AN ADAPTIVE FINITE ELEMENT PML METHOD FOR THE ELASTIC WAVE SCATTERING
PROBLEM IN PERIODIC STRUCTURES
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ABSTRACT. An adaptive finite element method is presented for the elastic scattering of a time-harmonic plane
wave by a periodic and rigid surface. First, the unbounded physical domain is truncated into a bounded computa-
tional domain by introducing the perfectly matched layer (PML) technique. The well-posedness and exponential
convergence of the solution are established for the truncated PML problem by developing an equivalent transpar-
ent boundary condition. Second, an a posteriori error estimate is deduced for the discrete problem and is used to
determine the mesh for refinements and to determine the PML parameters. Numerical experiments are included
to demonstrate the competitive behavior of the proposed adaptive method.

1. INTRODUCTION

The scattering theory in periodic diffractive structures, which are known as diffraction gratings, has many
significant applications in optical industry [7, 8]. The time-harmonic grating problems have been studied
extensively by many researchers for acoustic, electromagnetic, and elastic waves [1,2,4,5,15,22-24,29,32].
The underlying equations of the waves are the Helmholtz equation, the Maxwell equations, and the Navier
equation, respectively. This paper is concerned with the numerical solution of the elastic wave scattering
problem in a periodic structure. The problem has two fundamental challenges. The first one is to truncate
the unbounded physical domain into a bounded computational domain. The second one is the singularity of
the solution due to nonsmooth grating surfaces. Hence, the goal of this work is two fold. First, we adopt the
perfectly matched layer (PML) technique to handle the domain truncation. Second, we use an a posteriori
error analysis and design a finite element method with adaptive mesh refinements to deal with the singularity
of the solution.

The research on the PML technique has undergone a tremendous development since Bérenger proposed
a PML for solving the time-dependent Maxwell equations [11]. The basis idea of the PML technique is
to surround the domain of interest by a layer of finite thickness fictitious material which absorbs all the
waves propagating from inside the computational domain. When the waves reach the outer boundary of
the PML region, their energies are so small that the simple homogeneous Dirichlet boundary conditions
can be imposed. Various constructions of PML absorbing layers have been proposed and studied for the
acoustic, electromagnetic, and elastic wave scattering problems [10, 12,13,18-21,25,27,28,31]. Combined
with the PML technique, an effective adaptive finite element method was proposed in [6, 16] to solve the
two-dimensional diffraction grating problem. Later, the method was extended to solve the three-dimensional
diffraction grating problem [9], and was adopted to solve the acoustic and electromagnetic obstacle scattering
problems [14,17]. Based on the a posteriori error analysis, the adaptive finite element PML method provides
an effective numerical strategy which can be used to solve many other scattering problems which are imposed
in unbounded domains.
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In this paper, we explore the possibility of applying such an adaptive finite element PML method to solve
the diffraction grating problem of elastic waves. Specifically, we consider the incidence of a time-harmonic
elastic plane wave on a one-dimensional grating surface, which is assumed to be elastically rigid. The open
space, which is above the surface, is assumed to be filled with a homogeneous and isotropic elastic medium.
Using the quasi-periodicity of the solution and the transparent boundary condition, we formulate the scatter-
ing problem equivalently into a boundary value problem in a bounded domain. The conservation of energy
is proved for the model problem and is used to verify our numerical results when the exact solutions are
not available. Following the complex coordinate stretching, we study the truncated PML problem which
is an approximation to the original scattering problem. We develop the transparent boundary condition for
the truncated PML problem and show that it has a unique weak solution which converges exponentially to
the solution of the original scattering problem. Moreover, an a posteriori error estimate is deduced for the
discrete PML problem. It consists of the finite element error and the PML modeling error. The estimate
is used to design the adaptive finite element algorithm to choose elements for refinements and to determine
the PML parameters. Numerical experiments show that the proposed method can effectively overcome the
aforementioned two challenges.

This paper presents a nontrivial application of the adaptive finite element PML method for the grating prob-
lem from the Helmholtz (acoustic) and Maxwell (electromagnetic) equations to the Navier (elastic) equation.
The elastic wave equation is complicated due to the coexistence of compressional and shear waves that have
different wavenumbers and propagate at different speeds. In view of this physical feature, we introduce two
scalar potential functions to split the wave field into its compressional and shear parts via the Helmholtz
decomposition. As a consequence, the analysis is much more sophisticated than that for the Helmholtz equa-
tion or the Maxwell equations. We believe that this work not only enriches the range of applications for the
PML technique but also is a valued contribution to the family of numerical methods for solving elastic wave
scattering problems.

The paper is organized as follows. In section 2, we introduce the model problem of the elastic wave scat-
tering by a periodic surface and formulate it into a boundary value problem by using a transparent boundary
condition. The conservation of the total energy is proved for the propagating wave modes. In section 3, we
introduce the PML formulation and prove the well-posedness and convergence of the truncated PML prob-
lem. Section 4 is devoted to the finite element approximation and the a posteriori error estimate. In section 5,
we discuss the numerical implementation of our adaptive algorithm and present some numerical experiments
to illustrate the performance of the proposed method. The paper is concluded with some general remarks and
directions for future research in section 6.

2. PROBLEM FORMULATION

In this section, we introduce the model problem and present an exact transparent boundary condition to
reduce the problem into a boundary value problem in a bounded domain. The energy distribution will be
studied for the reflected propagating waves of the scattering problem.

2.1. Navier equation. Consider the elastic scattering of a time-harmonic plane wave by a periodic surface
S which is assumed to be Lipschitz continuous and elastically rigid. In this work, we consider the two-
dimensional problem by assuming that the surface is invariant in the 2z direction. The three-dimensional
problem will be studied as a separate work. Figure 1 shows the problem geometry in one period. Let x =
[z,9]" € R2 Denoteby I' = {& € R?: 0 < z < A, y = b} the artificial boundary above the scattering
surface, where A is the period and b is a constant. Let € be the bounded domain which is enclosed from
below and above by S and T, respectively. Finally, denote by ¢ = {x € R? : 0 < 2 < A, y > b} the
exterior domain to 2.

The open space above the surface is assumed to be filled with a homogeneous and isotropic elastic medium
with a unit mass density. The propagation of a time-harmonic elastic wave is governed by the Navier equation

pAu + A+ p)VV-u+w?u=0 inQUQS, 2.1)
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FIGURE 1. Geometry of the scattering problem.

where w > 0 is the angular frequency, 4 and A are the Lamé constants satisfying ¢ > 0 and A + > 0, and
u = [uy,us] " is the displacement vector of the total field which satisfies

u=0 onS. (2.2)

Let the surface be illuminated from above by either a time-harmonic compressional plane wave

uinc(x) _ [sin&, — cos Q]Teiml(xsine—ycose)7

or a time-harmonic shear plane wave

uinc(m) _ [COSH, sin 9]7'61/%2(90sin@—ycos@)7

where 0 € (—m/2,7/2) is the incident angle and
w w
Kl = ==, HK2 = —= (2.3)
VA+2p VH
are the compressional and shear wavenumbers, respectively. It can be verified that the incident wave also
satisfies the Navier equation:

AU + (N + 1) VV - tine + wtine =0 in QU QS (2.4)

Remark 2.1. Our method works for either the compressional plane incident wave, or the shear plane incident
wave, or any linear combination of these two plane incident waves. For clarity, we will take the compressional
plane incident wave as an example to present the results in our subsequent analysis.

Motivated by uniqueness, we are interested in a quasi-periodic solution of u, i.e., u(z,y)e %% is periodic
in x with period A where o = k1 sin . In addition, the following radiation condition is imposed: the total
displacement u consists of bounded outgoing waves plus the incident wave iy in 2°.

