterior

error estimate.

4.1. The discrete problem. Let Mh be a regular triangulation of the domain D. Every triangle T ∈ Mh is

considered as closed. We assume that any element T must be completely included in ΩPML or Ω. In order

to introduce a finite element space whose functions are quasi-periodic in the x direction, we require that if

(0, y) is a node on the left boundary, then (Λ, y) is also a node on the right boundary, and vice versa. Let

Vh(D) ⊂ H1
qp(D) be a conforming finite element space, and V̊h(D) = Vh(D) ∩H1

0,qp(D).

Denote by Πh : C(D̄)2 → Vh(D)2 the Scott–Zhang interpolation operator, which has the following

properties:

‖v −Πhv‖L2(T )2 ≤ ChT ‖∇v‖F (T̃ ), ‖v −Πhv‖L2(e)2 ≤ Ch1/2e ‖∇v‖F (ẽ),

where hT is the diameter of the triangle T , he is the length of the edge e, T̃ and ẽ are the unions of all elements

which have nonempty intersection with the element T and the edge e, respectively, and the Frobenius norm

of the Jacobian matrix ∇v is defined by

‖∇v‖F (G) =





2
∑

j=1

∫

G
|∇vj |2dx





1/2

.

The finite element approximation to the problem (3.4) reads as follows: Find ûh ∈ Vh(D)2 such that ûh =
Πhuinc on ΓPML, ûh = 0 on S, and

b(ûh,vh) = −
∫

D
g · v̄hdx, ∀ vh ∈ V̊h(D)2. (4.1)

Following the general theory in [3], the existence of a unique solution of the discrete problem (4.1) and the

finite element convergence analysis depend on the following discrete inf-sup condition:

sup
06=V̊h(D)2

|b(ûh,vh)|
‖vh‖H1(D)2

≥ γ0‖ûh‖H1(D)2 , ∀ ûh ∈ V̊h(D)2, (4.2)

where the constant γ0 > 0 is independent of the finite element mesh size. Since the continuous problem

(3.4) has a unique solution by Theorem 3.4, the sesquilinear form b : H1
qp(D)2 × H1

qp(D)2 → C satisfies

the continuous inf-sup condition. Then a general argument of Schatz [30] implies that (4.2) is valid for

sufficiently small mesh size h < h∗. Thanks to (4.2), an appropriate a priori error estimate can be derived

and the estimate depends on the regularity of the PML solution uPML. We assume that the discrete problem

(4.1) admits a unique solution ûh ∈ Vh(D)2, since we are interested in a posteriori error estimates and the

associated adaptive algorithm.

Denote by Bh the set of all sides that do not lie on ΓPML and S. For any T ∈ Mh, we introduce the

residual

RT := (L ûh + g)|T =

{

L (ûh − uinc)|T if T ∈ ΩPML,

L ûh|T otherwise.

For any interior side e ∈ Bh which is the common side of T1 and T2, we define the jump residual across e as

Je = Dν ûh|T1 − Dνûh|T2 ,
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where the unit normal vector ν on e points from T2 to T1 and the differential operator

Dνv = µ∂νv + (λ+ µ)(∇ · v)ν.
Define

Γleft = {x ∈ ∂D : x = 0}, Γright = {x ∈ ∂D : x = Λ}.
If e = Γleft ∩ ∂T for some element T ∈ Mh and e′ be the corresponding side on Γright, which is also a side

for some element T ′, then we define the jump residual as

Je =
[

µ∂x(ûh|T ) + (λ+ µ)[1, 0]⊤∇
x̂
· (ûh|T )

]

− e−iαΛ
[

µ∂x(ûh|T ′) + (λ+ µ)[1, 0]⊤∇
x̂
· (ûh|T ′)

]

,

Je′ =e
iαΛ
[

µ∂x(ûh|T ) + (λ+ µ)[1, 0]⊤∇
x̂
· (ûh|T )

]

−
[

µ∂x(ûh|T ′) + (λ+ µ)[1, 0]⊤∇
x̂
· (ûh|T ′)

]

.

For any T ∈ Mh, denote by ηT the local error estimator:

ηT = hT ‖RT ‖L2(T )2 +

(

1

2

∑

e⊂∂T

he‖Je‖2L2(e)2

)1/2

.

The following theorem is the main result of this paper.

Theorem 4.1. There exists a positive constant C such that the following a posteriori error estimate holds

‖u− ûh‖H1(Ω)2 ≤γ2F̂‖ûh − uinc‖L2(Γ)2 + γ2C2‖Πhuinc − uinc‖L2(ΓPML)2

+ C(1 + γ2C1)

(

∑

T∈Mh

η2T

)1/2

,

where the constants F̂ , γ2, and Cj are defined in Lemmas 3.2, 3.3, 4.3, 4.4, respectively.

4.2. A posteriori error analysis. For any v ∈ H1
qp(Ω)

2, we denote by ṽ the extension of v such that ṽ = v

in Ω and ṽ satisfies the following boundary value problem










µ∆
x̂
¯̃v + (λ+ µ)∇

x̂
∇

x̂
· ¯̃v + ω2¯̃v = 0 inΩPML,

ṽ(x, b) = v(x, b) on Γ,

ṽ(x, b+ δ) = 0 on ΓPML.

(4.3)

Lemma 4.2. For any u, v ∈ H1
qp(Ω)

2 we have
∫

Γ
T

PMLu · v̄dx =

∫

Γ
u · D ¯̃vdx.

Proof. Introduce a function ŵ ∈ H1
qp(Ω

PML)2 which satisfies










µ∆
x̂
ŵ + (λ+ µ)∇

x̂
∇

x̂
· ŵ + ω2ŵ = 0 in ΩPML,

ŵ(x, b) = u(x, b) on Γ,

ŵ(x, b+ δ) = 0 on ΓPML.

Using the definitions of the operators T PML and D , we have

T
PMLu = Dŵ on Γ.

