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Abstract

It is a very challenging problem for the direct simulation of the three-dimensional eddy
currents in grain-oriented (GO) silicon steel laminations since the coating film is only several
microns thick over each lamination and the magnetic permeability is nonlinear and anisotropic.
In addition, the system of GO silicon steel laminations has multiple scales and the ratio of
the largest scale to the smallest scale can be up to 106. In this paper, we study an H-ψ
formulation for the nonlinear eddy current problem in laminated conductors. By omitting the
insulating films between neighboring laminations, we propose an approximate but effective
H-ψ formulation for the nonlinear eddy current problem, which reduces the scale ratio by
2–3 orders of magnitude. The well-posedness of the original problem and the approximate
problem are established by examining their weak formulations. The convergence is proved
for the solution of the approximate problem to the solution of the original problem as the
thickness of coating films approaches zero.

Key words. Eddy current problem, H-ψ formulation, nonlinear Maxwell’s equations, silicon
steel laminations.
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1 Introduction

Consider the following eddy current problem for magnetic and anisotropic materials in terms of
Farady’s law and Ampere’s law:

∂B

∂t
+ curlE = 0 in R3, (1a)

curlH = J in R3, (1b)

where E is the electric field, B is the magnetic flux, H is the magnetic field, and J is the current
density defined by:

J =

{
σE in Ωc,

J s in R3\Ω̄c.
(2)
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Here σ ≥ 0 is the electric conductivity, J s is the source current density carried by some coils and
satisfies div J s = 0, Ωc denotes the conducting region, and the complement R3\Ω̄c denotes the
nonconducting region. For magnetic and anisotropic materials, the magnetic flux B = (B1, B2, B3)
is a nonlinear vector function of the magnetic field H = (H1, H2, H3) in the form of Bi = Bi(Hi),
i = 1, 2, 3. The eddy current problem is a quasi-static approximation of Maxwell’s equations at very
low frequency by neglecting the displacement currents in Ampere’s law [1]. For linear eddy current
problems, there are many works in the literature on numerical methods, e.g. [4, 5, 13, 19, 21, 26]),
and on the regularity of the solution, e.g. [14]. However, little has been done for the mathematical
and numerical analysis for nonlinear eddy current problems. We refer to Bachinger et al. [3] for
the numerical analysis of nonlinear multi-harmonic eddy current problems in isotropic materials.

Figure 1: A typical model of the eddy current problem.

In this paper, we shall study the nonlinear eddy current problem in GO silicon steel laminations.
GO silicon steel laminations are widely used in iron cores and shielding structures of large power
transformers [10,11]. The complex structure is made of many laminated steel sheets and each sheet
is about 0.18− 0.35mm thick. Moreover, each steel sheet is coated with a thin layer of insulating
film with thickness 2−5µm to prevent the electric current from flowing into its neighboring sheets,
as seen in Figure 2. Usually the lamination stack has multiple scale sizes and the ratio of the largest
scale to the smallest scale can be up to 106. Clearly, it is extremely difficult to do the full three-
dimensional finite element simulation for the model problem (1) due to extensive unknowns from
meshing the laminations and the coating films. Very few works have been done on the computation
of three-dimensional eddy currents inside the laminations in the literature.

Figure 2: GO silicon steel laminations. (Left) the magnetic shield for protecting the magnetic
plate; (Right) the magnetic shield made of laminated steel sheets.

In recent years, there are considerable efforts which have been devoted to developing efficient
numerical methods for nonlinear eddy current problems in steel laminations in the engineering
community. Most of them were particularly made for effective reluctivities and conductivities of the
lamination stack, e.g. [6,7,20,24]. The main idea is to replace physical parameters with equivalent
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(or homogenized) parameters for Maxwell’s equations. In [8, 9], Bottauscio et al. proposed a
mathematical homogenization technique based on the multi-scale expansion theory to derive the
equivalent electric parameters and effective magnetization properties. In [16, 17], Gyselinck et
al. deduced the effective material parameters by an orthogonal decomposition of the flux in the
perpendicular and parallel directions to the lamination plane. In [18], Napieralska-Juszczak et al.
established equivalent characteristics of magnetic joints of transformer cores by minimizing the
magnetic energy of the system. In [22], Nédélec and Wolf studied the homogenization method
for eddy currents in a transformer core and proved the convergence of the exact solution to the
solution of the homogenized problem as the thickness of the steel sheet approaches zero. Numerical
methods based on the homogenization of material parameters provide an efficient way to simulate
electromagnetic field in steel laminations.

Since the effective conductivity is anisotropic and has zero value in the perpendicular direction
to the lamination plane, the homogenized eddy current is thus two-dimensional in the lamination
stack. Moreover, since the number of steel laminations is finite, the homogenization method usually
introduces large modeling error near the boundary of the lamination stack, especially near the
part of boundary close to the applied field. When the leakage of the magnetic flux is so strong
as to enter the lamination plane perpendicularly, for example, in the outer laminations of large
power transformer core, the eddy current loss induced there must be taken into account in the
electromagnetic design. It is preferable to accurately compute the three-dimensional eddy currents
at least in a few laminations close to the source, i.e., to use the zoned treatment for practical
approaches, as seen in Figure 3. In the three-dimensional eddy current region, one usually has
to subdivide the laminations and the coating films into fine meshes. Using the zoned treatment,
Cheng et al. investigated in [12] the effect of the eddy current, induced by the normal magnetic
field on the total iron loss and the distortion of the local magnetic flux in the lamination stack.

Figure 3: Zoned treatment of the lamination stack. The six laminations close to the source are
treated with three-dimensional simulations while the other laminations are treated with homoge-
nization methods.

The purpose of this work is to present an approximate and effective model to the eddy current
problem (1) by omitting coating films in the system. The new model reduces the scale ratio of the
system by 2–3 orders of magnitude and thus can save computational efforts greatly in numerical
approximations. Besides, the new model conserves eddy current inside each lamination even ignor-
ing the coating films. The eddy current can not flow across the interface between neighboring steel
laminations. Specifically, we obtained the following results for Maxwell’s equations of the nonlinear
eddy current problem:

1. We proved the existence and uniqueness of both the exact solution and the approximate
solution for the original and the approximate problems. We developed some new techniques
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to handle the nonlinearity in the mathematical analysis of Maxwell’s equations. To the best
of our knowledge, this is the first work studying the well-posedness of the H-ψ formulation
for nonlinear and time-dependent eddy current problems.

2. We proved the stability of the exact and the approximate solutions to the original and the
approximate problems with respect to the source current.

3. We proved that the approximate solution converges strongly to the exact solution in the
L2–norm as the thickness of the coating film approaches zero.

4. For the linear eddy current problem, we deduced an explicit error estimate between the
approximate solution and the exact solution with respect to the thickness of the coating film.

The layout of the paper is as follows. In Section 2, we present some notation and Sobolev spaces
and study the H-ψ formulation for the model problem (1). The well-posedness of the nonlinear
eddy current problem is established in Section 3. Section 4 is devoted to the well-posedness of the
solution for an approximate H-ψ formulation of the nonlinear eddy current problem by omitting
coating films. The convergence is examined in Section 5 for the approximate solution to the exact
solution as the thickness of the coating film tends to zero.