We introduce some notation and Sobolev spaces. Let u = [ug,u2] " and u be a vector and scalar function,
respectively. Define the Jacobian matrix of u as

Ozu1  Oyu
Vu = [(iu; 8?1&]
and two curl operators
curlu = dyuy — dyuy,  curlu = [Ayu, —dyu] .
Define a quasi-periodic functional space
HE () = {ue H(Q) : u(A, y) = u(0,y)e™*, u=0on S},

which is a subspace of H'(€2) with the norm || - || j1(q). For any quasi-periodic function v defined on T, it
admits the Fourier series expansion

()_Z (n) Jianz (n) _ 1/A ()—ianxd —a+ 27
u(x) = ue,u—AOuxe z, op=atn|).

ne”
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We define a trace functional space H*(I") with the norms given by

lullzsry = (A Y201+ a2)ju™P?)

nel

1/2

Let H}, qp(Q)2 and H*(I")? be the Cartesian product spaces equipped with the corresponding 2-norms of
H} o (§2) and H* ('), respectively. It is known that H~* (I")? is the dual space of H*(I")? with respect to the
L?(I")? inner product

(u,v)r :/u-'ﬁdx.
r

2.2. Boundary value problem. We wish to reduce the problem equivalently into a boundary value problem
in Q) by introducing an exact transparent boundary condition on I".
The total field u consists of the incident field u;,. and the diffracted field v, i.e.,

U = Ujpe + V. (2.5)
Noting (2.5) and subtracting (2.4) from (2.1), we obtain the Navier equation for the diffracted field v:
pAY + A+ p)VV v +w?v =0 inQ°. (2.6)

For any solution v of (2.6), we introduce the Helmholtz decomposition to split it into the compressional and
shear parts:

v = V¢ + curley, 2.7)
where ¢1 and ¢9 are scalar potential functions. Substituting (2.7) into (2.6) gives
v (()\ +2u)Apy + ngbl) + curl(pAgps + w?¢s) = 0,
which is fulfilled if ¢; satisfy the Helmholtz equation
A¢j + Kj¢; =0, (2.8)

where x; is the wavenumber defined in (2.3).
Since v is a quasi-periodic function, we have from (2.7) that ¢; is also a quasi-periodic function in the
direction with period A and it has the Fourier series expansion

iz, y) = o (y)eoe. (2.9)
nez
Plugging (2.9) into (2.8) yields
oW e
dij + (B 6 (y) =0, y>b, (2.10)
where
2 _q2)1/2 < K
gy = {.(5]2 a"Q) " onl <15, @.11)
i(ag — K3)"%, || > K.

Note that 550) = 8 = Kicosf. We assume that x; # |ay,| for all n € Z to exclude possible resonance.
Noting (2.11) and using the bounded outgoing radiation condition, we obtain the solution of (2.10):

i) (y—
¢§‘n) (y) = ¢§'n)(b)e by ),
which gives Rayleigh’s expansion for ¢;:

bi(w,y) = 3 ol pel (ene 0Dy sy, (2.12)

nez
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Combining (2.12) and the Helmholtz decomposition (2.7) yields

« ) (n) (n) . (n)
v@ay>=i§53[<21 5”(®64a“#51(ybn_+[52 ]¢¥Rbk*““ﬁ52<yb”. (2.13)
nezZ L~1 —Qn
On the other hand, as a quasi-periodic function, the diffracted field v also has the Fourier series expansion
v(z,b) = > v (b)e*T (2.14)
nez

Substituting (2.14) and (2.13) into (2.7), we obtain a linear system of algebraic equations for ¢§") (b):

[ian iﬁ;‘)] [ §"><b>] _ [vm)]
8" —ian] oS ®)] i (®)

Solving the above equations via Cramer’s rule gives

n i n n n
™ (b) = _W(anvi ')+ B (1)), (2.15a)
n i n n n
&) = ol ™™ (B) — apos? (b)), (2.15b)
where
X(") = afl + ﬁln) én). (2.16)

Plugging (2.15) into (2.13), we obtain Rayleigh’s expansion for the diffracted field v in Q°:

2 n)
1 an an/BQ
v(z,y) = Z ) Ln §n) B@@n)

nel
(n) g(n) (n) n
1[&/% %%IUM@A%H@%MX (2.17)

o ()l (ane+6" (4=D)

(™ _anﬁln) oz%
Given a vector field v = [vy, UQ]T, we define a differential operator on I':
Pv = pdyv + (A + )[0,1]V - v = [udyv1, (A + 1)dev1 + (A + 21)d,va] . (2.18)
Combining (2.18), (2.14), and (2.15), we deduce the transparent boundary condition

Pv=Tv:= Z MMM (p)elen® onT,

nez
where the matrix
M(n) 1 w2/81n) ,UOCnX(n) - w2an
X(") w2an _ Manx(n) w2ﬂ§n)

Equivalently, we have the transparent boundary condition for the total field wu:
Pu=Tu+f onT,

where f = Quine — 7 Uine.
The scattering problem can be reduced to the following boundary value problem:

pAu+ A+ p)VV - u +w?u =0 in 2,
u=0 on S, (2.19)
9u=Tu+f on T

The weak formulation of (2.19) reads as follows: Find u € Hé qp(Q)2 such that

a(u,v) = (f,v)r, Vve Héqp(Q)Q, (2.20)



6 XUE JIANG, PEIJUN LI, JUNLIANG LV, AND WEIYING ZHENG

where the sesquilinear form a : H}, qp(Q)2 x H} qp(Q)2 — C is defined by
a(u,v) = /Vu V'vda:—l—()\—i-u)/(v u)(V-v)de
—w2/ w-vdx — (Tu,v)r. (2.21)
Q

Here the bar denotes the complex conjugate and A : B = tr(AB") is the Frobenius inner product of square
matrices A and B.

The existence of a unique weak solution u of (2.20) is discussed in [23]. In this paper, we assume that the
variational problem (2.20) admits a unique solution. It follows from the general theory in [3] that there exists
a constant y; > 0 such that the following inf-sup condition holds

, |a(u, v)|
sup

> yillull gz, Vu € Hg,h(Q)% (2.22)
otvert (@2 [Vl @2

2.3. Energy distribution. We study the energy distribution for the propagating reflected wave modes of the
displacement. The result will be used to verify the accuracy of our numerical method when the analytic
solution is not available.

Denote by v = (v, ug) and 7 = (7, 7-2)T the unit normal and tangential vectors on .S, where 71 = 15

and 7 = —vy. Let A(") k2 — a2|Y? and Uj = {n : |an| < k;}. We point out that U; and U, are the
collections of all the propagatlng modes for the compressional and shear waves, respectively. It is clear to
note that ﬁ](") = Aﬁ") for n € U; and ﬁ](") = iAﬁ") forn ¢ U;.

Consider the Helmholtz decomposition for the total field:

u = V1 + curlyps. (2.23)
Substituting (2.23) into (2.1), we may verify that ¢; also satisfies the Helmholtz equation
Apj+r2p; =0 inQUQOE.
Using the boundary condition (2.2), we have
Opp1 — Orpa =0 and Oype+ 0rp1 =0 onS.
Correspondingly, we introduce the Helmholtz decomposition for the incident field:
Uinc = VY1 + curlyy,
which gives explicitly that
P = —iV Uipe = —iei(o‘””_ﬁy), o = —(:urlulnc =0.
Hl K1 2
Hence we have
p1=¢1+ Y1, 2= ¢

Using the Rayleigh expansions (2.12), we get

P1(0,) = roe @ 4 37 (et A7), (2.24)
ne”L
= 3 el 2.25)
neL

where
i n n —i (n) n n —i (n)
- 7"% ) = ¢g )(b)e B b7 Té ) = g )(b)e b,
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The grating efficiency is defined by
o _ BR B
! Blrol? 72 Blrol*
(n) (n)

where €]’ and e, ’ are the efficiency of the n-th order reflected modes for the compressional wave and the
shear wave, respectively. We have the following conservation of energy.

(2.26)

Theorem 2.2. The total energy is conserved, i.e.,

Z egn) + Z e;n) =1

nely nel
Proof. Consider the following coupled problem:
Ap; + ﬂ?(p]‘ =0 in €2,
Opp1 — Orpa =0 on S, (2.27)
Oupo + 0rp1 =0 on S.

