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Abstract. We consider the convergence theory of adaptive multigrid methods for second-
order elliptic problems and Maxwell’s equations. The multigrid algorithm only performs
pointwise Gauss-Seidel relaxations on new degrees of freedom and their “immediate”
neighbors. In the context of lowest order conforming finite element approximations, we
present a unified proof for the convergence of adaptive multigrid V-cycle algorithms.
The theory applies to any hierarchical tetrahedral meshes with uniformly bounded
shape-regularity measures. The convergence rates for both problems are uniform with
respect to the number of mesh levels and the number of degrees of freedom. We demon-
strate our convergence theory by two numerical experiments.
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1. Introduction

In this paper, we study the uniform convergence theory of the adaptive multigrid
method for two model problems

—Autu=f in Q, 1.1
u=20 on T, (1.2)
and
curlcurlu+u=f in Q, (1.3)
uxn=0 on T, (1.4)
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where Qc R? is a Lipschitz polyhedron with boundary I' = 8, n is the unit outer normal
of T', and f € L2(Q), f € (L?(Q))3. Problem (1.1)-(1.2) and (1.3)-(1.4) are key model
problems for the study of numerical methods for second-order elliptic boundary value
problems and quasi-magnetostatic boundary value problems, respectively.

Linear H (1) (£2)-conforming finite elements and lowest-order H,(curl, 2)-conforming edge
elements provide natural finite element trial spaces for the Galerkin discretizations of
(1.1)-(1.2) and (1.3)-(1.4), respectively. Here we study optimal iterative solvers for the
resulting discrete problems. We remark that optimal approximation entails the use of
adaptive finite element methods based on a posteriori error estimates, see [6,10,29,31]
for H'(£2)-elliptic problems and [5,11,26,39] for H(curl, Q)-elliptic problems. In this case
we can expect the optimal asymptotic convergence rate

~1/3 —-1/3
= tplligey < CNy 2, llu = wyllgrgeanay < N, 2 (1.5)

on families of finite element meshes arising from adaptive refinement. Here, u;, and u;, are
the finite element solutions approximating u and u respectively, and Ny, is the number of
elements. An optimal solver delivers a satisfactory approximation of the discrete solution
with a number of operations proportional to N,. In finite element settings, this objec-
tive is usually achieved by using geometric multigrid methods, whose convergence theory
and optimality on family of uniformly refined meshes have been well established for both
H'(Q)-elliptic problems [33,34,36,37] and H(curl, Q)-elliptic problems [1,15,17].

To keep the optimal computational cost on locally refined meshes, one must adopt
the local multigrid policy [3,22,32], which confines relaxations to degrees of freedom on
new elements of each mesh level. Clearly this policy makes the computational cost of the
local multigrid method proportional to the number of all elements appearing in the local
refinement process, and thus proportional to the number of degrees of freedom on the
finest mesh. The local multigrid policy with hybrid relaxations for Maxwell’s equations
are studied in [4, 11,19, 28]. They show that the local multgird method is very efficient
and robust for low-frequency problems on various non-convex domains, and is a good
preconditioner for time-harmonic Maxwell’s equations [11].

Suppose one seeks for the discrete solution uy of (1.1)-(1.2) or (1.3)-(1.4) in finite
dimensional Hilbert space Vj,. For a given partition 7 of Q, Vj, is usually taken as the
finite element space defined over %,. The multigrid method for solving u; is designed
upon some multilevel decomposition of V}, over a sequence of conforming meshes 7, <
N = =T = Here J is a quasi-uniform mesh with small number of elements
and “Z_; < J;” means that g is obtained by refining some or all elements in J;_;. The
sequence of meshes {7 }szo can be constructed either by adaptive refinement strategies
starting from the initial mesh , (see e.g. [11,32]), or by some coarsening strategies
starting from the final mesh 7; (see e.g. [19,35]). Recently, Xu, Chen, and Nochetto [35]
present a unified framework for the uniform convergence of multilevel methods for H'(Q)-
, H(curl, Q)-, H(div, Q)-elliptic problems. In [19], Hiptmair and Zheng presented the
uniform convergence of the multigrid method for H(curl, Q)-elliptic problems on meshes
with and without hanging nodes.
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In [35], Xu and Chen and Nochetto proposed a space decomposition via successive
coarsening of compatible patches of .7}, such that

o every mesh 7 is decomposed into compatible patches, each of which consists of the
elements sharing one common refinement edge,

e all compatible patches of J; are coarsened by removing their refinement edges to
generate a coarse mesh 7_1,

wherel =L,L —1,---,1. The finite element space is decomposed as follows
L
V. = V0+Z Z Span {b},
I=1 bey
bevi_q

where V, is the finite element space on & and b is the nodal basis function of V;. They
also present coarsening algorithm and local multigrid algorithm for implementations. In
[19], Hiptmair and Zheng proposed a different coarsening strategy to construct the mesh
hierarchy {Z]}{_,. Given Z, and 7, ] is so defined that the elements in 7} \ Zj_, are
obtained by the same number of subdivisions of elements in %), 0 < [ < L. Similarly the
finite element space is split into

L
VL=V0—|—Z Z Span{b,},

=1 0€2(J\%-1)

where 2(J;\J,_1) is the set of degrees of freedom on Z\Z_; and b, is the nodal basis
function of V; belonging to 0. Numerical experiments in [19,35] show that their multigrid
algorithms are very efficient and converge uniformly with respect to L and N;,. But some
assumptions on the initial mesh %, and the fine mesh 7}, are required to guarantee that
compatible patches of 7] do exist (for [35]) or that 7 is conforming (for [19]).

The multigrid algorithm based on adaptively refined meshes (adaptive MG) is easy to
implement, since the mesh hierarchy {J]}_, is readily obtained and the stiffness, pro-
longation, and restriction matrices have been computed on all previous levels. It is more
preferable when solving problems with local singularities by adaptive finite element meth-
ods. In [32], Wu and Chen proved the uniform convergence of adaptive MG for two-
dimensional H!(Q)-elliptic problems. To the best of our knowledge, the adaptive MG —
the multilevel meshes for MG are just the adaptively refined meshes — is still absent for
Maxwell’s equations in literatures. The purpose of this paper is to present a unified proof
for the uniform convergence of adaptive multigrid methods for (1.1)-(1.2) and (1.3)-
(1.4). Here we would like to emphasize the novelty of our paper compared with [19,35]
as follows:

1. our theory applies to the local MG on any hierarchy of conforming meshes, particu-
larly, “the adaptive multigrid method” which uses the sequence of meshes generated
by adaptive finite element method with a posteriori error estimates; while the refer-
ences [19, 35] utilize “the coarsening process to produce new multilevel meshes”, and
the coarsening process is sometimes restrictive and uneasy in three dimensions;
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2. the proofs in [19,35] mainly make use of a close relationship between MG-smoothing
patches and uniform meshes; while we propose a new scale-separation technique for
finite element basis functions in the proofs.

The layout of the paper is as follows. In section 2 we introduce the weak formulations
of (1.1)-(1.2), (1.3)—(1.4) and their finite element approximations. Some useful results on
finite element spaces are also presented for the study of multilevel decompositions of finite
element functions. In section 3 we introduce local multigrid from the perspective of mul-
tilevel successive subspace decomposition. In section 4 we study the uniform convergence
of local multigrid method in H(£). A key step is to study the multilevel decomposition
of the linear Lagrangian finite element space. In section 5 we study the uniform conver-
gence of local multigrid method in H(curl, 2). The key tools are a discrete Helmholtz-type
decomposition of the edge element space and local multigrid theories for H'(£2)-elliptic
problems. In section 6, we establish the so-called strengthened Cauchy-Schwartz equalities
for both H'(£2)-elliptic problems and H(curl, Q)-elliptic problems. In section 7 we present
two numerical experiments to demonstrate our theories and the competitive performance
of adaptive multigrid methods.

