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Abstract. In this paper we extend the source transfer domain decomposition method
(STDDM) introduced by the authors to solve the Helmholtz problems in two-layered
media, the Helmholtz scattering problems with bounded scatterer, and Helmholtz prob-
lems in 3D unbounded domains. The STDDM is based on the decomposition of the
domain into non-overlapping layers and the idea of source transfer which transfers the
sources equivalently layer by layer so that the solution in the final layer can be solved
using a PML method defined locally outside the last two layers. The details of STDDM is
given for each extension. Numerical results are presented to demonstrate the efficiency
of STDDM as a preconditioner for solving the discretization problem of the Helmholtz
problems considered in the paper.
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1. Introduction

The source transfer domain decomposition method (STDDM) is introduced by the au-
thors in [11] to solve the following 2D Helmholtz problems:

∆u+ k2u = f in R2,
(1.1)

r1/2
�∂ u

∂ r
− iku

�

→ 0 as r = |x | →∞, (1.2)
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where k > 0 is the wave number and f ∈ H−1
comp(R

2), that is, f ∈ H−1(R2) and has compact
support.

Helmholtz equation (1.1) appears in diverse scientific and engineering applications
including acoustics, elasticity, and electromagnetics. It is well-known that the efficient
algebraic solver for large wave number discrete Helmholtz equation resulting from finite
difference or finite element discretization is challenging due to the huge number of degrees
of freedom required and the highly indefinite nature of the discrete problem. There exist
considerable efforts in the literature for finding efficient algorithms for solving discrete
Helmholtz equations, see e.g. Benamou and Després [4], Gander et al [15], Brandt and
Livshit [6], Elman et at [12], and the review articles Erlangga [14], Osei-Kuffuor and Saad
[19] and the references therein. The STDDM is motivated by the recent work of Engquist
and Ying [13] in which a sweeping preconditioner is constructed by an approximate LDL t

factorization which eliminates the unknowns layer by layer. The Schur complement matrix
of the factorization is approximated by using a moving perfectly matched layer (PML)
technique.

The purpose of this paper is to extend the STDDM to solve the Helmholtz problems
in two-layered media, the Helmholtz scattering problems with bounded scatterer, and
Helmholtz problems in 3D unbounded domains. Let Ωi = {x ∈ R2 : ζi < x2 < ζi+1},
i = 1, · · · , N , be the layers whose union covers the support of the source f . Let Ω0 = {x ∈
R2 : x2 < ζ1} and ΩN+1 = {x ∈ R2 : x2 > ζN+1}. Let fi be the restriction of f in Ωi and
vanish outside Ωi . It is clear that

u(x) =−
∫

R2

f (y)G(x , y)d y =−
N
∑

i=1

∫

Ωi

fi(y)G(x , y)d y, G(x , y) =
i

4
H(1)0 (k|x − y|).

Let f̄1 = f1. The key idea of STDDM is to define a source transfer operator Ψi+1 that
transfers the source from Ωi to Ωi+1 in the sense that

∫

Ωi

f̄i(y)G(x , y)d y =

∫

Ωi+1

Ψi+1( f̄i)(y)G(x , y)d y, ∀x ∈ Ω j , j > i+ 1. (1.3)

Then for f̄i+1 = fi+1+Ψi+1( f̄i) we have

u(x) =−
∫

ΩN

fN (y)G(x , y)d y −
∫

ΩN−1

f̄N−1(y)G(x , y)d y, ∀x ∈ ΩN . (1.4)

The solution u in ΩN only involves the sources in ΩN and ΩN−1 and thus can be solved
locally by using the PML method defined outside only two layers ΩN and ΩN−1. Once the
solution u in ΩN is known, the solution in the other layers can be computed successively
by solving the half-space Helmholtz problem using the transferred sources. This heuristic
idea is made rigorous in the setting of PML method in [11].

The layout of the paper is as follows. In section 2 we will review the basic ingredi-
ents of the PML method and STDDM method for constant wave number. In sections 3-5
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we propose STDDM for solving Helmholtz problems in two-layered media, the Helmholtz
scattering problems with bounded scatterer, and Helmholtz problems in 3D unbounded
domains separately. The details of STDDM for each extension is provided and numerical
examples are included to show the effective behavior of STDDM as a preconditioner.

2. Review of STDDM

In this section we first recall some basic facts of the PML method and then introduce the
STDDM algorithm. Let the source f be supported inside Bl = {x ∈ R2 :

�

�x1

�

� < l1,
�

�x2

�

� <

l2}. It is known that the solution of the Helmholtz equation (1.1) with the Sommerfeld
radiation condition (1.2) has the following integral representation

u(x) =−
∫

R2

f (y)G(x , y)d y in R2, G(x , y) =
i

4
H(1)0 (k|x − y|). (2.1)

Here H(1)0 (z), for z ∈ C, is the first Hankel function of order zero and G(x , y) is the funda-
mental solution of the Helmholtz equation of constant wave number k

∆u+ k2u=−δy(x) in R2.

