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Abstract. A uniaxial perfectly matched layer (PML) method is proposed for solving
the scattering problem with multiple cavities. By virtue of the integral representa-
tion of the scattering field, we decompose the problem into a system of single-cavity
scattering problems which are coupled with Dirichlet-to-Neumann maps. A PML is
introduced to truncate the exterior domain of each cavity such that the computational
domain does not intersect those for other cavities. Based on the a posteriori error esti-
mates, an adaptive finite element algorithm is proposed to solve the coupled system.
The novelty of the proposed method is that its computational complexity is compara-
ble to that for solving uncoupled single-cavity problems. Numerical experiments are
presented to demonstrate the efficiency of the adaptive PML method.
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1 Introduction

We propose and study a uniaxial perfectly matched layer (PML) method for solving the
multiple cavity scattering problems

∆u+k2u=0 in D∪R
2
+, (1.1a)

u=0 on Γc∪S, (1.1b)

[u]=

[

∂u

∂x2

]

=0 on ΓD, (1.1c)

lim
r=|x|→∞

√
r

(

∂us

∂r
−ik0us

)

=0, (1.1d)
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Figure 1: An illustration for the setting of multiple cavity scattering problem.

where u and us are the total field and the scattering field respectively and i is the imagi-
nary unit. The radiation condition (1.1d) is imposed in the upper half space R2

+ where

R
2
±={(x1,±x2) | x1∈R, x2>0}, Γ=∂R

2
+={(x1,0) | x1 ∈R}.

The region D ⊂R2
− consists of well-separated cavities, D =∪I

i=1Di, which are bounded
and have Lipschitz boundaries. For each cavity, say Di, Si denotes the cavity wall and Γi

denotes the cavity aperture (see Fig. 1 for a simple illustration), namely,

∂Di=Γi∪Si, 1≤ i≤ I.

For convenience we let

S=∪I
i=1Si, ΓD =∪I

i=1Γi, Γc=Γ\ΓD.

The wavenumber k(x) is assumed to be constant in the upper half plane

k= k0 in R
2
+, (1.2)

but may be inhomogeneous inside cavities. Let u± denote the limits of u as the argument
goes to Γ from above and below respectively. Then the jump of u across Γ is defined by

[u]=u+−u− on Γ.

The scattering of cavities in the infinite ground plane is of great importance for its
industrial and military applications. There are plenty of papers that study the scattering
problems by cavities both in the engineering community and the mathematical commu-
nity. In [21, 25], Jin et al. studied high-order finite element approximations to the scat-
tering problem by deep cavities. Based on Fourier’s transform, Ammari et al. [1, 2], Bao
and Sun [6], Van and Wood [29] studied nonlocal transparent boundary conditions on the
open aperture of the cavity. A mode matching method was proposed by Bao et al. [5, 8]
for solving electromagnetic scattering problem by large cavities. For scattering problems
by overfilled cavities, one can not restrict the computational domain to cavities any more.
Wood [31] and Li et al. [24] introduced an artificial boundary condition on a semicircle or
hemisphere and developed numerical methods for dealing with the scattering by over-
filled cavities. We also refer to [4, 16, 18, 19, 22, 30, 32–34] and the references therein for
various numerical investigations into cavities scattering problems, such as finite differ-
ence method, finite element method, boundary element method and hybrid methods.
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However, one usually deals with multiple scattering problems in practical applica-
tions, namely, the scattering by multiple well-separated obstacles or cavities. In these
cases, one can not truncate the exterior domain simply by a large domain which com-
prises all material inhomogeneities. Otherwise, the numerical approximation will leads
to a massive system of algebraic equations and will be very hard to solve. One natural
idea is to treat the obstacles or cavities separately such that each scatterer is surrounded
by one respective truncation boundary close to it. We refer to Grote and Kirsch [17] and
Jiang and Zheng [20] for multiple obstacle scattering problems, where the scattering field
is split into the addition of single-obstacle scatting waves. Li and Wood [23] studied the
transparent boundary condition of multiple cavity scattering problems. By using the total
field, the global transparent boundary condition is first introduced on all apertures. Then
the multiple cavity scattering problem is transformed into a coupled system of boundary
value problems of the Helmholtz equation, each of which is restricted to one cavity.

The main theme of this paper is to study the PML method for (1.1). The perfectly
matched layer (PML) method, which was first proposed by Bérenger [9], is an efficient
technique for solving the wave propagating problems. Various constructions of PML ab-
sorbing layers have been proposed and studied in the literature (cf., e.g., [27, 28] for the
reviews). The basic idea of the PML method is to surround the computational domain by
a layer of finite thickness with a specially designed model medium that absorbs all the
waves propagating from inside the computational domain. For practical applications,
Chen and coauthors [11–14] proposed the adaptive PML method for solving acoustic
and electromagnetic scattering problems. For multiple cavity scattering problems, one
can not simply surround each cavity by a PML and solve the truncated problems indi-
vidually. The total field consists of the incident waves and the scattering waves by all
cavities. The scattering waves by one cavity may be incoming waves for all other cavi-
ties and can not be absorbed by the PML. To overcome this difficulty, we decompose the
scattering problem (1.1) into a coupled system of I single-cavity scattering problems by
using the integral representation of the field in the upper half plane. The single-cavity
scattering problems are coupled by Dirichlet-to-Neumann (DtN) maps on the apertures.
Then we construct the PML for each single cavity scattering problem and obtain a system
of PML problems which are coupled by the DtN operators. We proved that the solution
of the PML problem converges exponentially to the exact solution of (1.1) as either the
thickness of the layers or the medium properties increase. For the conforming finite el-
ement approximation of the PML problem, we propose an APML algorithm based on
reliable a posteriori error estimates.

