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Grain-oriented (GO) silicon steel laminations are widely used in iron cores and shielding structures of power equipments. When the 
leakage magnetic flux is very strong and enters the lamination plane perpendicularly, the eddy current loss induced there must be 
taken into account in electromagnetic design. It is preferable to accurately compute three-dimensional (3D) eddy currents at least in a 
few outer sheets of the lamination stack. Since the coating film applied to each sheet is only 2-5µm thick, finite element modeling of 3D 
eddy currents is very difficult in GO silicon steel laminations of large electromagnetic devices. This paper proposes an inner-
constrained separation technique (ICST) to compute the 3D eddy currents. Instead of the coating film, the ICST introduces an inner 
constraint into the A-formulation to separate the laminations from each other. By the ICST, the 3D eddy currents can be computed 
accurately without meshing the coating film. Numerical experiments are carried out on the TEAM (Testing Electromagnetic Analysis 
Methods) benchmark model P21c–M1 and the numerical results show good agreements with the measured data. 
 

Index Terms—Eddy currents, finite element methods, GO silicon steel lamination, inner-constrained separation technique. 
 

I. INTRODUCTION 
RAIN-ORIENTED (GO) silicon steel laminations are 
widely used in iron cores and shielding structures of 

power equipments. The lamination stack usually consists of 
many steel sheets (0.18-0.35mm thick) and very thin coating 
films (2-5µm thick). Thus the lamination stack has multi-scale 
sizes and the ratio of the largest scale to the smallest scale can 
amount to 106. Full 3D finite element modeling is extremely 
difficult due to large numbers of elements from meshing both 
laminations and coating films. 

In recent years, numerical methods have been widely 
studied for nonlinear eddy current problems in steel 
laminations. Among them, most works pay attention to 
effective reluctivities and conductivities of the lamination 
stack (cf. e.g. [1]–[5]). The main idea is to replace physical 
parameters with equivalent (or homogenized) parameters for 
Maxwell’s equations. In [6]–[7], Bottauscio et al propose a 
mathematical homogenization technique based on the multiple 
scale expansion theory to derive the equivalent electric 
parameters and effective magnetization properties. In [8]–[9], 
Gyselinck et al deduce the effective material parameters by an 
orthogonal decomposition of the flux in the perpendicular and 
parallel directions to the lamination plane. In [10], 
Napieralska-Juszczak et al establish equivalent characteristics 
of magnetic joints of transformer cores by minimizing the 
magnetic energy of the system. Numerical methods based on 
the homogenization of material parameters provide an 
efficient way to simulate electromagnetic field in steel 
laminations. Since the effective conductivity is anisotropic and 
has zero value in the normal direction to the lamination plane, 
the numerical eddy current is thus two-dimensional in the 
lamination stack. 

When the leakage magnetic flux is very strong and enters 
the lamination plane perpendicularly, for example, in the outer 

laminations of large power transformer core, the eddy current 
loss induced there must be taken into account in 
electromagnetic design. It is preferable to accurately compute 
3D eddy currents at least in a few outer sheets of the 
lamination stack, that is, to use the zoned treatment for 
practical approaches, see Fig. 1. In such an accurate finite 
element analysis, one usually has to mesh both the laminations 
and the coating films in the 3D eddy current region. In [11], 
Cheng et al present an efficient macroscopic modeling method 
for iron cores. By meshing the laminations and the coating 
films in the 3D eddy current region, they investigated the 
effects of the eddy current, induced by the normal magnetic 
field, on the total iron loss and the distortion of the local 
magnetic flux in the laminations. More recently, some 
scientists paid attention to the study of the loss spectrum and 
electromagnetic behavior of laminated steel sheets in the 
literature (cf. e.g. [12]–[17]). 

 

 
Fig. 1 Zoned treatment of the lamination stack.  

The six laminations close to the source have isotropic conductivity and 
are meshed individually. 

 
The main objective of this paper is to propose an inner-

constrained separation technique (ICST) for the finite element 
computation of 3D eddy currents in silicon steel laminations. 
The eddy current is confined in each lamination by the coating 
film. The treatment of this property plays the key role in 
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designing efficient numerical methods for computing 3D eddy 
currents. The standard approach is to mesh the coating film 
and set the conductivity by zero there (see [11]). It usually 
leads to very anisotropic meshes and large numbers of 
elements, and as a result, the discrete problem will be very 
difficult to solve. The ICST introduces an inner constraint on 
the magnetic vector potential to replace the coating film so 
that the eddy current is still conserved in each lamination. The 
main merit is that it need not partition the coating film in finite 
element modeling. 