2 The H-ψ formulation of eddy current problem

Let Ω ⊂ R3 be a sufficiently large, bounded, and convex polyhedral domain containing all con-
ductors and coils. Denote the conducting domain by Ωc which consists of all conductors. Let
Ωnc = Ω\Ωc be the nonconducting domain such that σ ≡ 0 in Ωnc. Throughout the paper, we
make the following assumptions on the electric conductivity and the nonlinear relationship be-
tween H = (H1, H2, H3) and B = (B1, B2, B3) which are usually satisfied in electrical engineering:

(H1) The conductivity σ is a piecewise constant in Ω. There exist two constants σmin and σmax

such that

0 < σmin ≤ σ ≤ σmax in Ωc,

(H2) Bi is a Lipschitz continuous function of Hi satisfying Bi(Hi) = µ0Hi in Ωnc and Bi(0) = 0.
There exist two constants µmin and µmax such that

0 < µmin ≤ B′
i(Hi) ≤ µmax a.e. in Ω, i = 1, 2, 3.

Here µ0 is the magnetic permeability of the vacuum. The nonlinear function H = H(B) is usually
obtained by spline interpolations using experimental data. Figure 4 shows a typical example of
the BH-curves for the GO silicon steel laminations in large power transformers [10]. Clearly, the
assumption (H2) is satisfied.

We shall focus on simply-connected conductors, i.e., each connected component of Ωc is a
simply-connected Lipschitz domain. A typical engineering application lies in magnetic shields
for the oil tank of large power transformers. We also refer to [10] for a family of benchmark
problems, TEAM Workshop Problem P21c-M1, P21c-EM1, P21c-M2, P21c-EM2, and P21d-M, for
this application, as seen in Figure 2. Obviously, the nonconducting domain Ωnc is simply-connected
for these benchmark problems.
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Figure 4: BH-curves for GO silicon steel laminations. (Left) the rolling direction; (Right) the
transverse direction.

2.1 Hilbert spaces

Let L2(Ω) be the usual Hilbert space of square integrable functions equipped with the following
inner product and norm:

(u, v) :=

∫

Ω

u(x) v(x)dx and ‖u‖0,Ω := (u, u)1/2.

Define Hm(Ω) := {v ∈ L2(Ω) : Dξv ∈ L2(Ω), |ξ| ≤ m} which is equipped with the following norm
and semi-norm

‖u‖m,Ω :=
( ∑

|ξ|≤m

‖Dξu‖2
0,Ω

)1/2

and |u|m,Ω :=
( ∑

|ξ|=m

‖Dξu‖2
0,Ω

)1/2

,

where ξ represents non-negative triple index. As usual, H1
0 (Ω) is the subspace of H1(Ω) whose

functions have zero traces on ∂Ω. Throughout, we denote vector-valued quantities by boldface
notation, such as L2(Ω) := (L2(Ω))3.

Define

H(curl, Ω) := {v ∈ L2(Ω) : curlv ∈ L2(Ω)},
H0(curl, Ω) := {v ∈ H(curl, Ω) : n× v = 0 on ∂Ω}.

where n is the unit outer normal and the spaces are equipped with the inner product

(v, w)H(curl,Ω) := (v, w) + (curlv, curlw)

and the norm

‖v‖H(curl,Ω) :=
√

(v, v)H(curl,Ω) .

Introduce the spaces of functions with square integrable divergence

H(div, Ω) := {v ∈ L2(Ω) : div v ∈ L2(Ω)},
H0(div, Ω) := {v ∈ H(div, Ω) : n · v = 0 on ∂Ω},

which are equipped with the inner product

(v, w)H(div,Ω) := (v, w) + (div v, div w)

and the norm

‖v‖H(div,Ω) :=
√

(v, v)H(div,Ω) .
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To study the weak solution of (1), we shall use the subspaces of H(curl, Ω):

X := ∇H1(Ω) + H0(curl, Ωc), (3)

Xc := {v ∈ H0(curl, Ωc) : div v = 0 in Ωc}. (4)

It is easy to see that

‖v‖2
H(curl,Ω) = ‖v‖2

L2(Ω) + ‖curlv‖2
L2(Ωc)

for all v ∈ X.

We shall use the convention that all functions in H0(curl, D) and H1
0 (D) are extended by zero to

the exterior of D for any D ⊂ Ω.

Lemma 2.1. Let the nonconducting region Ωnc be simply connected. Then

X = {v ∈ H(curl, Ω) : curlv = 0 in Ωnc}.

Furthermore, for any v ∈ X, there exist a unique vc ∈ Xc and a unique φ ∈ H1(Ω)/R such that

v = vc +∇φ, ‖vc‖H(curl,Ω) + ‖φ‖H1(Ω) ≤ C ‖v‖H(curl,Ω) ,

where C > 0 is a constant only depending on Ωnc.

Proof. It is clear that X ⊂ {v ∈ H(curl, Ω) : curlv = 0 in Ωnc}.
Suppose that v ∈ H(curl, Ω) and satisfies curlv = 0 in Ωnc. Since Ωnc is simply connected,

the potential theorem [2] shows that v = ∇φnc in Ωnc for some φnc ∈ H1(Ωnc). By Stein’s extension
theorem [25], there exists a φ1 ∈ H1(Ω) and a constant C only depending on Ωnc such that

φ1 = φnc in Ωnc and ‖φ1‖H1(Ω) ≤ C ‖φnc‖H1(Ωnc)
≤ C ‖v‖L2(Ω) . (5)

Clearly v1 := v −∇φ1 ∈ H0(curl, Ωc) and satisfies

‖v1‖H(curl,Ω) ≤ C
(‖φ1‖H1(Ω) + ‖v‖H(curl,Ω)

) ≤ C ‖v‖H(curl,Ω) . (6)

Thus v = v1 +∇φ1 ∈ X and {v ∈ H(curl, Ω) : curlv = 0 in Ωnc} ⊂ X.
Now suppose that v = v1 +∇φ1 with v1 ∈ H0(curl, Ωc) and φ1 ∈ H1(Ω)/R. Let φ2 ∈ H1

0 (Ωc)
be the unique solution of the following elliptic problem:

∫

Ωc

∇φ2 · ∇ϕ =

∫

Ωc

v1 · ∇ϕ for all ϕ ∈ H1
0 (Ωc).

Then v = vc +∇φ with vc := v1 −∇φ2 ∈ Xc and φ := φ1 + φ2 ∈ H1(Ω)/R. Combining (5) and
(6) yields that

‖vc‖H(curl,Ω) ≤ 2 ‖v1‖H(curl,Ω) ≤ C ‖v‖H(curl,Ω)

and
‖φ‖H1(Ω) ≤ C ‖∇φ‖L2(Ω) ≤ C ‖v − vc‖L2(Ω) ≤ C ‖v‖H(curl,Ω) .

To prove the uniqueness, we let v = ṽc + ∇φ̃ be another decomposition with ṽc ∈ Xc and
φ̃ ∈ H1(Ω)/R. Then vc − ṽc ∈ H0(curl, Ωc) and satisfies

div(vc − ṽc) = 0, curl(vc − ṽc) = 0 in Ωc .

It follows from [2] that vc = ṽc and thus φ = φ̃.

6



2.2 The weak formulation

Since divJ s ≡ 0, there exists a source magnetic field Hs such that

J s = curlHs in R3. (7)

The field Hs can be written explicitly by the Biot-Savart Law for general coils

Hs := curlAs,

where

As(x) :=
1

4π

∫

R3

J s(y)

|x− y|dy.