It is clear to note that ¢; also satisfies the problem (2.27) since the wavenumber «; is real. Using Green’s
theorem and quasi-periodicity of the solution, we have

0 :/Q(SEIASpl — p1A@1) de + (P2Apr — 2 Ags) dx
:/(@131/% — 010,¢1)ds + /(<P25V<P2 — 20, p2) ds
S s

+ /(‘Play‘ﬂl — 10yp1) dx + /(<P23yﬂﬂ2 — 20y p2) du. (2.28)
r r

It follows from integration by parts and the boundary conditions on .S in (2.27) that

/9515:/801 d82/¢137-802d5=—/80237-851615:/902(911952(15,
s s s s

/8525:/902 ds = —/sbzarsm dS:/@l@-@z dSZ/SDI&JSEI ds,
S S S S

which yields after taking the imaginary part of (2.28) that

Im / (P10y1 + P20y 4p2) dz = 0. (2.29)
r
It follows from (2.24) and (2.25) that we have
p1(w,b) = roel ) 4 3" ri”)e(ianx+m§”)b) + ) Tgn)e(i“”x_Agn)b),
nely n¢Uy
(n) (ian:chiA(n)b) (n) (ianmfA(")b)
802(56,13):27“2 e 2 —|—Zr2 e 2 7

TLGUQ TléUg
and
i i A (1) . (n)
(9yg01(x,b) = _iﬁroel(am—ﬁb) + Z iAgn)T‘§n)6(la"$+lA1 b) o Z Agn)rgn)e(la"x_Al b)’
neli n¢Uy
i ialm - ()
8ygp2(x,b) = Z iAgn)rén)e(lanerlAg b) . Z Agn)rgn)e(uxnfoQ b)'
nelz néUg
Substituting the above four functions into (2.29) and using the orthogonality of Fourier series, we get

> AP+ 0 AP = Blrol,

nely nels
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FIGURE 2. Geometry of the PML problem.

which completes the proof. U

In practice, the grating efficiencies (2.26) can be computed from (2.15) once the scattering problem is
solved and the diffracted field v is available on I.

3. THE PML PROBLEM

In this section, we shall introduce the PML formulation for the scattering problem and establish the well-
posedness of the PML problem. An error estimate will be shown for the solutions between the original
scattering problem and the PML problem.

3.1. PML formulation. Now we turn to the introduction of an absorbing PML layer. As is shown in Figure
2, the domain €2 is covered by a chunck of PML layer of thickness § in Q°. Let p(7) = p1(7) + ip2(7) be the
PML function which is continuous and satisfies

p1=1, pa=0 forr<b and p; >1, pg >0 otherwise.

We introduce the PML by complex coordinate stretching:

y
gy = / p(7)dr. (3.1)
0
Let & = (z, 7). Introduce the new field

(@) {uinc(sc) +(w(®) — uine(@)), @€, a2

u(x), z e

It is clear to note that w(x) = wu(x) in €2 since & = x in 2. It can be verified from (2.1) and (3.1) that @
satisfies

Z(U — tine) =0 inQUOC.
Here the PML differential operator
(A =+ 20)0: (p(y)Bzur) + 10y (0~ (y)Byur) + (X + )3z uz + w?p(y)u
10x (p(y)Ozuz) + (A + 200)0y (p~ 1 (y)Oyuz) + (A + )03, ur + w?p(y)us
Define the PML region

OPML — fp e R?:0<az <A, b<y<b+d}

Clearly, we have from (3.2) and (2.17) that the outgoing wave @(x) — i () in ¢ decays exponentially as
y — o0. Therefore, the homogeneous Dirichlet boundary condition can be imposed on

MPMEL— (e R2:0<z <A, y=b+d}
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to truncate the PML problem. Define the computational domain for the PML problem D = Q U QPME, we
arrive at the following truncated PML problem: Find a quasi-periodic solution @ such that

Lu=g in D,
U = Uine on PPML, (3.3)
=0 on S,
where
) ZLuinc in QPML
770 in .
Define Hj (D) = {u € H},(D) : u = 0on S UTTML}. The weak formulation of the PML problem

(3.3) reads as follows: Find @ € H§ . (D)? such that & = ine on I and
b, v) = —/Dg-'ﬁda:, Vv € Hj (D)2, (3.4)
where the sesquilinear form b : H} (D)? x Hg,(D)? — C is defined by

b(u,v) = / (N + 2u)(pOyu1 0,01 + p_lﬁyuy?y@g) + ,u(,o_lﬁyulay@l + pOyu20,09)
D

—|—()\ + M)((?xug(?yz‘;l + 6mu18yz72) — w2p(u1171 + u2’l_)2) dx.

We will reformulate the variational problem (3.4) in the domain D into an equivalent variational formu-
lation in the domain €2, and discuss the existence and uniqueness of the weak solution to the equivalent
weak formulation. To do so, we need to introduce the transparent boundary condition for the truncated PML
problem.

3.2. Transparent boundary condition of the PML problem. Let v(x) = v(&) = u(&) — uinc(Z). Itis
clear to note that v satisfies the Navier equation in the complex coordinate
A0+ (N + 1) ViV - o+ w0 =0 in QPME (3.5)

where V = [0,,0;] " with 95 = p~1(y)0,.
We introduce the Helmholtz decomposition to the solution of (3.5):

b = Vo1 + curlzon, (3.6)

where curly, = [9;, —0,] " and ¢j(x) = ¢;(&) satisfies the Helmholtz equation
Nsdj + K2; = 0. (3.7)

Due to the quasi-periodicity of the solution, we have the Fourier series expansion
i) = o (y)eone. (3.8)

nez
Substituting (3.8) into (3.7) yields
d d - .

-1 = -1 > (n) > (n) 2 (n) =0 3.9
p dy(p 3,97 ®) + 6 w) =0, (3.9

The general solutions of (3.9) is
<73§'n) (y) = A§”)e155”) I p(rydr B]('n)e_iﬁf('n) J (.
Denote by
b+o
¢= /b p(T)dr. (3.10)
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The coefficients Ag»n) and B](.n) can be uniquely determined by solving the following linear equations

an an B ~ B AP T )]
B - —0n O By _ |-y o) (3.11)
i8¢ S g ste g —igdc | | 4| ’ '
e ape” 1 By eP2 —f5 e P2 A, 0
Rl B S s A I - T0 I I

where we have used the Helmholtz decomposition (3.6) and the homogeneous Dirichlet boundary condition
0(z,b+0) =0 onIPME
due to the PML absorbing layer. Solving the linear equations (3.11), we obtain

i

(n) _ _ L)) ~(n) (n) ~(n)
AP =zt X + D 0) + 75 1)
+28" (e + 261" (1 + 05 n<”>><an/3§">@§"><b> +a2ef” (1) },
() __ 1 (n) (n)
Bl 2X(n)f((n){x €1 (O‘nvl () 52 ())

+2(e 85 + 2068 + {85 (B B0 (6) — a2 88757 ) ],
(n) _ i (n)r-(m) (n) _ o(.(n) (n) (n) s() gy _ o ~(0)
AP = ) 20+ 0+ N0 6) — antf” 0)
+ 260" (105" — ™) (8265 o (8) - @kl (b)) },

(n) _; (n) 1o s(n) _(n) ( (n) n) ~(n) (n)
b2 _2X(")§<(n){x 2057 (e1 " + 1) — ey " ™V](By 0y (b) + andy ()

— 255" (" +2) (8285 5" (6) + " () }.

where
€§n) = coth(—iﬁ](.n)g) -1,
5](71) _ (eiﬁén)ﬁ _ 616%")4)/(6—1@(-”)4 _ eiﬁ;”)C)’ (3.12)
g = 65 /510 = (emiBC B¢ (eI C i)

and

R = 3™ 4+ 485 — o™ — 6" a5)a2 B ALY X, (3.13)
Here, the hyperbolic cotangent function is defined as
coth(t) = (¢! +e %) /(e! —e™).