On the other hand, it follows from Green’s formula and the extension that
∫

Γ
u · D ¯̃vdx =

∫

Γ
ŵ · D ¯̃vdx = −

∫

ΩPML

[

µ∇
x̂
¯̃v : ∇

x̂
ŵ + (λ+ µ)(∇

x̂
· ¯̃v)(∇

x̂
· ŵ)− ω2¯̃v · ŵ

]

dx

=

∫

ΩPML

[

µ∆
x̂
ŵ + (λ+ µ)∇

x̂
∇

x̂
· ŵ + ω2ŵ

]

· ¯̃vdx+

∫

Γ
Dŵ · ¯̃vdx

=

∫

Γ
Dŵ · ¯̃vdx =

∫

Γ
T

PMLu · ¯̃vdx,
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which completes the proof. �

Define H̊1
qp(D) = {v ∈ H1

qp(D) : v = 0 on ΓPML}. The following two lemmas are concerned with the

stability of the extension. The proofs are given in Appendix.

Lemma 4.3. Let v ∈ H1
qp(Ω)

2 and ṽ ∈ H̊1
qp(D)2 be its extension satisfying (4.3). Then there exists a

positive constant C1 such that

‖∇ṽ‖L2(ΩPML)2 ≤ γ2C1‖v‖H1(Ω)2 ,

Lemma 4.4. Let v ∈ H1
qp(Ω)

2 and ṽ ∈ H̊1
qp(D)2 be its extension satisfying (4.3). Then there exists a

positive constant C2 such that

‖D ṽ‖L2(ΓPML)2 ≤ γ2C2‖v‖H1(Ω)2 .

For simplicity, we shall write ṽ as v in the rest of the paper since no confusion of the notation is incurred.

Lemma 4.5 (Error representation formula). For any v ∈ H1
S,qp(Ω)

2, which is extended to be a function in

H1
0,qp(D)2 according to (4.3), and vh ∈ V̊h(D)2, we have

a(u− ûh,v) =−
∫

D
g · (v̄ − v̄h)dx− bD(ûh,v − vh)

+

∫

Γ
(T − T

PML)(ûh − uinc) · v̄dx+
∫

ΓPML

(Πhuinc − uinc) · Dx̂
v̄dx.

Proof. It follows from (2.21) and (3.4) that

a(u− ûh,v) = a(u− û,v) + a(û− ûh,v)

=

∫

Γ
(T − T

PML)(û− uinc) · v̄dx+ aPML(û− ûh,v)−
∫

Γ
(T − T

PML)(û− ûh) · v̄dx

=

∫

Γ
(T − T

PML)(ûh − uinc) · v̄dx+ aPML(û− ûh,v).

Using (2.21) and Lemma 4.2 give

aPML(û− ûh,v) = bΩ(û− ûh,v)−
∫

Γ
T

PML(û− ûh) · vdx = bΩ(û− ûh,v)−
∫

Γ
(û− ûh) · D v̄dx.

Since L v̄ = 0 in ΩPML, we deduce by Green’s formula that

bΩPML(û− ûh,v) = −
∫

Γ
(û− ûh) · D v̄dx+

∫

ΓPML

(û− ûh) · Dx̂
v̄dx.

Applying (3.4) and (4.1) yields

aPML(û− ûh,v) =bD(û− ûh,v)−
∫

ΓPML

(û− ûh) · Dx̂
v̄dx

=−
∫

D
g(v̄ − v̄h)dx− bD(ûh,v − vh)−

∫

ΓPML

(û− ûh) · Dx̂
v̄dx,

which completes the proof. �

Clearly, it suffices to evaluate all the terms in the error representation formula in order to show the posteriori

error estimate in the Theorem 4.1. Now we present the proof as follows.

Proof. Taking vh = Πhvh ∈ H1
0,qp(D)2 in Lemma 4.5 for the error representation formula, we have

a(u− ûh,v) =−
∫

D
g(v̄ − v̄h)dx− bD(ûh,v − vh)

+

∫

Γ
(T − T

PML)(ûh − uinc) · vdx+

∫

ΓPML

(Πhuinc − uinc) · Dx̂
v̄dx

=J1 + J2 + J3 + J4.
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1 Given the tolerance ǫ > 0, θ ∈ (0, 1);

2 Choose δ and σ such that F̂Λ1/2 ≤ 10−8;

3 Construct an initial triangulation Mh over Ω and compute error estimators;

4 While ǫh > ǫ do

5 choose M̂h ⊂ Mh according to the strategy η
M̂h

> θηMh
;

6 refine all the elements in M̂h and obtain a new mesh denoted still by Mh;

7 solve the discrete problem (4.1) on the new mesh Mh;

8 compute the corresponding error estimators;

9 End while.

TABLE 1. The adaptive FEM algorithm.

It follows from integration by parts that

J1 + J2 =
∑

T∈Mh

(

∫

T
RT · (v̄ −Πhv̄)dx+

∑

e⊂∂T

1

2

∫

e
Je · (v̄ −Πhv̄)dx

)

,

which gives after using the interpolation estimates and Lemma 4.3 that

|J1 + J2| ≤ C
∑

T∈Mh

ηT ‖∇v‖F (T̃ ) ≤ C(1 + γ2C0)





∑

T∈Mh

η2T





1/2

‖v‖H1(Ω)2 .

By Lemmas 3.2 and 3.3, we obtain

|J3| ≤ F̂‖ûh − uinc‖L2(Γ)2‖v‖L2(Γ)2 ≤ γ2F̂‖ûh − uinc‖L2(Γ)2‖v‖H1(Ω)2 .

Finally, it follows from Lemmas 3.3 and 4.4 that

|J4| ≤C1‖Πhuinc − uinc‖L2(ΓPML)2‖v‖L2(Γ)2

≤γ2C1‖Πhuinc − uinc‖L2(ΓPML)2‖v‖H1(Ω)2 .