Because of the DtN operators, the stiffness matrix has dense blocks for the finite
element approximation of each single-cavity scattering problem. We propose a Block
Gauss-Seidel method in the APML algorithm such that the stiffness matrices of the APML
method are sparse and independent of the DtN operators. The computational complex-
ity for solving the coupled system is proportional to that for solving I uncoupled single-
cavity scattering problems. In the last section, we present some numerical experiments
to demonstrate the efficiency of the APML method. Our numerical results show that
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the approximation error and the a posteriori error estimate decrease quasi-optimally as
the number of degrees of freedom increase. All through this paper, the vector-valued
quantities will be denoted by boldface symbols, such as x=(x1,x2).

2 Decomposition of the multiple scattering problem

In this section, we shall decompose the multiple scattering problem into a system of
single-cavity problems by using the integral representation on the apertures. Let

ui= eik0(x1sinθ−x2cosθ)

be the incident field on the cavity from above, and

ur =−eik0(x1 sinθ+x2 cosθ)

be the reflective field, where −π/2 < θ < π/2 denotes the incident angle. Denote the
scattering field by us=u−ui−ur. Then the scattering problem (1.1) can be rewritten into
the partial differential equation for us

∆us+k2us= f in D∪R
2
+, (2.1a)

us = g on Γc∪S, (2.1b)

[us]=

[

∂us

∂x2

]

=0 on ΓD, (2.1c)

lim
r→∞

√
r

(

∂us

∂r
−ik0us

)

=0, (2.1d)

where f =(k2
0−k2)(ui+ur) and g=−(ui+ur). From (1.2) we know that

supp( f )⊂R
2
−, supp(g)⊂S . (2.2)

The half-plane Green function of the Helmholtz equation reads

G(x,y)=
i

4

[

H
(1)
0 (k0 |x−y|)−H

(1)
0 (k0

∣

∣x−y
′∣
∣)
]

, (2.3)

where H
(1)
0 (z) is the zero-order Hankel function of the first kind and x′=(x1,−x2) is the

image of point x=(x1,x2) with respect to the horizontal axis. Let δy(x) be the Dirac source
at y∈R2

+,

δy(x)=δ(|x1−y1|)δ(|x2−y2|).
Then G(x,y) satisfies

∆xG(x,y)+k2
0G(x,y)=−δy(x) in R

2
+, (2.4a)

G(x,y)=0 on Γ, (2.4b)

lim
r=|x|→∞

√
r

[

∂G(x,y)

∂r
−ik0G(x,y)

]

=0. (2.4c)
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Theorem 2.1. The scattering problem (2.1) admits a unique solution us ∈ H1
loc(R

2
+∪D). Fur-

thermore, us can be split into the addition of outgoing waves

us=
I

∑
i=1

ui in R
2
+, (2.5)

where ui solves the scattering problem in the upper half-plane

∆ui+k2ui= f in R
2
+, (2.6a)

ui=us on Γi , ui=0 on Γc
i :=Γ\Γi, (2.6b)

lim
r→∞

√
r

(

∂ui

∂r
−ik0ui

)

=0. (2.6c)

Proof. First we refer to [31] for the unique existence of the solution.

Now we are going to prove the decomposition of us into the addition of single-cavity
scattering solutions. Using (2.1)-(2.2), (2.4), and the formula of integral by part, we find
that, for any x∈R2

+,

us(x)=
∫

R2
+

us(y)δx(y)dy

=−
∫

R2
+

us(y)
[

∆yG(x,y)+k2G(x,y)
]

dy

=
∫

Γ

[

∂G(x,y)

∂y2
us(y)−

∂us(y)

∂y2
G(x,y)

]

dsy.

Since G(x,·) vanishes on Γ and us vanishes on Γc, the above representation can be written
as

us =
I

∑
i=1

ui, ui(x)=
∫

Γi

∂G(x,y)

∂y2
us(y)dsy ∀x∈R

2
+. (2.7)

By (2.4), it is easy to see that ui satisfies the Helmholtz equation (2.6a) and the radia-
tion condition (2.6c). Notice the facts that

G(x,y)=0 ∀x∈Γ, y 6= x and us =0 on Γc .

This indicates the boundary conditions in (2.6b).

Now we define the Dirichlet-to-Neumann (DtN) operator Ti: H
1
2 (Γi) 7→ H− 1

2 (Γi) as
follows

Ti(ξ) :=
∫

Γi

∂2G(x,y)

∂x2∂y2
ξ(y)dsy ∀ξ∈H

1
2 (Γi). (2.8)
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From [23, Lem. 2.1], Ti is well-defined and continuous. And from (2.6b) we find that

Ti(uj)(x)=0 ∀x∈Γi, j 6= i.

This indicates that for any x∈Γi,

∂ui

∂x2
(x)=

∫

Γi

∂2G(x,y)

∂x2∂y2
us(y)dsy =

I

∑
j=1

Ti(uj)(x)=Ti(ui)(x), (2.9)

∂us

∂x2
(x)=

I

∑
j=1

∂uj

∂x2
(x)=

∂ui

∂x2
(x)+

I

∑
j=1
j 6=i

Tj(uj)(x). (2.10)

Let the extension of ui into Di be defined as follows

ũi=

{

ui in R2
+,

us in Di .