Denote the residual Hr := H−Hs, which is also called the reaction field in [15]. Using (1) and
(7), we have curlHr = 0 in Ωnc. A direct application of Lemma 2.1 yields the following result.

Lemma 2.2. The reaction field Hr ∈ H(curl, Ω) admits a unique decomposition

Hr = u +∇ψ, u ∈ Xc, ψ ∈ H1(Ω)/R. (8)

Next we deduce a weak formulation of (1). For any v ∈ X, (1a) implies that

∫

Ωc

∂B

∂t
· v =−

∫

Ωc

curlE · v = −
∫

Ωc

E · curlv +

∫

∂Ωc

(E × nc) · v (9)

=

∫

Ωc

σ−1(J s − curlH) · curlv +

∫

∂Ωc

(E × nc) · v,

∫

Ωnc

∂B

∂t
· v =−

∫

Ωnc

curlE · v =

∫

∂Ωnc

(E × nnc) · v, (10)

where nc, nnc are the unit outer normals to ∂Ωc and ∂Ωnc respectively. Noting the tangential
continuity of E and v across ∂Ωc and the fact that

σ−1(J s − curlH) = −σ−1 curlHr in Ωc,

we add (9) and (10) and obtain

∫

Ω

∂B

∂t
· v +

∫

Ωc

σ−1 curlHr · curlv = 0 for all v ∈ X. (11)

For convenience, we shall drop the subscript of Hr and let H denote the reaction field in the rest
of the paper, and define

σ1 =

{
σ−1 in Ωc,

0 in Ωnc.

Using (11) and viewing B as a nonlinear vector function of the total magnetic field, we obtain
a weak formulation of (1): Find H ∈ X such that H(·, 0) = 0 and

∫

Ω

∂

∂t
B(H + Hs) · v +

∫

Ω

σ1 curlH · curlv = 0 for all v ∈ X. (12)
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3 Well-posedness of the weak formulation

We shall use Rothe’s method (cf. [23]) to study the weak solution. Let N be a positive integer and
{tn = nτ : n = 0, · · · , N} be an equidistant partition of [0, T ] with τ = T/N . The semi-discrete
approximation to (12) reads: Given H0 = 0, find Hn ∈ X, 1 ≤ n ≤ N , such that

∫

Ω

Bn −Bn−1

τ
· v +

∫

Ω

σ1 curlHn · curlv = 0 for all v ∈ X, (13)

where Bn := B
(
Hn + Hs(tn)

)
.

We define the piecewise constant and piecewise linear interpolations in time by

H̄τ (·, t) = Hn, Hτ (·, t) = ln(t)Hn + (1− ln(t))Hn−1,

B̄τ (·, t) = Bn, Bτ (·, t) = ln(t)Bn + (1− ln(t))Bn−1,
(14)

for any t ∈ (tn−1, tn] and 1 ≤ n ≤ N , where

ln(t) := τ−1(t− tn−1).

Clearly we have

H̄τ ∈ L2(0, T ; X), Hτ ∈ C(0, T ; X),

B̄τ ∈ L2(0, T ; L2(Ω)), Bτ ∈ C(0, T ; L2(Ω)).

The following lemma is concerned with the well-posedness of the weak formulation (13). The
proof is given in Appendix A.

Lemma 3.1. For any 1 ≤ n ≤ N , the weak formulation (13) has a unique solution Hn ∈ X.
Suppose that Hs ∈ H1(0, T ; L2(Ω)). Then there exists a constant C only depending on Ωc, T ,
µmax, µmin, σmax, σmin such that

‖Hτ‖H1(0,T ;L2(Ω)) + ‖curlHτ‖L∞(0,T ;L2(Ω)) ≤ C ‖Hs‖H1(0,T ;L2(Ω)) , (15)∥∥H̄τ

∥∥
L2(0,T ;L2(Ω))

+
∥∥curl H̄τ

∥∥
L∞(0,T ;L2(Ω))

≤ C ‖Hs‖H1(0,T ;L2(Ω)) , (16)
∥∥B̄τ

∥∥
L2(0,T ;L2(Ω))

+ ‖Bτ‖H1(0,T ;L2(Ω)) ≤ C ‖Hs‖H1(0,T ;L2(Ω)) . (17)

It follows from Lemma 2.1 that each Hn admits the decomposition in a direct sum

Hn = un +∇ψn, un ∈ Xc, ψn ∈ H1(Ω)/R.

For any t ∈ (tn−1, tn] and 1 ≤ n ≤ N , we may define ūτ ∈ L2(0, T ; Xc) and uτ ∈ C(0, T ; Xc) by
using {un}:

ūτ (·, t) = un, uτ (·, t) = ln(t)un + (1− ln(t))un−1, (18)

which gives the decompositions

H̄τ = ūτ +∇ψ̄τ , Hτ = uτ +∇ψτ .

Here ψ̄τ and ψτ are defined as

ψ̄τ (·, t) := ψn, ψτ (·, t) := ln(t)ψn + (1− ln(t))ψn−1,

for all t ∈ (tn−1, tn] and 1 ≤ n ≤ N .
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Introduce the Sobolev-Bochner space (cf. [23, Section 7.1])

W 1,2,2
(
0, T ; H1(Ω), L2(Ω)

)
:=

{
v ∈ L2(0, T ; H1(Ω)) :

∂v

∂t
∈ L2(0, T ; L2(Ω))

}
,

which is equipped with the following norm

‖v‖
W 1,2,2

(
0,T ;H1(Ω),L2(Ω)

) =
(
‖v‖2

L2(0,T ;H1(Ω)) +
∥∥∥∂v

∂t

∥∥∥
2

L2(0,T ;L2(Ω))

)1/2

.

Next we examine the convergence of the temporally discrete functions. For convenience, we shall
use the same notation to denote their subsequences without causing confusion.

Lemma 3.2. Assume that each connected component of Ωc is a convex polyhedron. Then uτ ∈
W 1,2,2

(
0, T ; H1(Ωc), L

2(Ωc)
)

and satisfies

‖ūτ‖L2(0,T ;H1(Ωc))
+ ‖uτ‖W 1,2,2(0,T ;H1(Ωc),L

2(Ωc))
≤ C ‖Hs‖H1(0,T ;L2(Ω)) . (19)

Furthermore, there exist a subsequence of {uτ}τ≥0, a subsequence of {ūτ}τ≥0, and a u ∈ L2(0, T ; Xc)
such that

lim
τ→0

‖uτ − u‖L2(0,T ;L2(Ωc))
= lim

τ→0
‖ūτ − u‖L2(0,T ;L2(Ωc))

= 0. (20)

Proof. Since each connected component of Ωc is a convex polyhedron, we know that H0(curl, Ωc)∩
H(div, Ωc) ⊂ H1(Ωc) (cf. e.g., [2]). This implies un ∈ H1(Ωc) and

‖un‖H1(Ωc)
≤ C

{
‖un‖H(curl,Ωc)

+ ‖div un‖L2(Ωc)

}
≤ C ‖Hn‖H(curl,Ω) , (21)

where we have used Lemma 2.1 and the fact that div un = 0 in Ωc in the last inequality. Then (19)
follows from (15).

