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Grain-oriented (GO) silicon steel laminations are widely used in iron cores and shielding structures of power equipments. When the
leakage magnetic flux is very strong and enters the lamination plane perpendicularly, the eddy current loss induced there must be
taken into account in electromagnetic design. It is preferable to accurately compute three-dimensional (3D) eddy currents at least in a
few outer sheets of the lamination stack. Since the coating film applied to each sheet is only 2-Spm thick, finite element modeling of 3D
eddy currents is very difficult in GO silicon steel laminations of large electromagnetic devices. This paper proposes an inner-
constrained separation technique (ICST) to compute the 3D eddy currents. Instead of the coating film, the ICST introduces an inner
constraint into the A-formulation to separate the laminations from each other. By the ICST, the 3D eddy currents can be computed
accurately without meshing the coating film. Numerical experiments are carried out on the TEAM (Testing Electromagnetic Analysis
Methods) benchmark model P21°-M1 and the numerical results show good agreements with the measured data.

Index Terms—Eddy currents, finite element methods, GO silicon steel lamination, inner-constrained separation technique.

I. INTRODUCTION

RAIN-ORIENTED (GO) silicon steel laminations are

widely used in iron cores and shielding structures of
power equipments. The lamination stack usually consists of
many steel sheets (0.18-0.35mm thick) and very thin coating
films (2-5um thick). Thus the lamination stack has multi-scale
sizes and the ratio of the largest scale to the smallest scale can
amount to 10°%. Full 3D finite element modeling is extremely
difficult due to large numbers of elements from meshing both
laminations and coating films.

In recent years, numerical methods have been widely
studied for nonlinear eddy current problems in steel
laminations. Among them, most works pay attention to
effective reluctivities and conductivities of the lamination
stack (cf. e.g. [1]-[5]). The main idea is to replace physical
parameters with equivalent (or homogenized) parameters for
Maxwell’s equations. In [6]-[7], Bottauscio et al propose a
mathematical homogenization technique based on the multiple
scale expansion theory to derive the equivalent electric
parameters and effective magnetization properties. In [8]-[9],
Gyselinck et al deduce the effective material parameters by an
orthogonal decomposition of the flux in the perpendicular and
parallel directions to the Ilamination plane. In [10],
Napieralska-Juszczak et al establish equivalent characteristics
of magnetic joints of transformer cores by minimizing the
magnetic energy of the system. Numerical methods based on
the homogenization of material parameters provide an
efficient way to simulate electromagnetic field in steel
laminations. Since the effective conductivity is anisotropic and
has zero value in the normal direction to the lamination plane,
the numerical eddy current is thus two-dimensional in the
lamination stack.

When the leakage magnetic flux is very strong and enters
the lamination plane perpendicularly, for example, in the outer
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laminations of large power transformer core, the eddy current
loss induced there must be taken into account in
electromagnetic design. It is preferable to accurately compute
3D eddy currents at least in a few outer sheets of the
lamination stack, that is, to use the zoned treatment for
practical approaches, see Fig. 1. In such an accurate finite
element analysis, one usually has to mesh both the laminations
and the coating films in the 3D eddy current region. In [11],
Cheng et al present an efficient macroscopic modeling method
for iron cores. By meshing the laminations and the coating
films in the 3D eddy current region, they investigated the
effects of the eddy current, induced by the normal magnetic
field, on the total iron loss and the distortion of the local
magnetic flux in the laminations. More recently, some
scientists paid attention to the study of the loss spectrum and
electromagnetic behavior of laminated steel sheets in the
literature (cf. e.g. [12]-[17]).

2-D eddy current region

3-D eddy
current region

Applied field

Fig. 1 Zoned treatment of the lamination stack.
The six laminations close to the source have isotropic conductivity and
are meshed individually.

The main objective of this paper is to propose an inner-
constrained separation technique (ICST) for the finite element
computation of 3D eddy currents in silicon steel laminations.
The eddy current is confined in each lamination by the coating
film. The treatment of this property plays the key role in



designing efficient numerical methods for computing 3D eddy
currents. The standard approach is to mesh the coating film
and set the conductivity by zero there (see [11]). It usually
leads to very anisotropic meshes and large numbers of
elements, and as a result, the discrete problem will be very
difficult to solve. The ICST introduces an inner constraint on
the magnetic vector potential to replace the coating film so
that the eddy current is still conserved in each lamination. The
main merit is that it need not partition the coating film in finite
element modeling.