The finite element approximation of the nonlinear eddy 
current problem is solved by an inexact Newton method and 
an alternating iteration algorithm. We implement the ICST 
finite element method based on MPI (Message Passing 
Interface) and unstructured tetrahedral meshes. The proposed 
method and the parallel program are tested by the TEAM 
Benchmark Problem 21c–M1. The numerical results show 
good agreements with the measurement data. 

II. THE A-FORMULATION OF EDDY CURRENT PROBLEMS 

In the A-formulation of the eddy current model,  denotes 
the magnetic vector potential satisfying 

A
BA = curl  and  

be the magnetic flux density. Then the A-formulation of the 
eddy current model reads (cf. e.g. [18]): 

B
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where σ  is the electric conductivity, ν  is the nonlinear and 
anisotropic reluctivity, and  stands for the exciting source 

satisfying . Let Ω  be the truncated domain with 

boundary Γ  and n  be the unit outer normal of Γ . The weak 
formulation of (1) reads: Find  such that 
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Throughout this paper, we shall denote vector-valued 
quantities by boldface notation, such as , 

where  is the space of square-integrable functions. 
Furthermore, we also define  
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First we study the conservation property of eddy currents in 

steel laminations. It will provide the inspiration for deriving a 
new A-formulation which replaces the coating film with the 
ICST. Let Ω⊂Ωc  denote the conducting region which 

consists of M  laminations, namely, 
 

.1 Mc Ω∪∪Ω=Ω L   
 

Since the coating film has positive thickness, MΩΩ ,,1 L  are 
viewed as isolated conductors (see Fig. 2), that is,  

 
.for     0),(distance jiji ≠>ΩΩ                     (3) 

 

 
Fig. 2 A two-dimensional illustration of isolated conductors. 

 

Let 
t∂

∂
=

AJ σ  be the eddy current density. We state that 

the weak formulation (2) implies the conservation of J  in 

each lamination. In fact, since ∇ , 

taking 

),Ωcurl()( 0
1
0 ⊂Ω HH

ϕ∇=v  in (2) yields 
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which by (3) is equivalent to 
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Then using integration by parts and the arbitrariness of iϕ , we 

obtain the conservation of J  in each iΩ : 
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The conditions in (6) indicate that the eddy currents, or the 

laminations, are separated by the coating film. Numerical 
methods for computing 3D eddy currents should satisfy these 
conditions. In the next section, we shall assume that the 
thickness of the coating film is zero and derive a new A-
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formulation satisfying (6). The idea is to separate the 
laminations by an inner constraint instead of the coating film. 
It is thus named as the “Inner-Constrained Separation 
Technique”. 

III. A NEW A-FORMULATION BASED ON ICST 
Now we suppose that the thickness of the coating film is 

zero (see Fig. 3). Then we have 
 

.0),(distance, 11 =ΩΩΩ=Ω += iii
M
ic U           (7) 

 

 
Fig. 3 Adjacent steel laminations without coating films. 

 
Remember from (6) that the conservation of J  is ensured by 
(5). Now for  satisfying (7), equation (5) is equivalent to cΩ
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A comparison of (8) and (5) indicates that the test function 
space should contain the gradient of every  for 

even index i . Thus the test function space in (2) is enlarged 
from  to  where 
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where wv,  are test functions and the magnetic reluctivity ν  
depends on the flux density . In fact, u  plays the 

role of an inner constraint on A  so that the current density 

AB  curl=

)( uAJ +
∂
∂

=
t

σ  fulfils the conservation property in (6). 

The constraint function u  can be solved by nodal element 
method only in iΩ  for even index i  (see Fig. 4). The merit of 
(10) is that the coating films do not appear in the 
computational domain and the isotropic conductivity σ  
induces 3D eddy current in each lamination. 
 

 
Fig. 4 The constraint function is only solved in . L , , 42 ΩΩ

 
To end this section, we remark that the solution of (10) is 

not unique. If   solves (10), then ),( uA ) ,( ξξ ∇+∇− uA  

also solves (10) for any smooth function ξ  only supported in 

L∪Ω∪Ω 42 . However the magnetic flux density B  and 
the eddy current density J  are unique in the whole domain. 
Therefore it suffices to solve for one solution of (10) using 
some iterative methods. 