The integral in (2.1) is well-defined if f is a smooth function with compact support in
R2. In the general case when f ∈ H−1

comp(R
2), it should be understood in the sense of

distribution.
The PML method is based on the complex coordinate stretching outside the domain

Bl [7]. Let α1(x1) = 1+ iσ1(x1),α2(x2) = 1+ iσ2(x2) be the model medium property,
where σ j is a bounded piecewise continuous function on R and satisfies, for j = 1, 2,

σ j ≥ 0, σ j(t) = σ j(−t), σ j = 0 for |t| ≤ l j , and σ j ≥ γ0 > 0 for |t| ≥ M , (2.2)

where M > max(l1, l2) is a constant. Denote by x̃(x) = ( x̃(x1), x̃(x2))T the complex
coordinate, where

x̃(x j) =

∫ x j

0

α j(t)d t = x j + i

∫ x j

0

σ j(t)d t, j = 1,2. (2.3)

Notice that x̃ j(x j) depends only on x j and for this reason the method is called the uniaxial
PML method. For any z ∈ C, denote by z1/2 the analytic branch of

p
z such that Re (z1/2)>

0 for any z ∈ C\[0,+∞). We define the complex distance

ρ( x̃ , ỹ) =
�

( x̃(x1)− ỹ(y1))
2+ ( x̃(x2)− ỹ(y2))

2
�1/2

.

Now we define

ũ(x) = u( x̃) =−
∫

R2

f (y)G( x̃ , ỹ)d y, ∀x ∈ R2. (2.4)
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Since f is supported inside Bl we know that ỹ(y) = y and ũ is well-defined in H1
loc(R

2)
and decays exponentially as |x | → ∞. Obviously ũ = u in Bl and ũ satisfies ∆̃ũ+ k2ũ = f
in R2, where ∆̃ is the Laplacian with respect to the stretched coordinate x̃ . This yields by
the chain rule that ũ satisfies the PML equation

J−1∇ · (A∇ũ) + k2ũ= f in R2, (2.5)

where A(x) = diag
�

α2(x2)
α1(x1)

, α1(x1)
α2(x2)

�

is a diagonal matrix and J(x) = α1(x1)α2(x2).
Let BL = (−l1− d1, l1+ d1)× (−l2− d2, l2+ d2), d1, d2 > 0, be the rectangle including

Bl . The PML problem whose solution approximates ũ in (2.4) in the bounded domain BL
is defined by

∇ · (A∇û) + k2Jû = f in BL , (2.6)

û = 0 on ∂ BL . (2.7)

Here (2.6) is obtained by multiplying (2.5) by J and noticing that J f = f since f is
supported in Bl where J = 1.

Now we introduce the STDDM method for the truncated PML equation (2.6)-(2.7). We
start by introducing some notation. For any a, b ∈ R, we denote Ω(a, b) = {x ∈ R2 : a <
x2 < b}. We also use the notation Ω(−∞, b) for the half-space {x ∈ R2 : x2 < b}. Let−l2 =
ζ1 < ζ2 < · · · < ζN+1 = l2, N > 1, be a division of the interval (−l2, l2). For simplicity, we
assume ζi = ζ1 + (i − 1)∆ζ, where ∆ζ = 2l2/N . The general case of non-equally spaced
division can be considered similarly. Let Ωi = Ω(ζi ,ζi+1) and Γi = {x ∈ R2 : x2 = ζi}.

We define fi = f |Ωi
in Ωi and fi = 0 in R2\Ω̄i . Denote by βi = βi(x2) a smooth function

defined in Ωi such that

βi = 1,β ′i = 0 on Γi , βi = β
′
i = 0 on Γi+1, |β ′i | ≤ C(∆ζ)−1 in (ζi ,ζi+1). (2.8)

We will also use the PML complex coordinate stretching outside the domain (−l1, l1) ×
(ζi ,ζi+2) as x̃ i(x) = ( x̃ i(x1), x̃ i(x2))T , where x̃ i(x1) = x̃(x1) and

x̃ i(x2) =







x2+ i
∫ x2

ζi+2
σ2(t + ζN − ζi+2)d t if x2 > ζi+2,

x2 if ζi ≤ x2 ≤ ζi+2,
x2+ i

∫ x2

ζi
σ2(t − ζi + ζ1)d t if x2 < ζi .

(2.9)

We denote Ai(x) = diag

�

x̃ i(x2)′

x̃ i(x1)′
,

x̃ i(x1)′

x̃ i(x2)′

�

and Ji(x) = x̃ i(x1)′ x̃ i(x2)′.

The STDDM consists of two algorithms, the source transfer algorithm and the wave
expansion algorithm.

Algorithm 2.1. (SOURCE TRANSFER)
1◦ Let f̂1 = f1 in Ω1;
2◦ For i = 1, · · · , N − 2, compute f̂i+1 = fi+1+ Ψ̂i+1( f̂i) in Ωi+1 ∩ BL , where

Ψ̂i+1( f̂i) =

¨

J−1
i ∇ · (Ai∇(βi+1ûi)) + k2(βi+1ûi) in Ωi+1 ∩ BL ,

0 elsewhere,
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and ûi solves the problem

J−1
i ∇ · (Ai∇ûi) + k2ûi = − f̂i in ΩPML

i , (2.10)

ûi = 0 on ∂ΩPML
i , (2.11)

where ΩPML
i = (−l1− d1, l1+ d1)× (ζi − d2,ζi+2+ d2).