The finite element approximation of the nonlinear eddy
current problem is solved by an inexact Newton method and
an alternating iteration algorithm. We implement the ICST
finite element method based on MPI (Message Passing
Interface) and unstructured tetrahedral meshes. The proposed
method and the parallel program are tested by the TEAM
Benchmark Problem 21°-M1. The numerical results show
good agreements with the measurement data.

Il. THE A-FORMULATION OF EDDY CURRENT PROBLEMS

In the A-formulation of the eddy current model, A denotes
the magnetic vector potential satisfying curl A=B and B

be the magnetic flux density. Then the A-formulation of the
eddy current model reads (cf. e.g. [18]):

oA L cun (veurlA)=J, in Q,
ot ‘ @)

Axn=0 on T

where ¢ is the electric conductivity, v is the nonlinear and
anisotropic reluctivity, and J_ stands for the exciting source

satisfying divJ, = 0. Let ) be the truncated domain with

boundary I' and n be the unit outer normal of I". The weak
formulation of (1) reads: Find A € H,(curl, ) such that

La%—?-vﬂ;vcurlA-curlv=jQJS-v @

vV veH,(curl,Q),
where Vv is the test function and

H(curl, Q) = {u e 1}(Q): curlue I2(Q) |,
H,(curl,Q)={ueH(cur,Q): uxn=0 on I }.

Throughout this paper, we shall denote vector-valued
quantities by boldface notation, such as L*(Q) = (L*(Q2))°,

where LZ(Q) is the space of square-integrable functions.
Furthermore, we also define

HY(Q)={ueI*(Q): Vuel}(Q),
H(Q)={ue H(Q): u=0on T }.
First we study the conservation property of eddy currents in

steel laminations. It will provide the inspiration for deriving a
new A-formulation which replaces the coating film with the

ICST. Let Q. <€) denote the conducting region which

consists of M laminations, namely,
Q. =Qu---uQ,.

Since the coating film has positive thickness, €,,--+,€2,, are
viewed as isolated conductors (see Fig. 2), that is,

distance(€2;,Q2,) >0 for i = j. (3)

Q, Q, . Qy

Fig. 2 A two-dimensional illustration of isolated conductors.

Let J = & a_A be the eddy current density. We state that

ot
the weak formulation (2) implies the conservation of J in

each lamination. In fact, since VH,(Q) < H,(curl,Q),
taking v =V @ in (2) yields

jQJ-Vgo:o Ve Hy(Q), (4)
which by (3) is equivalent to

[I-Vo=0 VpeH Q) 1<isM. ()

Then using integration by parts and the arbitrariness of ¢, , we

obtain the conservation of J ineach Q;:

divJ =0
J-n=0

in Q,

on 00, 1<i<M. (6

The conditions in (6) indicate that the eddy currents, or the
laminations, are separated by the coating film. Numerical
methods for computing 3D eddy currents should satisfy these
conditions. In the next section, we shall assume that the
thickness of the coating film is zero and derive a new A-



formulation satisfying (6). The idea is to separate the
laminations by an inner constraint instead of the coating film.
It is thus named as the “Inner-Constrained Separation
Technique”.

I1l. A NEW A-FORMULATION BASED ON ICST

Now we suppose that the thickness of the coating film is
zero (see Fig. 3). Then we have
Qc = Ujivilgi’

distance(©2,,9Q,,,) =0. @)

Fig. 3 Adjacent steel laminations without coating films.

Remember from (6) that the conservation of J is ensured by
(5). Now for €2 satisfying (7), equation (5) is equivalent to

jQJ-Vgo:o Ve H(Q),
L )
.[Q‘J-Vgol.:o Vg, e H(Q,)andeveni.

A comparison of (8) and (5) indicates that the test function
space should contain the gradient of every @ € Hl(Qi) for

even index 1. Thus the test function space in (2) is enlarged
from H, (curl,Q) to H,(curl,Q2) + U where

U={y-Vo: peHI(Q)], 9)

and y is the characteristic function satisfying

NE
£ o

For €2 satisfying (7), we propose a new A-formulation as
follows: Find A € H,(curl,Q2) and u € U such that

in Q,UQ,uU---,
elsewhere.