Following the Helmholtz decomposition (3.6) again, we have

On n Qnp . n) e
b(z,y) = iz [5( ) Agn)el(anﬁﬁl I etr)ar) + ﬁ(n) Bin)el(a"l“*ﬁg ) JY p(ryar)
ne”L 1 -0
(n) ( ) ( (n) ry d ) ﬂ(n) ( ) ( ) ry 4 )
2 A2n el o+ fb p(r)dr) 2 B2n o anz—pBS fb p(r)dr ‘ (3.14)
—ay, a,

Recall the differential operator & on I':
Do = pdy® + (A + )[0,1]TV - & = [udyd1, (A + )0t + (A + 20)dy 9] . (3.15)
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Combining (3.14) and (3.15), we derive the transparent boundary condition for the PML problem on I':

D = gPMLg ZM(n ’f) n) 1oznar

nezL
where the matrix
o[
gy gy

Here the entries are

~ (n iw? iw? 3" n n) (n n n) H(n
iy = (mﬁl(n)[”a + (0™ + 268 B,
X X
2

. () 5(n)
~(n) . _ wray lw O‘nﬁl By (n) (n) _ (n) (n)
My = O = G T T ) 7+ 260 =) 207,

202

(n) 4(n)
L) . W op  iw 20, 8857 1 ) ) (n) (n) (n) s(n) _ <(n)
m21 = —1lluQp + )Z(n) ( )X(n) [ (1 + 25 =N ) + 2(251 + 251 52 62 )]’

2 p(n) 2
L (n) 1wy W B [ () () a(m) L ((w) (™ (n)
iy = o+ g A8+ 0+ 2657)ad .

Equivalently, we have the transparent boundary condition for the total field & on I':
P = 7MLy 4 FPML.

where f*MV = 24, — TPMLay,..
The PML problem can be reduced to the following boundary value problem:

pAuPME 1 (X + ) VYV - aPME 4 2 PME — in Q,
uPML = 0 on S, (3.16)

PuPML — ZPMLyPML | £PML onT.
The weak formulation of (3.16) is to find "™ € H qp(Q)2 such that
a"M (M v) = (FPMY v, Vo € H ) (Q)%, (3.17)

where the sesquilinear form o™ : H} qp(Q)2 x H} qp(Q)2 — C is defined by

a"ME (u, v) /Vu Vvdac+()\+,u)/(v u)(V-v)de
—w2/ w-vde — (TPMy, v)r. (3.18)
Q

The following lemma establishes the relationship between the variational problem (3.17) and the weak
formulation (3.4). The proof is straightforward based on our constructions of the transparent boundary con-
ditions for the PML problem. The details of the proof is omitted.

Lemma 3.1. Any solution u of the variational problem (3.4) restricted to §2 is a solution of the variational
(3.17); conversely, any solution u"™" of the variational problem (3.17) can be uniquely extended to the
whole domain to be a solution U of the variational problem (3.4) in D.
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3.3. Convergence of the PML solution. Now we turn to estimating the error between u"™" and u. The
key is to estimate the error of the boundary operators .7 "ML and 7.
Let
A7 =min{A ine U}, AF =min{aAl n ¢ Uy},

A7 A*
F =max e , T
j=1,2 eiAj Im(¢ 1 e—A Re¢ 1

16k3 24(16 + K3)?
Ky K7 ‘

The constant F' will be used to control the modeling error between the PML problem and the original scatter-
ing problem. Once the incoming plane wave i, is fixed, the quantities Aj_, Aj are fixed. Thus the constant
F approaches to zero exponentially as the PML parameters Re( and Im( tend to infinity. Recalling the def-
inition of ¢ in (3.10), we know that Re( and Im( can be calculated by the medium property p(y), which is
usually taken as a power function:

p()—1+0<y;b> ify>b, m>1

Reo Imo
Re( = <1+m+1>5’ Im¢ = <m+1>5

In practice, we may pick some appropriate PML parameters o and ¢ such that Re¢ > 1.

Denote

X max {12/@2, 16/@%, 8+ 2/@%,

Thus we have

Lemma 3.2. Forany u,v € H}, qp(Q)Q, we have

((TPME — TYu, v)p| < FHUHLQ(F)2HUHL2(F)2
where F = 17w?F/r}.
Proof. Forany u,v € Hg ()%, we have the following Fourier series expansions:

b) _ Z u(n) (b)eian:v, Z v 1anm

nez ne”L

JulBeye = A S ™ OP,  o2ame = A S ™ (0)P

neL nez
It follows from the orthogonality of Fourier series, the Cauchy—Schwarz inequality, and Proposition A.4 that
we have

which gives

(TP — T)w,v)p| = A (M MYu™ (b)) - 5™ ()
NneZ
() _ 2 1™ (p2) wp2)? < f
< (A MO = MBI B)R) (A P OR) T < Fllul gy ol
nez nez
which completes the proof. U

Let a = min,{z € S}. Denote Q = {x € R?: 0 < x < A, a < y < b}.
Lemma 3.3. Forany u € Hé qp(Q)z, we have
[ullz2@yz < llullgizme < vellullm )

where v = (1 + (b —a)~1)Y/2.
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Proof. First we have

(b — a)|u(b) /|u |dy+// () [2dtdy

< / uy)Pdy + (b — a) / 2luy) I (y)ldy,

which gives by applying the Cauchy—Schwarz inequality that

b b
(1+a3) Plu@)® <31 +a7) / [u(y)*dy + / [/ (y) P dy.

Givenu € H} Olp(Q)Q, we consider the zero extension
. u in §2,
U= S
0 in 2\ Q,

u(x,y) = Z'&(”)(y)em‘”gC in .

nez

which has the Fourier series expansion

By definitions, we have
202y = A D (1 +02)Y2(a™ (1) 2

nez
and
il =AY [0+ G + )
nez
Noting ||| g1/2py2 = [[@l| g1/2(ry2 and ||| g1 ()2 = [|@]| 1 (g2, We complete the proof by combining the
above estimates. (]

Theorem 3.4. Let 1 and 72 be the constants in the inf-sup condition (2.22) and in Lemma 3.3, respectively.
If F~3 < 71, then the PML variational problem (3.17) has a unique weak solution u™V, which satisfies the

error estimate
PML
)|

PML| . sup la(u —u

< Py u™™ — winel| 2z, (3.19)
0£vEHY ()2 [0l g2

lu —u

where u is the unique weak solution of the variational problem (2.20).

Proof. Tt suffices to show the coercivity of the sesquilinear form a"™" defined in (3.18) in order to prove the
unique solvability of the weak problem (3.17). Using Lemmas 3.2, 3.3 and the assumption F'y3 < 71, we get
for any w, v in H} qp(Q)2 that

"M (w, v)| > |a(u, v)| — [(TMF — T)u, v)r|
> |a(u, )| = Fyllwl g1 0] g @)
> (71— F93) |ull e 10l a2
It remains to show the error estimate (3.19). It follows from (2.20)—(2.21) and (3.17)—(3.18) that
PML’,U) = a(u,v) — a(uPML
= (f,0)r — (FPML o) 4+ aPME(PML ) — q(uPME p)
_ <(yPML — T )tine, V)T — <(9PML _ y)uPML’,wF
= (7 - gPML)(uPML — ine), V)T

which completes the proof upon using Lemmas 3.2 and 3.3. (]

alu —u ;)
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We remark that the error estimate (3.19) is a posteriori in nature as it depends only on the PML solu-
tion "M% which makes a posteriori error control possible. Moreover, the PML approximation error can
be reduced exponentially by either enlarging the thickness J of the PML layers or enlarging the medium
parameters Reo and Imo.

4. FINITE ELEMENT APPROXIMATION

In this section, we consider the finite element approximation of the PML problem (3.4) and the a posterior
error estimate.