In the rest of the paper, we shall refer to ũi for the scattering solution by the aperture
Γi, or formally by the cavity Di. In view of the jump conditions in (2.1c), ũi satisfies the
following interface problems

∆ũi+k2ũi= f in Di∪R
2
+, (2.11a)

ũi = g on Si , ui=0 on Γc
i , (2.11b)

[ũi]=0,

[

∂ũi

∂x2

]

=−∑
j 6=i

Tj(ũj) on Γi, (2.11c)

lim
r→∞

√
r

(

∂ũi

∂r
−ik0ũi

)

=0. (2.11d)

3 Uniaxial PML method for single-cavity scattering problems

Notice that (2.11) is a system of single-cavity scattering problem with interface condi-
tions. In this section we shall focus on the uniaxial PML method for this single scattering
problem. For convenience in notation, we omit the subscripts and rewrite (2.11) into the
following problem:

∆w+k2w= f in D∪R
2
+, (3.1a)

w= g on Γc∪S, (3.1b)

[w]=0,

[

∂w

∂x2

]

=−q on ΓD, (3.1c)

lim
r→∞

√
r

(

∂w

∂r
−ik0w

)

=0, (3.1d)
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where D stands for a single cavity, ΓD ⊂Γ stands for the aperture, S= ∂D\ΓD stands for

the cavity wall, and Γc=Γ\ΓD. Furthermore, we assume that q∈H− 1
2 (ΓD) and

supp(g)⊂ S̄ such that g∈H
1
2 (S),

supp( f )⊂ D̄ such that f ∈L2(D),

supp(k−k0)⊂ D̄ such that k−k0 ∈L∞(D).

3.1 A weak formulation

First we shall derive a weak formulation of (3.1). Let H
1
2
0 (ΓD) be the closure of C∞

0 (ΓD)

under the norm ‖·‖
H

1
2 (ΓD)

. Then for any ξ ∈ H
1
2
0 (ΓD), its extension by zero to Γc yields

a function ξ̃ ∈ H
1
2 (Γ). Without confusion, H

1
2
0 (ΓD) also denotes the subspace of H

1
2 (Γ)

whose functions are supported in ΓD.

To derive the weak formulation, we need the DtN operator T: H
1
2
0 (ΓD) 7→ H− 1

2 (ΓD)

defined as follows: for any ξ∈H
1
2
0 (ΓD), Tξ := ∂v

∂y2

∣

∣

ΓD
, where v solves the Dirichlet problem

of Helmholtz equation in half upper plane

∆v+k2
0v=0 in R

2
+,

v= ξ on ΓD, v=0 on Γc,

lim
r→∞

√
r

(

∂v

∂r
−ik0v

)

=0.

From (2.6) and (2.7), the operator T can be written as

Tξ(x)=
∫

ΓD

∂2G(x,y)

∂x2∂y2
ξ(y)dsy, (3.3)

which is well-defined and continuous (cf. e.g. [23, Lem. 2.1]).
Let a : H1(D)×H1(D)→C be the sesquilinear form

a(ϕ,ψ)=
∫

D

(

∇ϕ·∇ψ̄−k2 ϕψ̄
)

−〈Tϕ,ψ〉ΓD
, (3.4)

where 〈·,·〉ΓD
stands for the duality pairing between H− 1

2 (ΓD) and H
1
2
0 (ΓD). The scatter-

ing problem (3.1) is equivalent to the following weak formulation: Find w∈H1(D) such
that w= g on S and

a(w,ϕ)=−( f ,ϕ)D+〈q,ϕ〉ΓD
∀ϕ∈H1

S(D), (3.5)

where (·,·)D denotes the L2-inner product on L2(D) and

H1
S(D)={ψ∈H1(D) : ψ=0 on S}.
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The existence of a unique solution of the scattering problem (3.5) is well-known (cf., e.g.,
[23], [33]). Then the general theory in Babuška and Aziz [3, Chap. 5] implies that there
exists a constant µ>0 such that the following inf-sup condition is satisfied

sup
0 6=ψ∈H1

S(D)

|a(ϕ,ψ)|
‖ψ‖H1(D)

≥µ‖ϕ‖H1(D), ∀ϕ∈H1
S(D). (3.6)

3.2 The PML problem

Now we turn to the PML method for the single-cavity scattering problem. For conve-
nience in notation, we let ΓD = {(x1,0) : |x1|< L} be the aperture and define the domain
for PML by (see Fig. 2)

ΩPML={(x1,x2) : |x1|< L+d, 0< x2 <d}.

The wave-absorbing layer is defined by the complex coordinate stretching

x̃1= x1+i

∫ x1

0
σ(|t|−L)dt , x̃2= x2+i

∫ x2

0
σ(t)dt .

Let σ0 >0 be a constant and m≥0 be an integer. The model medium property is defined
by

σ(t)=0, if t≤0; σ(t)=σ0

(

t

d

)m

, if t>0. (3.7)

Here for simplicity we assume that the depths of the layer are equal in both directions.
For convenience we write α1(t)=1+iσ(|t|−L) and α2(t)=1+iσ(t) such that

x̃j =
∫ xj

0
αj(t)dt, j=1,2.

It is easy to see that the scattering field propagates as follows in the PML

w(x̃)=
∫

Γ

∂G(x̃,y)

∂y2
w(y)dsy ∀x∈R

2
+.

Define w̃(x) :=w(x̃) for x∈ΩPML, it is obvious that w̃ satisfies

∂2w̃

∂x̃2
1

+
∂2w̃

∂x̃2
2

+k2
0w̃=0 in R

2
+,

which yields the desired PML equation in real coordinates

∇·(A∇w̃)+k2
0 Jw̃=0 in R

2
+,
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2L dd

d

D

Figure 2: Setting of single-cavity scattering problem with PML layer

where

A(x)=diag

(

α2(x2)

α1(x1)
,

α1(x1)

α2(x2)

)

, J(x)=α1(x1)α2(x2).

