
NUMERICAL EXAMPLES

1. Model

Let Ω be a convex polygon in R2 with boundary Γ. Let D ⊆ Ω be a domain in
R2 with Lipschitz boundary.

Let B(x0, r) = {x ∈ R2 : |x − x0| < r}. Let Bj = B(x̄j, δ), 1 ≤ j ≤ N ,
be mutually disjoint subdomains inside Ω that are occupied by the wells. Set
Γj = ∂Bj and Ωδ = Ω\(∪N

j=1B̄j). We consider the following problem

−div (K(x)∇uδ) = 0 in Ωδ, (1.1)

uδ|Γj
= const , −

∫

Γj

K
∂uδ

∂ν
ds = qj for j ∈ IM , (1.2)

uδ|Γj
= αj for j ∈ ID, uδ|Γ = 0. (1.3)

Here ID, IM are index sets such that ID ∪ IM = {1, 2, · · · , N}, αj for j ∈ ID and
qi for i ∈ IM are known constants. We imposed the following conditions on the
coefficient K(x):

(H1) K ∈ C0,1(Ω̄), there exist constants λ, Λ > 0 such that λ ≤ K(x) ≤ λ−1

and |K(x) − K(y)| ≤ Λ|x − y| for any x, y ∈ Ω̄. As we are interested in
highly variable coefficients, without lost of generality, we assume Λ ≥ 1.

We will consider the following approximation of the problem (1.1)-(1.3): Find
u and the constants {qi}i∈ID

, such that

−div (K(x)∇u) =
N∑

j=1

qjδx̄j
in Ω, (1.4)

− qi

2πKi

ln δ +
∑

j 6=i

qjφj(x̄i) + U(x̄i) = αi for i ∈ ID, (1.5)

u|Γ = 0. (1.6)

Here δx̄j
is the Dirac measure at x̄j, Kj = K(x̄j), φj(x) = − 1

2πKj
ln |x − x̄j|, and

U = u−∑N
j=1 qjφj. The relation (1.5) can be viewed as an approximation of the

boundary condition u|Γi
= αi for i ∈ ID.

We have the following theorem.

Theorem 1.1. Let the assumption (H1) be satisfied. Let uδ and u be the solu-
tions of (1.1)-(1.3) and (1.4)-(1.6), respectively. Then there exists a constant C
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independent of δ, qj and Λ such that

max
x∈Ω̄δ

|u− uδ| ≤ CΛ(1 + ln Λ)1/2
( N∑

j=1

|qj|
)
δ| ln δ|. (1.7)

2. Numerical results

We start this section by summarizing the algorithm proposed in this chapter
for solving the problem (1.4)-(1.6) which is a good approximation of the original
problem (1.1)-(1.3) when the size of the wells is negligible.

Algorithm 1. Given the well bore pressure αi for i ∈ ID and the well flow rate
qj for j ∈ IM . The following procedure finds the approximate well bore pressure

αH
j for j ∈ IM , the approximate well flow rate qH

i for i ∈ ID, and the approximate

pressure uH = ζH +
∑N

j=1 qH
j Gh

j , where qH
j = qj for j ∈ IM .

• For j = 1, · · · , N , compute the discrete Green function Gh
j on each subdo-

main Ωj, i.e. Gh
j ∈ V 0

h (Ωj) such that
∫

Ωj

K(x)∇Gh
j∇vhdx = vh(x̄j) ∀vh ∈ V 0

h (Ωj). (2.1)

Here V 0
h (Ωj) = Vh(Ωj) ∩ H1

0 (Ωj), and Vh(Ωj) is the standard conforming
linear finite element space over the meshMh(Ωj) of Ωj with the mesh size h

resolving the scale of the permeability field K(x). Compute the associate
effective radius r̄j from Gh

j according to the discussion in §6. Thus the
approximate value of the Green function Gj on Γj is

αh
j = Gh

j (x̄j)− 1

2πKj

ln
δ

r̄j

, Kj = K(x̄j).