Algorithm 2.2. (WAVE EXPANSION)
1◦ Solve v̂N such that

J−1
N−1∇ · (AN−1∇v̂N ) + k2 v̂N = fN + f̂N−1 in ΩPML

N−1, (2.12)

v̂N = 0 on ∂ΩPML
N−1. (2.13)

2◦ For i = N − 1, · · · , 2, find v̂i such that

J−1
i−1∇ · (Ai−1∇v̂i) + k2 v̂i = fi + f̂i−1 in DPML

i , (2.14)

v̂i = v̂i+1 on ∂ DPML
i ∩Γi+1, (2.15)

v̂i = 0 on ∂ DPML
i \Γi+1, (2.16)

where DPML
i = (−l1− d1, l1+ d1)× (ζi−1− d2,ζi+1).

We make the following assumption on the medium property which is rather mild in
practical applications.

(H1) l1 ≤ l2, d1 = 2d2, and
∫ l1+d2

l1

σ1(t)d t =

∫ l2+d2

l2

σ2(t)d t = σ̄,

∫ l1+d1

l1+d2

σ1(t)d t ≥ σ̄.

The following theorem proved in [11] provides the theoretical justification of the above
STDDM method.

Theorem 2.1. Let (H1) be satisfied. Let v̂ = v̂N in Ω(ζN ,+∞)∩ BL , v̂ = v̂i in Ωi ∩ BL for all
i = 3, · · · , N − 1, and v̂ = v̂2 in Ω(−∞,ζ2)∩ BL . We have

‖û− v̂‖H1(BL) ≤ Ce−
1
2

kγσ̄‖ f ‖H1(Bl )′

where γ= d2
p

d2
2+(2l2+d1+d2)2

.

Let T be the solution operator of (2.6)-(2.7) defined by T ( f ) = û and T̂ be the output
operator of the the STDDM defined by T̂ ( f ) = v̂. Then Theorem 2.1 indicates that T̂ is a
good approximation of T if the PML parameters are chosen such that e−

1
2

kγσ̄ is sufficiently
small. In this case the discretization of T̂ will be a good preconditioner of the correspond-
ing discretization of T . This idea has been confirmed in [11] for Helmholtz problems with
constant wave number in 2D unbounded domains. In the following we will extend the
STDDM to solve the Helmholtz problems in two-layered media, the Helmholtz scattering
problems with bounded scatterer, and Helmholtz problems in 3D unbounded domains.
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3. Helmholtz problems in two-layered media

We consider in this section the Helmholtz problems in two-layered media in 2D. The
method can be extended to 3D cases when combining the SDTTM method to be discussed
in Section 5. Suppose the wave number k in (1.1) is defined by:

k(x) =

¨

k1, x2 < 0;
k2, x2 ≥ 0.

Based on the proof in [11], we can see that there is no need to just transfer the source
from bottom to up. In fact we can also transfer source from bottom and from up to the
middle simultaneously. This is particularly important for the case of two-layered media.
The most important idea is that the times of transferring source N should be as few as
possible.

Let the interface between k1 and k2 is included ΩM and N ≥ 5. We propose the
following source transfer algorithm for the Helmholtz problems in two-layered media.

Algorithm 3.1. (SOURCE TRANSFER FOR THE TWO-LAYERED PROBLEM)
1◦ Let f̂1 = f1 in Ω1 and f̂N = fN in ΩN ;
2◦ For i = 1, · · · , M − 2, compute f̂i+1 = fi+1+ Ψ̂i+1( f̂i) in Ωi+1 ∩ BL , where

Ψ̂i+1( f̂i) =

¨

J−1
i ∇ · (Ai∇(βi+1ûi)) + k2(βi+1ûi) in Ωi+1 ∩ BL ,

0 elsewhere,

and ûi solves the problem

J−1
i ∇ · (Ai∇ûi) + k2ûi = − f̂i in Ω̂PML

i , (3.1)

ûi = 0 on ∂ Ω̂PML
i , (3.2)

where Ω̂PML
i = (−l1− d1, l1+ d1)× (ζi − d2,ζi+2).

3◦ For i = N , · · · , M + 2, compute f̂i−1 = fi−1+ Ψ̂i−1( f̂i) in Ωi−1 ∩ BL , where

Ψ̂i−1( f̂i) =

¨

J−1
i−1∇ · (Ai−1∇(βi−1ûi)) + k2(βi−1ûi) in Ωi−1 ∩ BL ,

0 elsewhere,

and ûi solves the problem

J−1
i−1∇ · (Ai−1∇ûi) + k2ûi = − f̂i in Ω̂PML

i , (3.3)

ûi = 0 on ∂ Ω̂PML
i , (3.4)

where Ω̂PML
i = (−l1− d1, l1+ d1)× (ζi−1,ζi+1+ d2).

Clearly the step 2◦ and 3◦ can be done in parallel. After the completion of Algorithm
3.1, the source fi , i = 1, · · · , M − 2, is equivalently transferred to the source Ψ̂M−1( f̄M−2)
in ΩM−1 and the source fi , i = N , · · · , M + 2, is equivalently transferred to the source
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Ψ̂M+1( f̄M+2) in ΩM+1. Now we define the PML complex coordinate stretching outside the
domain (−l1, l1)× (ζM−1,ζM+2) as x̃M (x) = ( x̃M (x1), x̃M (x2))T , where x̃M (x1) = x̃(x1)
and

x̃M (x2) =







x2+ i
∫ x2

ζM+2
σ2(t + ζN − ζM+2)d t if x2 > ζM+2,

x2 if ζM−1 ≤ x2 ≤ ζM+2,
x2+ i

∫ x2

ζM−1
σ2(t − ζM−1+ ζ1)d t if x2 < ζM−1.