The proof is completed by combining the above estimates �

5. NUMERICAL EXPERIMENTS

According to the discussion in section 3, we choose the PML medium property as the power function and

need to specify the thickness δ of the layers and the medium parameter σ. Recall from Theorem 4.1 that the a

posteriori error estimate consists of two parts: the PML error ǫPML and the finite element discretization error

ǫFEM, where

ǫPML = F̂‖uPML
h − uinc‖L2(Γ)2 , (5.1)

ǫFEM = F̂‖uPML
h − uinc‖L2(ΓPML)2 +





∑

T∈Mh

η2T





1/2

. (5.2)

In our implementation, we first choose δ and σ such that F̂Λ1/2 ≤ 10−8, which makes the PML error

negligible compared with the finite element discretization error. Once the PML region and the medium

property are fixed, we use the standard finite element adaptive strategy to modify the mesh according to the a

posteriori error estimate (5.2). For any T ∈ Mh, we define the local a posteriori error estimator

η̂T = ηT + F̂3‖Ihuinc − uinc‖L2(ΓPML∩∂T )2 .

The adaptive FEM algorithm is summarized in Table 1.
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FIGURE 3. Example 1: Quasi-optimality of the a priori (left) and a posteriori (right) error estimates.

In the following, we present two examples to demonstrate the numerical performance of the proposed algo-

rithm. We choose λ = 1 and µ = 2. The implementation of the adaptive algorithm is based on FreeFem++-

cs [26].

Example 1. We consider the simplest periodic structure, a straight line. In this situation, the exact so-

lution is available, which allows us to test the accuracy of the numerical algorithm. Assume that a plane

compressional plane wave uinc = [sin θ, − cos θ]⊤ei(αx−βy) is incident on the straight line y = 0, where

α = κ1 sin θ, β = κ1 cos θ, θ ∈ (−π/2, π/2) is the incident angle. It follows from the Navier equation,

Helmholtz decomposition, and outgoing radiation condition that we obtain the exact solution

u(x, y) = uinc(x, y)− [α, β]⊤R1e
i(αx+βy) − [β

(0)
2 , −α]⊤R2e

i(αx+β
(0)
2 y),

where β
(0)
2 = (κ22 − α2)1/2 and

R1 =

(

α sin θ − β
(0)
2 cos θ

α2 + ββ
(0)
2

)

, R2 =

(

α cos θ + β sin θ

α2 + ββ
(0)
2

)

.

In our experiment, the parameters are chosen as θ = π/6, ω = 2π, and the domain Ω = (0, 1) × (0, 1).
Figure 3 shows the curves of log ‖∇(u− ûk)‖L2(Ω)2 versus logNk for both the a priori and the a posteriori

error estimates, where Nk is the number of nodes of the mesh Mk. The result shows that the meshes and the

associated numerical complexity are quasi-optimal for the proposed method, i.e., log ‖∇(u− ûk)‖L2(Ω)2 =

CN
−1/2
k is valid asymptotically.

Example 2. This example is concerned with the scattering of the compressional plane wave uinc =
[sin θ, − cos θ]⊤ei(αx−βy) on a grating surface with a sharp angle. The problem geometry is shown in Figure

4. The parameters are the same as those for Example 1. Since there is no exact solution for this example,

we plot in Figure 5 the curves of log ‖∇(u − ûk)‖L2(Ω)2 versus logNk for the a posteriori error estimate,

where Nk is the number of nodes of the mesh Mk. Again, the result shows that the meshes and the associated

numerical complexity are quasi-optimal for the proposed method. To verify Theorem 2.2, we plot in Figure

6 the grating efficiencies and the errors of the total efficiency for different PML thickness. Figure 7 shows

the mesh and the amplitude of the associated solution after 6 adaptive iterations when the grating efficiency

is stabilized. The mesh has 8491 nodes. This example shows clearly the ability of the proposed method to

capture the singularity of the solution.

6. CONCLUDING REMARKS

We presented an adaptive finite element method with the PML absorbing layer technique for the elastic

wave scattering problem in a periodic structure. We showed that the truncated PML problem has a unique

weak solution which converges exponentially to the solution of the original problem by increasing the PML
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FIGURE 5. Example 2: Quasi-optimality of the a posteriori error estimates for different PML thickness.
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FIGURE 6. Example 2: (left) Grating efficiency with δ = 1.0; (right) Robustness of grating

efficiency with respect to the thickness of PML layers

parameters. We deduced the a posteriori error estimate for the PML solution which serves as a basis for the

adaptive finite element approximation. Numerical results show that the proposed method is effective to solve

the diffractive grating problem of elastic waves. The method can be directly applied to solve the diffraction

grating problems with other interface and/or boundary conditions. We are also currently extending the method

to the three-dimensional problem where biperiodic structures need to be considered.
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FIGURE 7. Example 2: The mesh (left) and the surface plot of the amplitude of the associ-

ated solution (right) after 6 adaptive iterations. The mesh has 8491 nodes.

APPENDIX A. TECHNICAL ESTIMATES

In this section, we present the proofs for some technical estimates which are used in our analysis for the

error estimate between the solutions of the PML problem and the original scattering problem.

Proposition A.1. For any n ∈ Z, we have κ21 < |χ(n)| < κ22.

Proof. Recalling (2.16) and (2.11), we consider three cases:

(i) For n ∈ U1, β
(n)
1 = (κ21 − α2

n)
1/2 and β

(n)
2 = (κ22 − α2

n)
1/2. We have

χ(n) = α2
n + β

(n)
1 β

(n)
2 = α2

n + (κ21 − α2
n)

1/2(κ22 − α2
n)

1/2.

Consider the function

g1(t) = t+ (k1 − t)1/2(k2 − t)1/2, 0 < k1 < k2.

It is easy to know that g1 is decreasing for 0 < t < k1. Hence

k1 = g1(k1) < g1(t) < g1(0) = (k1k2)
1/2,

which gives κ21 < χ(n) < κ1κ2.

(ii) For n ∈ U2 \ U1, β
(n)
1 = i(α2

n − κ21)
1/2, β

(n)
2 = (κ22 − α2

n)
1/2. We have

χ(n) = α2
n + i(α2

n − κ21)
1/2(κ22 − α2

n)
1/2

and

|χ(n)|2 = (κ21 + κ22)α
2
n − (κ1κ2)

2,

which gives κ21 < |χ(n)| < κ22.

(iii) For n /∈ U2, β
(n)
1 = i(α2

n − κ21)
1/2, β

(n)
2 = i(α2

n − κ22)
1/2. We have

χ(n) = α2
n − (α2

n − κ21)
1/2(α2

n − κ22)
1/2.