IV. FINITE ELEMENT APPROXIMATION 
In this section, we study the finite element approximation to 

(10) and propose an inexact Newton method for solving the 
nonlinear discrete problem. First we divide the time interval 

 into small ones ],0[ endt
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and let 1−−= nnn ttτ  be the time step size at nt Let . hℑ  be a 

tetrahedral mesh of Ω  and define the nodal element space 
and the edge element space on  by hℑ
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where  is the space of polynomials of order  and )(TPk 0>k

( )3)()( TPT kk =P . Similar to (9), we define the ICST-finite 
element space as follows 
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Given , the fully discrete approximation to 

(10) reads: Find ,  such that 
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Let  and  be the nodal bases of 

 and  respectively. Then  can be represented 
by the linear combinations of these basis functions: 
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Now taking  and 11 , Jjjh ≤≤= bv 21 , Jjjh ≤≤= qw  

in (13) respectively, we get an equivalent system of algebraic 
equations 
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We are going to solve the nonlinear problem (14) by inexact 

Newton method (cf. e.g. [19, Section 1.4]): 
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where 10 ≤< kα  is the damping factor and E~  is an 
approximate solution of the system of algebraic equations: 
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Let  be the approximate solutions of (13) 

associated with . The matrix Μ  is also computed by (15) 
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at . The inexactness of the Newton method 

means that a damping factor 
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E~  of (17) are used at each step. 
 

Algorithm 1 (Inexact Newton Algorithm) 
    Given the maximal number of iterations 50=inaN  and the 

initial guess . Set . 1
)0(

−= nn ZZ 0=k
 
While  inankn Nk ≤≥ −    &   10 3

, FR   do 

1. Set kn,1 R+=ε  and 618.0/1=kα . 

2. Compute an approximate solution E~  of (17) by 
Algorithm 2.  

3. While  kn,R≥ε   do 
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End While. 
4. 1+← kk . 

End While. 
 

To the best of our knowledge, for large numbers of 
elements, efficient solver is still a difficult issue for discrete 
Maxwell’s equations with nonlinear and anisotropic reluctivity. 
Accurate solution of (17) requires a long time and makes the 
Newton method inefficient. To reduce the computational time, 

we only use an approximate error function E~  in (16). The 
exact solution of (17) is denoted by  ),,(

211 JJEE += LE
and represents the error functions as follows 
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Now we propose an alternating iteration algorithm to compute 

an approximate solution E~  of (17). 
 
   Algorithm 2 (Alternating Iteration Algorithm) 

 and the 
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1.1 Sol tions
conjugate gradient method preconditioned by the 
Boomer-AMG (Algebraic Multigrid) method [20]: 
 Find hl Y1 ∈+φ  such that 

 

 
1.2 Solve the following Maxwell equation by 10 iterations of 
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preconditioned conjugate gradient (PCG) method with 
the HX-preconditioner [21]:   
Find hl Xe ∈+1  such that 
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 Algorithm 2 only computes an approximate solution 

2. Set EE = l
~

Since
of (17), to reduce the computational time, we set the maximal 
number of iterations by 10=aiaN . In each alternating 
iteration, we only use 5 itera G method for solving 

1+l

tions of PC
φ  and 10 iterations of PCG method for solving 1+le . Since 

Boomer-AMG method is very efficient in solvi second-
order elliptic problems, we use less iterations in Step 1.1 than 
in Step 1.2. In fact, the computational time for Step 1.1 is 
negligible compared with that for Step 1.2. 

V. NUMERICAL EXPERIMEN

the ng 

TS 
In this sectio ment based on 

the TEA
n, we report the numerical experi
rkshop cM Wo  Problem 21 -M1 [22]. The conducting 

region, referred to as a magnetic shield configuration, is the 
combination of a lamination stack and a magnetic plate whose 
dimensions are respectively 4582706 ×× mm3 and 

52036010 ×× mm3, as shown  lamination 
stack consists of 20 steel sheets and the coating film over each 
sheet is 4µm thick. The source currents are carried in opposite 
directions by two coils and are 3000 Ampere/Turn at a 
frequency of 50Hz, namely, 

 
ˆ),( ⋅=t xJxJ

in Fig. 5. The

.0), 100sin()( ≥ttss π  
 

height of each coil is 217mm and the radiuses of the inner The 
arc and the outer arc at four corners are 10mm and 45mm 
respectively. The distance between the lamination stack and 
the coils is 12mm and the vertical distance between the two 
coils is 24mm. 