(3.5)

We denote AM (x) = diag

�

x̃M (x2)′

x̃M (x1)′
,

x̃M (x1)′

x̃M (x2)′

�

and JM (x) = x̃M (x1)′ x̃M (x2)′. From this

definition, we have the following wave expansion algorithm for Helmholtz problems in
two-layered media.

Algorithm 3.2. (WAVE EXPANSION FOR THE TWO-LAYERED PROBLEM)
1◦ Solve v̂M such that

J−1
M ∇ · (AM∇v̂M ) + k2 v̂M = fM + f̂M−1+ f̂M+1 in Ω̂PML

M , (3.6)

v̂M = 0 on ∂ Ω̂PML
M , (3.7)

where Ω̂PML
M = (−l1− d1, l1+ d1)× (ζM−1− d2,ζM+2+ d2).

2◦ For i = M − 1, · · · , 2, find v̂i such that

J−1
i−1∇ · (Ai−1∇v̂i) + k2 v̂i = fi + f̂i−1 in D̂PML

i , (3.8)

v̂i = v̂i+1 on ∂ D̂PML
i ∩Γi+1, (3.9)

v̂i = 0 on ∂ D̂PML
i \Γi+1, (3.10)

where D̂PML
i = (−l1− d1, l1+ d1)× (ζi−1− d2,ζi+1).

3◦ For i = M + 1, · · · , N − 1, find v̂i such that

J−1
i ∇ · (Ai∇v̂i) + k2 v̂i = fi + f̂i+1 in D̂PML

i , (3.11)

v̂i = v̂i−1 on ∂ D̂PML
i ∩Γi , (3.12)

v̂i = 0 on ∂ D̂PML
i \Γi , (3.13)

where D̂PML
i = (−l1− d1, l1+ d1)× (ζi ,ζi+2+ d2).

After we obtain v̂i , i = 2, ..., N−1, let v̂ = v̂M in Ω(ζM−1,ζM+1)∩BL , v̂ = v̂i in Ωi∩BL for
all i = 3, · · · , M−2, v̂ = v̂2 in Ω(−∞,ζ2)∩BL , v̂ = v̂i in Ωi ∩BL for all i = M+2, · · · , N−2
and v̂ = v̂N−1 inΩ(ζN−1,+∞)∩BL . A similar result to Theorem 2.1 for the case two-layered
media can be proved

‖û− v̂‖H1(BL) ≤ Ce−
1
2

kminγσ̄‖ f ‖H1(Bl )′ ,

where kmin = min(k1,k2) and γ= d2
p

d2
2+(2l2+d1+d2)2

. Here we omit the details.
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Now we report a numerical example to show the performance of our method. In the
remainder of this paper we will always use our STDDM as the preconditioner of GMRES
method. The linear system of equations in each subdomain is solved by MUMPS [1, 2].
The computations are all carried out in MATLAB on Dell Precision T5500 with Intel(R)
Xeon(R)CPU 2.67GHz and 72GB memory. We denote Ni ter the number of iterations of the
preconditioned GMRES method and Tsol ve the overall solution time in seconds.

Example 3.1. Let L := l1 + d1 = l2 + d2 = 0.5 and choose the thickness of the PML
layer d1 = 2λ and d2 = λ. We take the medium property

σ j(t) = σ̃ j

� |t| − l j

d2

�m

, m≥ 1 integer, σ̃ j > 0 is a constant, j = 1,2,

where σ̃1, σ̃2 are determined from σ̄ by σ̃ j = (m+ 1)σ̄/d2, j = 1,2.

We use central finite difference scheme on a uniform n× n grid to discretize the PML
problem (2.6)-(2.7) in BL . The number of points in each dimension n should be pro-
portional to the wave number k since a constant number of points is required for each
wavelength. The grid spacing is h so that L = (n+1)h/2. Let d2 = (p+1/2)h and ∆ζ= ch
which requires c = (n− 2p)/N , N is the number of layers (see Figure 3.1 for an example
of 5 layers, c = 3 and p = 1). The PML equations in algorithms 3.1 and 3.2 are discretized
using the central finite difference scheme. The function βi in Ωi in the definition of the
source transfer algorithm is discretized by setting βi being one in the first c1 rows near
Γi and zero in the last c2 rows near Γi+1 (c1, c2 > 0 and c1 + c2 = c). Ψ̂i+1( f̂i) is then
discretized by using a central finite difference scheme. We use our STDDM as the precon-
ditioner of the GMRES method for solving the discrete problem of (2.6)-(2.7). The relative
residue tolerance in GMRES solver is set to be 10−10.

We set λ = 2π/kmax, where kmax = max(k1,k2), and choose σ̄ such that the exponen-
tially decaying factor

e−
1
2

kminγσ̄ = e
− kminλσ̄

2
p

2λ2+2λ+1 ≤ 10−10.

We discretize one direction with n = kmaxq/2π points and thus the number of un-
knowns is (max(k1, k2)q/2π)2. We set c = q, p = q, c1 = 4 and c2 = c−4. We set the exter-
nal force f (x) to be a narrow Gaussian point source located at (r1, r2) = (−0.25,−0.25):

f (x1, x2) = e−(
4k
π
)2((x1−r1)2+(x2−r2)2).