• Use the over-sampling multiscale finite element method to find ζH ∈ X0
H

and {qH
i }i∈ID

such that

∑
T∈MH

∫

T

K(x)∇ζH∇χHdx = −
N∑

j=1

qH
j

∫

Σj

K
∂Gh

j

∂ν
χ̂Hds ∀χH ∈ X0

H ,(2.2)

qH
i αh

i + ζH(x̄i) = αi for i ∈ ID. (2.3)

• Compute the approximate well bore pressure αH
j for j ∈ IM through the

relation

αH
j = ζH(x̄j) + qjα

h
j .

Now we present some numerical examples carried out for periodic local peri-
odic and random log-normal permeability fields to demonstrate the accuracy and
efficiency of our method. The computations are performed on the unit square
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Ω = (0, 1) × (0, 1). We consider two wells Bj = B(x̄j, δ) with x1 = (1
4
, 3

4
),

x2 = (3
4
, 1

4
) and the radius δ = 10−5. We impose mixed boundary condition

(1.2) that fixes the well flow rate qj for both wells. Thus we have ID = ∅ and the
interested quantities are well bore pressure (WBP) on each well. In the computa-
tions we always take q1 = −1 and q2 = 1 which corresponds to the situation that
the well B1 is an extraction well and B2 is an injection well.

The domain Ωj is taken as the square centered at x̄j with the length of the sides
being 2Hj so that Hj = dist (x̄j, ∂Ωj). The discrete Green function Gh

j in (2.1) is
computed on a uniform finite element mesh of size h = Hj/512.

A uniform L × L finite element mesh of Ω is constructed by first dividing the
domain Ω into L × L subrectangles and then connecting the lower-left and the
upper-right vertices of each subrectangle. The finite elements of the mesh is di-
vided into two groups: the lower-right and upper-left elements. For each triangle
T , an over-sampling element S(T ) is created according to whether T is a lower-
right element or an upper-left element as shown in Figure 1. Here we assume that
the permeability field is known outside the domain Ω when the over-sampling ele-
ment S(T ) is extended outside Ω. This assumption is not a restriction for practical
applications because the permeability is generated by geostatistical method based
on the statistical characteristics which are usually known outside the interested
domain.

S(K)

K

Figure 1. The element K and its over-sampling element S(K):
lower-right elements (left) and upper-left elements (right). The
length of the horizontal and vertical edges of S(K) is four times
of the corresponding length of the edges of K.

For each triangle T , the over-sampling multiscale base functions on the over-
sampling element S(T ) are computed on a uniform triangular mesh which divides
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the horizontal and vertical edges of S(T ) into 4M subintervals, respectively. So
the mesh size for solving the base functions is 1/LM in each space direction.

All the resultant linear algebraic system of equations is solved by the multigrid
method.

Example 1. In this example we assume the coefficient is

Kε(x) =
1

(2 + 1.5 sin 2πx
ε

)(2 + 1.5 sin 2πy
ε

)
.

The exact solution of the problem is unknown and so we compare the coarse grid
solution obtained by Algorithm 1 with the well resolved solution on a uniform
2048×2048 mesh using the method introduced in §6 which can be easily extended
to multi-well problems. This well resolved solution will be referred as “exact”
solution in the following. For example, when ε = 1/64 = 0.015625, the “exact”
well bore pressures are α1 = −5.3884973 in the first well and α2 = 5.3884973 in
the second well.

The homogenized coefficient matrix K∗ is known as K∗ = 1√
7
I, where I is the

2 × 2 identity matrix [?]. The standard homogenization method would be to
approximate the original problem by

−div (K∗(x)∇u∗) =
2∑

j=1

qjδx̄j
in Ω, u∗|Γ = 0.

Table 2.1 shows the well bore pressures computed by solving above homogenized
problem using the Peaceman method over uniform meshes. It clearly indicates
that the standard homogenization method fails to provide good approximations
in the vicinity of well singularities. This shows the importance to develop new
upscaling methods for flow transport problems involving well singularities.