_[ GM-(V-I-W)-I-IVCU” A-curlv
Q ot Q (10)

= jQJS (v+w) VveH,(curl,Q), weU,

where vV, W are test functions and the magnetic reluctivity v
depends on the flux density B = curl A . In fact, u plays the

role of an inner constraint on A so that the current density
0

J 206—(A+u) fulfils the conservation property in (6).
t

The constraint function u can be solved by nodal element
method only in Q, for even index i (see Fig. 4). The merit of

(10) is that the coating films do not appear in the
computational domain and the isotropic conductivity o
induces 3D eddy current in each lamination.

Q,

4

Fig. 4 The constraint function is only solved in sz QA, ceee

To end this section, we remark that the solution of (10) is
not unique. If (A,u) solves (10), then (A —V &, u+V{E)

also solves (10) for any smooth function & only supported in
Q, U, U---. However the magnetic flux density B and

the eddy current density J are unique in the whole domain.
Therefore it suffices to solve for one solution of (10) using
some iterative methods.

IV. FINITE ELEMENT APPROXIMATION

In this section, we study the finite element approximation to
(10) and propose an inexact Newton method for solving the
nonlinear discrete problem. First we divide the time interval

[0,7,,,] into small ones
O=t,<t,<--<ty, =t

andlet 7, =7, —¢,_, bethetimestepsizeat 7,.Let 3, bea

tetrahedral mesh of €2 and define the nodal element space
and the edge element space on 3, by

Y, ={e Hi(Q): v|,e P.,(T) VTe3,)

(1
X, ={veH,(curl,Q):v|,eP(T) VTe3,}

where P, (T') is the space of polynomials of order £ >0 and
P (T) = (P.(7)) . similar to (9), we define the ICST-finite

element space as follows

UIIZ{Z'V%: (”hEYh}' (12)

1)



Given A, =u, =0, the fully discrete approximation to
(10) reads: Find A, € X, u, € U,, n >1 such that

I o(A,+u,)
O'—
Q ot

= J.QJH ’ (Vh +Wh) vvh € Xh’ Wh € Uh’

(v, +w,) +J' veurlA, -curly,
! (13)

where v,, W, are discrete test functions and

ow, w —-w 1
n= D m Wy = j J (r)d.
ot T, T, Y
Let {b,,---,b, } and {q,,---,q,,} be the nodal bases of

X, and U, respectively. Then A ,u, can be represented
by the linear combinations of these basis functions:

Js
A ZAVI i1 = Zu;qz
i=1l

Now taking v, =b ;,1< j<J, and w, =q,,1< j < J,

in (13) respectively, we get an equivalent system of algebraic
equations

M(Zn) ’ Zn = Fn’ (14)

where Z =(Ai,-~-,AnJl,u1
stiffness matrix defined by

ul?) and M(Z,) is the

M.. —b ‘b.
QT

1+J1 J+J _J‘

M[vj+'j1 - M/+J1 _[

+churlbl. -eurlb, 1<4, j<J,,

q, q;, 1<i,j<J,, (15)

—b,-q;,1<i<J,1< <,

n

Clearly M(Z,) depends on Z,

reluctivity. The entries of F are defined by

through the nonlinear

Fi= j(J +7'0A, )b, 1<i<J],
’*Jl—J- LT aAn_l)-qi, 1<i<J,.

We are going to solve the nonlinear problem (14) by inexact
Newton method (cf. e.g. [19, Section 1.4]):

(k+1)
Zn

“20 40 k20, 20=7,., a9

where 0< ¢, <1 is the damping factor and E is an
approximate solution of the system of algebraic equations:

M-E=R,,. (17)

In fact, (17) is the error equation of (14) for the approximate
solution Z,(lk),and R, « is the residual vector defined by

R, =F -MZ").-z®.

Let (A%, u) be the approximate solutions of (13)
associated with Z,Ek) . The matrix 1\71 is also computed by (15)
and by replacing v with the differential reluctivity v valued
at (AW,

means that a damping factor ¢, and an approximate solution

flk)) . The inexactness of the Newton method

E of (17) are used at each step.