We test two cases k2 = k1/3 and k2 = k1/10. The numerical results are listed in Table
1 and Table 2. We show the real part of the solutions in these two cases in Figure 3.2. The
results show clearly that STDDM method works very well for two-layered media Helmholtz
problems.
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Figure 3.1: An example of discretization grid in 2D.

4. Helmholtz scattering problems

In this section, we extend the STDDM to solve the following Helmholtz scattering prob-
lems:

∆u+ k2u = f in R2\D, (4.1)
∂ u

∂ nD
= −g on ΓD, (4.2)

r1/2
�∂ u

∂ r
− iku

�

→ 0 as r = |x | →∞. (4.3)

Here D ⊂ R2 is a bounded domain with Lipschitz boundary ΓD, g ∈ H−1/2(ΓD) is deter-
mined by the incoming wave, and nD is the unit outer normal to D. We remark that the
results can be extended to solve the scattering problems with other boundary conditions,
such as Dirichlet or the impedance boundary condition on ΓD.

Let Bl contains scatterer D. By using the same PML settings and the notation in section
2, we have the corresponding PML problem for (4.1)-(4.3):

∇ · (A∇û) + k2Jû = f in BL\D, (4.4)
∂ û

∂ nD
= −g on ΓD, (4.5)

û = 0 on ∂ BL . (4.6)

Let −l2 = ζ1 < ζ2 < · · · < ζM ,ζM = −ζM+1,ζM+1 < ζM+2 < · · · < ζN+1 = l2,
N ≥ 5, be a division of the interval (−l2, l2). We assume ζi = ζ1 + (i − 1)∆ζ with ∆ζ =
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k1/2π q NOF Ni ter Tsol ve

50 10 5002 5 5.69
100 10 10002 6 28.71
200 10 20002 8 151.12
400 10 40002 10 773.37

Table 1: Numerical results for the case k2 = k1/3.

k1/2π q NOF Ni ter Tsol ve

50 10 5002 7 9.95
100 10 10002 8 47.84
200 10 20002 9 220.10
400 10 40002 12 1209.98

Table 2: Numerical results for the case k2 = k1/10.

Figure 3.2: The real part of the solution for different choices of k1 and k2 when q = 10. Left: k1/2π= 60,
k2 = k1/3; Right: k1/2π= 60, k2 = k1/10.

(l2+ζM )/(M−1) for i ≤ M and ζi = ζM+1+(i−M−1)∆ζ with ∆ζ= (l2+ζM )/(N−M)
for i ≥ M + 1. Again we denote Ωi = Ω(ζi ,ζi+1) for i = 1, · · · , N + 1.

Let the scatterer D be included in ΩM , then we can directly use the STDDM (Algorithms
3.1 and 3.2) to solve PML equation (4.4)-(4.6). The only difference is that in the first step
of Algorithm 3.2, we should solve v̂M such that

J−1
M ∇ · (AM∇v̂M ) + k2 v̂M = fM + f̂M−1+ f̂M+1 in Ω̂PML

M \D̄, (4.7)
∂ vM

∂ nD
= −g on ΓD, (4.8)

v̂M = 0 on ∂ Ω̂PML
M , (4.9)

where Ω̂PML
M = (−l1− d1, l1+ d1)× (ζM−1− d2,ζM+1+ d2).

We will use STDDM to solve the PML equation (4.7)-(4.9). First we introduce some
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D

Figure 4.3: An example of STDDM for Helmholtz scattering problems.

notation. Let −l1 = ζ̄1 < ζ̄2 < · · · < ζ̄M̄ , ζ̄M̄ = −ζ̄M̄+1, ζ̄M̄+1 < ζ̄M̄+2 < · · · < ζ̄N̄+1 = l1,
N̄ ≥ 5, be a division of the interval (−l1, l1). For simplicity, we assume ζ̄i = ζ̄1+(i−1)∆̄ζ
with ∆̄ζ = (l1 + ζ̄M̄ )/(M̄ − 1) for i ≤ M̄ and ζ̄i = ζ̄M̄+1 + (i − M̄ − 1)∆̄ζ with ∆̄ζ =
(l1 + ζ̄M̄ )/(N̄ − M̄) for i ≥ M̄ + 1. Let Ω̆i = (ζ̄i , ζ̄i+1) × (ζM−1 − d2,ζM+1 + d2) and
Γ̆i = {x ∈ R2 : x1 = ζ̄i}. We assume D̄ ⊂ Ω̆M̄ .

Define F = fM + f̂M−1 + f̂M+1. Similar to the definition of fi and βi , we can define Fi

and β̄i as follows. Let Fi = F |Ω̆i
in Ω̆i and Fi = 0 in Ω̂PML

M \Ω̆i and β̄i = β̄i(x1) a smooth
function defined in Ω̆i such that

β̄i = 1, β̄ ′i = 0 on Γ̆i , β̄i = β̄
′
i = 0 on Γ̆i+1, |β̄ ′i | ≤ C(∆̄ζ)−1 in (ζ̄i , ζ̄i+1). (4.10)

We define the PML complex coordinate stretching outside the domain (ζ̄i , ζ̄i+2)× (ζM−1−
d2,ζM+1+ d2) as x̆ i(x) = ( x̆ i(x1), x̆ i(x2))T , i 6= M̄ , where x̆ i(x2) = x̃M (x2) and

x̆ i(x1) =







x1+ i
∫ x1

ζ̄i+2
σ1(t + ζ̄N̄ − ζ̄i+2)d t if x1 > ζ̄i+2,

x1 if ζ̄i ≤ x1 ≤ ζ̄i+2,
x1+ i

∫ x1

ζ̄i
σ1(t − ζ̄i + ζ̄1)d t if x1 < ζ̄i .