By the compact embedding (cf. [23, Lemma 7.7])

W 1,2,2
(
0, T ; H1(Ωc), L

2(Ωc)
)

b L2(0, T ; L2(Ωc)),

there exist a subsequence of {uτ}τ≥0 and a u ∈ W 1,2,2
(
0, T ; H1(Ωc), L

2(Ωc)
)

such that

lim
τ→0

uτ = u
strongly in L2(0, T ; L2(Ωc)),

weakly in W 1,2,2
(
0, T ; H1(Ωc), L

2(Ωc)
)
.

The weak convergence of {uτ}τ≥0 indicates that, for any v ∈ L2
(
0, T ; H1(Ωc)

)
,

∫ T

0

∫

∂Ωc

(u× n) · v =

∫ T

0

∫

Ωc

(u · curlv − curlu · v)

= lim
τ→0

∫ T

0

∫

Ωc

(uτ · curlv − curluτ · v) = lim
τ→0

∫ T

0

∫

∂Ωc

(uτ × n) · v = 0.

We conclude that u ∈ L2(0, T ; H0(curl, Ωc)). Since div uτ = 0, it is clear that

∫ T

0

∫

Ωc

u · ∇ϕ = lim
τ→0

∫ T

0

∫

Ωc

uτ · ∇ϕ = 0 for all ϕ ∈ L2
(
0, T ; H1

0 (Ωc)
)
,

which shows div u = 0 and thus u ∈ L2(0, T ; Xc).
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Finally we deduce from (19) and the strong convergence of uτ that

lim
τ→0

‖ūτ − u‖2
L2(0,T ;L2(Ωc))

≤ lim
τ→0

‖ūτ − uτ‖2
L2(0,T ;L2(Ωc))

= lim
τ→0

N∑
n=1

τ

3
‖un − un−1‖2

L2(Ωc)
= lim

τ→0

τ 2

3

∥∥∥∥
∂uτ

∂t

∥∥∥∥
2

L2(0,T ;L2(Ωc))

= 0,

which completes the proof.

Lemma 3.3. Let (H1)–(H2) be satisfied. Assume that each connected component of Ωc is a convex
polyhedron and

lim
τ→0

‖Hs,τ −Hs‖L2(0,T ;L2(Ω)) = 0, (22)

where Hs,τ is the piecewise constant interpolation of Hs in time

Hs,τ (·, t) = Hs(·, tn) for all t ∈ (tn−1, tn], 1 ≤ n ≤ N.

Then there exists a H ∈ L2(0, T ; X) such that

lim
τ→0

Hτ = lim
τ→0

H̄τ = H
strongly in L2(0, T ; L2(Ω)),

weakly in L2(0, T ; X).

Proof. Since L2(0, T ; X) is self-reflective, by (16), there exist a subsequence of
{
Hτ

}
τ≥0

and a

subsequence of
{
H̄τ

}
τ≥0

such that

lim
τ→0

Hτ = lim
τ→0

H̄τ = H weakly in L2(0, T ; X).

By Lemma 2.1, H can be decomposed into H = u +∇ψ where ψ ∈ H1(Ω)/R and u is the limit
of ūτ .

Next we prove the strong convergence of H̄τ . The strong convergence of Hτ comes directly
from that of H̄τ . For convenience we denote the discrete and continuous total magnetic fields by
Ĥτ = H̄τ + Hs,τ and Ĥ = H + Hs respectively. It follows from (22) and the weak convergence
of H̄τ that

lim
τ→0

Ĥτ = Ĥ weakly in L2(0, T, L2(Ω)). (23)

From (13) and (14) we deduce that

(B̄τ ,∇ϕ) = 0 for all ϕ ∈ H1(Ω).

Then using Lemma 3.1–3.2 and (22), we obtain

lim
τ→0

∫ T

0

(
B̄τ , Ĥτ − Ĥ

)
= lim

τ→0

∫ T

0

(
B̄τ , ūτ − u + Hs,τ −Hs

)
= 0. (24)

Noting the monotonicity of B(·) and using (23)–(24), we have

µmin lim
τ→0

∥∥∥Ĥτ − Ĥ
∥∥∥

2

L2(0,T ;L2(Ω))
≤ lim

τ→0

∫ T

0

(
B(Ĥτ )−B(Ĥ), Ĥτ − Ĥ

)

= lim
τ→0

∫ T

0

(
B̄τ , Ĥτ − Ĥ

)− lim
τ→0

∫ T

0

(
B(Ĥ), Ĥτ − Ĥ

)
= 0,

which shows together with (22) that limτ→0

∥∥H̄τ −H
∥∥2

L2(0,T ;L2(Ω))
= 0.
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Theorem 3.1. Let (H1)–(H2) be satisfied. Furthermore, assume that each connected component
of Ωc is a convex polyhedron, and Hs ∈ H1(0, T ; L2(Ω)) satisfies (22) and Hs|t=0 = 0. Then (12)
has a unique solution H ∈ H1(0, T ; X), and there exists a constant C only depending on Ωc, T ,
µmax, µmin, σmax, σmin such that

‖H‖H1(0,T ;L2(Ω)) + ‖H‖L2(0,T ;H(curl,Ω)) ≤ C ‖Hs‖H1(0,T ;L2(Ω)) .

Proof. Using (14), we first write (13) into the following equation

∫ T

0

(∂Bτ

∂t
, v

)
+

∫ T

0

(σ1 curl H̄τ , curlv) = 0 for all v ∈ L2(0, T ; X). (25)

Since H1(0, T ; L2(Ω)) is self-reflective, by (17), {Bτ}τ≥0 has a subsequence satisfying

lim
τ→0

Bτ = B0 weakly in H1(0, T ; L2(Ω)), (26)

which implies that

lim
τ→0

B̄τ = B0 weakly in L2(0, T ; L2(Ω)).

Write Ĥτ := H̄τ + Hs,τ and Ĥ := H + Hs, where H is the limit of H̄τ in Lemma 3.3. Due to
the strong convergence of H̄τ and Hs,τ , it is easy to show that

lim
τ→0

∥∥∥Ĥτ − Ĥ
∥∥∥

L2(0,T ;L2(Ω))
= 0.

Using (H2), we deduce that

lim
τ→0

∥∥B̄τ −B(H + Hs)
∥∥

L2(0,T ;L2(Ω)) = lim
τ→0

∥∥∥B(Ĥτ )−B(Ĥ)
∥∥∥

L2(0,T ;L2(Ω))

≤µmax lim
τ→0

∥∥∥Ĥτ − Ĥ
∥∥∥

L2(0,T ;L2(Ω))
= 0.

Thus we have B0 = B(H + Hs).
Since σ1 is bounded and positive in Ωc, the weak convergence of H̄τ in L2(0, T ; X) shows that

lim
τ→0

∫ T

0

(σ1 curl H̄τ , curlv) =

∫ T

0

(σ1 curlH , curlv) for all v ∈ L2(0, T ; X). (27)

Plugging (26) and (27) into (25) lead to

∫ T

0

( ∂

∂t
B(H + Hs), v

)
+

∫ T

0

(σ1 curlH , curlv) = 0 for all v ∈ L2(0, T ; X). (28)

Therefore (12) holds in the sense of distribution.
Next we prove the initial condition. We write B = B(H + Hs) for convenience and take any

ϕ ∈ C1([0, T ]) satisfying ϕ(0) = 1 and ϕ(T ) = 0. By (26) and integration by parts, we deduce that

(B|t=0, v) =

∫ T

0

{
ϕ(t) · ∂

∂t
(B, v) + ϕ′(t) · (B, v)

}
dt

= lim
τ→0

∫ T

0

{
ϕ(t) · ∂

∂t
(Bτ , v) + ϕ′(t) · (Bτ , v)

}
dt

= lim
τ→0

(
Bτ |t=0, v

)
=

(
B(H0 + Hs|t=0), v

)
= 0 for all v ∈ L2(Ω).