Neglecting the logarithm factors, the convergence rate of Algorithm 1 is O(H +

H2/H2
j + ε/H +

√
ε/Hj). In Table 2.2, we test the convergence of our method

when ε/H is fixed to be 0.5. We see that the solution still converges as ε decreases.
This shows that the constant in the ε/h term in the error estimate is small. We
also observe that the convergence rate is better than

√
ε when the resonant error

term ε/H is not dominant. In Table 2.3, we show the errors for a fixed ε = 1/64.
We observe that the errors increase as H decreases, indicating the existence of the
error term ε/H in the error estimate. The resonant error is the strongest when
ε = H. We remark that previous studies indicate that the cell resonance error is
more visible for periodic coefficients, especially when ε/H is a rational number.
But the cell resonance error is generically small for random coefficients. Table 2.4
shows the influence of the size Hj of local domain Ωj to the overall convergence
of the method. It indicates that in practical computations, the size of the local
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L Well No. WBP Relative error

32 1 -4.3624648 0.19041

64 1 -4.3626761 0.19037

128 1 -4.3627285 0.19036

32 2 4.3624648 0.19041

64 2 4.3626761 0.19037

128 2 4.3627285 0.19036

Table 2.1. Example 1: Results of the standard homogenization
method, ε = 1/64.

L ε Well No. WBP Relative error Rate

8 1/16 1 -5.6634649 0.54608E-02

16 1/32 1 -5.5312112 0.22704E-02 1.2662

32 1/64 1 -5.3842752 0.78354E-03 1.5349

8 1/32 2 5.6615759 0.57925E-02

16 1/32 2 5.5281669 0.28195E-02 1.0387

32 1/64 2 5.3802340 0.15335E-02 0.8786

Table 2.2. Example 1: Results of the Algorithm 1, Hj =
1/8, M = 64.

domain Ωj need not be very large (two or three times of the size of the coarse mesh
would be enough). Remember that smaller local domains Ωj reduce the cost of
computing the discrete Green functions. However, we emphasize that the discrete
Green functions need only to be computed once which is a just small overhead
of the overall computations. Actually, in Table 2.5 we find that when the local
domain is small, it is not necessary to solve the local Green’s function on much
more fine grid, and we can solve it just by the cost of construction a multiscale
finite element basis.
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L M Well No. WBP Relative error Rate

8 256 1 -5.3683706 0.37351E-02

16 128 1 -5.3828001 0.10573E-02 1.8207

32 64 1 -5.3842752 0.78354E-03 0.4323

64 32 1 -5.3838442 0.86352E-03 -0.1402

8 256 2 5.3713129 0.31891E-02

16 128 2 5.3825320 0.11070E-02 1.5256

32 64 2 5.3802340 0.15335E-02 -0.4702

64 32 2 5.3739254 0.27043E-02 -0.8184

Table 2.3. Example 1: Results of the Algorithm 1, ε =
1/64, Hj = 1/8.

Well No. Hj WBP Relative error Rate

1 H -5.3133941 0.139377E-01

1 2H -5.3519482 0.678280E-02 1.0390

1 4H -5.3700536 0.342279E-02 0.9867

2 H 5.3123314 0.141349E-01

2 2H 5.3497078 0.719858E-02 0.9735

2 4H 5.3653456 0.429650E-02 0.7445

Table 2.4. Example 1: Influence of the size of the local domain
Ωj, ε = 1/64, L = 64,M = 32.

Example 2 In this example, we set

Kε(x) =
2 + p sin(2πx

ε
)

2 + p sin(2πy
ε

)
+

2 + p sin(2πy
ε

)

2 + p sin(2πx
ε

)
,

with p = 1.8 The homogenizatioin K∗ of Kε is a full 2× 2 matrix. Tables 2.6-2.10
show that our method works very well.
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Well No. h WBP Relative error

1 Hj/512 -5.3133941 0.1394E-01

1 Hj/128 -5.3117237 0.1425E-01

1 Hj/64 -5.3086750 0.1481E-01

1 Hj/32 -5.3003683 0.1636E-01

1 Hj/16 -5.2771637 0.2066E-01

1 Hj/8 -5.2141346 0.3236E-01

Table 2.5. Example 1: Influence of the resolution for the local
Green’s function, L = 64,M = 32, Hj = H

L ε Well No. WBP Relative error Rate

8 1/16 1 -0.8846656 0.4430E-02

16 1/32 1 -0.8489153 0.2234E-02 1.0507

32 1/64 1 -0.8117082 0.1281E-02 0.8682

8 1/16 2 0.8835495 0.4849E-02

16 1/32 2 0.8482490 0.2582E-02 0.9717

32 1/64 2 0.8112662 0.1598E-02 0.7579

Table 2.6. Example 2: Results of the Algorithm 1, Hj =
1/8, M = 64

Example 3 In this example, we consider a local periodic permeability case. we
set

Kε(x) =
1 + y

2 + p sin(2πx
ε

)
+

1 + x

2 + p sin(2πy
ε

)
,

with p = 1.8 Tables 2.11-2.13 show the results.