4.1. The discrete problem. Let M}, be a regular triangulation of the domain D. Every triangle T € My, is
considered as closed. We assume that any element 7' must be completely included in QFML or Q. In order
to introduce a finite element space whose functions are quasi-periodic in the x direction, we require that if
(0,y) is a node on the left boundary, then (A,y) is also a node on the right boundary, and vice versa. Let
V(D) C HL (D) be a conforming finite element space, and Vi (D) = Vi(D) N Hj (D).

Denote by II;, : C(D)? — V;,(D)? the Scott—Zhang interpolation operator, which has the following
properties:

lo = ol 2y < Chr|[ Vol gy v = Mol 22 < Ch/? Vo pee),

where hr is the diameter of the triangle T, h. is the length of the edge e, T and € are the unions of all elements
which have nonempty intersection with the element 7" and the edge e, respectively, and the Frobenius norm
of the Jacobian matrix Vv is defined by

1/2

2
Vol = | 3 [ Vo
j=1"¢

The finite element approximation to the problem (3.4) reads as follows: Find @, € V},(D)? such that 4, =
I, uine on TPML 4, — 0 on S, and

b(ﬁh,'vh) = —/ g-vpdx, Vo€ ‘Q/h(D)Q. 4.1
D

Following the general theory in [3], the existence of a unique solution of the discrete problem (4.1) and the
finite element convergence analysis depend on the following discrete inf-sup condition:

”
sup |b(tp, v

> Yolltnl| i (pye, ¥ an € Vi(D)?, 4.2)
0£V;, (D)2 H”hHHl(D)2

where the constant 7 > 0 is independent of the finite element mesh size. Since the continuous problem

(3.4) has a unique solution by Theorem 3.4, the sesquilinear form b : HY (D)? x H} (D)* — C satisfies

the continuous inf-sup condition. Then a general argument of Schatz [30] implies that (4.2) is valid for

sufficiently small mesh size h < h*. Thanks to (4.2), an appropriate a priori error estimate can be derived

and the estimate depends on the regularity of the PML solution "™, We assume that the discrete problem

(4.1) admits a unique solution u; € Vh(D)Z, since we are interested in a posteriori error estimates and the

associated adaptive algorithm.

Denote by B, the set of all sides that do not lie on '™ and S. For any T' € M}, we introduce the
residual

- : PML

Rr = (L + g)lr = {‘Z (n =l 1T € 2

Lup|r otherwise.

For any interior side e € 3, which is the common side of 77 and 75, we define the jump residual across e as

Je = Dyun|r, — Doy,
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where the unit normal vector v on e points from 75 to 77 and the differential operator
D = pdyv + (A + p)(V - v)v.
Define
P]eft:{lBEaDZI':O}, Fright:{mEBD:x:A}.
If e = Ty N OT for some element T € M), and €’ be the corresponding side on [yight, which is also a side
for some element 7", then we define the jump residual as

Je = u0u(inlr) + A+ )[1,0]" Vi - (@nlr)| = e [ud(@nlr) + (3 + w107 Vi - ()|,

T, =i [uax(ah\T) O+ )10V, - (ahyT)} - [ﬂagg(ah\p) O+ w107V, - (ah\T/)} .

For any T' € M}, denote by 77 the local error estimator:

) 1/2
nr = hr||Rrllrz )z + (5 Z heHJeH%Q(@F) '
eCOT

The following theorem is the main result of this paper.
Theorem 4.1. There exists a positive constant C such that the following a posteriori error estimate holds

[ — @l g1 2 <Y2F [l — incllp2(ryz + ¥2C2l T tine — Wine|| 2 rraye

1/2
+C(1+7201)< Z 77%) )

TeMy
where the constants F, V2, and Cj are defined in Lemmas 3.2, 3.3, 4.3, 4.4, respectively.

4.2. A posteriori error analysis. For any v € H Ollp(Q)z, we denote by v the extension of v such that v = v
in 2 and v satisfies the following boundary value problem
pAz0 + AN+ ) ViV -0 +w?0 =0 in QPML,
(z,b) = v(x,b) onT, 4.3)
v(x,b+0)=0 on TPML,

Lemma 4.2. For any u, v € H} (Q)* we have

/ FPMLy  wda = / w - Pvdr.
r T

Proof. Introduce a function w € H} (Q"M%)? which satisfies

AW + (A4 p)VagVy - w + w2 =0 in QPML,
w(z,b) = u(z,b) onT,
w(z,b+6) =0 on TPML,

FPML and 9, we have

<7PML

Using the definitions of the operators
u=9%w onl.

On the other hand, it follows from Green’s formula and the extension that

/u-.@@dx:/'ﬁw@f)dx: —/ {MV@'IZ) (Ve + N+ p)(Vg - 0) (Vg - W) — w0 - w|da
T T OPML
- / [MA@ﬁ; F O+ 0)VaVa -+ w%} Bda + / Div - Bdx
QPML r

:/@ﬁ)-'fjdx:/ﬂpMLu-%dx,
r r
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which completes the proof. U

Define H} (D) = {v € HL (D) : v = 0 on T"M!}. The following two lemmas are concerned with the
stability of the extension. The proofs are given in Appendix.

Lemma 4.3. Let v € ]r{Ollp(Q)2 and v € ]E[Ollp(D)2 be its extension satisfying (4.3). Then there exists a
positive constant C such that
IV 2 @rmye < 292Gl q)2,

Lemma 4.4. Let v € ]r{Ollp(Q)2 and v € ]E[Ollp(D)2 be its extension satisfying (4.3). Then there exists a
positive constant Co such that
20| 2 (rprvrye < 2000|102

For simplicity, we shall write © as v in the rest of the paper since no confusion of the notation is incurred.

Lemma 4.5 (Error representation formula). For any v € H} qp(Q)Q, which is extended to be a function in
1T1T017qp(D)2 according to (4.3), and v, € Vi, (D)2, we have

a(u — ap,v) = —/ g (v —vp)dx — bp(tp, v — vp)
D

+ /(y — ﬂPML)(ﬁh — u-mc) -odx + / (Hhuinc — u-mc) . @@ﬁdx.
T TPML
Proof. It follows from (2.21) and (3.4) that

a(u — ap,v) = a(u — 4,v) + a(t — Uy, v)

= /(9 — TPMUY (4 — wiye) - odz + a" M (4 — 4y, v) — /(9 — 7MY (4 — @) - vda
I r

= /(9 — TPMUY (@, — wine) - e + oMY (@ — dy,, v).
r
Using (2.21) and Lemma 4.2 give

a"M (@ — @y, v) = bo(@ — @y, v) — /
r

Since £ = 0 in QPML| we deduce by Green’s formula that

bopur (B — Up, v) = —/
r
Applying (3.4) and (4.1) yields

TPME (4 — @) - vdz = bo(t — @y, v) — /(a — @) - Poda.
r

(@ — @) - Doda + / (i — @) - Dpvda.

TPML

oMU (4 — dy,, v) =bp (@ — @y, v) — / (4 — ) - Dpoda
TPML

= / g(@ - 'Dh)dx - bD('&h,'U - 'Uh) — / (’& — ’llh) . .@@'de,
D

'PML

which completes the proof. U

Clearly, it suffices to evaluate all the terms in the error representation formula in order to show the posteriori
error estimate in the Theorem 4.1. Now we present the proof as follows.

Proof. Taking vy, = vy, € H&,qp(D)2 in Lemma 4.5 for the error representation formula, we have
a(u — up,v) = — / g(v —vp)de — bp(up, v — vy)
D

+ /(y — yPML)(’iLh — uinc) -vdx + / (Hhuinc — uinc) . .@@f)dx
I I

PML

=J1+ Jo+ J3 + Jy.
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Given the tolerance € > 0,0 € (0,1);
Choose 6 and o such that F'A1/2 <10°8;
Construct an initial triangulation M}, over ) and compute error estimators;
While €, > e do
choose M, C M, accordiAng to the strategy 7,0, > 014,
refine all the elements in M}, and obtain a new mesh denoted still by My
solve the discrete problem (4.1) on the new mesh Mp,;

compute the corresponding error estimators;
End while.