11



Thus B|t=0 = 0. Since Hs|t=0 = 0, by (H2) we have H|t=0 = 0.
The stability estimates for H are easy. In fact, from Lemma 3.1, there exists a subsequence of

{Hτ}τ≥0 which converges to H weakly in both H1(0, T ; L2(Ω)) and L2(0, T ; X). Then (15) shows
that

∥∥∥∥
∂H

∂t

∥∥∥∥
L2(0,T ;L2(Ω))

+ ‖H‖L2(0,T ;H(curl,Ω))

≤ lim
τ→0

{∥∥∥∥
∂Hτ

∂t

∥∥∥∥
L2(0,T ;L2(Ω))

+ ‖Hτ‖L2(0,T ;H(curl,Ω))

}

≤ C ‖Hs‖H1(0,T ;L2(Ω)) ,

which completes the proof.

4 The approximate formulation without coating films

GO silicon steel laminations are widely used in iron cores and magnetic shields of large power
transformers. Each lamination is usually coated with an insulating film whose thickness is only
2− 5µm so that the electric current can not flow into the neighboring laminations. In this section,
we propose an approximate formulation by omitting coating films from the model. Comparing with
traditional homogenization methods, the new model is an accurate approximation to the original
problem and yields a full three-dimensional eddy current density inside laminations.

Figure 5: Geometric size of silicon steel laminations in Team Workshop Problem 21c–M1 [10].

To simplify the setting, we assume that the conducting domain consists of hexahedral lamina-
tions, that is, Ωc =

⋃I
i=1 Ωi where

Ω1 := (X1, X2)× (Y1, Y2)× (Z0, Z1),

Ωi := (X1, X2)× (Y1, Y2)× (Zi−1 + d, Zi), i = 2, 3, · · · , I.

Here d > 0 stands for the thickness of the coating film. We assume that σ1 is constant in each Ωi,
namely,

σ1 ≡ Ci > 0 in Ωi, 1 ≤ i ≤ I.

12



We remark that the assumptions on Ω1, · · · , ΩI and σ are not essential in the mathematical analysis.
The results can be easily extended to convex polyhedral conductors and to the case that σ is not
piecewise constant.

Figure 6: Computational domain with steel laminations and coating films.

To omit coating films, we define the extended conductors by

Ω̃c := (X1, X2)× (Y1, Y2)× (Z0, ZI),

Ω̃i := (X1, X2)× (Y1, Y2)× (Zi−1, Zi), i = 1, 2, · · · , I,

and define the modified material parameters by

B̃(H) = B(H), σ̃1 = Ci in Ω̃i, 1 ≤ i ≤ I,

B̃(H) = µ0H , σ̃1 = 0 elsewhere.
(29)

The approximate formulation to (12) reads: Find H̃ ∈ X̃ such that H̃(·, 0) = 0 and
∫

Ω

∂

∂t
B̃(H̃ + Hs) · v +

∫

Ω

σ̃1 curl H̃ · curlv = 0 for all v ∈ X̃, (30)

where

X̃ := ∇H1(Ω) +
I∑

i=1

H0(curl, Ω̃i).

Here we adopt the convention that each function in H0(curl, Ω̃i) is extended by zero to the exterior
of Ω̃i.

Lemma 4.1. The following space decomposition is a direct sum and is stable in the H(curl, Ω)
norm

X̃ = ∇H1(Ω) +
I∑

i=1

X̃ i,

where

X̃ i := {v ∈ H0(curl, Ω̃i) : div v = 0 in Ω̃i}, 1 ≤ i ≤ I.

13



Figure 7: Extended conductors by merging the coating film into the even conductors.

Proof. Let v =
∑I

i=1 wi +∇φ ∈ X̃ be any function with wi ∈ H0(curl, Ω̃i) and φ ∈ H1(Ω).
Let φi ∈ H1

0 (Ω̃i) solve the elliptic problems

∫

Ω̃i

∇φi · ∇ϕ =

∫

Ω̃i

wi · ∇ϕ for all ϕ ∈ H1
0 (Ω̃i), 1 ≤ i ≤ I.

Then vi := wi − ∇φi ∈ X̃ i and ψ = φ +
∑I

i=1 φi ∈ H1(Ω). Clearly we have v =
∑I

i=1 vi +∇ψ.
The Poincáre-type inequality [2] shows that

‖vi‖H(curl,Ω) ≤ C ‖curlvi‖L2(Ω̃i)
= C ‖curlwi‖L2(Ω̃i)

= C ‖curlv‖L2(Ω̃i)

and

|ψ|H1(Ω) ≤ ‖v‖L2(Ω) +
I∑

i=1

‖vi‖L2(Ω) ≤ C ‖v‖L2(Ω) ,

where the constant C only depends on Ω̃i. The property of direct sum results from the stability of
the decomposition.

Theorem 4.1. Let (H1)–(H2) be satisfied and let Hs ∈ H1(0, T ; L2(Ω)) satisfy (22) and Hs(·, 0) =
0. Then (30) has a unique solution H̃ ∈ H1(0, T ; X̃) and

∥∥∥H̃
∥∥∥

H1(0,T ;L2(Ω))
+

∥∥∥H̃
∥∥∥

L2(0,T ;H(curl,Ω))
≤ C ‖Hs‖H1(0,T ;L2(Ω)) .

Proof. The proof is similar to that of Lemma 3.1. We omit the details here.

5 Convergence of the approximate solution

This section is to show that the solution of (12) converges to the solution of (30) as the thickness
of the coating film tends to zero. For simplicity, we assume that d = dist(Ωi; Ωi+1) is constant
for all 1 ≤ i < I and denote the solution of (12) by H(d). We first consider the convergence for
the nonlinear eddy current problem, and then deduce an explicit error estimate for the linear eddy
current problem.
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5.1 Convergence for the nonlinear eddy current problem

We begin with a useful lemma.

Lemma 5.1. There exists a H(0) ∈ L2(0, T ; X̃) such that

lim
d→0

H(d) = H(0) strongly in L2(0, T ; L2(Ω)) and weakly in L2(0, T ; X̃).

Proof. Since Ωi ⊂ Ω̃i, we have H0(curl, Ωi) ⊂ H0(curl, Ω̃i) for all 1 ≤ i ≤ I and thus X ⊂ X̃.
We infer from (16) that

{
H(d)

}
d>0

constructs a bounded sequence in L2(0, T ; X̃). Then there

exists a subsequence still denoted by
{
H(d)

}
d>0

such that

lim
d→0

H(d) = H(0) weakly in L2(0, T ; X̃).

It follows from Lemma 4.1 that H(d) and H(0) can be decomposed uniquely into

H(d) =
I∑

i=1

u
(d)
i +∇ψ(d), H(0) =

I∑
i=1

u
(0)
i +∇ψ(0),

where u
(d)
i , u

(0)
i ∈ L2(0, T ; X̃ i) and ψ(d), ψ(0) ∈ H1(Ω)/R. The uniqueness of the decompositions

indicates that

lim
d→0

u
(d)
i = u

(0)
i weakly in L2(0, T ; X̃ i).