Let

g2(t) = t− (t− k1)
1/2(t− k2)

1/2, 0 < k1 < k2.

It is easy to verify that the function g2 is decreasing for t > k2. Hence we have

(k1 + k2)/2 = g2(∞) < g2(t) < g2(k2) = k2,
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which gives (κ21 + κ22)/2 < χ(n) < κ22.

Combining the above estimates, we get κ21 < |χ(n)| < κ22 for any n ∈ Z. �

Proposition A.2. The function g3(t) = t/(et − 1) is a decreasing function for t > 0.

Proof. A simple calculation yields

g′3(t) =
(1− t)et − 1

(et − 1)2
< 0, t > 0,

which completes the proof. �

Proposition A.3. The function g4(t) = tk/e(t
2−s2)1/2/2 satisfies g4(t) ≤ (s2 + k2)k/2 for any t > s >

0, k ≥ 2.

Proof. Using the change of variables τ = (t2 − s2)1/2, we have

ĝ4(τ) =
(τ2 + s2)k/2

eτ/2
.

Taking the derivative of ĝ4 gives

ĝ′4(τ) = −(τ2 − kτ + s2)(τ2 + s2)1/2

eτ/2
.

(i) If s ≥ k/2, then ĝ′4 ≤ 0 for τ > 0. The function ĝ4 is decreasing and reaches its maximum at τ = 0,

i.e.,

g4(t) ≤ ĝ4(0) = sk.

(ii) If s < k/2, then ĝ′4 < 0 for τ ∈ (0, (k− (k2− 4s2)1/2)/2)∪ ((k+(k2− 4s2)1/2)/2,∞) and ĝ4 > 0

for τ ∈ ((k − (k2 − 4s2)1/2)/2, (k + (k2 − 4s2)1/2)/2). Thus ĝ4 reaches its maximum at either

τ1 = 0 or τ2 = (k + (k2 − 4s2)1/2)/2. Thus we have

g4(t) = ĝ4(τ) ≤ max{ĝ4(τ1), ĝ4(τ2)} ≤ (s2 + k2)k/2.

The proof is completed by combining the above estimates. �

Proposition A.4. For any n ∈ Z, we have ‖M (n) − M̂ (n)‖2 ≤ F̂ , where F̂ = 17ω2F/κ41.

Proof. First, we have from (3.12) that

|ε(n)j | =| coth(−iβ
(n)
j ζ)− 1| = 2

|e−2iβ
(n)
j ζ − 1|

≤ 2

|e−2iβ
(n)
j ζ | − 1

,

|δ(n)j | =
∣

∣

∣

∣

eiβ
(n)
2 ζ − eiβ

(n)
1 ζ

e−iβ
(n)
j ζ − eiβ

(n)
j ζ

∣

∣

∣

∣

≤ 2

|e−iβ
(n)
j ζ | − 1

=
2

eImβ
(n)
j Reζ+Reβ

(n)
j Imζ − 1

,

and

|ε(n)1 η(n)| =
∣

∣

∣

∣

2eiβ
(n)
1 ζ

e−iβ
(n)
2 ζ − eiβ

(n)
2 ζ

∣

∣

∣

∣

≤ 2

|e−iβ
(n)
2 ζ | − 1

.

Thus we can take proper PML parameters σ and δ such that |δ(n)j | < 1 for any n ∈ Z.

Next we consider three cases:

(i) For n ∈ U1, we have β
(n)
1 = ∆

(n)
1 , β

(n)
2 = ∆

(n)
2 . Using the facts that ∆

(n)
j ≥ ∆−

j for n ∈ U1 and the

function g3 is decreasing for t > 0, we obtain from (2.16) and (3.13) that

|χ̂(n) − χ(n)| ≤ 24∆
(n)
1 ∆

(n)
2

|e−iβ
(n)
1 ζ | − 1

≤ 12κ2∆
−
1

e
1
2
∆−

1 Imζ − 1
≤ F,
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and

max
{

|αn(χ̂
(n) − χ(n))|, |β(n)1 (χ̂(n) − χ(n))|, |β(n)2 (χ̂(n) − χ(n))|

}

≤ 24κ22∆
(n)
1

|e−iβ
(n)
1 ζ | − 1

≤ 12κ22∆
−
1

e
1
2
∆−

1 Imζ − 1
≤ F,

max
{

|ε1α2
nβ

(n)
1 |, |ε1αnβ

(n)
1 β

(n)
2 |, |ε1β(n)1 (β

(n)
2 )2|, |δ(n)1 αnβ

(n)
1 β

(n)
2 |
}

≤ 2κ22∆
(n)
1

e2∆
(n)
1 Imζ − 1

≤ κ22∆
−
1

e∆
−

1 Imζ − 1
≤ F,

max
{

|ε(n)1 η(n)αnβ
(n)
1 β

(n)
2 |, |ε(n)1 η(n)α2

nβ
(n)
2 |, |δ(n)2 α2

nβ
(n)
2 |,

|ε(n)1 η(n)(β
(n)
1 )2β

(n)
2 |, |δ(n)2 αnβ

(n)
1 β

(n)
2 |, |δ(n)2 (β

(n)
1 )2β

(n)
2 |
}

≤ 2κ22∆
(n)
2

e∆
(n)
2 Imζ − 1

≤ κ22∆
−
2

e
1
2
∆−

2 Imζ − 1
≤ F.

(ii) For n ∈ U2 \ U1, we have β
(n)
1 = i∆1(n), β

(n)
2 = ∆

(n)
2 . Using the facts that ∆1(n) ≥ ∆+

1 ,∆
(n)
2 ≥

∆−
2 for n ∈ U2 \ U1 and the function g3 is decreasing for t > 0 again, we get

|χ̂(n) − χ(n)| ≤16κ32
κ21

∆
(n)
2

e∆
(n)
2 Imζ − 1

+
8κ32
κ21

∆
(n)
1

e∆
(n)
1 Reζ − 1

≤8κ32
κ21

∆−
2

e
1
2
∆−

2 Imζ − 1
+

4κ32
κ21

∆+
1

e
1
2
∆+

1 Reζ − 1
≤ F,

and

max
{

|αn(χ̂
(n) − χ(n))|, |β(n)1 (χ̂(n) − χ(n))|, |β(n)2 (χ̂(n) − χ(n))|

}

≤ 16κ42∆
(n)
2

e∆
(n)
2 Imζ − 1

+
8κ42∆

(n)
1

e∆
(n)
1 Reζ − 1

≤ 8κ42∆
−
2

e
1
2
∆−

2 Imζ − 1
+

4κ42∆
+
1

e
1
2
∆+

1 Reζ − 1
≤ F,

max
{

|ε1α2
nβ

(n)
1 |, |ε1αnβ

(n)
1 β

(n)
2 |, |ε1β(n)1 (β

(n)
2 )2|, |δ(n)1 αnβ

(n)
1 β

(n)
2 |}

≤ 2κ22∆
(n)
1

e2∆
(n)
1 Reζ − 1

≤ κ22∆
−
1

e∆
−

1 Reζ − 1
≤ κ22∆

−
1

e
1
2
∆−

1 Reζ − 1
≤ F,

max
{

|ε(n)1 η(n)αnβ
(n)
1 β

(n)
2 |, |ε(n)1 η(n)(αn)

2β
(n)
2 |, |δ(n)2 (αn)

2β
(n)
2 |,

|ε(n)1 η(n)(β
(n)
1 )2β

(n)
2 |, |δ(n)2 αnβ

(n)
1 β

(n)
2 |, |δ(n)2 (β

(n)
1 )2β

(n)
2 |
}

≤ 2κ22∆
(n)
2

e∆
(n)
2 Imζ − 1

≤ κ22∆
−
2

e
1
2
∆−

2 Imζ − 1
≤ F,

(iii) For n /∈ U2, we have β
(n)
1 = i∆

(n)
1 , β

(n)
2 = i∆

(n)
2 , and ∆

(n)
1 > ∆

(n)
2 . Noting Reζ ≥ 1, we obtain

|χ̂(n) − χ(n)| ≤ 24

κ21

|αn|3∆(n)
2

e∆
(n)
2 Reζ − 1

≤ 24

κ21

|αn|3

e
1
2
∆

(n)
2

∆
(n)
2

e
1
2
∆

(n)
2 Reζ − 1

≤ 24(9 + κ22)
3/2

κ21

∆+
1

e
1
2
∆+

1 Reζ − 1
≤ F,
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and

max
{

|αn(χ̂
(n) − χ(n))|, |β(n)1 (χ̂(n) − χ(n))|, |β(n)2 (χ̂(n) − χ(n))|

}

≤24

κ21

|αn|4∆(n)
2

e∆
(n)
2 Reζ − 1

≤ 24

κ21

|αn|4

e
1
2
∆

(n)
2

∆
(n)
2

e
1
2
∆

(n)
2 Reζ − 1

≤ 24(16 + κ22)
2

κ21

∆+
1

e
1
2
∆+

1 Reζ − 1
≤ F,

max
{

|ε1α2
nβ

(n)
1 |, |ε1αnβ

(n)
1 β

(n)
2 |, |ε1β(n)1 (β

(n)
2 )2|, |δ(n)1 αnβ

(n)
1 β

(n)
2 |
}

≤ 2α2
n∆

(n)
1

e2∆
(n)
1 Reζ − 1

≤ 2α2
n

e∆
(n)
1

∆
(n)
1

e∆
(n)
1 Reζ − 1

≤ 2(4 + κ21)
∆+

1

e∆
+
1 Reζ − 1

≤ F,

max
{

|ε(n)1 η(n)αnβ
(n)
1 β

(n)
2 |, |ε(n)1 η(n)(αn)

2β
(n)
2 |, |δ(n)2 (αn)

2β
(n)
2 |,

|ε(n)1 η(n)(β
(n)
1 )2β

(n)
2 |, |δ(n)2 αnβ

(n)
1 β

(n)
2 |, |δ(n)2 (β

(n)
1 )2β

(n)
2 |
}

≤ 2α2
n∆

(n)
2

e∆
(n)
2 Reζ − 1

≤ 2α2
n

e
1
2
∆

(n)
2

∆
(n)
2

e
1
2
∆

(n)
2 Reζ − 1

≤ 2(4 + k22)
∆+

2

e
1
2
∆+

2 Reζ − 1
≤ F,

where we have used the estimate for g4 and the facts that ∆
(n)
j ≥ ∆+

j for n /∈ U2 and g3 is a

decreasing function.

It follows from Proposition A.1 and the estimate |χ̂(n) − χ(n)| ≤ F that κ21 − F ≤ |χ̂(n)| ≤ κ22 + F. Again,

we may choose some proper PML parameters σ and δ such that F ≤ κ21/2, which gives |χ̂(n)| ≥ κ21/2.

Last, using the matrix norm and combining all the above estimates, we get

‖M (n) − M̂ (n)‖22 ≤
4ω4

κ81

(

|β(n)1 (χ̂(n) − χ(n))|2 + 2|αn(χ̂
(n) − χ(n))|2 + |β(n)2 (χ̂(n) − χ(n))|2

+ |ε(n)1 α2
nβ

(n)
1 |2 + |ε(n)1 β

(n)
1 (β

(n)
2 )2|2 + 10|ε(n)1 αnβ

(n)
1 β

(n)
2 |2 + |ε(n)1 η(n)(β

(n)
1 )2β

(n)
2 |2

+ 2|ε(n)1 η(n)αnβ
(n)
1 β

(n)
2 |2 + |ε(n)1 η(n)α2

nβ
(n)
2 |2 + 4|δ(n)2 (β

(n)
1 )2β

(n)
2 |2

+ 16|δ(n)1 αnβ
(n)
1 β

(n)
2 |2 + 4|δ(n)2 α2

nβ
(n)
2 |2 + 24|δ(n)2 αnβ

(n)
1 β

(n)
2 |2

)

≤ 272ω4

κ81
F 2,

which completes the proof. �

APPENDIX B. PROOF OF LEMMA 4.3

Let w = ¯̃v. The problem (4.3) can be written as










µ∆
x̂
w + (λ+ µ)∇

x̂
∇

x̂
·w + ω2w = 0 inΩPML,

w(x, b) = v̄(x, b) on Γ,

w(x, b+ δ) = 0 on ΓPML.