2. Finite element spaces

We start by introducing some notation and Hilbert spaces used in this paper. Let L2()
be the usual Hilbert space of square integrable functions equipped with the following inner
product and norm:

(u, v):=fu(x)v(x)dx and [lull 2 = (u, W2
Q

All through this paper, we use boldfaced notations for vectors, such as L%(Q) := (L%(Q))?
and so on. Define H!(Q) := {v € L?(Q) : Vv € L2(Q)} which is equipped with the following
semi-norm and norm

2 9 1/2
[l = 1Vullzy and Nl = (o +1ugy))

and let Hé(ﬂ) be the subspace of H!(Q) whose functions have zero traces on . The
following Hilbert spaces are used in the paper

H(cur, Q) := {vel?(Q): curlveL?(Q)},
Hy(cur,lQ) := {veH(curLQ):vxn=0 on 9Q},

which are equipped with the following norm:
2 2 1
Mlieurtay = (V12 + llewrdviiZ, )

A weak formulation of (1.1)-(1.2) reads: Find u € Hé (£2), such that

a,(u,v) =(f,v) ‘v’veHé(Q), (2.1)
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and a weak formulation of (1.3)-(1.4) reads: Find u € H(curl, 2), such that
a,(u,v)=(f,v) VveHg(curl,Q), (2.2)

where the bilinear forms a;: H!(Q) x H}(Q) — R and a,: H(curl, Q) x H(curl, Q) — R are
defined as follows

a,(w,v) = (Vu,Vv)+(u,v) Yu,veH(Q),
a,(u,v) := (curlu,curlv)+(u,v) Vu,veH(curl Q).

Recall the operators curl and V are closely connected in the deRham complex [2]. The
results about (2.1) prove instrumental in the multigrid analysis for discretized versions of
(2.2).

Let Z, be a conforming tetrahedral mesh of , that is, each face of a tetrahedron is
either a face of another tetrahedron or contained in 9. We write h € L*®(Q) for the
piecewise constant function, which assumes value hy := |K|~!/? in each element K € .
The ratio of diam(K) to the radius of the largest ball contained in K is called the shape-
regularity measure pg. The shape-regularity measure of , is defined by

p(F) :=max{pg : VK € J}.

We introduce the Lagrangian finite element space of piecewise linear continuous func-
tions on 7},

V(Z) = {u, €H)(Q): uplg € Pi(K), VK € F}, (2.3)

where P,,(K) is the space of 3-variable polynomials of degree < m on K. The space of
lowest order H(curl, Q)-conforming edge finite elements is defined as follows

U(F,) := {v, € Hy(curl,Q): (vilx)(x)=a+bxx,Va,beR® YK€ F}.
The Galerkin approximation to (2.1) reads: Find u;, € V(%,) such that
a(up, vp) =(f,v) Vv e V(H), (2.4)
and the Galerkin approximation to (2.2) reads: Find u;, € U(Z,) such that
a,(up, vp) = (£ vp) Vv, €U . (2.5)

Appropriate global degrees of freedom (d.o.f.) for V(%) and U(%;,) are respectively
given by

Vp — Vh(p) > Vp € ‘/V(‘%l): vy € V(‘%[): (26)

Vh — J Vi d;, VEe€ é{’(‘?h)z vy € U(‘%l)) (27)
E
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where #(Z},) is the set of interior vertices of %, and &(%,) is the set of interior edges of Z,.
Respectively, we denote by b? the nodal basis function of V(%,) belonging to p € A4 (%,)
and by b’ the edge basis function of U(%;,) belonging to E € &(F,).

Now we introduce the nodal interpolation operators .#, : dom(.%,) C Hcl)(Q) — V(%)
and IT;, : dom(II;,) € H(curl, Q) — U(Z},) induced by d.o.f. in (2.6) and (2.7) respectively:

gv=> v(p)b, My= Y. (Jv-ds*)-bE, (2.8)
E

peN(T) E€&(Z)

where dom(.4,),dom(II};) are the domains of ., IT;, respectively. Obviously, both .4, and
II;, are local projections and respect the well-known commuting diagram property (cf. e.g.
[16, Page 263])

MoV=Vo.4 ondom(4%,). (2.9)

To end this section, we introduce the decomposition of (V(%l))3 from [19] which
reveals one important relationship between the linear Lagrangian finite element space of
vector functions and the lowest-order edge element space.

Lemma 2.1. [19, Lemma 2.2] Let Vo(F;) := {wy € HA(Q) : wylg € Po(K), VK € 3.} be the
quadratic Lagrangian finite element space and define

V(%) = {vh € Vo(F) = Fvy = 0}
For all ¥, € (V(,))® we can find v, € Vo(Z},) such that

‘I‘h == Hh\ph + VVh 5

where the constant C only depends on the shape-regularity p(Z,).

3. Local multigrid methods

In this section we are going to study the local multigrid algorithms for (2.4) and (2.5)
using the abstract multigrid framework. To focus on the main theme, we provide the
abstract framework in Appendix A. According to Algotithm A.1 and A.2, the multigrid V-
cycle algorithms are completely defined by specifying the multilevel decompositions of the
finite element spaces on the fine mesh.

3.1. Multigrid V-cycle algorithms in H'(Q2) and H(curl, Q)

Let 7y < 91 < -+ < J; be a sequence of nested tetrahedral meshes. For convenience
we simply assume that {7 }leo are conforming meshes, namely, each J; has no hanging
nodes. Clearly {Z; }ZL:O can be viewed as successive local refinements of a quasi-uniform
mesh . Let V(7)) C Hé(Q) be the linear Lagrangian finite element space on & and
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denote by bf be the nodal basis function of V() belonging to vertex p € A4 (J]). Let
U(7]) € Hy(curl, Q) be the lowest order edge element space on J; and denote by bf the
nodal basis function of U(7]) belonging to E. Now we have two sequences of nested finite
element spaces

V(B)cV(A)c---cV(TZ), UHR)cU(A)c: - cUF).

We define the sets of vertices and the sets of edges on which Gauss-Seidel relaxations are
carried out as follows: for 0 <1 <L and I_; =0,

H = {peN@): pE N () or pe N (T Dbutt? £, }, B
& = {E e &(T): E¢ &) or E € &(J_,) butbf # bf_l}. (3.2)

It is easy to see that .4] is a subset of A4 (J; N Z_;), the set of all vertices of 7 \ Z;_;, and
& is a subset of &£(Z N Jj_1), the set of all edges of 7 \ Z_;.

Remark 3.1. If we use the bisection algorithm (c¢f. e.g. [22,24]) for mesh refinements, |
is the set of new vertices and their immediately neighboring vertices (cf. [32]) and & is the
set of new edges and their immediately neighboring edges (See Figure 1 (right), the smoothed
vertices are labeled with black balls and the smoothed edges are labeled with thick lines).

Figure 1: Left: A tetrahedron to be refined. Right: The tetrahedron is bisected into two tetrahedrons.
The smoothed vertices are the new vertex and the two endpoints of the refinement edge (two “immedi-
ately neighboring vertices”). The smoothing edges are the four new edges and the old edges of the two
faces which share the refinement edge (“immediate neighboring edges” of the centerlines).

First we study the local multigrid algorithm for (2.4). To fit the multigrid framework
of (A.1), we set

a(~’.)=as(-,-)’ f:f} Hl = V(;%), Osl SL-
The multilevel decomposition of V() is defined by:

L
V(Z)=V(%)+ Y, > Span{b’} . (3.3)

[=1 peAM
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The decomposition agrees with (A.4) if we define Hli := Span {bf } for [ > 0 as the one-
dimensional spaces spanned by nodal basis functions. Thus Algorithm A.2 is actually doing
Gauss-Seidel relaxations on nodes in .4{. The convergence theory of local multigrid for
(2.4) boils down to the estimation of the error propagation operator

EsL =I- BsLAsL’ (3-4)

where B;; = B; is the multigrid operator defined in Algorithm A.1 and A;: V(7)) — V(7;)
is the discrete differential operator defined by

(ASLVJ W) = aS(V,W) v V,w€E V(‘%,)‘

To study the local multigrid algorithm for (2.5), we adapt the problem to the multigrid
framework of (A.1) by setting

a(.’.):av(.’.)’ f:f’ Hl — U(‘%), OSZ SL-

Motivated by [4,11], the multilevel decomposition of U(Z; ) incorporates an appropriate
local multilevel decomposition of V(7 ):

L L
UZ) =U(Z)+ Y, > span{VbP}+> > span{b} . (3.5)