(4.11)

We denote Ăi(x) = diag

�

x̆ i(x2)′

x̆ i(x1)′
,

x̆ i(x1)′

x̆ i(x2)′

�

and J̆i(x) = x̆ i(x1)′ x̆ i(x2)′.

For i = M̄ , we define the PML complex coordinate stretching outside the domain
(ζ̄M̄−1, ζ̄M̄+2)× (ζM−1 − d2,ζM+1 + d2) as x̆M̄ (x) = ( x̆M̄ (x1), x̆M̄ (x2))T , where x̆M̄ (x2) =
x̃M (x2), and

x̆M̄ (x1) =







x1+ i
∫ x1

ζ̄M̄+2
σ1(t + ζ̄N̄ − ζ̄M̄+2)d t if x1 > ζ̄M̄+2,

x1 if ζ̄M̄−1 ≤ x1 ≤ ζ̄M̄+2,
x1+ i

∫ x1

ζ̄M̄−1
σ1(t − ζ̄M̄−1+ ζ̄1)d t if x1 < ζ̄M̄−1.

(4.12)

We denote ĂM̄ (x) = diag

�

x̆M̄ (x2)′

x̆M̄ (x1)′
,

x̆M̄ (x1)′

x̆M̄ (x2)′

�

and J̆M̄ (x) = x̆M̄ (x1)′ x̆M̄ (x2)′.
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Then we have the following STDDM for solving PML equation (4.7)-(4.9).

Algorithm 4.1. (SOURCE TRANSFER FOR HELMHOLTZ SCATTERING PROBLEM)
1◦ Let F̂1 = F1 in Ω̆1 and F̂N̄ = FN̄ in Ω̆N ;
2◦ For i = 1, · · · , M̄ − 2, compute F̂i+1 = Fi+1+ Ψ̄i+1(F̂i) in Ω̆i+1, where

Ψ̄i+1(F̂i) =

¨

J̆−1
i ∇ · (Ăi∇(β̄i+1ûi)) + k2(β̄i+1ûi) in Ω̆i+1,

0 elsewhere,

and ûi solves the problem

J̆−1
i ∇ · (Ăi∇ûi) + k2ûi = −F̂i in Ω̆PML

i , (4.13)

ûi = 0 on ∂ Ω̆PML
i , (4.14)

where Ω̆PML
i = (ζ̄i − d1, ζ̄i+2)× (ζM−1− d2,ζM+1+ d2).

3◦ For i = N , · · · , M̄ + 2, compute F̂i−1 = Fi−1+ Ψ̄i−1(F̂i) in Ω̆i−1, where

Ψ̄i−1(F̂i) =

¨

J̆−1
i−1∇ · (Ăi−1∇(βi−1ûi)) + k2(β̄i−1ûi) in Ω̆i−1,

0 elsewhere,

and ûi solves the problem

J̆−1
i−1∇ · (Ăi−1∇ûi) + k2ûi = −F̂i in Ω̆PML

i , (4.15)

ûi = 0 on ∂ Ω̆PML
i , (4.16)

where Ω̆PML
i = (ζ̄i−1, ζ̄i+1+ d1)× (ζM−1− d2,ζM+1+ d2).

Algorithm 4.2. (WAVE EXPANSION FOR HELMHOLTZ SCATTERING PROBLEM)
1◦ Solve v̄M̄ such that

J̆−1
M̄
∇ · (ĂM̄∇v̄M̄ ) + k2 v̄M̄ = FM̄ + F̂M̄−1+ F̂M̄+1 in Ω̆PML

M̄ , (4.17)

v̄M̄ = 0 on ∂ Ω̆PML
M̄ , (4.18)

where Ω̆PML
M̄
= (ζ̄M̄−1− d1, ζ̄M̄+2+ d1)× (ζM−1− d2,ζM+1+ d2).

2◦ For i = M̄ − 1, · · · , 2, find v̄i such that

J̆−1
i−1∇ · (Ăi−1∇v̄i) + k2 v̄i = Fi + F̂i−1 in D̆PML

i , (4.19)

v̄i = v̄i+1 on ∂ D̆PML
i ∩ Γ̆i+1, (4.20)

v̄i = 0 on ∂ D̆PML
i \Γ̆i+1, (4.21)

where D̆PML
i = (ζ̄i−1− d1, ζ̄i+1)× (ζM−1− d2,ζM+1+ d2).

3◦ For i = M̄ + 1, · · · , N − 1, find v̄i such that

J̆−1
i ∇ · (Ăi∇v̄i) + k2 v̄i = Fi + F̂i+1 in D̆PML

i , (4.22)

v̄i = v̄i−1 on ∂ D̆PML
i ∩ Γ̆i , (4.23)

v̄i = 0 on ∂ D̆PML
i \Γ̆i , (4.24)

where D̆PML
i = (ζ̄i , ζ̄i+2+ d1)× (ζM−1− d2,ζM+1+ d2).
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k/2π q NOF Ni ter Tsol ve

40 10 4002− 402 6 4.63
80 10 8002− 402 7 21.33
160 10 16002− 402 8 98.95
320 10 32002− 402 10 511.73

Table 3: Numerical results for different wave numbers k with external force f (x) located at
(−0.25,−0.25).

k/2π q NOF Ni ter Tsol ve

40 10 4002− 402 6 4.60
80 10 8002− 402 7 21.20
160 10 16002− 402 8 99.70
320 10 32002− 402 9 509.68

Table 4: Numerical results for different wave numbers k with external force f (x) located at (−0.25,0.0).