The PML solution ŵ(x) in Ω=D∪ΩPML is defined by imposing homogeneous Dirich-
let boundary condition on the outer boundary

∇·(A∇ŵ)+k2 Jŵ= f in Ω, (3.8a)

ŵ= g on ∂Ω, (3.8b)

[ŵ]=0,

[

∂ŵ

∂x2

]

=−q on ΓD, (3.8c)

where g vanishes on ∂Ω\S ( or ∂ΩPML\ΓD ). Now we define the approximate DtN oper-

ator T̂: H
1
2
0 (Γ)→ H− 1

2 (Γ) by T̂w= ∂ζ
∂x2

∣

∣

ΓD
, where ζ is the solution of the PML problem in

the layer

∇·(A∇ζ)+k2
0 Jζ=0 in ΩPML, (3.9a)

ζ=w on ΓD, ζ=0 on ΓPML, (3.9b)

where ΓPML=∂ΩPML\ΓD. The spectral theory of compact operators implies that (3.9) has
a unique solution for every real k0 except possibly for a discrete set of values of k0. The
well-posedness of the PML problems with circular layer has been studied in [7, 12]. For
uniaxial PML methods, the stability estimates were proved in [10] for a special designed
medium property and also in [15] for the piecewise constant case. In this paper we will
not elaborate on this issue and simply make the following assumption

(H1) There exists a unique solution to the PML problem (3.9) in the layer.

Define the sesquilinear form â : H1(D)×H1(D)→C by

â(ϕ,ψ)=
∫

D

(

∇ϕ·∇ψ̄−k2 ϕψ̄
)

−〈T̂ϕ,ψ〉ΓD
. (3.10)

http://dx.doi.org/10.4208/cicp.040215.280815a
Downloaded from http:/www.cambridge.org/core. National Science Library, CAS, on 26 Dec 2016 at 00:53:48, subject to the Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms.

http://dx.doi.org/10.4208/cicp.040215.280815a
http:/www.cambridge.org/core
http:/www.cambridge.org/core/terms


X. Wu and W. Zheng / Commun. Comput. Phys., 19 (2016), pp. 534-558 543

Then the equivalent weak formulation of the PML problem (3.8) is: Find ŵ∈H1(D) such
that ŵ= g on S and

â(ŵ,ϕ)=−( f ,ϕ)D+〈q,ϕ〉ΓD
∀ϕ∈H1

S(D). (3.11)

Theorem 3.1. Let (H1) be satisfied. Let w be the solution of (2.11). Then for sufficiently large
σ0 > 0, the PML problem (3.8) has a unique solution ŵ ∈ H1(Ω). And there exists a constant
C1>0 depends on k0, σ0 and d at most polynomially such that

‖w−ŵ‖H1(D)≤C1e−γk0σ̄‖ŵ‖
H

1
2 (ΓD)

,

where

γ=
1

√

1+(1+2L/d)2
, σ̄=

∫ d

0
σ(t)dt=

σ0d

m+1
.

Proof. The proof is similar to the arguments as in the proof of [14, Theorem 3.1]. For the
sake of simplicity, we omit the details.

3.3 Finite element approximation

In this subsection we introduce the finite element approximation of the PML problem
(3.8). Let b : H1(Ω)×H1(Ω)→C be the sesquilinear form given by

b(ϕ,ψ)=
∫

Ω

(

A∇ϕ·∇ψ̄−k2 Jϕψ̄
)

. (3.12)

Then we propose another weak formulation of (3.8): Find ŵ∈H1(Ω) such that ŵ= g on
S, w=0 on ΓPML, and

b(ŵ,ψ)=−( f ,ψ)Ω+〈q,ψ〉ΓD
∀ψ∈H1

0(Ω). (3.13)

Let Mh be a regular triangulation of Ω so that Ω=∪K∈Mh
K. Let Vh ⊂ H1(Ω) be the

conforming linear finite element space over Mh and
◦
Vh=Vh∩H1

0(Ω). The finite element
approximation to the PML problem (3.8) reads as follows: Find wh∈Vh such that wh= gh

on S, wh=0 on ΓPML, and

b(wh,ψh)=−( f ,ψh)Ω+〈qh,ψh〉ΓD
∀ψh∈

◦
Vh, (3.14)

where gh = Ihg∈Vh|S is the canonical interpolation of g and qh is some discrete approxi-
mation of q. By the general theory in [3], the existence of a unique solution of the discrete
problem (3.14) and the finite element convergence analysis depend on the following inf-
sup condition

sup

0 6=ψh∈
◦
Vh

|b(ϕh,ψh)|
‖ψh‖H1(Ω)

≥ µ̂‖ϕh‖H1(Ω), ∀ϕh∈
◦
Vh, (3.15)
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where the constant µ̂>0 is independent of the finite element mesh size. Since the contin-
uous problem (3.8a)-(3.8c) has a unique solution by Theorem 3.1, the sesquilinear form
b : H1

0(Ω)×H1
0(Ω)→C satisfies the continuous inf-sup condition, namely,

sup
0 6=ψ∈H1

0(Ω)

|b(ϕh,ψ)|
‖ψ‖H1(Ω)

≥µ1‖ϕh‖H1(Ω) ∀ϕh∈
◦
Vh.

Since the finite element space
◦
Vh is dense in H1

0(Ω) as h → 0, the general argument of
Schatz [26] implies that, for sufficiently small mesh size h < h∗, (3.15) holds for some
0< µ̂<µ1. Here the threshold h∗ depends on µ1 and thus depends on the wavenumber
k0 and the PML parameters.