(B.1)

We introduce the Helmholtz decomposition to the solution of (B.1):

w = ∇
x̂
ψ1 + curl

x̂
ψ2, (B.2)

where ψj(x̂) satisfies the Helmholtz equation

∆
x̂
ψj + κ2jψj = 0. (B.3)

Due to the quasi-periodicity of the solution, we have the Fourier series expansion

ψj(x, y) =
∑

n∈Z

ψ
(n)
j (y)e−iαnx. (B.4)
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Substituting (B.4) into (B.3) yields

ρ−1 d

dy

(

ρ−1 d

dy
ψ
(n)
j (y)

)

+ (β
(n)
j )2ψ

(n)
j (y) = 0. (B.5)

The general solutions of (B.5) is

ψ
(n)
j (y) = Ã

(n)
j eiβ

(n)
j

∫ y
b ρ(τ)dτ + B̃

(n)
j e−iβ

(n)
j

∫ y
b ρ(τ)dτ .

It follows from (B.2) that the coefficients Ã
(n)
j and B̃

(n)
j can be uniquely determined by solving the following

linear equations

















−αn −αn β
(n)
2 −β(n)2

β
(n)
1 −β(n)1 αn αn

−αne
iβ

(n)
1 ζ −αne

−iβ
(n)
1 ζ β

(n)
2 eiβ

(n)
2 ζ −β(n)2 e−iβ

(n)
2 ζ

β
(n)
1 eiβ

(n)
1 ζ −β(n)1 e−iβ

(n)
1 ζ αne

iβ
(n)
2 ζ αne

−iβ
(n)
2 ζ

































Ã
(n)
1

B̃
(n)
1

Ã
(n)
2

B̃
(n)
2

















=















−iv̄
(n)
1 (b)

−iv̄
(n)
2 (b)

0

0















. (B.6)

A straightforward calculation yields the solution of (B.6):

Ã
(n)
1 =

i

2χ(n)χ̂(n)

{

− χ(n)(ε
(n)
1 + 2)(−αnv̄

(n)
1 (b) + β

(n)
2 v̄

(n)
2 (b))

+ 2β
(n)
2 (ε

(n)
1 + 2δ

(n)
1 )(1 + δ

(n)
2 − η(n))(−αnβ

(n)
1 v̄

(n)
1 (b) + α2

nv̄
(n)
2 (b))

}

,

B̃
(n)
1 =

i

2χ(n)χ̂(n)

{

χ(n)ε
(n)
1 (−αnv̄

(n)
1 (b)− β

(n)
2 v̄

(n)
2 (b))

+ 2(ε
(n)
1 δ

(n)
2 + 2(δ

(n)
1 + δ

(n)
1 δ

(n)
2 )(−αnβ

(n)
1 β

(n)
2 v̄

(n)
1 (b)− α2

nβ
(n)
2 v̄

(n)
2 (b))

}

,

Ã
(n)
2 =

i

2χ(n)χ̂(n)

{

χ(n)[ε
(n)
1 η(n) − 2(ε

(n)
1 + 1)(1 + δ

(n)
2 )](β

(n)
1 v̄

(n)
1 (b) + αnv̄

(n)
2 (b))

+ 2ε
(n)
1 (1 + δ

(n)
2 − η(n))((β

(n)
1 )2β

(n)
2 v̄

(n)
1 (b) + α3

nv̄
(n)
2 (b))

}

,

B̃
(n)
2 =

i

2χ(n)χ̂(n)

{

χ(n)[2δ
(n)
2 (ε

(n)
1 + 1)− ε

(n)
1 η(n)](β

(n)
1 v̄

(n)
1 (b)− αnv̄

(n)
2 (b))

− 2δ
(n)
2 (ε

(n)
1 + 2)((β

(n)
1 )2β

(n)
2 v̄

(n)
1 (b)− α3

nv̄
(n)
2 (b))

}

.

Noting ṽ = w̄ and using the Helmholtz decomposition (B.2) again, we obtain

ṽ(x, y) = i
∑

n∈Z

[

αn

−β̄(n)1

]

¯̃A
(n)
1 ei

(

αnx−β̄
(n)
1

∫ y
b ρ̄(τ)dτ

)

+

[

αn

β̄
(n)
1

]

¯̃B
(n)
1 ei

(

αnx+β̄
(n)
1

∫ y
b ρ̄(τ)dτ

)

−
[

β̄
(n)
2

αn

]

¯̃A
(n)
2 ei

(

αnx−β̄
(n)
2

∫ y
b ρ̄(τ)dτ

)

+

[

β̄
(n)
2

−αn

]

¯̃B
(n)
2 ei

(

αnx+β̄
(n)
2

∫ y
b ρ̄(τ)dτ

)

. (B.7)
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Using the orthogonality of the Fourier modes in (B.7), we have
∫ Λ

0

(

|∂xṽ1|2 + |∂xṽ2|2 + |∂yṽ1|2 + |∂y ṽ2|2
)

dx ≤ 2Λ
∑

n∈Z

[

|α2
n
¯̃A
(n)
1 e−iβ

(n)
1 ŷ|2 + |α2

n
¯̃B
(n)
1 eiβ

(n)
1 ŷ|2

+ |αnβ
(n)
2

¯̃A
(n)
2 e−iβ

(n)
2 ŷ|2 + |αnβ

(n)
2

¯̃B
(n)
2 eiβ

(n)
2 ŷ|2 + |αnβ

(n)
1

¯̃A
(n)
1 e−iβ

(n)
1 ŷ|2

+ |αnβ
(n)
1

¯̃B
(n)
1 eiβ

(n)
1 ŷ|2 + |α2

n
¯̃A
(n)
2 e−iβ

(n)
2 ŷ|2 + |α2

n
¯̃B
(n)
2 eiβ

(n)
2 ŷ|2 + |αnβ

(n)
1

¯̃A
(n)
1 e−iβ

(n)
1 ŷ|2

+ |αnβ
(n)
1

¯̃B
(n)
1 eiβ

(n)
1 ŷ|2 + |(β(n)2 )2 ¯̃A

(n)
2 e−iβ

(n)
1 ŷ|2 + |(β(n)2 )2 ¯̃B

(n)
2 eiβ

(n)
1 ŷ|2 + |(β(n)1 )2 ¯̃A

(n)
1 e−iβ

(n)
1 ŷ|2

+ |(β(n)1 )2 ¯̃B
(n)
1 eiβ

(n)
1 ŷ|2 + |αnβ

(n)
2

¯̃A
(n)
2 e−iβ

(n)
1 ŷ|2 + |αnβ

(n)
2

¯̃B
(n)
2 eiβ

(n)
1 ŷ|2

]

.