O 001N Ut Wi —

TABLE 1. The adaptive FEM algorithm.

It follows from integration by parts that
1
htl= > (/ Ry (o —Io)dz + » —/Je-('ﬁ—Hh'E)dx),
T 2 e
TeM, eCoT
which gives after using the interpolation estimates and Lemma 4.3 that

1/2

[Ji+ Tl <C Y nrllVol gy < CA+7200) | D np | Ilvllm e
TeMy TeM,;

By Lemmas 3.2 and 3.3, we obtain
T3] < Fllan, — winell 2y 1ol 2z < Y2 F 1n — inell 22 0] i o2
Finally, it follows from Lemmas 3.3 and 4.4 that
‘J4’ SCl HHhuinc - uincHL2(FPML)2 H’UHL2(F)2
<Y2C1|[Hptine — Winel| L2 remryz ]| 102

The proof is completed by combining the above estimates U

5. NUMERICAL EXPERIMENTS

According to the discussion in section 3, we choose the PML medium property as the power function and
need to specify the thickness ¢ of the layers and the medium parameter o. Recall from Theorem 4.1 that the a
posteriori error estimate consists of two parts: the PML error epypr, and the finite element discretization error
€FEM, Where

epmr, = Fllup™ — wine| 12 ()2, (5.1
1/2
EFEM = FH’UEML - ’uinCHLz(FPML)z + Z 77% . (52)
TeMy

In our implementation, we first choose & and o such that £’AY2 < 1078, which makes the PML error
negligible compared with the finite element discretization error. Once the PML region and the medium
property are fixed, we use the standard finite element adaptive strategy to modify the mesh according to the a
posteriori error estimate (5.2). For any T' € M},, we define the local a posteriori error estimator

A =07 + B3| Iyttine — Wincl 2 ey ngre-

The adaptive FEM algorithm is summarized in Table 1.
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FIGURE 3. Example 1: Quasi-optimality of the a priori (left) and a posteriori (right) error estimates.

In the following, we present two examples to demonstrate the numerical performance of the proposed algo-
rithm. We choose A = 1 and p = 2. The implementation of the adaptive algorithm is based on FreeFem++-
cs [26].

Example 1. We consider the simplest periodic structure, a straight line. In this situation, the exact so-
lution is available, which allows us to test the accuracy of the numerical algorithm. Assume that a plane
compressional plane wave ui,. = [sinf, — cos H]Tei(‘m_ﬁy) is incident on the straight line y = 0, where
a = k1sinf, f = Kkycosh,0 € (—m/2, 7/2) is the incident angle. It follows from the Navier equation,

Helmholtz decomposition, and outgoing radiation condition that we obtain the exact solution
. . (0)
’u’(xay) == uinc(xay) - [aa /B]TRlel(ax—i_ﬁy) - [550)7 _a]TRQel(ax+B2 y)7

where BSO) = (k3 — a?)'/? and

asin@—ﬁéo)cosﬁ acosf + [sind
= 2 350 » 2= 2 30 )
o + 552 o + ﬁﬁQ

In our experiment, the parameters are chosen as # = 7/6, w = 2, and the domain 2 = (0,1) x (0,1).
Figure 3 shows the curves of log [|V(u — )|/ 2 ()2 versus log N}, for both the a priori and the a posteriori
error estimates, where IV, is the number of nodes of the mesh M. The result shows that the meshes and the
associated numerical complexity are quasi-optimal for the proposed method, i.e., log ||V (u — @) || 12 ()2 =

CN, 1/2 is valid asymptotically.

Example 2. This example is concerned with the scattering of the compressional plane wave uj,. =
[sinf, — cos Q]Tei(‘mfﬁy) on a grating surface with a sharp angle. The problem geometry is shown in Figure
4. The parameters are the same as those for Example 1. Since there is no exact solution for this example,
we plot in Figure 5 the curves of log ||V (u — )| 12(q)2 versus log N}, for the a posteriori error estimate,
where Vy, is the number of nodes of the mesh M. Again, the result shows that the meshes and the associated
numerical complexity are quasi-optimal for the proposed method. To verify Theorem 2.2, we plot in Figure
6 the grating efficiencies and the errors of the total efficiency for different PML thickness. Figure 7 shows
the mesh and the amplitude of the associated solution after 6 adaptive iterations when the grating efficiency
is stabilized. The mesh has 8491 nodes. This example shows clearly the ability of the proposed method to
capture the singularity of the solution.

6. CONCLUDING REMARKS

We presented an adaptive finite element method with the PML absorbing layer technique for the elastic
wave scattering problem in a periodic structure. We showed that the truncated PML problem has a unique
weak solution which converges exponentially to the solution of the original problem by increasing the PML
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FIGURE 5. Example 2: Quasi-optimality of the a posteriori error estimates for different PML thickness.
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FIGURE 6. Example 2: (left) Grating efficiency with § = 1.0; (right) Robustness of grating
efficiency with respect to the thickness of PML layers

parameters. We deduced the a posteriori error estimate for the PML solution which serves as a basis for the
adaptive finite element approximation. Numerical results show that the proposed method is effective to solve
the diffractive grating problem of elastic waves. The method can be directly applied to solve the diffraction
grating problems with other interface and/or boundary conditions. We are also currently extending the method
to the three-dimensional problem where biperiodic structures need to be considered.
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FIGURE 7. Example 2: The mesh (left) and the surface plot of the amplitude of the associ-
ated solution (right) after 6 adaptive iterations. The mesh has 8491 nodes.

APPENDIX A. TECHNICAL ESTIMATES

In this section, we present the proofs for some technical estimates which are used in our analysis for the
error estimate between the solutions of the PML problem and the original scattering problem.

Proposition A.1. For any n € 7, we have 3 < |x™| < x3.

Proof. Recalling (2.16) and (2.11), we consider three cases:
(i) Forn € Uy, ﬂ§") = (k3 —a2)/? and ﬁén) = (k3 — a2)1/2. We have

" = a4 A = o+ (5]~ a}) (s — a2

Consider the function
g(t) =t + (k1 — )2 (ks — )2, 0 < ki < ko
It is easy to know that g; is decreasing for 0 < ¢ < k1. Hence
ki = g1(k1) < g1(t) < g1(0) = (knky)'/?,
which gives k2 < x(™ < r1ro.
(ii) Forn € Us \ Uy, ﬁ%n) =i(a? — m%)l/g,ﬁ;) = (k3 — a2)'/2. We have
" = a2 i = )20 - o)

and
X™P = (51 + R3)ar, — (R1ka)?,
which gives 7 < [x(™)] < &3.
(iii) Forn ¢ Uy, B =i(a2 — k2)V/2, 8" = i(a2 — k2)1/2. We have

n
A = = (a2 Rl - i,
Let
got) =t — (t— k)2t — k)2, 0 <k < ko.
It is easy to verify that the function go is decreasing for ¢t > ko. Hence we have

(k1 + k2)/2 = ga(o0) < g2(t) < ga(ka) = k2,
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which gives (k7 + k32)/2 < x(™ < K.
Combining the above estimates, we get £2 < |X(")| < k3 for any n € Z. U
Proposition A.2. The function g3(t) = t/(e! — 1) is a decreasing function for t > 0.

Proof. A simple calculation yields

1—t)et —1
’tzi( <0, t>0
93() (et_l)Q ’ ’

which completes the proof. O

Proposition A.3. The function g4(t) = t*/e®=s"2/2 sarisfies gu(t) < (s2 + k2)¥/2 for any t > s >
0, k> 2.