For any K ∈Mh we denote by hK its diameter. Let Bh be the collection of all sides
in Mh which do not lie on ∂Ω. For any e∈Bh, he stands for its length. To derive the a
posteriori error estimate for (3.14), we introduce the residual:

RK :=− f +∇·(A∇wh|K)+k2 Jwh|K (3.16)

for any K∈Mh. For any interior side e∈Bh which is the common side of K1,K2∈Mh, we
define the jump residual across e:

Je :=−[A∇wh]|e ·n=−A∇wh|K1
·n1−A∇wh|K2

·n2, (3.17)

if e does not lie on the interface ΓD. Otherwise, we define the jump residual:

Je :=−[A∇wh]|e ·n+qh, (3.18)

if e lies on ΓD. Here ni is the unit outer normal of ∂Ki restricted to e. Then the local error
estimator ηK for any K∈Mh is defined as

η2
K :=‖hK RK‖2

L2(K)+
1

2 ∑
e⊂∂K\∂Ω

he‖Je‖2
L2(e). (3.19)

Using the similar arguments as in [14], we obtain the following a posteriori error estimate.

Theorem 3.2. Let (H1) be satisfied. Let w be the solution of (2.11) and wh be the solution of
finite element problem (3.14). Then for sufficiently large σ0, there exists a constant C2>0 which
depends on k0, σ0 and d at most polynomially and depends on the minimal angle of the mesh such
that

‖w−wh‖H1(D)≤C2

{

‖g−gh‖
H

1
2 (S)

+

(

∑
K∈Mh

η2
K

)
1
2

+ ‖q−qh‖
H− 1

2 (ΓD)
+ e−γk0σ̄‖wh‖

H
1
2 (ΓD)

}

.
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4 Multiple cavity scattering problems

In this section we turn back to the multiple cavity scattering problem. Notice that the
image of the DtN operator Tj is smooth on Γi for any i 6= j, the estimate for the Green
function implies the following lemma.

Lemma 4.1. There exists a constant C>0 only depending on k such that

‖Tj(w)‖L∞(Γi)≤Cd−1
min‖w‖H1(Dj)

∀w∈H1(Dj), i 6= j,

where

dmin = min
1≤i<j≤I

dist(Γi,Γj).

Similar to the single cavity problem, each interface problem in (2.11) is equivalent to
the following weak formulation: Find ũi ∈H1(Di) such that ũi = g on S and

ai(ũi,ψ)=−( f ,ψ)Di
+〈qi,ψ〉Γi

∀ψ∈H1
Si
(Di), (4.1)

where qi =∑j 6=i Tj(wj), and the sesquilinear form ai is defined by

ai(ϕ,ψ)=
∫

Di

(

∇ϕ·∇ψ̄−k2 ϕψ̄
)

−〈Ti ϕ,ψ〉Γi
.

The uniqueness of the scattering problems implies that there exist positive constants
µ1,··· ,µI such that

sup
0 6=ψ∈H1

Si
(Di)

|a(ϕ,ψ)|
‖ψ‖H1(Di)

≥µi‖ϕ‖H1(Di)
∀ϕ∈H1

Si
(Di), 1≤ i≤ I. (4.2)

4.1 Uniaxial PML method for multiple cavity scattering problems

Let Γi = {(x1,0) : |x1−ci|< Li} and ΩPML
i = {(x1,x2) : |x1−ci|< Li+d, 0 < x2 < d} be the

corresponding PML layer on the cavity aperture. Then the wave-absorbing layer in ΩPML
i

is defined by the complex coordinate stretching x→ x̃ :

x̃1= x1+i

∫ x1

ci

σ(|t−ci|−Li)dt, x̃2= x2+i

∫ x2

0
σ(t)dt, (4.3)

where σ is defined as in (3.7). Similarly we write αi,1(t)=1+iσ(|t−ci |−Li) and αi,2(t)=
1+iσ(t). Then the coordinate stretching has the form

x̃1= ci+
∫ x1

ci

αi,1(t)dt, x̃2=
∫ x2

0
αi,2(t)dt ∀x∈ΩPML

i .
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The PML approximation to the multiple cavity scattering problem (2.11) reads

∇·(Ai∇ûi)+k2 Jiûi= f in Ωi :=Di∪ΩPML
i , (4.4a)

ûi= g on Si, ûi=0 on ΓPML
i , (4.4b)

[ûi]=0,

[

∂ûi

∂x2

]

=−∑
j 6=i

Tj(ûj) on Γi, (4.4c)

for all 1≤ i≤ I, where ΓPML
i :=∂ΩPML

i \Γi and

Ai(x)=diag

(

αi,2(x2)

αi,1(x1)
,

αi,1(x1)

αi,2(x2)

)

, Ji(x)=αi,1(x1)αi,2(x2) ∀x∈Ωi .

Theorem 4.1. Let (H1) be satisfied. Let ũi,1≤i≤ I be the solutions to (2.11). Then for sufficiently
large σ0 and dmin, the PML problems (4.4) have unique solutions ûi, 1≤i≤ I, and there holds that

I

∑
i=1

‖ũi−ûi‖H1(Di)
≤2C1e−γk0σ̄

I

∑
i=1

‖ûi‖
H

1
2 (Γi)

, (4.5)

where C1 is the constant in Theorem 3.1.