We may pick some appropriate PML parameters σ and δ such that |χ(n) − χ̂(n)| ≤ κ21/2 and |χ̂(n)| ≥ κ21/2.

It follows from the definition of
¯̃A
(n)
1 that

|α2
n
¯̃A
(n)
1 e−iβ

(n)
1 ŷ| ≤|αn|

κ81

{

κ42|αn|5
∣

∣ε
(n)
1 e−iβ

(n)
1 ŷ
∣

∣

2
+ 4|αn|5

∣

∣(ε
(n)
1 δ

(n)
2 + 2(δ

(n)
1 + δ

(n)
1 δ

(n)
2 ))

× β
(n)
1 β

(n)
2 e−iβ

(n)
1 ŷ
∣

∣

2
}

|v(n)1 (b)|2 + |αn|
κ81

{

κ42|αn|5
∣

∣ε
(n)
1 e−iβ

(n)
1 ŷ
∣

∣

2

+ 4|αn|7
∣

∣(ε
(n)
1 δ

(n)
2 + 2(δ

(n)
1 + δ

(n)
1 δ

(n)
2 ))β

(n)
2 e−iβ

(n)
1 ŷ
∣

∣

2
}

|v(n)2 (b)|2. (B.8)

Since the estimates are similar for the coefficients in front of v
(n)
1 (b) and v

(n)
2 (b) in (B.8), we just present the

estimates for the coefficients in front of v
(n)
1 (b).

Again, it is necessary to consider three cases:

(i) If n ∈ U1, we have β
(n)
1 = ∆

(n)
1 , β

(n)
2 = ∆

(n)
2 , ∆

(n)
1 < ∆

(n)
2 , |αn| ≤ κ1, |βn1 | ≤ κ1, |βn2 | ≤ κ2, and

|αn|5/2
∣

∣ε
(n)
1 e−iβ

(n)
1 ŷ
∣

∣ ≤ 2κ
5/2
1 e∆

(n)
1 (Imŷ−Imζ)

e∆
(n)
1 Imζ − 1

≤ 2κ
5/2
1

e∆
−

1 Imζ − 1
,

|αn|5/2|β(n)1 β
(n)
2 |
∣

∣ε
(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ
∣

∣ ≤2κ
7/2
1 κ2e

−∆
(n)
1 Imζ

e∆
(n)
1 Imζ − 1

2

e∆
(n)
2 Imζ − 1

e∆
(n)
1 Imŷ

≤ 4κ
7/2
1 κ2

(e∆
−

1 Imζ − 1)(e∆
−

2 Imζ − 1)
,

|αn|5/2|β(n)1 β
(n)
2 |
∣

∣δ
(n)
1 e−iβ

(n)
1 ŷ
∣

∣ ≤2κ
7/2
1 κ2(e

−∆
(n)
2 Imζ + e−∆

(n)
1 Imζ)

e∆
(n)
1 Imζ − 1

e∆
(n)
1 Imŷ

≤ 4κ
7/2
1 κ2

e∆
−

1 Imζ − 1
,

|αn|5/2|β(n)1 β
(n)
2 |
∣

∣δ
(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ
∣

∣ ≤|αn|5/2|β(n)1 β
(n)
2 δ

(n)
2 |
∣

∣δ
(n)
1 e−iβ

(n)
1 ŷ
∣

∣

≤ 8κ
7/2
1 κ2

(e∆
−

1 Imζ − 1)(e∆
−

2 Imζ − 1)
.

(ii) If n ∈ U2\U1, we have β
(n)
1 = i∆

(n)
1 , β

(n)
2 = ∆

(n)
2 , |αn| ≤ κ2, ∆

(n)
j ≤ κ2, and

|αn|5/2
∣

∣ε
(n)
1 e−iβ

(n)
1 ŷ
∣

∣ ≤ 2κ
5/2
2 e∆

(n)
1 (Reŷ−Reζ)

e∆
(n)
1 Reζ − 1

≤ 2κ
5/2
2

e∆
+
1 Reζ − 1

,
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|αn|5/2|β(n)1 β
(n)
2 |
∣

∣ε
(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ
∣

∣ ≤2κ
9/2
2 e−∆

(n)
1 Reζ

e∆
(n)
1 Reζ − 1

2

e∆
(n)
2 Imζ − 1

e∆
(n)
1 Reŷ

≤ 4κ
9/2
2

(e∆
+
1 Reζ − 1)(e∆

−

2 Imζ − 1)
,

|αn|5/2|β(n)1 β
(n)
2 |
∣

∣δ
(n)
1 e−iβ

(n)
1 ŷ
∣

∣ ≤ 2κ
9/2
2

e∆
(n)
1 Reζ − 1

e∆
(n)
1 Reŷ

≤2κ
9/2
2 e∆

(n)
1 Reζ

e∆
(n)
1 Reζ − 1

≤ 2κ
9/2
2 e∆

+
1 Reζ

e∆
+
1 Reζ − 1

,

|αn|5/2|β(n)1 β
(n)
2 |
∣

∣δ
(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ
∣

∣ ≤|αn|5/2|β(n)1 β
(n)
2 δ

(n)
2 |
∣

∣δ
(n)
1 e−iβ

(n)
1 ŷ
∣

∣

≤ 4κ
9/2
2 e∆

+
1 Reζ

(e∆
+
1 Reζ − 1)(e∆

−

2 Imζ − 1)
.

(iii) If n /∈ U2, we have β
(n)
1 = i∆

(n)
1 , β

(n)
2 = i∆

(n)
2 , ∆

(n)
2 < ∆

(n)
1 ≤ |αn|, and

|αn|5/2
∣

∣ε
(n)
1 e−iβ

(n)
1 ŷ
∣

∣ ≤ 2|αn|5/2e∆
(n)
1 (Reŷ−Reζ)