Algorithm 1 (Inexact Newton Algorithm)

Given the maximal number of iterations V,,, = 50 and the

initial guess Z'¥ =Z | .set k=0.

white |R,,[>10°|F,| & k<N, do
1. Sete :1+HR""‘H and o, =1/0.618.

2. Compute an approximate solution E of (17) by
Algorithm 2.

3 While £>[R,,

‘ do
(31) a, <« 0.618¢, ;

(32 Z¢P =zW 1 o E;
@3 & =|F, -M(Z!)- 2.
End While.
4. k<« k+1.
End While.

To the best of our knowledge, for large numbers of
elements, efficient solver is still a difficult issue for discrete
Maxwell’s equations with nonlinear and anisotropic reluctivity.
Accurate solution of (17) requires a long time and makes the
Newton method inefficient. To reduce the computational time,

we only use an approximate error function E in (16). The
exact solution of (17) is denoted by E =(E,~--,E, ., )

and represents the error functions as follows



‘]1 J2
e=ZE;bw 9=ZEJ~+JJ1,,--
i=1 J=

Then (17) is equivalent to the discrete problem: Find e € X,

and @ € U, such that

o ~
_[ —(e+0)-(v, +wh)+I veurle-curly,
Qr o (18)

:rn,k(vlﬂwh Vv,eX,, w,elU,

where 7, , is the residual functional defined by

Lo (v, w,) = IQJ" (v, +w,) —J.churIAfj‘) -curlv,
o
- _(Aik) + uik) - An—l - un—l)' (Vh W, )
Qr
Now we propose an alternating iteration algorithm to compute
an approximate solution E of (17).

Algorithm 2 (Alternating Iteration Algorithm)
Given the maximal number of iterations N, =10 and the

initial guess E; =0 and e; =0.Set / =0.

1. whie [R,, ~M-E,|>107|R, [ & /<N, do

1.1 Solve the following elliptic problem by 5 iterations of
conjugate gradient method preconditioned by the
Boomer-AMG (Algebraic Multigrid) method [20]:

Find ¢,,, € Y, such that

IQ /’{O-V¢l+l : v¢h = ann,k (O’ szh)

—IQ)(ae, Vo, Ve, eY,.

1.2 Solve the following Maxwell equation by 10 iterations of
preconditioned conjugate gradient (PCG) method with
the HX-preconditioner [21]:

Find e,,, € X, such that
J.Qae,ﬂ-vh +rnJ'Q1? curle,, -curlv,
= 7,0, (v4,0) - J.Q oY V-V, Vv, eX,
1.3 Compute E,,; from (e,,,,0,,,) andset / </ +1.

End While.
2. Set E=E,.

Since Algorithm 2 only computes an approximate solution
of (17), to reduce the computational time, we set the maximal

number of iterations by N, =10 . In each alternating
iteration, we only use 5 iterations of PCG method for solving
@,., and 10 iterations of PCG method for solving e,,,. Since

the Boomer-AMG method is very efficient in solving second-
order elliptic problems, we use less iterations in Step 1.1 than
in Step 1.2. In fact, the computational time for Step 1.1 is
negligible compared with that for Step 1.2.

V. NUMERICAL EXPERIMENTS

In this section, we report the numerical experiment based on
the TEAM Workshop Problem 21°-M1 [22]. The conducting
region, referred to as a magnetic shield configuration, is the
combination of a lamination stack and a magnetic plate whose
dimensions are respectively 6x270x458 mm® and
10 x 360 x 520 mm®, as shown in Fig. 5. The lamination
stack consists of 20 steel sheets and the coating film over each
sheet is 4um thick. The source currents are carried in opposite
directions by two coils and are 3000 Ampere/Turn at a
frequency of 50Hz, namely,

J (x,7)=J (x)-sin(1007 7), ¢>0.

The height of each coil is 217mm and the radiuses of the inner
arc and the outer arc at four corners are 10mm and 45mm
respectively. The distance between the lamination stack and
the coils is 12mm and the vertical distance between the two
coils is 24mm.