=1 peAf I=1Ee&

The decomposition agrees with (A.4) if we define H ll := Span {be }, H l] := Span f{b{5 } for
[ > 0. At this stage, Algorithm A.2 performs hybrid local relaxations at nodes in .4{ and
edges in &;. Similarly, the convergence theory of local multigrid for (2.5) boils down to the
estimation of the error propagation operator

EVL :I_BVLAVL’ (36)

where B,; = B; is the multigrid operator in Algorithm A.1 and A,;: U(Z;) — U(Z;) is
defined by

(AVLV7 W) =a, (V, W) v V,WE U(‘%, )'

3.2. Convergence

The multigrid V-cycle algorithms solving (2.4)-(2.5) are presented in Algorithm A.1
with local smoothing process described by Algorithm A.2. Furthermore, Algorithm A.2
is induced by the multilevel decomposition (3.3) for (2.4) and by the multilevel decom-
position (3.5) for (2.5). The optimality of multigrid methods means that, one multigrid
iteration uses O(N ) computations and reduces the error of the approximate solution by a
factor which is bounded away from 1 and independent of N; and L. Here N; is the number
of d.o.f. on ;. In view of Theorem A.1, it is sufficient to prove that both constants Cg;,
and C,,, are independent of L, N;. This is the challenge of asymptotic multigrid analysis
and will be postponed to the following sections of this article.

Before stating the main theorem of this paper, we make the following assumptions on
the meshes:
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(H1) There exists a constant p,,., > 0 independent of {Z }ZL=0 such that p(Z) < Pmaxs
0<I<L.

(H2) There exist two constants C > 0 and 0 < 6 < 1 independent of [ such that

L
clom<he<com, m=9(K), VKel|]JZ, (3.7)
=0

where ¢(K) is called the generation of K and is defined by the number of subdivisions
for generating K from one element K, € 9. For easy understanding, we restrict our
analysis to bisection strategies of the mesh [20]. In this case, ¢(K) is defined by the
number of bisections for generating K from K, € ;. The concept “generation” is
also used in [35].

(H3) There exists a constant C > 0 only depending on 0, p,., such that, for any K € J;_;
andO0<I[<L,

hy <Chy VYK CK,K' €9.

We remark that (H1)-(H3) are rather mild in practice. In fact, (H1) is a common
assumption in traditional finite element analysis, (H2) estimates the reduction rate of the
diameter of each tetrahedron under successive subdivisions, and (H3) indicates that each
element in & is obtained by subdividing one element in Z;_; a few times. It is clear that
6 = 271/3 for the popular bisection strategy [20,21]. For other refinement strategies, if we
can define “subdivision of an element” properly in (H2), the extension of the convergence
theory is straightforward. We do not get to the details here.

For any operators O;: H(l)(ﬂ) — Hé(ﬂ) and O,: H(curl, ) — H(curl, Q2), we define
the following norms

||Os(¢)||H1(Q) ”OV(¢)||H(curLQ)
T T ||Ovl|av =

1051l ==
s peHl (@) ||¢||H1(Q) peH(curl,Q) ||¢||H(cur1,g)

Theorem 3.1 (Uniform convergence of local multigrid methods). Let (H1)-(H2) be satis-
fied. Then there exist two constants 6; < 1, &, < 1 which depend on pp,,, and 6, but are
independent of the meshes, such that

11 = ByAsille, <85, 11 =ByAylle, <6, .

In the following sections we shall establish the stability estimate and the Strengthened
Cauchy-Schwartz inequality in Theorem A.1 for the multilevel decompositions (3.3) and
(3.5). The key ingredient is to prove that the two constants Cy,y,, Cop, are independent of
the meshes. Therefore, Theorem 3.1 is concluded from Theorem A.1 and the estimates for

Cstab 5 Corth .



10 R. Hiptmair, H. Wu, and W. Zheng

4. Multilevel decomposition of V(7;)

This section is devoted to the stability estimate for the local multilevel decomposition
(3.3). It also plays a key role in the stability estimate for (3.5) which will be studied in the
next section.

4.1. Local quasi-interpolation operator

Quasi-interpolation operators are projectors onto finite element spaces that have been
devised to accommodate two conflicting goals: locality and boundedness in weak norms
[12,23,25,27]. It is a key tool for the multilevel decomposition of V(Z,). Here we resort
to a Clément-type quasi-interpolation taking into account Dirichlet boundary conditions
[12,25].

Let 4 (Z,) and &(7;,) be the sets of vertices and edges in Q. Through this paper,
we shall use notions and operators with an overbar for finite element spaces oblivious of
boundary conditions. For example, U(.%,) € H(curl,Q), V(Z,) € H'(Q) are finite element
spaces without boundary conditions, and the same convention for II;, .4, etc.

For any p € 4 (), denote by QP := supp(bP) and define yhp ={Teg: TcCQP}
Let YP € V(le ) be a piecewise linear function defined as follows:

J YP(x)v(x)dx =v(p), VveV(FP). (4.1)
QP
Direct calculations show that
1
P = _(20bP —4). 4.2
9P =1 ) (4.2)
It is obvious that
CT 1P WP ey SC 5 CTH < IPllaany < C . (4.3)

Definition 4.1. The quasi-interpolation operators 2;,: L*(Q) — V(Z,) and Z;: L*(Q) —
V() are defined as follows:

2u= Z Jt/ﬂ’(x)u(x)dx-bp, 4.4)
pEN (F) Y PP

Du= ). f PP (x)u(x)dx - bP . (4.5)
peN ()Y P

Clearly (4.4) indicates that 2,u = 0 on I. From (4.1) we know that Q; and Q,, are
projections onto V(Z},) and V(%) respectively:

2v=v VveV(Z) and Qw=w VYweV(Z). (4.6)

Moreover, they satisfy the following local stabilities and approximation properties.
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Lemma 4.1. There exists a constant C only depending on Q and the shape-regularity p(Z;,)
such that, for any tetrahedron K € %, and face F C 0K,

I2nullox < Cllulloq, VuelL*(Q), (4.7
|Zpulix < Clulyg, VueH(), (4.8)
lu—2pullox < ChElulng,  VYueH™Q)NHH(Q), (4.9)
lu—2uulloy < CHE Plulpg, YueH™Q)NHN(Q), (4.10)

where m = 1,2 and Qg := U{K’ : K'e 7, K’ NK # 0}. The above estimates also hold for
2, by replacing H}(Q) with H(Q).

Proof. We only prove the stabilities and error estimates for 2;,. The proofs for 2;, are
similar and easier.

Pick K € J}, with four vertices p;, 1 <i < 4. Note that U?=1 ZP" is quasi-uniform and
|K| < |Qk| < C|K]|. Using (4.1) and (4.3), (4.7) is easily proved:

4 4
2 2 12 12 2 2
l25ulls x < € D1 24up P IIBPIIG x < CIKI D IRPES o Il e < C llullg g -
i=1 i=1

In order to tackle the H'-continuity of £, we use the fact that VV}, C Uj,. Then

2
Pj
2
1<i<j<4 |/ p; K
2
< Che Y, |2wulp) - 2w
1<i<j<4

where A; is the barycentric coordinate of K associated with p;, 1 <i < 4.

(D) Suppose p;,p; ¢ 9Q. The definition of 2} indicates that

[(2,u)(p;) — (Lru)(p)l =

J PP )PPi(y)[ulx) —u(y)] dydx‘
QPi Jqpri

1
f f wpf(x)ll)”f(y)J vu(y +7(x - ) -(x—}')dfdydx‘
P Jqpi 0

< diag(QP* U QP [[YPil 1 qeiy 1P 11 12y el ami uariy

-1/2
S ChK / |u|H1(QpiUQPj).

(I1) Suppose p; € dQ and p; ¢ 9Q. Then 9Q N IQ has positive two-dimensional mea-
sure. By (£,u)(p;) =0 and (4.3), we have

[(2,)(p;) — (L) (p)l = [(Lpu)(p))| =

f PPi(x)u(x)dx
QFi

< CllYPi || 2oy lull 2qpry < C 1P diam(Q) [l (g,

~1/2
< Chy / [ulpi(q,)
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where in the second inequality we have used scaling arguments and Poincare’s in-
equality due to u =0 on dQ, N IQ.

This leads to (4.8).