Proof. First we introduce the auxiliary scattering problems

∆Wi+k2Wi = f in Di∪R
2
+, (4.6a)

Wi = g on Si, Wi =0 on Γc
i , (4.6b)

[Wi]=0,

[

∂Wi

∂x2

]

=−∑
j 6=i

Tj(ûj) on Γi, (4.6c)

lim
r→∞

√
r

(

∂Wi

∂r
−ik0Wi

)

=0. (4.6d)

Then (4.4) is the PML approximation to (4.6). Theorem 3.1 implies that

‖Wi−ûi‖H1(Di)
≤C1e−γk0σ̄‖ûi‖

H
1
2 (Γi)

. (4.7)

Denote by ei= ũi−Wi and qe
i =∑j 6=i Tj(ũj−ûj), we have

∆ei+k2ei =0 in Di∪R
2
+,

ei=0 on Γc
i ∪Si,

[ei]=0,

[

∂ei

∂x2

]

=−qe
i on Γi,

lim
r→∞

√
r

(

∂ei

∂r
−ik0ei

)

=0.
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By the inf-sup condition (4.2) and the weak formulation (4.1), we obtain

µi‖ei‖H1(Di)
≤ sup

0 6=ψ∈H1
Si
(Di)

|ai(ei,ψ)|
‖ψ‖H1(Di)

= sup
0 6=ψ∈H1

Si
(Di)

|〈qe
i ,ψ〉Γi

|
‖ψ‖H1(Di)

≤C‖qe
i‖H− 1

2 (Γi)
,

where we have used the fact that ‖ψ‖
H

1
2 (Γi)

≤C‖ψ‖H1(Di)
(cf. e.g. [23, Lem. 2.3]). Then we

deduce from Lemma 4.1 that

‖ei‖H1(Di)
≤ C̃d−1

min∑
j 6=i

‖ũj−ûj‖H1(Dj)
. (4.8)

Combining (4.7) and (4.8) and summing up the inequalities over i, we obtain

I

∑
i=1

‖ũi−ûi‖H1(Di)
≤C1e−γk0σ̄

I

∑
i=1

‖ûi‖
H

1
2 (Γi)

+C̃Id−1
min

I

∑
i=1

‖ũi−ûi‖H1(Dj)
.

Since the cavities are well-separated, we finish the proof by letting dmin ≥2C̃I.

4.2 Finite element approximation for multiple cavity scattering problems

Let Mi be the regular triangulation of Ωi so that Ωi =∪K∈Mi
K. Let Vi ⊂ H1(Ωi) be the

conforming linear finite element space over Mi and
◦
Vi =Vi∩H1

0(Ωi). The finite element
approximation to the PML problem (4.4) can be written as: Find uh

i ∈Vi such that uh
i = gh

on Si, uh
i =0 on ΓPML

i , and

bi(u
h
i ,ψh)=−( f ,ψh)Ωi

+〈qh
i ,ψh〉Γi

∀ψh∈
◦
V i, (4.9)

where qh
i =∑j 6=i Tj(u

h
j ) and

bi(ϕ,ψ)=
∫

Ωi

(

Ai∇ϕ·∇ψ̄−k2 Ji ϕψ̄
)

dx. (4.10)

For any K∈Mi,1≤ i≤ I, the local error indicator is defined as

η2
K :=h2

K‖RK‖2
L2(K)+

1

2 ∑
e⊂∂K\∂Ωi

he‖Je‖2
L2(e), (4.11)

where RK and Je are defined as in (3.16)-(3.18) with A, J,wh,qh replaced by Ai, Ji,u
h
i ,qh

i .

Theorem 4.2. Let (H1) be satisfied. Then for sufficiently large σ0 and dmin, there holds that

I

∑
i=1

‖ũi−uh
i ‖H1(Di)

≤ 2C2

I

∑
i=1

{

‖g−gh‖
H

1
2 (Si)

+

(

∑
K∈Mi

η2
K

)
1
2

+e−γk0σ̄‖uh
i ‖H

1
2 (Γi)

}

,

where C2 is the constant in Theorem 3.2.
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Proof. By using Theorem 3.2 for each 1≤ i≤ I, we have

‖ũi−uh
i ‖H1(Di)

≤C2

{

‖g−gh‖
H

1
2 (Si)

+

(

∑
K∈Mi

η2
K

)
1
2

+ ‖qi−qh
i ‖H− 1

2 (Γi)
+ e−γk0σ̄‖uh

i ‖H
1
2 (Γi)

}

.

On the other hand, Lemma 4.1 shows that

‖qi−qh
i ‖H− 1

2 (Γi)
≤ C̃d−1

min∑
j 6=i

‖ũj−uh
j ‖H1(Dj).

Then it completes the proof by letting dmin ≥ 2C̃I and summing up all the inequalities
over 1≤ i≤ I.

Remark 4.1. The PML formulation in this section can also be extended to solve the scat-
tering problems by multiple overfilled cavities. We will report this part in a forthcoming
paper.

5 Block Gauss-Seidel method

Since the PML problems (4.4) are coupled by the DtN operators Tj on the cavity aper-
tures Γ1,··· ,ΓI , we first introduce an iterative method to solve this coupled system: Given

(û
(0)
1 ,··· ,û(0)

I ), find (û
(n)
1 ,··· ,û(n)

I ) for n≥1 successively such that

∇·
(

Ai∇û
(n)
i

)

+k2 Jiû
(n)
i = f in Ωi, (5.1a)

û
(n)
i = g on Si, û

(n)
i =0 on ΓPML

i , (5.1b)

[

û
(n)
i

]

=0,

[

∂û
(n)
i

∂x2

]

=−q
(n)
i on Γi, (5.1c)

for all 1≤ i≤ I, where

q
(n)
i :=

i−1

∑
j=1

Tj

(

û
(n)
j

)

+
I

∑
j=i+1

Tj

(

û
(n−1)
j

)

.