Proof. Using the change of variables 7 = (t> — s2)1/2, we have

72 1 §2)k/2
94(7—) = ( 7_/2) .
e

Taking the derivative of g4 gives

R 72 — k1 4 $2) (72 4 s2)1/2
ah(r) = - )

(i) If s > k/2, then gj < 0 for 7 > 0. The function g, is decreasing and reaches its maximum at 7 = 0,
ie.,

9a(t) < §a(0) = 5.
(i) If s < k/2, then g} < 0 for 7 € (0, (k — (k? — 45%)1/2)/2) U ((k + (k* — 45)1/2)/2,00) and g4 > 0
for 7 € ((k — (k* — 45%)1/2)/2, (k + (k* — 45?)'/2)/2). Thus g4 reaches its maximum at either
1 =0o0r 7 = (k+ (k* — 45%)1/2) /2. Thus we have
9a(t) = ga(7) < max{ga(r1), da(m2)} < (s* + k%),

The proof is completed by combining the above estimates. O
Proposition A.4. For any n € 7, we have |[M™ — N[("||y < F, where I = 17w F /.

Proof. First, we have from (3.12) that
2 < 2
’e_QiﬁJ('n)C B 1’ — ‘e_QiBJ('n)CI B 17

] =| coth(=iB"¢) — 1] =

GBS _ B¢

o) _ 2 B 2
1051 = —ig™We  igM™e| T —ig™e ~ mBReC+Ref M Im¢
e i S —evi le™" 5| =1 ™% g -1

and
- a(n)
(n), (n) 2e117¢ 2
|51 | = ) () < () .
6_162 C — 6162 C |e_162 <| — 1

Thus we can take proper PML parameters ¢ and 9 such that |5](n)| < 1foranyn € Z.
Next we consider three cases:

(i) For n € Uy, we have ﬂ%n) = Ag"),ﬁgn) = Ag"). Using the facts that Ag.") > A7 forn € Uy and the
function g3 is decreasing for ¢ > 0, we obtain from (2.16) and (3.13) that
(n) A (n) -
|>A<(n) _ (n)| < 24A1 AQ < 112H2A1
- |6—1B£”)C| 1 exArmC_q

<F,
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and

max {Jan (3 — X)), 8" (1
24k2 A" ) 1262A7

)], 185 (%™ — ™)}

— <F,
- ‘e—i[ﬁn)(’ -1 e%A1 Im¢ 4

max {|e1028"], [e10mB™ BV, 1618 (B2, 161 0 B B |}
2/<;2A(n) K%A_

= 28 Im¢

<F,
T eATImC

max{|el 77 anﬁl n)|’ |6§n)77(n)0‘3;/82n)|’ |5én)aiﬁén)|a

B0, 108 an B B, 1087 (80285}
QK%Agn) K%AZ_ <
_eAén)ImC 1 B%A;Imﬁ o =

1

= iA1(n),ﬁ2n) = Ag"). Using the facts that Aj(n) > A, Agn) >

(ii) Forn € Uy \ Uj, we have ﬁln)
A; forn € Uy \ Uy and the function g3 is decreasing for ¢ > 0 again, we get

) ()| <1053 AgY 8r3 A
T kP AVIe 1 KT AReC g
<8/<;% Ay 4r3 AT

2 2
K1 €2A Im¢

< F
1 K2 62A Re¢ 1 — '

1
and

max { oo, (X = 3], B () = X)), 1857 (& — x|}
16/4‘21Agn) 8/4‘21Ag")

8r3 A, 4r3AT
T oA Im¢

—1 AR g T et

<F
-1 eEA Rec_l_

max{\alazﬁyl)] lslanﬁln) (n)

S0, e B (852, 1877 BV 85V}
QKZA(n) < K3AT
= 28 Re¢

max{ |6§n)77( )

2 —
K5A]

~ oA ReC ~ _3ATReC =
-1 e~1 -1 e2-1 -1

B 85|, 10 (@) 2B85M), (65 () 285,
£ (8257, 165 B 8571, 1057 (6126571}
QK%Agn) K3AS

— (n) — lAiI e — F’
eA Im¢ _ 1 e22 m¢ _ 1

(i) Forn ¢ Uy, we have 8\ = iAW =iAl™ and A > A" Noting Re¢ > 1, we obtain

3AM) 3 (n)
£ = @) 24 Jan["Ay " _ 24 |on| Ay

KT AN ReC 1 T KT ial dalRec _ g
(9 + K32 A}
5 <F

T AT > L
K1 ez ReC 1
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and

max { oo, (X = %), B (™) = X)), 187 & — )|}
24 Jao'AS 24 Jant  AFY 24164432 AT

<F
TRTAYReC _ 1 T KT 3ASY JLATYReC _ 1 T K2 e3ATReC _ 1 =7
max {[e1a2 8", leranB 85, |18 (85721, 167 @B 87 |
2 A (n) 2 (n) +
< 2B 2 B chUts) ol <F,
201 ReC _ 1 T oAYY pAReC _ q eATRe¢ _q
max { [0 an B 857, 160 () 2857, 1657 ()27,
™ 157 105" n B 65711057 (51757
2 A (n) 2 (n) +
o S e S 24 ) < F
eAQ" ReC _ 1 B%AQn 6%A2n Rec _ 1 €§A2 ReC _ 1

where we have used the estimate for g4 and the facts that Agm > A;r forn ¢ Us and g3 is a
decreasing function.

It follows from Proposition A.1 and the estimate |¢(™) — x| < F that x7 — F < |x(™)| < k3 + F. Again,
we may choose some proper PML parameters o and § such that F' < x2/2, which gives || > x2/2.
Last, using the matrix norm and combining all the above estimates, we get

1310 — N3 < 22 (1600 (5000 )2 4 20, (5) — X4 B () — 3
1

+[eMa2 M2 4 1685 80 (8522 4 10l a, B B2 + 160 (82857 2
+2|€§”)n(n)anﬁ1”) én)|2_|_|€§")n(n)aiﬁén)|2+4|5§n)( %”))2 én)|2
272wt

F1615{ 0 5 5P + A5 o257 + 24165 0, B 7)< TR,
1

which completes the proof. U
APPENDIX B. PROOF OF LEMMA 4.3
Let w = . The problem (4.3) can be written as

pAzw + (A4 1) VeV - w + w?w = 0 in QPML,

w(z,b) = v(zx,b) onT, (B.1)
w(z,b+6) =0 on I'PML,
We introduce the Helmholtz decomposition to the solution of (B.1):
w = Vi + curlgyy, (B.2)
where 1) () satisfies the Helmholtz equation
Agt; + K3y = 0. (B.3)
Due to the quasi-periodicity of the solution, we have the Fourier series expansion
'l/}] T y Z ,lp n) —10én$. (B4)

ne”
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Substituting (B.4) into (B.3) yields

d d

-1 -1 (n) ()2, (n) N

o g (T g W) + e ) =0 (B.5)
The general solutions of (B.5) is

w§n) (y) = flg,")eiﬁ]('n) I p(r)dr 4 B](n)e,iﬁj(n) ¥ p(r)d

It follows from (B.2) that the coefficients flg-n) and BJ(-") can be uniquely determined by solving the following
linear equations

e I CI T A

8" A" o o BY -0 g
—anefC e B gimese _glm -] | A 0 ' '
_5?)6155 ¢ —5?)6*15%”)( anemén)c ane*iﬁén)C | _B’én)_ 0

A straightforward calculation yields the solution of (B.6):

i) 1 ENOIRD _(n) () 5(7)
A =zt X + D 0) + 575 0)
+2/32">< D281+ 68 = ) (—an B (0) + 020 ()
An) 1 (n) (n) () 5
Bl 2X(n)§((n) {X €1 ( o Ul ( ) /8 ( ))

+2(e 85 + 2068 + {85 (—an B B0 1) — 260V 1) },
jn) _ i (n)r-(m) (n) _ o(.(n) )\ 5(n) ~(n) =(n)
A, _QX(")X("){X [e1'n 2(e1 "+ D)X 465 ))(By vy 7 (b) + anvy (b))
26 (1+ 857 =) (828575 (0) + ey () },
H(n) _ i (n) 1o 5(n) ( () _ ) )y g () gy o n(n)
B, _QX(")X("){X 2057 (17 + 1) — ey 'n™](By 01 7 (b) — vy (b))
— 268" (" + 2)((8")? 80" ) — a3l 0) }.