Example 4. In this example, we test the performance of our method for a random
log-normal permeability field. We generate the random field K(x) on a uniform
1024×1024 mesh by using moving ellipse average technique [?] with the variance of
the logarithm of the permeability σ2 = 1, and the correlation lengths lx = ly = 0.01
in two space direction. Figure 2 shows a realization of the random permeability
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L M Well No. WBP Relative error Rate

8 256 1 -0.8102849 0.3032E-02

16 128 1 -0.8117010 0.1290E-02 1.2331

32 64 1 -0.8117082 0.1281E-02 0.0100

64 32 1 -0.8109034 0.2271E-02 -0.8262

8 256 2 0.8103127 0.2771E-02

16 128 2 0.8115042 0.1305E-02 1.0866

32 64 2 0.8112662 0.1598E-02 -0.2922

64 32 2 0.8101230 0.3005E-02 -0.9112

Table 2.7. Example 2: Results of the algorithm 1, ε = 1/64, Hj = 1/8

Well No. Hj WBP Relative error Rate

1 H -0.7996270 0.1615E-01

1 2H -0.8053405 0.9116E-02 0.8247

1 4H -0.8084997 0.5229E-02 0.8019

2 H 0.7992714 0.1636E-01

2 2H 0.8049268 0.9399E-02 0.7995

2 4H 0.8079624 0.5664E-02 0.7308

Table 2.8. Example 2: Influence of the size of Ωj, ε = 1/64, L =
64, M = 32

field. The “exact” well bore pressures computed by solving the problem (1.4)-(1.6)
on the fine 1024× 1024 mesh are α1 = −1.7383199 and α2 = 3.0999852.

Table 2.14 shows the results computed by using the Algorithm 1 on the coarse
64 × 64 mesh with the size of the local domains H1 = H2 = H. The mesh size
for solving the over-sampling base functions is 1/1024. It clearly shows that the
WBP by our method on the coarse 64× 64 mesh is a very good approximation of
the “exact” WBP on the fine 1024× 1024 mesh. In Figure 3 we show the contour
plots of the pressure field computed by Algorithm 1 on the 64 × 64 mesh. As a
comparison, we show in Figure 4 the contour plots of the averaged “exact” pressure
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Well No. h WBP Relative error

1 Hj/512 -0.7996270 0.1615E-01

1 Hj/128 -0.7996541 -0.1607E-01

1 Hj/64 -0.7996735 -0.1605E-01

1 Hj/32 -0.7996491 -0.1608E-01

1 Hj/16 -0.7993088 -0.1649E-01

1 Hj/8 -0.7956049 -0.2105E-01

Table 2.9. Example 2: Influence of the resolution for the local
Green’s function, L = 64,M = 32, Hj = H

Well No. h WBP Relative error

1 Hj/512 0.7992714 0.1636E-01

1 Hj/128 0.7993034 -0.1628E-01

1 Hj/64 0.7993268 -0.1625E-01

1 Hj/32 0.7993096 -0.1627E-01

1 Hj/16 0.7989799 -0.1668E-01

1 Hj/8 0.7952739 -0.2124E-01

Table 2.10. Example 2: Influence of the resolution for the local
Green’s function, L = 64,M = 32,Hj = 4H

which is obtained by averaging the “exact” pressure field on the 1024×1024 mesh
to the coarse 64 × 64 mesh. We observe from these figures and Table 2.14 that
our method provides good approximation of the well bore pressure as well as the
large scale structure of the “exact” solutions for random log-normal permeability
field.