It is easy to see that all terms in q
(n)
i have already been calculated in the last iteration or in

the previous PML problems for 1≤ j≤ i−1. Therefore, (5.1) is just the Dirichlet boundary
value problem for one cavity like (3.8).
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The finite element approximation to the decoupled systems (5.1) reads: Given

(u0,h
1 ,··· ,u0,h

I ), find un,h
i ∈Vi such that un,h

i = gh on Si, un,h
i =0 on ΓPML

i , and

bi(u
n,h
i ,ψh)=−( f ,ψh)Ωi

+〈qn,h
i ,ψh〉Γi

∀ψh ∈
◦
V i, (5.2)

for all 1≤ i≤ I, where

qn,h
i =

i−1

∑
j=1

Tj(u
n,h
j )+

I

∑
j=i+1

Tj(u
n−1,h
j ). (5.3)

For any 1≤ i≤ I, we denote by Vi the sets of interior vertices of Mi and by V ′
i the set

of vertices on Si. Let φp ∈Vi be the nodal basis function belonging to vertex p∈Vi∪V ′
i .

Then the discrete solution can be written as

uh
i = ∑

p∈Vi

uh
i (p)φp+ ∑

p∈V ′
i

gh(p)φp.

Define the stiffness matrices, DtN matrices and the right hand side vectors as follows

Bi;p,p′=bi(φp′ ,φp) ∀p,p′∈Vi,

Ti,j;p,p′=(1−δi,j)〈Tj(φp′),φp〉Γi
∀p∈Vi∩Γi, p′∈Vj∩Γj,

Fi;p=−( f ,φp)Ωi
− ∑

p′∈V ′
i

bi(φp′ ,φp)gh(p′) ∀p∈Vi.

Let W
(n)
i be the unknown vector whose entries are un,h

i (p) for all p ∈ Vi. Then (5.2) is
equivalent to the following block Gauss-Seidel method in matrix version

BiW
(n)
i =Fi+

i−1

∑
j=1

Ti,jW
(n)
j +

I

∑
j=i+1

Ti,jW
(n−1)
j . (5.4)

Theorem 5.1. Let (H1) be satisfied and let ũi,û
(n)
i ,1≤ i≤ I be the solutions to (2.11) and (5.1)

respectively. Then for sufficiently large σ0 and dmin, we have

I

∑
i=1

‖ũi−û
(n)
i ‖H1(Di)

≤2C1e−γk0σ̄
I

∑
i=1

‖û
(n)
i ‖

H
1
2 (Γi)

+ C̃Id−1
min

I

∑
i=1

‖ũi−û
(n−1)
i ‖H1(Di)

, (5.5)

where C1 is the constant in Theorem 3.1, C̃ depends on k and D1,··· ,DI but is independent of
dmin.
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Proof. As in the proof of Theorem 4.1, we first define the auxiliary problems

∆Wi+k2Wi = f in Di∪R
2
+,

Wi = g on Si, Wi =0 on Γc
i ,

[Wi]=0,

[

∂Wi

∂x2

]

=−q
(n)
i on Γi,

lim
r→∞

√
r

(

∂Wi

∂r
−ik0Wi

)

=0.

Then (5.1) is the PML approximation of the above scattering problems. Theorem 3.1
implies that

‖Wi−û
(n)
i ‖H1(Di)

≤C1e−γk0σ̄‖û
(n)
i ‖

H
1
2 (Γi)

. (5.6)

Write ei = ũi−Wi. Then they satisfy

∆ei+k2ei =0 in Di∪R
2
+,

ei =0 on Γc
i ∪Si,

[ei]=0,

[

∂ei

∂x2

]

=−qe
i on Γi,

lim
r→∞

√
r

(

∂ei

∂r
−ik0ei

)

=0,

where

qe
i =

i−1

∑
j=1

Tj

(

ũj−û
(n)
j

)

+
I

∑
j=i+1

Tj

(

ũj−û
(n−1)
j

)

.

Similar arguments as in the proof of Theorem 4.1 yields that

‖ei‖H1(Di)
≤ C̃d−1

min

{

i−1

∑
j=1

∥

∥

∥
ũj−û

(n)
j

∥

∥

∥

H1(Dj)
+

I

∑
j=i+1

∥

∥

∥
ũj−û

(n−1)
j

∥

∥

∥

H1(Dj)

}

.

Combing (5.6) with the above inequalities and summing them up over i, we obtain

I

∑
i=1

∥

∥

∥
ũi−û

(n)
i

∥

∥

∥

H1(Di)
≤C1e−γk0σ̄

I

∑
i=1

∥

∥

∥
û
(n)
i

∥

∥

∥

H
1
2 (Γi)

+C̃Id−1
min

I

∑
i=1

(

∥

∥

∥
ũi−û

(n)
i

∥

∥

∥

H1(Dj)
+
∥

∥

∥
ũi−û

(n−1)
i

∥

∥

∥

H1(Dj)

)

.

Then we completes the proof by letting dmin ≥2C̃I.
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Remark 5.1. From Theorem 5.1, it is easy to see that the first term on the right hand
side of (5.5) is negligible for sufficiently large σ0. Thus for well-separated cavities, i.e.
dmin≥2C̃I, the iterative method will converge exponentially. We also remark that for large
wavenumber k0, the constant C̃ will be much smaller due to the estimate for the Green
function and Lemma 4.1, and thus the iterative method will be much more efficient.

For any K∈∪I
i=1Mi, let ηK be the local error indicator in (4.11) with uh

i ,qh
i replaced by

un,h
i ,qn,h

i , where qn,h
i are defined in (5.3). Similar arguments as in the proof of Theorem 4.2

yield the following theorem.

Theorem 5.2. Let (H1) be satisfied. Then for sufficiently large σ0 and dmin, we have

‖ũi−un,h
i ‖H1(Di)

≤C2ηi+C̃d−1
min∑

j 6=i

‖ũj−un−1,h
j ‖H1(Dj)

,

where C2 is the constant in Theorem 3.1, C̃ depends on k and D1,··· ,DI but is independent of
dmin, and

ηi =‖g−gh‖
H

1
2 (Si)

+

(

∑
K∈Mi

η2
K

)
1
2

+e−γk0σ̄‖un,h
i ‖

H
1
2 (Γi)

.