The quasi-interpolation error estimate (4.9) results from scaling arguments. Pick u €
H*(Q)NHy(Q) and let Au € V() be the nodal interpolation of u. From (4.6) and the
L2-stability of 2, we have

I(Id — 2p)ull 2y = I(Id = 2p)(u — Fwll 2y < C llu — Full 2,

IA

Ch%lulHZ(QK)

Estimate (4.9) for m = 1 follows by scaling arguments and interpolation between the
Sobolev spaces H2(Qy) and L2().
The last estimate can be proved similarly.

4.2. Local multilevel decomposition

We start by the multilevel splitting of V(.7; ) — the finite element space without bound-
ary condition. The multilevel splitting of V() utilizes the splitting of V(7;) by re-
moving the contributions from boundary d.o.f.. We denote by 2, : L?(Q) — V() and
2, : L2(Q2) — V(Z) the interpolation operators in Definition 4.1 on .7,. We examine the
candidate multilevel decompositions

i, = ), 0, ify:=Qly, i5:=(2 -2, 1,€V(%), (411

u, = U, Uy:=20u, U =02 -2_ )y, uyeV(g). (4.12)

Lemma 4.2. Let @, u; be the splitting components in (4.11) and (4.12) respectively. Then
0(p)=u(p)=0  ¥peN(T)NAN(F_y)satisfying b =bP,.

Proof. Since u; is defined by removing from i; those basis functions which belong to
boundary vertices, it suffices to prove the lemma only for ;.

Pick any p € A (F)NA(F;-,) satisfying bf = b¥ _, it is equivalent to prove (2yuy) (p) =
(2;_1u) (p) from (4.11). By Definition 4.1, we need only prove

J PP (0 )up(x)dx = J Yy (Oup(x)dx,
supp(b}) supp(b; ;)

where 1/)5.’ is the piecewise linear function defined in (4.2) with respect to bf ,j=1-1,L
This equality holds clearly due to blp = bf_l.
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Now we introduce the so-called K-functional

2. 2 20,12 1 2
K(t,v) ._Welanf(m{nv Wik + 2 Wikay} VEERL verXQ).  (413)

It will play the key role in our proof for the H'(£2)-stability of decomposition (4.11). We
refer to [7] and [30, Appendix A.1, Page 339] for the following lemma.

Lemma 4.3. Let Q € R be a Lipschitz domain and 0 < t < 1. There exists a constant C only
depending on Q and t such that

tTK(t™, v)? < C|v|12{1(m v e H(Q).

M8

1

m

The proof for the stabilities of (4.11) and (4.12) depends on a scale-separation of
tetrahedra in 7 = UZL:O ;. We define the following sets of tetrahedra according to their
generations:

F=KeTy: 9K)=i}, i>0, (4.14)

where ¢(K) is the generation of K defined in Assumption (H2). Clearly we have | J;, T =
Z.1- Since the elements in ; are generated by i subdivisions of some tetrahedra in %,
they are mutually nonintersecting and form a subset of 2, namely;,

J{g:keZ}ca  vixo. (4.15)

Furthermore, ; \ Jj_1, 0 <[ < L (Z_; = () are nonintersecting sets and

L
@\ = (4.16)
1=0

Definition 4.2. “Element—Level”-mapping:

’le i {0)1: ’L};
(4.17)
K — I(K) satisfying K € T\ Jw)-1-
From (4.16) we know that 1(K) is uniquely defined for any K € Jy;.

Lemma 4.4. Let (H1)-(H2) be satisfied. There exists a constant C > 0 only depending on 2,
the uniform bound pp,.x of shape-regularity measures, and the mesh-size reduction factor 6
such that

L

- —1- 112 - - =

ol + X A 720y < CllanllZ g, Vin € V(1) (4.18)
=1

where i1y, = Zleo i; is the multilevel decomposition defined in (4.11).
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Proof. Define
Ni={peN(FH): p¢ N (F_1) or pe AN(F_;)butbl #bP 1. (4.19)

Let .#(K) be the set of four vertices of any tetrahedron K. It is clear that A{ C {p € A4 (K) :
K € 71\ Z,_;}. Denote by Qf = supp(bf ). From Lemma 4.2 and the local overlapping of
{QF : p e AN ()}, we have

L L
ZHh_lﬂl”iZ(n):Z ht ZUZ(P)

Z Z dlam(Qp) |u1(p)|2 (4.20)

=1 =1 pef Z(Q)
L
Z > hK|az(p)|Zch > Rl -
[=1 KeZ\J|_1 peAN'(K) [=1Keg\J_,

For any K € ]\ J}_;, let Ty € J;_; satisfy K C Tx. Then assumption (H3) indicates
hy, < Chg with C independent of K. Define

DK::U{T:’: T € J_q, f’ﬁfK;é(D}.

By Definition 4.2 we know that [ = [(K) and thus the definition of Dy only depends on K.
We also notice that D is just the patch Q7 defined in Lemma 4.1 and satisfies diam(Dg) <
Chr, < Chg. From Lemma 4.1 we know that,

|l 2y < emf {H(Ql 2,_,) (i, — W)”Lz(K) + || (2, —-2_,) W||L2(K)} (4.21)
=¢ wei‘-lnzf(ﬂ){“uh - W”LZ(DK) + hK |W|H2(DK)}
. _ 2
=C wei‘-lnzf(ﬂ){“uh - W”LZ(DK) +6" |W|H2(DK)} ’

where m = ¢(K). Then inserting (4.21) into (4.20) yields

L o0 00 L
-2 —2m - 112
leh gl < D02 Do el SC D07 N il
=1 m=1KeJ\J_, m=1 =1 KeF\T_,
Y(K)=m 4(K)=m
< 2m - 4m ]
sc 07 inf > [l =Wl + 04" W,

: - 4m
nf [l = w2y + 6" wiZay ]

From Lemma 4.3 we conclude that

D ] cZe 2R(6%", ap)* < CllaylIf g,
=0
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The leading term of the decomposition is a direct consequence of Lemma 4.1:
oIz () = || Lottnl|1q) < Cllnllirs -
The proof is completed.

Lemma 4.5. Let (H1)-(H2) be satisfied. There exists a constant C > 0 only depending on €,
Pmax and 6, such that

L
— 2
ol oy + D 1 w12y < Cllunlgqy  Yun € VZ), (4.22)
=1

where uy = Zszo u; is the multilevel decomposition defined in (4.12).
Proof. First we regard uy, as a function in V(;). Then it admits the multilevel decom-
position given by (4.11), that is,

L
uy = Zl,_ll, l,_lo = Q_Ouh, l,_ll = (‘Q_l - Q_l_l)uh for [ > 1. (4.23)
[=0

The stability follows from Lemma 4.4

L
- —1- 112
ol ) + D [0 [ 2y = Cllanl ey (4.24)
=1

Notice that 2;u;, is defined by removing from 2;u; those basis functions belonging to
boundary vertices. It is easy to see

y=u+v, vx):= Z a;(p)b; (x) . (4.25)
PEAN (T\AN (D)

Here v; stands for boundary terms and is only supported in the layer of tetrahedra attached
to dQ. Clearly we have

—_ 2 _ -
oy = Zy e |20 < C Zy he Y, la@P  (4.26)
Ke Ke N (K
(’7‘Kﬁaﬂlyé@ azmanl;é@ peAO
=215 112 -1= |2
< € D Wl < Ol am,
Keg;
OKNIQ#D

where the constant C only depends on the shape-regularity measure p(%), but is indepen-
dent of J; and I.
Now using (4.24)—-(4.26), we deduce that

L L
ZZ: Hh_lul”i%m = ZZ {”h_lf‘lHiZ(m + Hh_l"l”iz(n)} < Clluplli -
=1 =1

The proof is completed by using the fact ||ug ||z (q) = 1 Lotunllg1 ) < Cllunllg -
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Theorem 4.1. Let (H1)-(H2) be satisfied. For any u, € V(Z;) and i, € V(7;), there exist
ug € V(%), g € V(%) and uf ,al € Span{bf} such that

L — _ L —
Up=Up+ Dy DpeyWys  Un=1To+ Dy Dipe i U] (4.27)
L 2
||u0||12_II(Q) + Zl:]_ ZPGJ/I “uf HHI(Q) S C“uh”IZ_Il(Q): (4-28)
- L _p||2 -
||u0||12_[1(Q) + Zl:l ZPEJVE “uf HHI(Q) S C”uh”IZ_Il(Q): (429)

where A, A are respectively defined in (3.1), (4.19) and the constant C > 0 only depends
on Q, Pmaw -

Proof. From (4.12) we know that u, = ug + Zszl u;. Define u; = ul(p)bf. The de-
composition (4.27) follows clearly from Lemma 4.2. The local norm equivalence indicates

that
Z”uf”Hl(ﬂ) C Z hy Z l(p)?<cC Z |h_1LIlHi2(K)

PEN KeI\J1 pEAN(K) KeI\T1
< a2y

where #(K) is the set of four vertices of K. Summing up the above inequalityin 1 <1 <L,
(4.28) follows from Lemma 4.5.