= 360

' I 1 —

———

Sl | Shielding
A0
270
Magnetic steel

. e . -

0 A vocoill o

y 1 1 g g . 1 :

1 1 S T T

-+ 1 1 1 1

S ' : 'ocoil2 !
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Shielding lz
Fig. 5 TEAM Workshop Problem 21°-M1(all dimensions are in mm).

We use the second-order edge element method of the
second family [23] to solve the problem, that is, setting k£ = 2
in (11). The implementation is based on the adaptive finite
element package “Parallel Hierarchical Grid” (PHG) [24].



The computations are carried out on 512 CPU cores on the
cluster LSEC-I1II, the State Key Laboratory on Scientific and
Engineering Computing, Chinese Academy of Sciences.

The domain € is meshed into 9.0x10° tetrahedra and
each lamination is subdivided into three layers in the normal
direction to the lamination plane. The number of degrees of

freedom on the mesh is 1.26x10% . The purpose of this

experiment is as follows:

1. To validate the new A-formulation (10) of the eddy current
model by reducing the influence of the numerical error.

2. To demonstrate the approximation of the finite element
problem (13) to the continuous problem (10).

3. To examine 3D eddy currents in the laminations.

50

40}
30
20t

10+

Number of Newton iterations

00 0.005 0.01 0.015 0.02 0.025
Time (s)
Fig. 6 Number of Newton iterations such that the relative residual is less
than 107,

The end time is set by the length of two periods of the
source current and is given by 7, , =0.04s . The interval

[0,¢,,,] is partitioned uniformly into 80 time steps such that

7, =5x10""s for all n> 0. Unlike isotropic materials, the
anisotropic reluctivity influences the number of Newton
R, ~M-E[<10?|R,,
always satisfied in Algorithm 2, and in that case, we use 10

alternating iterations to save the computational time. Fig. 6
shows the number of Newton iterations to attain the criterion

‘ is not

iterations. The criterion ‘

HRn’k ‘ <10‘3||Fn at all time steps within the first period.
The method converges slowly at ¢, = 0.01s, 0.02s, 0.03s,
and 0.04s.

To validate the new formulation (10), the numerical results
are compared with the experimental data measured by the R &
D center of Baoding Tianwei Group Co., LTD, China, which
can be found in [22]. Figs. 7-8 show the calculated values of
the magnetic flux density on a coarse mesh with 187,152
tetrahedra and a fine mesh with 9,000,628 tetrahedra. The
numerical values from the coarse mesh have larger errors on a
few points, while the numerical values on the fine mesh agree

well with the measurement data. TABLE | shows the
calculated iron loss on the fine mesh and the numerical value
is close to the experimental value. The numerical experiment
indicates that the new formulation (10), or the ICST, provides
an accurate approximation to the original problem (2), and the
discrete problem (13) is a good approximation to (10).

0.03 : : :
—HE—Numerical data
—+—Measured data o
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Fig. 7 Magnetic flux density: the numerical data still have large errors at
a few points by a mesh with 187,152 elements.
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Fig. 8 Magnetic flux density: the numerical data agree well with the
measurement data by a mesh with 9,000,628 elements.

TABLEI
IRON LOSS IN THE LAMINATION AND THE MAGNETIC PLATE (W)

Calculated iron loss )
Measured iron loss

Loss in the Loss in the Total loss
lamination magnetic plate
2.789 0.941 3.73 3.72

Figs. 9-10 show the tangential component of the eddy
current density in €, and €2, respectively, where Q. is the

lamination whose distance is d; = (11.7+0.3i) mm from



the coils, i =1,2. The eddy current density in the second

sheet is reduced considerably compared with that of the first
sheet. Fig. 11 shows the eddy current density on one slice of
the magnetic plate which is 2mm away from the lamination
stack. It shows a shielded area by the lamination stack.
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Fig. 11 Eddy current distribution on the slice being 2mm away from the
lamination stack.

VI. CONCLUSION

An inner-constrained separation technique is proposed for
computing 3D eddy currents in GO silicon steel laminations.
The ICST vyields a new A-formulation of the eddy current
problem and is efficient in simulating 3D eddy currents
without meshing coating films. A parallel finite element

program is developed to solve the new formulation based on
MPI and unstructured tetrahedral meshes.
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