Example 5 In this example, we test the performance of our method for another
random log-normal permeability field. We also generate the random field K(x)
on a uniform 1024 × 1024 mesh but with the variance of the logarithm of the
permeability σ2 = 1, and the correlation lengths lx = 0.01, ly = 0.1 in two space
direction. Figure 5 shows a realization of the random permeability field. The
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Figure 2. Example 4: The random log-normal permeability field
K(x). The ratio of maximum to minimum is 4.15443E+03.
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Figure 3. Example 4: Contour plots of the pressure field on 64×64
mesh by using Algorithm 1.
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L ε Well No. WBP Relative error Rate

8 1/16 1 -0.9068712 0.4894E-02

16 1/32 1 -0.8757308 0.1868E-02 1.3893

32 1/64 1 -0.8423513 0.8326E-03 1.1660

8 1/16 2 0.9055985 0.6291E-02

16 1/32 2 0.8745462 0.3219E-02 0.9669

32 1/64 2 0.8410716 0.2351E-02 0.4534

Table 2.11. Example 3: Results of the Algorithm 1, Hj =
1/8, M = 64

L M Well No. WBP Relative error Rate

16 128 1 -0.8421446 0.1078E-02

32 64 1 -0.8423513 0.8326E-03 0.3723

64 32 1 -0.8420159 0.1230E-02 -0.5634

16 128 2 0.8416962 0.1610E-02

32 64 2 0.8410716 0.2351E-02 -0.5462

64 32 2 0.8392265 0.4539E-02 -0.9494

Table 2.12. Example 3: Results of the Algorithm 1, ε =
1/64, Hj = 1/8

‘exact’ well bore pressures computed by solving the problem (1.4)-(1.6) on the
fine 1024× 1024 mesh are α1 = −1.1032187, α2 = 1.0118474.

Table 2.15 shows the results computed by using the Algorithm 1 on the coarse
64× 64 mesh with the size of the local domains H1 = H2 = H. The mesh size for
solving the over-sampling base functions is 1/1024. Figures 6-7 present the contour
plots of the pressure fields of approximate and ’exact’ solution respectively.

Appendix: The algorithm of moving ellipse method
To generate a 2-d log-normal random permeability field on a nx ∗ ny mesh on

the unit square, with prescribe expectation E, variance σ and correlation length
lx, ly at each direction, the algorithm is as follows
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Well No. Hj WBP Relative error Rate

1 H -0.9075988 0.7656E-01

1 2H -0.8956691 0.6241E-01 0.2948

1 4H -0.8805615 0.4449E-01 0.4883

2 H 0.9018898 0.6979E-01

2 2H 0.8906854 0.5650E-01 0.3048

2 4H 0.8763498 0.3949E-01 0.5166

Table 2.13. Example 3: Influence of the size of Ωj, ε = 1/64, L =
64, M = 32

Well No. WBP Relative error

1 -1.7195261 0.1081E-01

2 3.1173632 0.5606E-02

Table 2.14. Example 4: Results of the Algorithm 1 in the case
of random log-normal field with σ2 = 1 and lx = ly = 0.01.

Well No. Radius ’Exact’ WBP WBP Relative error

1 1.E-05 -1.1032187 -1.1000738 0.2851E-02

1 1.E-04 -0.8749645 -0.8718196 0.3594E-02

1 1.E-03 -0.6467104 -0.6435655 0.4863E-02

2 1.E-05 1.0118474 1.0058803 0.5897E-02

2 1.E-04 0.8063361 0.8003690 0.7400E-02

2 1.E-03 0.6008248 0.5948576 0.9932E-02

Table 2.15. Example 5: Results of the Algorithm 1 in the case of
random log-normal field with σ2 = 1 and lx = 0.01, ly = 0.1.
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Figure 4. Example 4: Contour plots of the averaged “exact” pres-
sure field on the 64× 64 mesh
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Figure 5. Example 5: The random log-normal permeability field
K(x), The ratio of maximum to minimum is 3.6710E+03
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Figure 6. Example 5: Contour plots of the pressure field on 64×64
mesh by using Algorithm 1.
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Figure 7. Example 5: contour plots of the averaged ’exact’ pres-
sure field on 64× 64 mesh.
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(1) Using 1-d normal random number generator to assign each mesh block a
random number.

(2) For each mesh block, average the random numbers over all the blocks
covered by the ellipse centered at the center of this block with lx and ly as
its two axles, and then assign the average value to the block.

(3) Rescale the 2-d random field to satisfy the given expectation E and variance
σ.

(4) Apply the function ’exp’ to get the final log-normal field.
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