Similarly, we can prove the multilevel decomposition of i; and the stability estimate
(4.29). The proof is completed.

5. Multilevel decomposition of U(7; )

The purpose of this section is to tackle (3.5) — the decomposition of U(Z;) into the
sum of edge element space on the initial mesh and one-dimensional subspaces on fine
meshes. First we state the multilevel decomposition of U(7; ).

Theorem 5.1. Let (H1)-(H2) be satisfied. For any vy, € U(Z;), there exist v, € U(%,) and
v, € Span{bfE :Ee 6”1}, v € Span{bf :p EJ%}, 1 <1 <L such that

Vp=Vg+ Zszl(Vl + V), (5.1)

L
HVOH?-I(curl,Q) + lgl (Hh‘lvl “iz(ﬂ) + Hh_1v1 Hiz(ﬂ)) <C ”Vh”%I(curl,Q) 5 (52)

where the constant C only depends on Q, 0, and ppax-

The proof of Theorem 5.1 will be postponed to the end of this section. By splitting the
components in (5.1) to local contributions of basis functions, we arrive at the main result
of this section.
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Theorem 5.2. Let (H1)-(H2) be satisfied. For any v, € U(J;), there exist vy € U(%),
vf S Span{blE}, le € Span{bf} with E€ &, p € A, 1 <1 < L such that

L
Vh :V0+Zl:1 (ZEG(;‘)’Z VZE+ZPGJ% Vvlp), (5.3)
L 2 2
”VO”iI(curl,Q) + 121 (ZEG& HVZE”H(curl,Q) + 2pey; }le|Hl(Q)) =C ”vhllil(curl,ﬂ) (5.4)

where the constant C only depends on 2, 0, and Py

Proof. From (5.1) we have the multilevel decomposition v;, = vy + Zlel (v + Vvp).
Define v = (val -d§’) b and vlp = vl(p)bf for any 1 <1 < L. Then (5.3) is a direct
consequence of Theorem 5.1. Furthermore, the local norm equivalence indicates that

Z ||Vf||il(curl,§2) + Z |Vzp{1211(m

E€é PEM
<c > (X n Jvl-ds“2+hz< > mePR)
E peAN(K)

KeI\T-1 Ees(K)

<c >0 (Il + I vl )-
KeI\7 1

The proof is completed by summing up the inequality in 1 <[ < L and using (5.2).

5.1. Discrete Helmholtz decomposition

The technique that we shall use to prove Theorem 5.1 is the discrete Helmholtz de-
composition of the edge element space. It builds a close connection between the linear
Lagrangian finite element space and the lowest-order Nédélec’s edge element space. We
refer to [18, Lemma 5.1] for the proof of the following lemma.

Lemma 5.1. For any v, € U(Z;), there exist ¥, € (V(2;))?, py € V(Z;), and v, € U(F;)
such that v, =V, + II; ¥, 4+ Vp;, and

100 120y + 1l ) + Palan oy < € lleurl vyl 2y (5.5)

where I1; is the nodal edge interpolation operator onto U(Z;), and the constant C only de-
pends on Q and p(7;).

According to Lemma 5.1, we are going to consider the multilevel splitting of each term

in the decomposition v;, = v;,+II; ¥;,+Vp;, respectively. We study II; ¥y, first. From Lemma
3
4.5, there exist ¥; = (£2; — 2;_,)¥; € Span {bf 'pe Ji{} , 0 <[ < L such that

L L
v, = ;\In R ; 5|72 < CIL 2, (5.6)
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Observe that the function ¥; does not belong to U(.#;). We target it with edge element
interpolation operator II; onto U(.#;), see (2.8), and obtain the splitting described in
Lemma 2.1:

U, =¥, +Vw,, w eV(4). (5.7)

Using norm-equivalence, the first term of (5.7) is well-controlled locally
”Hl\I’l”Lz(K) < C”lI,l”LZ(K) VKez, 0<I<L. (5.8)

Because of curlI1, ¥, = curl ¥, we infer from (5.6) that

L
2 - 2 2
Moo 17 eurty + D |1 %y |2y < ClAL g - (5.9)
=1

Summing up (5.7) in [, we arrive at ¥, = ZZL:O ;¥; + Vs, where s;, := Zleo w;. By
I, I, ¥; = I1; ¥; and the commuting diagram I1; (Vs,) = V(.#.sp,) (see (2.9)), we have

L
¥, =M%+ > ¥ + Ve, Wy =I5, € V(). (5.10)
=1

5.2. Multilevel decomposition of Y, T, ¥,

Notice that II;¥; ¢ Span {bf :Ee 6"1} for [ > 1. We are going to tackle this issue by
the following lemma.

Lemma 5.2. There exist u, € U(%,), u; € Span {bf tEe é‘j}, [ > 1 and a constant C
depending only on Q, 0, ppnax Such that

L L L
_ 2
anq’l = Zui’ ”uOHIZ-I(curl,Q) + Z ||h 1ui||L2(Q) < C|‘I’h|12_11(m. (5.11)
=1 i=0 i=1
Proof. We start with denoting
W = (J mY, -ds")bf = (f ¥, -d§)bf VEe&(g), 1<1<L.
E E

By the definition of {&, -, &}, it is obvious that
l
)=\ J{Ee&: bE=bE}  Vix>o. (5.12)
i=0
. p 3 E y
Since ¥; € Span {bl 'p e ,/1{} , we know that IT; ¥; € Span {bl :E e é”Z} where

& = {E € &(9)) : E has one endpoint in .4}. (5.13)



Uniform convergence of adaptive multigrid methods 19

Clearly & C év"l Using (5.12) we have

IZLE“I‘I’Z ZZ‘I’E ZZ 2. ¥= Zuu (5.14)

[=1 geg =1i=0 Eegn¢;
bf=b

where u; € Span {b} : E € &} are defined as follows

[=0l#0 Eedné, bE=bE

Now we take an E € & and denote ﬂlE ={T : T €F, dTNE # 0}. For any
| > i satisfying E € & N &, E has one endpoint p € 4. From (3.1), there exists a new
element K € Z\J,_; such that EUK C Qf cU{T: Te ,Z.E}. Thus each mesh in the
set {7 : E€&N&E, i <l <L} shares edge E and refines ﬂiE successively. By the shape
regularity of the meshes, the total number of refinements for 2’5 must be bounded and
independent of L. Thus we conclude

#{F7 E€ENE,i<I<L}<C VEe&, 0<i<I, (5.15)

where #A stands for the cardinality of set A and the constant C is independent of L.
By (5.15), the localness of basis functions, and (5.12), we have

I[N AREE) 3p 9 i) L]

i=0 i=0 Eeé”lﬂé"
bE bE

L L
=DNDIN i NN e T v
I=1Ee&(g)) =1

Now the stability estimate follows (5.6) and the inverse estimate on u,.

5.3. Multilevel decomposition of IT; ¥,

In view of (5.10) and Lemma 5.2, it is left to treat the gradient term V4, in (5.10).
We shall use the technique of scale separation as done in the proof of Lemma 4.4.