Noting v = w and using the Helmholtz decomposition (B.2) again, we obtain

an = . ’(n) _ a
f)(m,y) = iz [ ~(n) g")el(anar—ﬁl fby p(T)d’T) + o B(n) (anx+51 )fb ’T')dT)
nez _/81 /81
()7 _ B n)
_ [ 2 Agn)ei(omx—ﬁgn) 1Y p(T)dr) /82 n) l(anJH_BQ )fb (1) dr) B.7)
o —a,
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Using the orthogonality of the Fourier modes in (B.7), we have
A —
/ (|8;)3/l~)1|2 + |am’172|2 + |8y171|2 + |ay®2|2)dx < QAZ |:|Q%Agn 71[31 y|2 | QB(” 1[31 y|2
0 nez
+ ‘anﬁzn A(n 7162 y‘2 + ‘ /8211 B(n 162 y‘2 + ‘ /Bln A(n ,151 y‘2
+ ‘anlﬁln B(” s y‘2 1| 2A(n —ip{" y‘2 1| 2B(n iBl" y’2 + ‘ 51 ,151 y’2
+ |Oén181n B(n 151 y|2 + |(/8(n )2A2 )67151 y|2 + |(B2 ) B( 1 y|2 + |( ) A(n) 715 y|2
ig(n) - =
+ |(ﬁ1n )’ lﬁl y|2 + | A;n)eflﬁl 9P+ |an5§")B§")el 1 y| }
We may pick some appropriate PML parameters o and ¢ such that | (™ — X(")] < k?/2 and | X(")\ > k22,

It follows from the definition of fl(") that

||

n) —i n) —ig(™y n) ¢(n n n) ¢(n
f AL e < B | e 0 4 o P 7857 + 20657 +0175(7)

K
n) o(n) —ig™Mg 2 n Qp n) i
< B Yo @) + 22l Pl
K1
+ o || 85 + 206 + 5(M (M) A5 =819 } oS (b) 2. (B.8)

Since the estimates are similar for the coefficients in front of vin) (b) and vén) (b) in (B.8), we just present the
estimates for the coefficients in front of vgn) (b).

Again, it is necessary to consider three cases:
(i) If n € Uy, we have B%n) = Ag"), B(n) Ag"), A(n) Ag" s Jan| < k1, |87 < K1, |88 < Ko, and

5/2 ,A{™ (Img—Im¢ 5/2
’an‘5/2‘€ (n) —161 y‘ < 2K, "e (Img—Im¢) < 2K,

AMImE 1 T eArm¢
/2, A
‘an‘fr/?’ﬁlmﬂén)’{Egn)één)e—m%")g{ <2/£1 Kae m¢ 2 AP Img
T AMIm¢e 1 LA Im¢ _
4/11/2142
- (eA;ImC _ 1)(6A;Im< _ 1)’

5/21 0(n) o) <(n) —ig™Mg 26 "Ka(e 22 +e A ) A i
/218y 85 |6y e P9 < NI e
4/{7/2
S AT

R R e T e R A L ]
87/ %1y
Kq

< .
_(eA;ImC _ 1)( A Im( _ 1)

(ii) If n € Us\Uy, we have g™ =iAl™, g{m = A{™,

an| < ko, A§") < ko, and

9 ,{2/ 5/2 ,A{™ (Rej—Re) 9 ,{g/ 2

(n) ~
5/2|.(n) —

|an |/ ‘eg )e=ib1 y‘ < =) < —= ;
eAl ReC¢ __ 1 eAl Re( _ 1
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9/2 _Am)
2,{2/ e A Re¢ 2)
S A(”) A(”)I
eAi ReC _ 1 Ay ImC_q
9/2
4/-@2/

- (eAfReC _ 1)(6A2_ImC _ 1)

|an|5/2|5§n)5§n) | |€gn)5§n)67m§”)g‘ eAg”)Reg

)

5/2) a(n) p(n) ([ s(n) —ip{™y 2"52/2 Al Rey
lan|*2187 8567 e |§m€

2 (n) 2 At
2%3/ A Re¢ 2/12/ AT ReC

- eAgn)RGC -1 - eATREC -1 ’

72187 57131765779 <o 121817 857047 |0 e

9/2 AT
452/ eAl Re

<— _ .
(eAl ReC _ 1)(6A2 Im¢ _ 1)
(iii) If n ¢ Us, we have 8™ = iAW, g{M =iAl) AW <« Al <q,], and
’ 1 1 P2 2 >822 1 =%

2|an|5/26A§”)(Reg—Reg) 2cvn |72 1

> AT
AR _ 3D ez AR _ g

an /270 <

<2(/£% + 25/4)>/4
- e%AfReg _1 ’

|52 ﬁln) ﬁ2n> | Mn) 5§n>e—w§">g| <Jan|*2 ‘egme—iﬁi")@ I 5§n> |

4(K? + 81/4)9/4
- (B%ATRe( _ 1)(6AgRe< _ 1)’

|, ’9/2(67A§”)Re( + eng")Re()

5/21g(m) g(n)| 5(m) 1BV 5| < A Rey
|an| |51 52 H 1€ {— eAE")ReC_l €
2an|”?  _ 2(sf +81/4)%"
TeAURC 1 T eadReC _q

an /21 8571|6055 e85 <l [712180) B 5| =181

4(K3 4 81/4)9/4
- (e%A;rReg . 1)(6A;Reg _ 1)'

We have used Proposition (A.3) in the above estimates. Combining these estimates, we may obtain
= . a(n) ~
2 7(n) — 2 n) 2 n)2
R A eI < Olan (o [+ [0577).

where the positive real number C' depends on x, A;, A;L, Re(, and Im(. Following from a similar argument
with tedious calculations yields

V33 gy < CA D fanl(jof 2 + [o§”]?),

nez
where we have used the fact \5;”] < C(1+ |ay,]|) for n € Z. Finally, we have from Lemma 3.3 that

VOl prvey < Cllvll gz < %200 H1 @),
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which completes the proof.

APPENDIX C. PROOF OF LEMMA 4.4

Taking the complex conjugate of (B.7) and using (2.18), we have

(n) .
= PO, i(n) —ilanz—pBy"
Fo(x,b+0)=— Hponfy o A, (amz—5{"¢)
nez LA+ p)ag + (A +2p)p(By")?
— (n) —
4 ppom By B%n)efi(anerﬁ%n)C)
LA+ i) + (A + 2u)p(B)?]
i (n)y2
N pp(By™) A ei(an—5570)
[~ O\ + m)an B8 + (A + 2p) pay 85
M (n)\2
n ppan(Bs ) Bén)efi(anaﬂrﬁén)()_
LA+ w)an B — (A + 2u) pa 5"

A straightforward calculation yields that

- = n) 7(n) ig(™
|25, b+ 0)[3aeanye = [Z0(w,b+ )2 sy < 20 (|pan B0 AT 172
nez

n) 5(n) —ig™ n ~(n) g™ n ~(n) —iglm
+ |upan BTV B TR 4 |pup(B)2 AT BT | pup (B )2 BY 102
n ~(n) ig{™¢ 2 n ~(n) —ig(™¢2
+ (A + m)ad + A+ 2)p(B ) AT (A + a2 + (A + 2u)p(8)) B e 57|
n n)y 7(n) ip{™ n n)\ n) —ig(™
+ (O + manBs” = A+ 2)pan B8 ) ATV 4| (A + many” — (A + 2u)pan ) BV e 7CP?).

Using the similar technique in the proof of Lemma 4.3 and omitting the details, we may show that there exists
a positive constant C' such that

12, b+ 6)|[3peaeys < C > [+ lan) ([0 B)F + [0 (0)[2)].
nez
Finally, it follows from Lemma 3.3 that

1Z0(2,b +0)|| L2reaeyz < Cllvllgireryz < %200l m1(0)2,

which completes the proof.
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