Let v̆M = v̄M̄ in Ω̆M̄ , v̆M = v̄i in Ω̆i for all i = 3, · · · , M̄ − 1, v̆M = v̄2 in (−l1 − d1, ζ̄3)×
(ζM−1 − d2,ζM+1 + d2), v̆M = v̄i in Ω̆i for all i = M̄ + 1, · · · , N̄ − 2 and v̆M = v̄N̄−1 in
(ζ̄N̄−1, l1+d1)×(ζM−1−d2,ζM+1+d2). We obtain v̆M as the approximation of the solution
v̂M of the problem (4.7)-(4.9)can get v̆M . By combining Algorithms 3.1 to 4.2, we can solve
the PML equation (4.4)-(4.6)by STDDM.

Example 4.1. Let L := l1 + d1 = l2 + d2 = 0.5 and choose the thickness of the PML
layer d1 = d2 = λ, where λ = 2π/k is the wavelength. We suppose the scatterer is a box
located in the center of domain [−0.5,0.5]2. The length and width of the box are both
4 wavelengths. In the following tests, we suppose that there is no incoming wave, which
means g(x) = 0. We test two cases: the external force f (x) is a narrow Gaussian point
source located at (x , y) = (−0.25,−0.25) and (x , y) = (−0.25,0.0).

We take the medium property σ j , j = 1,2, the same as that of Example 3.1. We use the
same numerical settings as in Example 3.1 in Algorithms 3.1 and 3.2. In Algorithms 4.1
and 4.2, we also use finite difference scheme and the similar settings as that in Example
3.1. We use STDDM as the preconditioner of the GMRES method for solving the discrete
problem of (4.4)-(4.6). The relative residue tolerance in GMRES solver is set to be 10−10.
We choose σ̄ such that the exponentially decaying factor

e−
1
2

kγσ̄ = e
− kλσ̄

2
p
λ2+1 ≤ 10−10.

We use central finite difference scheme on a uniform n× n grid to discretize the PML
problem (4.4)-(4.6) in BL . We discretize one wavelength with q points, such that one
direction with n= kq/2π points. So the number of unknowns is (kq/2π)2− (4q)2. We list
the results of these two cases in Tables 3 and 4. The real part of the solutions are given
in Figure 4.4. The results also confirm that STDDM works very well for the Helmholtz
scattering problems.
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Figure 4.4: The real part of the solutions of scattering problem. k/2π= 40, q = 10. Left: The external
force located at (0.25,0.25); Right: The external force located at (0.25, 0.5).

5. Helmholtz problems in 3D

In this section we consider the STDDM method for the following 3D Helmholtz prob-
lems:

∆u+ k2u = f in R3,
(5.1)

r
�∂ u

∂ r
− iku

�

→ 0 as r = |x | →∞, (5.2)

where k > 0 is the wave number and f ∈ H−1
comp(R

3), that is, f ∈ H−1(R3) and has compact
support.

Let the source f be supported inside Bl = {x ∈ R3 :
�

�x1

�

� < l1,
�

�x2

�

� < l2,
�

�x3

�

� < l3}
and α3(x3) = 1+ iσ3(x3), σ3 = σ1. Similar to the 2D problems, we have that the PML
equation in unbounded domain for (5.1)-(5.2)

J−1∇ · (A∇ũ) + k2ũ= f in R3, (5.3)

where A(x) = diag
�

α2(x2)α3(x3)
α1(x1)

, α1(x1)α3(x3)
α2(x2)

, α1(x1)α2(x2)
α3(x3)

�

is a diagonal matrix and J(x) =
α1(x1)α2(x2)α3(x3).

Let BL = (−l1− d1, l1+ d1)× (−l2− d2, l2+ d2)× (−l3− d3, l3+ d3), d1, d2, d3 > 0, be
the box that includes Bl . Then the PML problem whose solution approximates ũ in (5.3)
in the bounded domain BL is defined by

∇ · (A∇û) + k2Jû = f in BL , (5.4)

û = 0 on ∂ BL . (5.5)

Throughout this section we assume that the medium property satisfies
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(H2) l1 = l2 = l3, d1 = d2 = d3, and

∫ l1+d2

l1

σ1(t)d t =

∫ l2+d2

l2

σ2(t)d t =

∫ l3+d3

l3

σ3(t)d t = σ̄.