Lemma 5.3. There exists a multilevel decomposition of v, satisfying
L
=%, Y1 ESpan{b]: pe A}, (5.16)
2 L _ 2 9 2
Wolznqy + 2t [ ]2y < ClbnlFn gy < CIHIEA o). (5.17)

where the constant C only depends on 2, 0, and Pax-
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Proof. From (5.10) we know that 1, := &5, € V(Z;). A direct application of Lemma
4.5 shows that 1), = ZIL:o‘»bl with v); € Span{bf :pE J{} and

L
2 -1, ||2 2
ol + DI lliey < Clubnlingay-
=1
By ¢, = 4,55, and inverse estimates, it is clear that

Wnlcy < Isuliay + C || Gon = 5| 2y < Clswlicay-

The proof is completed if we can prove [sy|y1(q) < C|W|y1(q), which is the objective of the
rest of the proof.

For any E € &(J]), we let p; be the middle point of E and let blE € V,(7) be the
basis function belonging to E. For any K € J] satisfying E C JK, let q;,q; € 4 (K) be the
endpoints of E. Then

by :=4A{AY  inK,

where 7&5{ , 7L§< are the barycentric coordinates in K belonging to q;,q; respectively. From
(5.7) we know that s;, := Zleo wy, w; € Vo(9)). Recalling from (5.6) that

lIIZESpan{bf:pEJ%}B, HI\IJZGSpan{blE:EEéV”Z},

where & is defined in (5.13). We find that w; € Span {bf tEe év’j} Then

sh—zzwlw _2 IEDIECLLS

=0 Ee4 =0 K€F\F_1 Ees)

where @“IK :={E € &(F): ENK # 0} and N;(E) is the multiplicity of E appearing in the
sum ZKG%WH ZEeg’lK: namely,

Ni(E)=#{K €\ F,: E€&}.

The shape-regularity of the meshes indicates that 1 < N;(E) < C for any E and I.
Let I(-) be the “Element—Level”-mapping in (4.17). Then we know that [(K) = [ for
any K € 7\ Z,_; and 0 <[ < L. To replace the index [ with K, we define

:WZ(K)(PE) e _ wiPpg)
Ny (E) 1O N(E)

by VEe&f Keg\7_,.

It follows that

S ID IO I T 30 WD WD I ED WML
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where we have used (4.14) and (4.16) and

s (%) 1= Z D7 wh). (5.19)

Key Eeé"lm

Notice that #£w; = 0 from Lemma 2.1. Using (5.6)-(5.8) and local norm-equivalence,
we deduce that
WE [ S Chic | (wy = Aw)(p5)| < Ch2llwy = Awillg ) < ClwilZ g

< Il = C (2 — 204120, S CHE D [ hl2g

TE€
TNQg #0

where [ = [(K) and Qg, Q are the patches defined in Lemma 4.1. Assumption (H3) yields
diam(Q;) < Cdiam(Qk) < Chg. From the reasoning of (4.15) and the local overlapping
property of these Qr, Qg, each s,,, can be estimated as follows

ISl Hl(ﬂ) = Z Z |WK|H1(Q)<C92m|\Ph|H1(Q)

Key Eeé’l(K)

The estimate for s, now follows
o0 o0
Isnler(a) < Z |Smlprie) < C Z 0™ ¥4 ) < Cl¥hlg (-
m=0 m=0
This completes the proof.

Lemma 5.4. Let (H1)-(H2) be satisfied. For any ¥, € V(Z;)3, there exist w, € U(%,) and
w; € Span{b;E :E€ 6"1}, Y € Span{bf :p EJ{}, 1 <1 <L such that

L
I ¥, =wo + Y, (w; + V), (5.20)
=1

L
HwO”lZ'i(curl,Q) + 121 (”h_lwl”iz(g) + “h_ll/"l”iZ(Q)) < Clq’hhz{l(g) . (5-21)

Proof Let 31— %, = 371 u; and v, = 377 4, be the decompositions in (5.11) and
(5.16) respectively. Then (5.20) is obtained by setting w, = II¥, 4+ uy + Vi, € U(F)
and w; = uw; € Span {b{5 :Ee é’l} for I > 1. The stability estimate (5.21) is a direct
consequence of (5.9), (5.11), and (5.17).

5.4. Proof of Theorem 5.1

To end this section, we present the proof of Theorem 5.1.
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Proof. of Theorem 5.1. We consider the discrete Helmholtz decomposition of v:

Vi =V + %+ Vpy, ¥, €V(T)’, preV(F), ¥V, €UZ),  (5.22)

17| 2y + 1%l + PRl ey < € IVallpeurte - (5.23)

The second term of the splitting has already been treated in Lemma 5.4. According to
Lemma 4.5, the local multilevel splitting of pj, is easy:

L
Ph:ZPl: szSpan{bf:peJ%}, (5.24)
=0
L 2
2 -1 2 2
PolZney + 2 1Pl 2y < ClonlEny < € VAl eurty - (5.25)
=1

Now it is left to attack v;,. The idea is to distribute v}, to all refinement zones. To do
this, we classify £(7; ) according to different mesh levels: & := &(7;)N&E(T),0<I < L.
It is easy to see &_; C &. We define

Mg, =Y. (J V- ds") b € U(F). (5.26)

Clearly II; is well-defined since ¥, is linear on each E € &, 0 < [ < L. Then ¥, = I, ¥,
admits the following multilevel decomposition

L
Vh = ZVZ, VO = ﬁ(ﬁh, Vl = (ﬁl - ﬁl—l) Vh, 1< [ <L. (527)
=0

For each E € £(7)) \ &, we have E € &(J]) N &(F_1) and b}’ = b}’ . Then (5.26)-(5.27)

show that
J Vl d;IJ ﬁﬁh-ds_’—f ﬁl_ﬁh-ds"zo.
E E E

This indicates that ¥; € Span {bf ‘E€ 6’1} for0<1<L.
From (5.26), it is easy to see that

V= (Jvl-ds).bf Vi<I<L.
E€&)\&1 E
From (5.26)—(5.27) we deduce that

Lvl-djs L‘N]h-ds“_'_ 3 c

E'€&_,,ECsupp (blE—ll)

f Vh-ds" <C D7 Rl -
El

Keg_q,
KNE#0
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From Assumption (H3) we have hy < C|E| for any K € J}_;,ENK # (. Then

il <€ 20 |E_|‘Lvl-d4 s¢ 2 2 Wil

Eed\é T

Notice that & \ &_;, 1 < [ < L are nonintersecting sets and | J;_, (& \ §_,) € &(%;).
Summing up the above inequalities in 1 <[ < L and using (5.23), we get

2l "ZHL2(n) <c|n Vh”iZ(m < C IVallzrceur) - (5.28)
=1
The first term satisfies

~ 2
Foleurney <€ D 1Ml e < C VAl eurt o) (5.29)
Keyngy

Finally, inserting (5.20), (5.24), (5.27) into (5.22), we get (5.1) with vy := wy +V, +
Vpo and v; :=w; +V, vy :=; + p;, 1 <1 < L. The stability estimate (5.2) is obtained by
summing up (5.21), (5.25), and (5.28)-(5.29).

6. Strengthened Cauchy-Schwartz inequality

To this end, the proof of Theorem 3.1 only requires strengthened Cauchy-Schwartz
inequalities for (3.3) and (3.5). The strengthened Cauchy-Schwartz inequality has been
established in [33, 38] for linear Lagrangian finite element spaces, in [14, Sect. 6] for
H(div)-elliptic variational problems and so-called face elements, and in [19] for the lowest
order edge elements. The proofs here are a little different from those in [14, 19] since
FZ\J_1,1 <1< L are nonuniform.

We first prove the Cauchy-Schwarz Inequality on Hé(Q)-conforming finite element
spaces. Recall that fm is the set of elements in the m-th generation (see (4.14)) and
that I(-) is the “Element—Level”-mapping defined in (4.17). Clearly K € Jjx \ Jj(x)-1 for
any K € fm

Lemma 6.1. Let T € F, p € #(T), v € Span{bf}, and let m > 9(T). There exists a
constant C only depending on 0, p.x Such that

Z Z a; (v, W) < (ﬂ)( Z Z

KeZ, q€N (K) KeZ, q€N (K)

1
2

6.1

Hlmp)), (6.1)

1(1()

where Q = supp(b?) and w{ € Span {b{ }.
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Proof. The idea of this proof is drawn from [33, Lemma 6.1]. For convenience we
denote n = ¢(T). Notice that the tetrahedra of .7} contained in Qf = supp(v) are quasi-
uniform and their diameters are order of 8". There exists a constant integer Z, only
depending on p,,, such that

max ¥(T)< min ¥%(T)+Z,. (6.2)
T'€Z;,T'CQf T’ey,T’ch7
We denote w = ZKefm D qenE) W?(K). If m — n < Z,, the Cauchy-Schwarz inequality and

the localness of WI(K) indicate that

2
a,(v,) < CWlliiany Wlinapy < ClVlngey (25 D it

1
)2
1P '

KeZ, 9N (K) H)

Then (6.1) follows from the observation that  ~I™~"/2 < §=%/2 < C. The rest of the proof
is devoted to the case m > n + Z,.