 

 
cFig. 5 TEAM Workshop Problem 21 -M1(all dimensions are in mm). 

 
the 

se
We use the second-order edge element method of 
cond family [23] to solve the problem, that is, setting 2=k  

in (11). The implementation is based on the adaptive finite 
element package “Parallel Hierarchical Grid” (PHG) [24]. 
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The computations are carried out on 512 CPU cores on the 
cluster LSEC-III, the State Key Laboratory on Scientific and 
Engineering Computing, Chinese Academy of Sciences. 

The domain Ω  is meshed into 6100.9 ×  tetrahedra and 
ea

formulation (10) of the eddy current 

2. ent 

3. s. 

ch lamination subdivided into th  in the normal 
direction to the lamination plane. The number of degrees of 
freedom on the mesh is 81026.1 × . The purpose of this 
experiment is as follows: 
1. To validate the new A-

is ree layers

model by reducing the influence of the numerical error. 
To demonstrate the approximation of the finite elem
problem (13) to the continuous problem (10). 
To examine 3D eddy currents in the lamination

 

 
Fig. 6 Number of Newton iterations such that the relative residual is les

 
he end time is set by the length of two periods of the 

so

×=nτ
anisotropic relu

s 
than 10-3. 

T
urce current and is given by s04.0=endt . The interval 

],0[ t  is partitioned uniformly in teps such that 

s10 4−  for all 0>n . Unlike isotropic materials, the 
ctivity nces the number of Newton 

iterations. The criterion 

end to 80 time s

5
influe

knlkn ,
2

, 10ˆ RER −<⋅−Μ  is not 

always satisfied in Algo use 10 
alternating iterations to save the computational time. Fig. 6 
shows the number of Newton iterations to attain the criterion 

rithm 2, and in that case, we 

nkn FR 3
, 10−<  at all time steps within the first period. 

es slowly at s01.0=t , 0.02s , 0.03s , 

and 0.04s . 
To ate t

The method converg

 valid he new formulation (10), the numerical results 
ar

n

e compared with the experimental data measured by the R & 
D center of Baoding Tianwei Group Co., LTD, China, which 
can be found in [22]. Figs. 7-8 show the calculated values of 
the magnetic flux density on a coarse mesh with 187,152 
tetrahedra and a fine mesh with 9,000,628 tetrahedra. The 
numerical values from the coarse mesh have larger errors on a 
few points, while the numerical values on the fine mesh agree 

well with the measurement data. TABLE I shows the 
calculated iron loss on the fine mesh and the numerical value 
is close to the experimental value. The numerical experiment 
indicates that the new formulation (10), or the ICST, provides 
an accurate approximation to the original problem (2), and the 
discrete problem (13) is a good approximation to (10). 
 

 
Fig. 7 Magnetic flux density: the numerical data still have large errors at 

 
a few points by a mesh with 187,152 elements. 

 
Fig. 8 Magnetic flux density: the numerical data agree well with the 

 
TABLE I 

IRON LOSS IN THE LAMINA NETIC PLATE (W) 

measurement data by a mesh with 9,000,628 elements. 

TION AND THE MAG

Calculated iron loss 

Loss in the 
m  

l loss 
Measured iron loss

3.72 
lamination 

2.789 

Loss in the Tota
agnetic plate

0.941 
 

73 3.
 

Figs. 9-10 show the tangential component of the eddy 
current density in 1Ω  and 2Ω  respectively, where iΩ  is the 

lamination whose tance i ( )id = rom dis s i 3.07.11 + mm f
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the coils, . The eddy current density in the second 
sheet is reduced considerably compared with that of the first 
sheet. Fig. 11 shows the eddy current density on one slice of 
the magnetic plate which is 2mm away from the lamination 
stack. It shows a shielded area by the lamination stack. 

2,1=i

 
     Fig. 9 Eddy current distribution in the first lamination.  

 

 
Fig. 10 Eddy current distribution in the second lamination. 

      

 
Fig. 11 Eddy current distribution on the slice being 2mm away from the 

lamination stack. 

VI. CONCLUSION 
An inner-constrained separation technique is proposed for 

computing 3D eddy currents in GO silicon steel laminations. 
The ICST yields a new A-formulation of the eddy current 
problem and is efficient in simulating 3D eddy currents 
without meshing coating films. A parallel finite element 

program is developed to solve the new formulation based on 
MPI and unstructured tetrahedral meshes. 
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