Remark 5.2. In the hierarchy of adaptive mesh refinements, the coupled problem (4.9) is
solved on the initial mesh. Thus we use qh

i =∑j 6=i Tj(u
h
j ) in computing ηK.

Remark 5.3. Since ‖ũi−un,h
i ‖ decreases very quickly as n grows, Theorem 5.2 indicates

that ∑
I
i=1ηi provides an upper bound for ∑

I
i=1‖ũi−un,h

i ‖H1(Di)
.

6 Numerical experiments

In this section, we shall propose the adaptive PML finite element algorithm for solving
multiple scattering problems. Then we shall present two numerical examples to demon-
strate the competitive performance of the adaptive PML method.

To fix the PML region, we first choose the PML parameters d,σ0 such that the expo-
nential decaying factor

ω= e−γk0σ̄0 <10−6, (6.1)

which makes the PML error negligible compared with the finite element discretization
error. Then the mesh is refined adaptively according to the a posteriori error estimate

ηh =

(

∑
K∈Mh

η2
K

)
1
2

, ηmax= max
K∈Mh

ηK .

On each mesh, the coupled system is solved by using the block Gauss-Seidel method.
Now we present the adaptive uniaxial PML (APML) algorithm.
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Algorithm 6.1. Given tolerance ε>0.

1. Set the PML absorbing layers by choosing d and σ0 such that ω<10−6.

2. Set the computational domains Ωi and generate an initial mesh Mi over Ωi for each

1≤ i≤ I.

3. Solve the coupled problem (4.9) for uh
1,··· ,uh

I on Mh =∪I
i=1Mi and compute the error

indicators {ηK : K∈Mh}.

4. While ηh > ε do

• refine the mesh Mh according to the strategy:

if ηK >
1
2 ηmax, refine the element K∈Mh;

• solve the decoupled problems (5.2) for uh
1,··· ,uh

I on mesh Mh;

• compute the error indicators {ηK : K∈Mh};

end while

Now we report two numerical examples to demonstrate the efficiency of the APML
algorithm.

Example 6.1. We consider plane waves incident on the cavities vertically from above, i.e.
θ = 0. The cavities consist of three separated half circles. The first and second cavities
are assumed to be empty and the third one is filled with homogeneous nonmagnetic
medium, i.e.

k(x)= k0 in D1∪D2; k(x)= k0

√
1+i in D3,

with the wavenumber k0=4π, i.e. the wavelength λ=0.5.

We set the PML parameters by

d=0.4, σ0=30, m=2.

The numerical results are obtained by using Algorithm 6.1. Fig. 3 shows the geometry
of the cavities and the mesh with 3882 nodes after 18 adaptive mesh refinements. The
mesh is rather coarse near the PML outer boundary due to the exponential decay of the
solution in the layer.

One of the important quantities in the cavity scattering is the radar cross section
(RCS). When the incident and observation directions are the same, it is called the
backscatter RCS, which is defined by

RCS(φ)=
4

k0
|P(φ)|2,
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Figure 3: Three cavities and the mesh with 3882 nodes after 18 adaptive refinements (Example 6.1).

where φ is the observation angle and P is the far-field coefficient given by

P(φ)=
k0

2
sinφ

∫

Γ
u(x1,0)eik0x1 cosφdx1.

Fig. 4(a)-(c) shows the magnitude and the phase of the scattering field on the apertures
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Figure 4: (a) The magnitude, (b) the phase of the scattering field on the apertures at normal incidence, (c) the
backscatter RCS and (d) the a posteriori error estimate (Example 6.1).
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Figure 5: The real and imaginary parts of the computational solution (Example 6.1).

at normal incidence, as well as the backscatter RCS in dB for observation angles ranging
from 0 to π. In addition, the logNl-logηl curve is also shown in Fig. 4(d), where Nl is the
number of nodes of the mesh Ml and ηl is the corresponding a posteriori error estimate.
It is observed that the meshes and the associated numerical complexity are quasi-optimal,
namely,

ηl ≈CN
− 1

2

l

is valid asymptotically. Fig. 5 shows the real and imaginary parts of the computational
solution on the finest mesh. It can be found that the solution decays rapidly away from
the apertures and the efficiency of the PML method is demonstrated.

Example 6.2. The cavities consist of three separated polygonal domains, and all of them
are assumed to be empty. The plane waves are incident on the cavities from above with
the incident angle θ=π/4. In this example, the wavenumber is set to be k0=10π, i.e. the
wavelength λ=0.2.

We set the PML parameters by

d=0.4, σ0=15, m=2.

Fig. 6 shows the geometry of the cavities and the mesh with 4994 nodes after 15 adap-
tive refinements. The mesh is adaptively refined according to the local error indicators
computed with the solution.

Fig. 7(a)-(c) shows the magnitude and the phase of the scattering field on the apertures
at incident angle π/4, as well as the backscatter RCS. Moreover, Fig. 7(d) shows the
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Figure 6: The geometry of the cavities and the mesh of 4994 nodes after 15 adaptive iterations (Example 6.2).
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Figure 7: (a) The magnitude, (b) the phase of the scattering filed on the apertures at incident angle π/4, (c)
the backscatter RCS and (d) the a posteriori error estimate (Example 6.2).
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Figure 8: The real and imaginary parts of the computational solution (Example 6.2).

logNl-logηl curve and verifies the quasi-optimality of the adaptive PML finite element
method. Fig. 8 shows the real and imaginary parts of the solution at the finest mesh. It
indicates that the solution decays rapidly away from the cavities.
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