Since. max ¥%(T’) <n+Z, <m,weknow that w is piecewise linear in any T’ € 7},
'€, T'cQf

T' c Qf and

= Z Z W?(K) on dT'.

Ked, €N (K)NIT’

It is clear that supp(&§) N T’ C 't where
rpo=|J{Ke,: KT and 8KNaT #0}

is a narrow strip along 8 T’. Since v is linear in T’, using Green’s formula we have
av m—n
Vv-Vw = 3—5 = Vv-VE<CO 2 [[Vylip2en IVEIN L2y -
T/ o’ 9N Ty
T

Summing up the above inequality over all T’ C Qf yields

Vv-Vw<CO°7 ||v (
Lp Wlhany (22 25 |w

1 Ked, q€N (K)

1
2
whol. Qp)) . (6.3)

The lower order term is estimated by using Poincare’s inequality:

Jpvw‘ < Clvllzap ( Z Z
Ql

Ked, €N (K)

< CO™ vl ar (Z > lw

Ked, 9N (K)

(6.4)

1
2
¥l 12 (meQqK)) )

)é
Witk @)
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Adding up (6.3) and (6.4) yields (6.1).

For convenience in notation, we denote 4] = {pf : 1 <i < N} and define Vli =
Span{bf’} for1<i<N;and 1 <1 < L, where bf € V() is the nodal basis function
belonging to p. For the initial mesh, we define N, = 1 and VO1 =V ().

Theorem 6.1. Let (H1)-(H2) be satisfied. For any vli, Wli € Vli withl1 <i<N;and0 <<,
the strengthened Cauchy-Schwartz inequality holds

) MDWRIVROEL 03 9 VT8 K 02)

=0 i=1 (s,j)>(L,1) =0 i= [=0 i=1

N : 1/2
”W;H?ﬁ(m) »

where the constant C only depends on 6 and ppay-

Proof. 1t is obvious that

L N
ZZ Z a(vl,ws)—ZZa(vo, (6.5)
=0 i=1 (s,j)>(1,i) s=1 j=

L N N o Ny o

+ZZ{ Z as(vl’,wf)+ Z Zas(vll,wﬁ)}.
=1 i= j=i+1 s=l+1 j=1
From Lemma 6.1 we have
L m ) L mn 1
DN WIS ) YD SRR 3) 9 7]
s=1 j= H() =1 i=1 (s,j)>(i,1) [=1i=1
n
< o il

=1 i=1

—_

The first term on the righthand side of (6.5) is a direct consequence of the Cauchy-Schwarz
Inequality and the above estimate. Since v;, w, are locally supported, the Cauchy-Schwarz
Inequality shows that

N N L N o 1/2 L N
ZZ Z a (VZ’W )<C(Z HVIIHHl(Q)) (Z | z“Hl(Q)) . (6.6)
=1 i=1 j=i+1 I=11i=1 [=1i=1

L N L N,
It is left to estimate [ := ZZ Z Z as(vli,w]
=1 i=1s=I+1 j=1
Since A C | J{A(T): T € Z\F_1}, we let N;(p) > 1 be the number of elements in
; \ J;_, which share p € .4{. We also denote vlp = vli, wf = wli forp = pg. Then

o0

L L
=222 2 2 2 atpad, 6.7)

[=1s=I+1n,m=0TeH\J_ KeF\T_1 peAN(T)
9(T)=n ¥Y(K)=m qeAN(K)
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where for any p € 4(T),q € A4 (K), we define

ﬁp::{(v){’/Nz(p), fpet, g _ {(v)v?/Nl(q), if g €A, 68)

, if pé& A, if q & 4.

We define two sets of elements which appear in the sum of (6.7) and are in the same
generations

I = (U N1 () =(U9\$ SIRES

s=l+1

By the definition of the “Element—Level”-mapping in (4.17), for any K € ﬂn, there exists
a unique s > [ such that K € Z;\Z,_; and [(K) =s. Thus

Z Y> alhh=a (i, Y > ). (6.9)

s=I+1KeT\T,_, geN (K) ke7 M qeN (K)
4(K)=m

Similarly we also have

s—1
YIS as(f’zp’ﬁ’f)=as( DD wq). (6.10)

=1 Teg\J_, peN(T) Te/;[nmpe/t/(T)
4(T)=n

Splitting the sum in (6.7) according to m > n and m < n and using (6.9)-(6.10), we
find that I =1; 4+ I,, where

L o0 o0
ho= 230 2 el X )
[=1 n=0m=n T;Zl“\)fgl peAN(T) Kefngl) geN'(K)

D) ID VD D W WD W Ao

=2 m=0n=m+1K€7\7,_1 q€N(K)  Tc 75 pENM(T)

Y(K)=m
An application of Lemma 6.1 and the localness of ﬁlp , l ®) shows that
00 00 1
~ 2
L= CZ Z 9 Z Z Z ||vp||H1(Q)( Z Z Wiy Hlmp))
n=0m=n =1Teg\J_, peN(T) 70 geN(K)
4(T)=n
00 00 . 5 % ) %
= CZ Z 6> ( Z Z ZIET) Hl(ﬂ)) ( Z Z ?(K) HI(Q))

n=0m=n re5® peN(T) ke ® qeN (K)
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It is known that the infinite-dimensional matrix (le—nl/ 2):n:0 has the finite spectrum
radius which only depends on 6. From (6.8) we know that

n=e(N Y X o) (NS X

m=0 e 50 pet (K) m=0 g c 7(0) peA (K)

L N 2 1/2 L N 12 1/2
<c(XX M) (R Xlvilhiw)
=1i= =1 i=

Using Lemma 6.1 and similar arguments we have

L N 2 172 , & N 2 1/2
I = C(;ZH"I”H%Q)) (;Z”WIHHI(Q)) : (6.12)
=1 1= =1 1=

The proof is completed by inserting (6.11)—(6.12) into (6.7) and combining (6.6).

2
p

Wik

); 6.11)

H'(2)

From Theorem 4.1 and Theorem 6.1, we have indeed proved Theorem 3.1, that is, the
uniform convergence of the local multigrid method for problem (2.4).

For any 1 <[ < L, we denote & = {Eli : 1 <i < M;} and define
U; = Span{bel}, 1<i<N; and U§+N1 := Span {blEl } , 1<i<M,
where bf € U(}) is the edge basis function belonging to E. For the initial mesh, we define
M, =0 and U} = U(%).
Theorem 6.2. Let (H1)-(H2) be satisfied. Then for any vf,w;' € U; with1 <i <N + M,
and 0 <1 < L, the strengthened Cauchy-Schwartz inequality holds

N1+M1 L N1+M1 L Nl-'rMZ

) o . / . /
Z Z a,(vj,wy) < C(zZo: 21: ||V§||§1(cur1,m)1 Z(ZZOJ 21: HW;”?i(curl,Q))l 2’
= 1= = 1=

=0 i=1 (s,j)>(Li)
where the constant C only depends on 0 and p -

Proof. This proof is quite similar to those of Lemma 6.1 and Theorem 6.1. It depends
on scale separations for both nodal basis functions and edge basis functions. We do not
elaborate on the details.

It is obvious that Theorem 5.2 and Theorem 6.2 leads directly to Theorem 3.1, namely,
the uniform convergence of the local multigrid method for problem (2.5).

7. Numerical results

In this section, we solve the elliptic problem (1.1)-(1.2) and the Maxwell’s problem
(1.3)-(1.4) on a domain constructed by removing two small cubes from a L-shaped domain
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0.5

k=]

A4

Figure 2: Geometry and initial mesh with 6,105 tetrahedrons for Example 7.1 and Example 7.2.

as shown in Figure 2 (left). The initial mesh is shown in Figure 2 (right). The adaptive
algorithm is designed with the residual-based a posteriori error estimates and Dorfler’s
marking strategy (cf. [9,13]). The codes are written in Matlab and run on a MAC Pro
computer under Linux operating system.