e∆
(n)
1 Reζ − 1

≤ 2|αn|5/2

e
1
2
∆

(n)
1

1

e
1
2
∆+

1 Reζ − 1

≤2(κ21 + 25/4)5/4

e
1
2
∆+

1 Reζ − 1
,

|αn|5/2|β(n)1 β
(n)
2 |
∣

∣ε
(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ
∣

∣ ≤|αn|9/2
∣

∣ε
(n)
1 e−iβ

(n)
1 ŷ
∣

∣|δ(n)2 |

≤ 4(κ21 + 81/4)9/4

(e
1
2
∆+

1 Reζ − 1)(e∆
+
2 Reζ − 1)

,

|αn|5/2|β(n)1 β
(n)
2 |
∣

∣δ
(n)
1 e−iβ

(n)
1 ŷ
∣

∣ ≤|αn|9/2(e−∆
(n)
2 Reζ + e−∆

(n)
1 Reζ)

e∆
(n)
1 Reζ − 1

e∆
(n)
1 Reŷ

≤ 2|αn|9/2

e∆
(n)
1 Reζ − 1

≤ 2(κ21 + 81/4)9/4

e
1
2
∆+

1 Reζ − 1
,

|αn|5/2|β(n)1 β
(n)
2 |
∣

∣δ
(n)
1 δ

(n)
2 e−iβ

(n)
1 ŷ
∣

∣ ≤|αn|5/2|β(n)1 β
(n)
2 δ

(n)
2 |
∣

∣δ
(n)
1 e−iβ

(n)
1 ŷ
∣

∣

≤ 4(κ21 + 81/4)9/4

(e
1
2
∆+

1 Reζ − 1)(e∆
+
2 Reζ − 1)

.

We have used Proposition (A.3) in the above estimates. Combining these estimates, we may obtain

|α2
n
¯̃A
(n)
1 e−iβ

(n)
1 ŷ|2 ≤ C|αn|(|v(n)1 |2 + |v(n)2 |2),

where the positive real number C depends on κj ,∆
−
j ,∆

+
j ,Reζ, and Imζ . Following from a similar argument

with tedious calculations yields

‖∇ṽ‖2F (ΩPML) ≤ CΛ
∑

n∈Z

|αn|(|v(n)1 |2 + |v(n)2 |2),

where we have used the fact |β(n)j | ≤ C(1 + |αn|) for n ∈ Z. Finally, we have from Lemma 3.3 that

‖∇ṽ‖F (ΩPML) ≤ C‖v‖H1/2(Γ)2 ≤ γ2C‖v‖H1(Ω)2 ,
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which completes the proof.

APPENDIX C. PROOF OF LEMMA 4.4

Taking the complex conjugate of (B.7) and using (2.18), we have

D ¯̃v(x, b+ δ) = −
∑

n∈Z

[

−µραnβ
(n)
1

(λ+ µ)α2
n + (λ+ 2µ)ρ̄(β̄

(n)
1 )2

]

Ã
(n)
1 e−i

(

αnx−β
(n)
1 ζ
)

+

[

µραnβ
(n)
1

(λ+ µ)α2
n + (λ+ 2µ)ρ(β

(n)
1 )2

]

B̃
(n)
1 e−i

(

αnx+β
(n)
1 ζ
)

+

[

µρ(β
(n)
2 )2

−(λ+ µ)αnβ
(n)
2 + (λ+ 2µ)ραnβ

(n)
2

]

Ã
(n)
2 e−i

(

αnx−β
(n)
2 ζ
)

+

[

µραn(β
(n)
2 )2

(λ+ µ)αnβ
(n)
2 − (λ+ 2µ)ραnβ

(n)
2

]

B̃
(n)
2 e−i

(

αnx+β
(n)
2 ζ
)

.

A straightforward calculation yields that

‖D ṽ(x, b+ δ)‖2L2(ΓPML)2 = ‖D ¯̃v(x, b+ δ)‖2L2(ΓPML)2 ≤ 2Λ
∑

n∈Z

(

∣

∣µραnβ
(n)
1 Ã

(n)
1 eiβ

(n)
1 ζ
∣

∣

2

+ |µραnβ
(n)
1 B̃

(n)
1 e−iβ

(n)
1 ζ |2 + |µρ(β(n)2 )2Ã

(n)
2 eiβ

(n)
2 ζ |2 + |µρ(β(n)2 )2B̃

(n)
2 e−iβ

(n)
2 ζ |2

+
∣

∣((λ+ µ)α2
n + (λ+ 2µ)ρ(β

(n)
1 )2)Ã

(n)
1 eiβ

(n)
1 ζ
∣

∣

2
+
∣

∣((λ+ µ)α2
n + (λ+ 2µ)ρ(β

(n)
1 )2)B̃

(n)
1 e−iβ

(n)
1 ζ
∣

∣

2

+
∣

∣((λ+ µ)αnβ
(n)
2 − (λ+ 2µ)ραnβ

(n)
2 )Ã

(n)
2 eiβ

(n)
1 ζ
∣

∣

2
+
∣

∣((λ+ µ)αnβ
(n)
2 − (λ+ 2µ)ραnβ

(n)
2 )B̃

(n)
2 e−iβ

(n)
1 ζ
∣

∣

2
)

.

Using the similar technique in the proof of Lemma 4.3 and omitting the details, we may show that there exists

a positive constant C such that

‖D ṽ(x, b+ δ)‖2L2(ΓPML)2 ≤ C
∑

n∈Z

[

(1 + |αn|)(|v(n)1 (b)|2 + |v(n)1 (b)|2)
]

.

Finally, it follows from Lemma 3.3 that

‖D ṽ(x, b+ δ)‖L2(ΓPML)2 ≤ C‖v‖H1/2(Γ)2 ≤ γ2C‖v‖H1(Ω)2 ,

which completes the proof.
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