Using Theorem 3.1 and the stability of the decompositions, we have

I∑
i=1

∥∥∥∥∥
∂u

(d)
i

∂t

∥∥∥∥∥
L2(0,T ;L2(Ω))

+
I∑

i=1

∥∥∥u
(d)
i

∥∥∥
L2(0,T ;H(curl,Ω))

≤ C ‖Hs‖H1(0,T ;L2(Ω)) .

The embedding of H0(curl, Ω̃i) ∩H(div, Ω̃i) ⊂ H1(Ω̃i) [2] shows that

I∑
i=1

∥∥∥u
(d)
i

∥∥∥
W 1,2,2(0,T ;H1(Ω̃i),L

2(Ω̃i))
≤ C ‖Hs‖H1(0,T ;L2(Ω)) .

By the compact embedding W 1,2,2
(
0, T ; H1(Ω̃i), L

2(Ω̃i)
)

b L2
(
0, T ; L2(Ω̃i)

)
, there exists a subse-

quence still denoted by
{
u

(d)
i

}
d>0

such that

lim
d→0

u
(d)
i = u

(0)
i

strongly in L2
(
0, T ; L2(Ω̃i)

)
,

weakly in W 1,2,2
(
0, T ; H1(Ω̃i), L

2(Ω̃i)
)
.

Define B(d) := B(H(d) + Hs). Taking test functions from ∇H1(Ω) in (12) shows that

(B(d),∇ϕ) = 0 for all ϕ ∈ H1(Ω).

We have from assumption (H2) that

µmin lim
d→0

∥∥∥H(d) −H(0)
∥∥∥

2

L2(0,T ;L2(Ω))
≤ lim

d→0

∫ T

0

(
B(d) −B(0), H(d) −H(0)

)

= lim
d→0

I∑
i=1

∫ T

0

∫

Ωi

B(d) · (u(d)
i − u

(0)
i

)− lim
d→0

∫ T

0

(
B(0), H(d) −H(0)

)
= 0,

where we have used the strong convergence of u
(d)
i and the weak convergence of H(d) in the last

equality. This completes the proof.
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Theorem 5.1. Let (H1)–(H2) be satisfied and let H(d), H̃ be the solutions of (12) and (30) re-
spectively. Then

lim
d→0

∥∥∥H (d) − H̃
∥∥∥

L2(0,T ;L2(Ω))
= 0.

Proof. Denote B(d) := B(H (d) + Hs) and B̃
(d)

:= B̃(H(d) + Hs) for any d ≥ 0, where B̃ is
defined in (29). Following from (H2) and Theorem 3.1, we have

∥∥∥B̃
(d)

∥∥∥
H1(0,T ;L2(Ω))

≤ C
∥∥∥H (d) + Hs

∥∥∥
H1(0,T ;L2(Ω))

≤ C ‖Hs‖H1(0,T ;L2(Ω)) . (31)

Since H1(0, T ; L2(Ω)) is self-reflective, there exist a B0 ∈ H1(0, T ; L2(Ω)) and a subsequence of{
B̃

(d)
}

d>0
such that

lim
d→0

B̃
(d)

= B0 weakly in H1(0, T ; L2(Ω)). (32)

Using assumption (H2) and Lemma 5.1, we obtain that

lim
d→0

∥∥∥B̃
(d) − B̃

(0)
∥∥∥

L2(0,T ;L2(Ω))
≤ µmax lim

d→0

∥∥∥H (d) −H (0)
∥∥∥

L2(0,T ;L2(Ω))
= 0,

where H(0) is the limit of H (d) in Lemma 5.1. Thus we conclude that

B0 = B̃
(0)

= B̃(H(0) + Hs).

Noting the measure
(
Ω̃i\Ωi

) → 0 as d → 0, we have from (31) that

lim
d→0

∫ T

0

∫

Ω̃i\Ωi

∂

∂t

(
B(d) − B̃

(d)
)
· v = 0 for all v ∈ L2(0, T ; L2(Ω)),

which implies that

lim
d→0

∫ T

0

( ∂

∂t
B(d), v

)
= lim

d→0

∫ T

0

( ∂

∂t
B̃

(d)
, v

)
for all v ∈ L2(0, T ; L2(Ω)). (33)

From (12) and supp(curlH(d)) = supp(σ1), we deduce that H(d) satisfies

∫ T

0

( ∂

∂t
B(d), v

)
+

∫ T

0

(
σ̃1 curlH (d), curlv

)
= 0 for all v ∈ L2(0, T ; L2(Ω)).

Taking the limit of both sides as d → 0 and using (32) and (33), we obtain that H(0) satisfies (30).
Furthermore, the initial condition that H(0)(·, 0) = 0 can be proved by similar arguments as in

the proof of Theorem 3.1. We conclude that H̃ := H(0) is the unique solution of (30).

5.2 Error estimate for the linear eddy current problem

In this section, we are concerned with the linear eddy current problem for laminated conductors,
and intend to estimate the approximation error with respect to the thickness of the coating film.
For the linear model problem, it is assumed that B(H) = µ0H in Ω where µ0 is the magnetic
permeability of the vacuum.
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Similar to (12), the weak formulation for isolated conductors may be formulated as follows:
Find H ∈ X such that

∫

Ω

µ0
∂H

∂t
· v +

∫

Ω

σ1 curlH · curlv = −
∫

Ω

µ0
∂Hs

∂t
· v for all v ∈ X. (34)

Comparing with the weak formulation for the approximate nonlinear problem (30), we have the
approximate linear problem for extended (or adjacent) conductors: Find H̃ ∈ X̃ such that

∫

Ω

µ0
∂H̃

∂t
· v +

∫

Ω

σ̃1 curl H̃ · curlv = −
∫

Ω

µ0
∂Hs

∂t
· v for all v ∈ X̃. (35)

Lemma 5.2. Let H ∈ H1(0, T ; X) and H̃ ∈ H1(0, T ; X̃) be the solutions of (34) and (35)
respectively. Then there exists a constant C > 0 only depending on T , Ω̃c, σmax, σmin such that

∥∥∥H̃ −H
∥∥∥

L∞(0,T ;L2(Ω))
+

∥∥∥curl
(
H̃ −H

)∥∥∥
L2(0,T ;L2(Ω))

≤ C inf
v∈H1(0,T ;X)

v(0)=0

{∥∥∥H̃ − v
∥∥∥

H1(0,T ;L2(Ω))
+

∥∥∥curl(H̃ − v)
∥∥∥

L2(0,T ;L2(Ω))

}
.

Proof. It is clear that H is the Galerkin approximation to H̃ in the subspace X ⊂ X̃. Denote
the error function by h := H̃ −H . Subtracting (34) from (35) yields

∫

Ω

(∂h

∂t
· v + σ̃1 curlh · curlv

)
= 0 for all v ∈ X.