The stopping rule of the multigrid algorithm is described as follows. Denote the finite
element linear algebraic systems to (2.4) and (2.5) on the meshes 7 by

A =f, 1=0,1,--,L,
and denote the corresponding multigrid scheme at the ™ level by
i =a® + B (f, - A4aY), k=012,
(0)

At the [ level, we set u; ’ = u;_q, the multigrid solution of the previous level, and termi-

nate the multigrid iteration when the following relationship is satisfied
-1

~ (k+1

st

"‘(0) < 10—6
o .

Example 7.1. The elliptic problem (1.1)-(1.2) on the domain in Figure 2 (left). The right-
hand side is set by f =1 in Q.

Figure 3 shows the mesh and several slices of the discrete solution for Example 7.1 after
18 adaptive finite element iterations. It is clear that the solution has singularities at the
two vertices located at (—0.5,0.5,0.5) and (0.5, —0.5,0.5) and along the edges starting at
the two vertices and the edge through the origin. The mesh is much finer at those places.
Figure 4 shows the reduction factor || — By Ay ||, (left) and the number of multigrid V-
cycle iterations (right) for Example 7.1. Since I — B A,; is symmetric with respect to the
bilinear form a,(-, "), [|I — By AL ||, is equal to the maximum eigenvalue of I —Bg; A;; which
is computed by the power method in this paper. We observe that the convergence rate is
independent of the number of levels L as predicted by our theoretical analysis.
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Figure 3: The mesh plot and the slice plot of the discrete solution for Example 7.1 after 18 local
refinements. The mesh contains 274,219 tetrahedrons
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Figure 4: The reduction factor [|[I — B A, ||, (left) and the number of multigrid V-cycle iterations (right)
for Example 7.1, 1 < L < 37.

Example 7.2. The Maxwell’s problem (1.3)-(1.4) on the domain in Figure 2 (left). The
righthand side is set by f=(1,1,1) in Q.

Figure 3 shows the mesh plot and a slice plot of the amplitude of the discrete solution
for Example 7.2 after 24 adaptive finite element iterations. The mesh is much finer where
the solution has singularities. Figure 6 shows the reduction factor ||I —B,;A,ll,, (left)
and the number of multigrid V-cycle iterations (right) for Example 7.2. We observe that the
convergence rate is independent of the number of levels L as predicted by our theoretical
analysis.

A. Abstract framework of Multigrid V-cycle method

The purpose of this appendix is to provide the standard framework of Multigrid V-
cycle method with smoothers defined by successive subspace correction methods (cf. e.g.
[32,33,37]).

Suppose that we have a sequence of nested finite element spaces Hy C H; C --- C H|
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Figure 5: The mesh plot and the slice plot of the the amplitude of the discrete solution for Example 7.2
after 24 local refinements. The mesh contains 258,849 tetrahedrons
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Figure 6: The reduction factor ||I —B,,A,,|l,, (left) and the number of multigrid V-cycle iterations (right)
for Example 7.2, 1 <L <37.

and we consider the following variational problem: Find £ € H; such that
a(&,v)=1f(v) VveH,, (A1)

where a is a positive definite bilinear form on H; and f € H/, the dual space of H;. On the
[-th level, we define a linear operator A;: H; — H; by

(Am,v):=a(n,v) Vn,veH;,, 0<I<IL,

where (-,-) is the L?-inner product. Then (A.1) is equivalent to the operator equation on
H;: Find £ € H; such that

A E=F, (A.2)

where F € H; is defined by the Riesz representation of f, namely, (F,v) = f(v) for all
v € H;. The standard V-cycle multigrid algorithm which solves (A.2) is defined by the
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following iterative scheme:

Ekr1 =& +BL(F —A &) k=0,1,---. (A.3)

Here B;: H; — H;, 0 <[ < L are defined recursively by the multilevel algorithm of smooth-
ing and corrections:

Algorithm A.1. Let By=A,'. Forl> 0 and g € H;, we define Bjg = v where v is defined
by three steps of operations:

1. Pre-smoothing: v <—R,g.
2. Correction: ve—v+B_1Qi_1(g —A).
3. Post-smoothing: v« v+Rj(g —Ap).

In Algorithm A.1, Q;: H; — H; stands for the L2(Q)-orthogonal projection. Let
H},--- ,H;" be one family of subspaces of H; satisfying

n; L n
D HiCH, 0<I<L and ) Y H =H,. (A.4)
i=1 [=0 i=1

For | = 0, we set np = 1 and Hgo := Hy,. Then the smoother R; is defined by one step of
successive subspace correction on the [-th level:

Algorithm A.2. Given g € H; and the initial guess vy =0, we define R;g = v, as follows:
for i=1,2,...,m;

1. Compute the residual: g «— g—Av;_;

2. Solve the error equation: Find e; € H} such that
a(e;,w) =(g,w) Yw eHli
3. Correction: v; —v;_;+e;
endfor
Substituting (A.2) into (A.3), we obtain the error propagating equation:
£ L =U-BA)E—E)="=~BA)(E-&).

In the following we shall give a framework for proving the contraction property of the error
propagation operator I — B; A;, namely,

II =By ALll4<1,
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which indicates the convergence of the iterative scheme (A.3). Let Pli: H; - H ll be orthog-
onal projections:

VneH,, a(Pln,w)=a(nw), VweH], 1<i<n, 1<I<L.
Then R; can be represented as follows:
Ri=U-E)AY,  E:=0-P"I-P")---(I-PY),
Following [32, Sec. 2] and [8, (3.4)], the error propagation operator can be represented

as the product of projection operators:

L L

I—BLAL—“—“_[(I— )] “_[l_[(l_ )]

=0 i=1 =0 i=1

where L* denotes the adjoint operator of the linear operator L: H; — H; with respect to
the inner product a(-,-). Let ||v]|4 := +/a(v, v) be the energy norm on H;. Then

L
=B = sup 2 BAIMY) 1]‘[1‘[(1— I

omer, IVl 1 1]

From (A.4) we know that any function v € H; admits a multilevel decomposition:

v=i2vf, vlieHli. (A.5)

From the identity of Xu and Zikatanov [37, Corollary 4.3], the error reduction rate by one
Multigrid iteration is

Co
I—-B;A = — A.6
|| L L||A 1+C0a ( )
where
Co= sup inf E E HPI E (A.7)

[Vlla=1 Zz 021 1=Vi=0 i=1 (s,))>(1, l)

and (s, j) > (I,i) means that either s > [ ors =1 but j > i.

Theorem A.1. Let H; satisfy the multilevel decomposition in (A.4). Suppose that there exist
two positive constants Cgyp, and Cypy, such that

1. Stability of the space decomposition:
L m

1nf{ZZ : Z V;ZV}SCstabHVH/z; VveH;.

=0 i=1 =0 i=1

=
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2. Strengthened Cauchy-Schwartz inequality: for any vli,wli S Hli with 1 <i < n; and

0o<I<I,
L . L N2 iy 2 1/2
PIIDINECRTEIN O30 v 19 R OIPN T )
[=0 i=1 (s,j)>(l,i) =0 i=1 =0 i=1

-1
Then ||I - BLAL”A <1- (1 + Cgrthcstab)

Proof. From (A.6) we need only estimate the constant ¢y in (A.7). For any v € H;,
since H; is finite-dimensional, the infimum in the stability assumption can be obtained,
i.e., there exists a splitting of v such that

n

VZXL:ZV;’ vlieHli and XL:Z
1

[=0 i=1 =0 i=

2
S Cstab ”V“A

Define wj := P Y, o) v/ for any (1,1). Then using the Strengthened Schwartz inequal-
ity, we find that

L

2 HWz ZZ 2, AW

=01 =0 i=1 (s,])>(l i)
)1/2(2L:

orth (
s=0 j=
The stability of the decomposition of v yields that

=0 i=1

n

1

)1/2

2
J 2 2
Vs A < Cortthtab ”V”A .

From (A.7) and the arbitrariness of v we obtain ¢y < C; rthCStab'
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