Taking v ∈ H1(0, T ; X) with v(·, 0) = 0 and integrating the above equality over (0, t), we have

‖h(t)‖2
L2(Ω) +

∫ t

0

∫

Ω

σ̃1 |curlh|2 =

∫ t

0

∫

Ω

{∂h

∂t
· (h− v) + σ̃1 curlh · curl(h− v)

}

=

∫

Ω

h(t)
{
h(t)− v(t)

}
+

∫ t

0

∫

Ω

{
σ̃1 curlh · curl(h− v)− h · ∂(h− v)

∂t

}

≤1

2

{
‖h(t)‖2

L2(Ω) +

∫ t

0

∫

Ω

σ̃1 |curlh|2
}

+
1

2

∫ t

0

‖h‖2
L2(Ω)

+ 2 ‖h(t)− v(t)‖2
L2(Ω) + 2

∫ t

0

∫

Ω

{
σ̃1 |curl(h− v)|2 +

∣∣∣∂(h− v)

∂t

∣∣∣
2}

.

It follows that

‖h(t)‖2
L2(Ω) + ‖curlh‖2

L2(0,t;L2(Ω̃c))
≤ 1

2

∫ t

0

‖h‖2
L2(Ω) + C ‖h− v‖2

L∞(0,T ;L2(Ω))

+ C ‖curl(h− v)‖2
L2(0,T ;L2(Ω)) + C ‖h− v‖2

H1(0,T ;L2(Ω)) .

Using the initial condition for h− v, we have

|h(s)− v(s)|2 =
∣∣∣
∫ s

0

∂

∂t
(h− v)dt

∣∣∣
2

≤ T

∫ T

0

∣∣∣ ∂

∂t
(h− v)

∣∣∣
2

dt for all 0 ≤ s ≤ T,

which implies that

‖h(t)‖2
L2(Ω) + ‖curlh‖2

L2(0,t;L2(Ω̃c))
≤1

2

∫ t

0

‖h‖2
L2(Ω) + C ‖h− v‖2

H1(0,T ;L2(Ω))

+ C ‖curl(h− v)‖2
L2(0,T ;L2(Ω)) .
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The proof is completed by an application of Gronwall’s inequality and the arbitrariness of t.
Next we derive the convergence rate by finding a proper candidate of v in the infimum in Lemma

5.2. First we write

H̃ = ∇ψ +
I∑

i=1

ui, ψ ∈ H1(Ω), ui ∈ H0(curl, Ω̃i).

Let φi ∈ H1
0 (Ω̃i) be the unique solution of the elliptic problem

∫

Ω̃i

∇φi · ∇v =

∫

Ω̃i

ui · ∇v for all v ∈ H1
0 (Ω̃i).

Define wi := ui −∇φi. Clearly we have

div wi = 0 in Ω̃i and wi ∈ H0(curl, Ω̃i) ∩H(div, Ω̃i).

By the imbedding theorem in [2], we know that wi ∈ H1(Ω̃i) and

‖wi‖H1(Ω̃i)
≤ C

( ‖curlwi‖L2(Ω̃i)
+ ‖div wi‖L2(Ω̃i)

)
= C ‖curlu‖L2(Ω̃i)

, (36)

where the constant C only depends on Ω̃i. We extend φi, wi by zeros to the exterior of Ω̃i and
define φ :=

∑I
i=1 φi ∈ H1(Ω). Then we have

H̃ = ∇(ψ + φ) +
I∑

i=1

wi. (37)

Lemma 5.3. Let H̃ ∈ H1(0, T ; X̃) be the solution of (35) and assume curl H̃ ∈ L2(0, T ; H(curl, Ω)).
There exists a constant C independent of d such that

inf
v∈H1(0,T ;X)

v(0)=0

∥∥∥H̃ − v
∥∥∥

H1(0,T ;L2(Ω))
≤ Cd1/3

∥∥∥curl H̃
∥∥∥

H1(0,T ;L2(Ω))
, (38)

inf
v∈H1(0,T ;X)

v(0)=0

∥∥∥curl(H̃ − v)
∥∥∥

L2(0,T ;L2(Ω))
≤ Cd1/3

∥∥∥curl H̃
∥∥∥

L2(0,T ;H(curl,Ω))
. (39)

Proof. We define a coordinate stretching Fi: Ωi 7→ Ω̃i by

x = Fi(x̂) := Bix̂− bi for all x̂ ∈ Ωi,

where

Bi = diag

(
1, 1,

Zi − Zi−1

Zi − Zi−1 − d

)
, bi =

(
0, 0,

Zid

Zi − Zi−1 − d

)T

. (40)

Let wi ∈ H0(curl, Ω̃i) be the splitting component of H̃ given in (37) and define

ŵi := Bi(wi ◦ Fi).

Direct calculations show that

ĉurlŵi =
Zi − Zi−1

Zi − Zi−1 − d
B−1

i (curlwi ◦ Fi). (41)
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Since the unit outer normals of ∂Ωi and ∂Ω̃i have the range

{±(1, 0, 0)T , ±(0, 1, 0)T , ±(0, 0, 1)T
}

,

we deduce that

(ŵi × n̂)|∂Ωi
= {Bi(wi ◦ Fi)× n̂} |∂Ωi

= {Biwi × n} |∂Ω̃i
= Cn (wi × n) |∂Ω̃i

= 0,

where Cn is a diagonal matrix and each diagonal entry of Cn is either 1 or (Zid)/(Zi − Zi−1 − d)
according to the variation of n. Thus ŵi ∈ H0(curl, Ωi).

From (37), the first inequality in Lemma 5.3 is estimated as follows

inf
v∈H1(0,T ;X)

v(0)=0

∥∥∥H̃ − v
∥∥∥

2

H1(0,T ;L2(Ω))
≤

I∑
i=1

‖wi − ŵi‖2
H1(0,T ;L2(Ω̃i))

(42)

≤
I∑

i=1

{
‖wi − Biwi‖2

H1(0,T ;L2(Ω̃i))
+ ‖Bi(wi −wi ◦ Fi)‖2

H1(0,T ;L2(Ω̃i))

}
.

We have from (40) that

‖wi − Biwi‖L2(Ω̃i)
≤ d

Zi − Zi−1 − d
‖wi‖L2(Ω̃i)

.

Furthermore, there is a constant C independent of d such that

|x− Fi(x)| ≤ |(1− Bi)x|+ |bi| ≤ Cd for all x ∈ Ωi.

Since wi ◦ Fi = 0 in Ω̃i\Ω̄i, we have

‖wi −wi ◦ Fi‖2
L2(Ω̃i)

= ‖wi −wi ◦ Fi‖2
L2(Ωi)

+ ‖wi‖2
L2(Ω̃i\Ω̄i)

.

The above two terms are estimated as follows

‖wi‖2
L2(Ω̃i\Ω̄i)

≤ Cd2/3 ‖wi‖2
L6(Ω̃i\Ω̄i)

≤ Cd2/3 ‖wi‖2
L6(Ω̃i)

≤ Cd2/3 ‖wi‖2
H1(Ω̃i)

,

‖wi −wi ◦ Fi‖2
L2(Ωi)

=

∫

Ωi

∣∣∣
∫ 1

0

∇wi

(
tx + (1− t)Fi(x)

)
dt · [x− Fi(x)

]∣∣∣
2

dx

≤ Cd2

∫

Ωi

∫ 1

0

∣∣∇wi

(
tx + (1− t)Fi(x)

)∣∣2 dtdx

≤ Cd2 ‖wi‖2
H1(Ω̃i)

.

We conclude from (37) that

I∑
i=1

‖wi − ŵi‖2
L2(Ω̃i)

≤ Cd2/3

I∑
i=1

‖wi‖2
H1(Ω̃i)

≤ Cd2/3
∥∥∥curl H̃

∥∥∥
2

L2(Ω)
. (43)

Plugging (43) into (42) yields (38).
Furthermore, observe that

curlwi · n = Curls
(
n× (wi × n)

)
= 0 on ∂Ω̃i,
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where Curls is the surface curl operator on ∂Ω̃i. Thus we get

curl H̃ = curlwi ∈ H0(div, Ω̃i) ∩H(curl, Ω̃i) ⊂ H1(Ω̃i).

It can be verified that

inf
v∈H1(0,T ;X)

v(0)=0

∥∥∥curl(H̃ − v)
∥∥∥

2

L2(0,T ;L2(Ω))
≤

I∑
i=1

‖curl(wi − ŵi)‖2
L2(0,T ;L2(Ω̃i))

.

Then (39) can be proved by(41) and similar arguments. We do not elaborate on the details here.
This completes the proof.

A direct consequence of Lemma 5.2 and 5.3 gives the following result on the convergence rate
for the approximate solution of the linear eddy current problem.

Theorem 5.2. Let H ∈ H1(0, T ; X) and H̃ ∈ H1(0, T ; X̃) be the solutions of (34) and (35)
respectively and assume curl H̃ ∈ L2(0, T ; H(curl, Ω)). Then there exists a constant C > 0 only
depending on T , Ω̃c, σmax, σmin such that

∥∥∥H̃ −H
∥∥∥

L∞(0,T ;L2(Ω))
+

∥∥∥curl
(
H̃ −H

)∥∥∥
L2(0,T ;L2(Ω))

≤ Cd1/3
{∥∥∥curl H̃

∥∥∥
H1(0,T ;L2(Ω))

+
∥∥∥curl H̃

∥∥∥
L2(0,T ;H(curl,Ω))

}
.

A Appendix

The purpose of this appendix is to establish the well-posedness of the semi-discrete problem (13).
First we need the following theorem on strongly monotone operators.

Theorem A.1 ( [27, Theorem 25.B]). Let X be a real Banach space and let A: X → X ′ be an
operator satisfying

• strong monotonicity:

〈Au− Av, u− v〉 ≥ c ‖u− v‖2
X for all u, v ∈ X,

• Lipschitz continuity:

‖Au− Av‖X′ ≤ L ‖u− v‖X for all u, v ∈ X,

where the constants c > 0, L > 0 only depends on A and X. Then for any b ∈ X ′, the operator
equation Au = b has a unique solution u ∈ X.

Here is the proof for Lemma 3.1.
Proof. First we write (13) as: Find Hn ∈ X such that

(
Bn, v

)
+ τ(σ1 curlHn, curlv) = (Bn−1, v) for all v ∈ X, (A.1)

where Bn := B(Hn + Hs(tn)).
For any w ∈ X, let Lnw ∈ X be the unique solution of the variational problem

(Lnw, v
)

H(curl,Ω)
=

(
Bn(w), v

)
+ τ(σ1 curlw, curlv) for all v ∈ X, (A.2)
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where Bn(w) := B(w + Hs(tn)). Let fn ∈ X be the unique solution of the variational problem

(fn, v)H(curl,Ω) = (Bn−1, v) for all v ∈ X.

Clearly (A.1) is equivalent to the operator equation

LnHn = fn in X. (A.3)

From (H2) we infer that the operator Ln: X → X is Lipschitz continuous. Moreover, the strict
monotonicity of Ln comes directly from (H1)-(H2): for any u, v ∈ X,

(Lnu− Lnv, u− v
)

H(curl,Ω)
=

(
Bn(u)−Bn(v), u− v

)

+ τ
(
σ1 curl(u− v), curl(u− v)

)

≥min
(
µmin, τσmin

) ‖u− v‖2
H(curl,Ω) .

Then Theorem A.1 shows that (A.3) or (A.1) has a unique solution for each n ≥ 1.
Setting v = Hn −Hn−1 in (A.1) shows that

τ−1(Bn −Bn−1, Hn −Hn−1) + (σ1 curlHn, curlHn − curlHn−1) = 0. (A.4)

Using the initial value H0 = 0 and the inequality

2
(
σ1 curlHn, curl(Hn −Hn−1)

) ≥
∥∥∥σ

1
2
1 curlHn

∥∥∥
2

L2(Ω)
−

∥∥∥σ
1
2
1 curlHn−1

∥∥∥
2

L2(Ω)
,

we have
m∑

n=1

(σ1 curlHn, curlHn − curlHn−1) ≥ 1

2σmax

‖curlHm‖2
L2(Ω) . (A.5)

Denote the approximate magnetic field by Ĥn := Hn + Hs(tn). By (H2), we have
(
Bn −Bn−1, Hn −Hn−1

)
=

(
B(Ĥn)−B(Ĥn−1), Ĥn − Ĥn−1

)

− (
B(Ĥn)−B(Ĥn−1), Hs(tn)−Hs(tn−1)

)

≥µmin

∥∥∥Ĥn − Ĥn−1

∥∥∥
2

L2(Ω)
− µmax

∥∥∥Ĥn − Ĥn−1

∥∥∥
L2(Ω)

‖Hs(tn)−Hs(tn−1)‖L2(Ω)

≥µmin

2

∥∥∥Ĥn − Ĥn−1

∥∥∥
2

L2(Ω)
− 2τµ2

max

µmin

∫ tn

tn−1

∥∥∥∥
∂Hs

∂t

∥∥∥∥
2

L2(Ω)

dt. (A.6)

Plugging (A.5) and (A.6) into (A.4), we obtain

m∑
n=1

1

τ

∥∥∥Ĥn − Ĥn−1

∥∥∥
2

L2(Ω)
+
‖curlHm‖2

L2(Ω)

µminσmax

≤
(2µmax

µmin

)2
∫ tm

0

∥∥∥∂Hs

∂t

∥∥∥
2

L2(Ω)
dt.

Then (15) follows from the above inequality and the arbitrariness of m. A direct consequence of
(15) gives (16).

From (H2) we deduce that

|Bn| = |B(Ĥn)−B(0)| ≤ µmax|Ĥn| = µmax|Hn + Hs|,
|Bn −Bn−1| = |B(Ĥn)−B(Ĥn−1)| ≤ µmax

∣∣∣∣
∂

∂t
(Hτ + Hs)

∣∣∣∣ .

Combining (15), we obtain (17).
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[3] F. Bachinger, U. Langer, J. Schöberl, Numerical Analysis of Nonlinear Multiharmonic Eddy
Current Problems, Numer. Math., 100 (2005), 593–616.

[4] R. Beck, P. Deuflhard, R. Hiptmair, R. Hoppe, and B. Wohlmuth, Adaptive multilevel meth-
ods for edge element discretizations of Maxwell’s equations, Surveys on Mathematics for
Industry, 8 (1998), 271–312.

[5] R. Beck, R. Hiptmair, R. Hoppe and B. Wohlmuth, Residual based a posteriori error estima-
tors for eddy current computation, Math. Model. Numer. Anal., 34 (2000), 159–182.

[6] A. J. Bergqvist and S. G. Engdahl, A homogenization procedure of field quantities in lami-
nated electric steel, IEEE Trans. Magn., 37 (2001), 3329–3331.
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