For any a, b ∈ R, we denote Ω(a, b) = {x ∈ R3 : a < x3 < b}. We also use the notation
Ω(−∞, b) for the half-space {x ∈ R3 : x3 < b}. Let −l3 = ζ1 < ζ2 < · · · < ζN+1 = l3,
N > 1, be a division of the interval (−l3, l3). We also assume ζi = ζ1 + (i − 1)∆ζ,where
∆ζ = 2l3/N . Let Ωi = Ω(ζi ,ζi+1) and Γi = {x ∈ R3 : x3 = ζi}. We define fi = f |Ωi

in Ωi

and fi = 0 in R3\Ω̄i . Denote by βi = βi(x3) a smooth function defined in Ωi such that

βi = 1,β ′i = 0 on Γi , βi = β
′
i = 0 on Γi+1, |β ′i | ≤ C(∆ζ)−1 in (ζi ,ζi+1). (5.6)

We also define the PML complex coordinate stretching outside the domain (−l1, l1)×
(−l2, l2)×(ζi ,ζi+2) as x̃ i+1(x) = ( x̃ i+1(x1), x̃ i+1(x2), x̃ i+1(x3))T , where x̃ i+1(x1) = x̃(x1),
x̃ i+1(x2) = x̃(x2) and

x̃ i+1(x3) =







x3+ i
∫ x3

ζi+2
σ3(t + ζN − ζi+2)d t if x3 > ζi+2,

x3 if ζi ≤ x3 ≤ ζi+2,
x3+ i

∫ x3

ζi
σ3(t − ζi + ζ1)d t if x3 < ζi .

(5.7)

We denote Ai(x) = diag

�

x̃ i(x2)′ x̃ i(x3)′

x̃ i(x1)′
,

x̃ i(x1)′ x̃ i(x3)′

x̃ i(x2)′
,

x̃ i(x1)′ x̃ i(x2)′

x̃ i(x3)′

�

and Ji(x) = x̃ i(x1)′ x̃ i(x2)′ x̃ i(x3)′.

To obtain the STDDM for Helmholtz problems in 3D, we just need to set ΩPML
i = (−l1−

d1, l1+ d1)× (−l2− d2, l2+ d2)× (ζi − d3,ζi+2+ d3) in Algorithm 2.1 and DPML
i = (−l1−

d1, l1+d1)×(−l2−d2, l2+d2)×(ζi−1−d3,ζi+1) in Algorithm 2.2 to obtain new algorithms
for the source transfer and wave expansion algorithms.

We remark that there exists another strategy for the 3D problem. In the new Algorithms
2.1 and 2.2, we need to solve a subproblem defined in domain (−l1− d1, l1+ d1)× (−l2−
d2, l2 + d2)× (a, b), where a, b is different in each subproblem. This subproblem can be
solved again by the STDDM method along x1 or x2 direction, just like the method we use
in solving the scattering problem in section 4. Here we omit the details.

Example 5.1. Let L := l1 + d1 = l2 + d2 = L3 + d3 = 0.5 and choose the thickness of
the PML layer d1 = d2 = d3 = λ, where λ= 2π/k is the wavelength. We also take that the
medium property

σ j(t) = σ̃ j

� |t| − l j

d2

�m

, m≥ 1 integer, σ̃ j > 0 is a constant, j = 1, 2,3,

where σ̃1, σ̃2, and σ̃3 are determined from σ̄ by σ̃ j = (m+ 1)σ̄/d2, j = 1, 2,3.

We set m= 2 and choose σ̄ such that the exponentially decaying factor e−
1
2

kγσ̄ ≤ 10−10,
where γ= λp

λ2+1
.
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k/2π q NOF Ni ter Tsol ve

12 8 963 8 1447.43
18 8 1443 10 5266.80
24 8 1923 11 15706.33

Table 5: Numerical results for different wave numbers k in 3D.

Figure 5.5: The real part of the solution shen k/2π = 12 and q = 8. Left: Near plane z = 0.0; Right:
Near plane x = 0.0, y = 0.25 and z = 0.0.

We use central finite difference scheme on a uniform n×n×n grid to discretize the PML
problem (5.4)-(5.5) in BL . The grid spacing is h so that L = (n+1)h/2. Let d3 = (p+1/2)h
and∆ζ= ch which requires c = (n−2p)/N , N is the number of layers. The PML equations
in the new source transfer and wave expansion algorithm are discretized using the central
finite difference scheme. The function βi in Ωi in the definition of the source transfer
algorithm is discretized by setting βi being one in the first c1 planes near Γi and zero in the
last c2 planes near Γi+1 (c1, c2 > 0 and c1 + c2 = c). Ψ̂i+1( f̂i) is also discretized by using
central finite difference scheme. We use our STDDM as the preconditioner of the GMRES
method for solving the discrete problem of (5.4)-(5.5). The relative residue tolerance in
GMRES solver is set to be 10−12. We discretize one wavelength with q points, such that
one direction with n = kq/2π points. Then the number of unknowns is (qk/2π)3. We set
the external force f (x) is a narrow Gaussian point source located at the origin:

f (x1, x2, x3) = e−(
4k
π
)2((x1−r1)2+(x2−r2)2+(x3−r3)2).

We also set c = q, p = q, c1 = 4 and c2 = c− 4.

From Table 5 we observe that STDDM works quite well in this 3D case. We show the
real part of solution when k/2π= 12 and q = 8 in Figure 5.5.
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6. Conclusions

In this paper we have extended the STDDM to solve the Helmholtz problems in two-
layered media, the Helmholtz scattering problems with bounded scatterer, and Helmholtz
problems in 3D unbounded domains. Numerical results indicated clearly the efficiency of
STDDM as a preconditioner for solving the discretization problem of the Helmholtz prob-
lems considered. We remark that STDDM provides a general framework to decompose the
domain and construct the preconditioner in the continuous setting for wave propagation
problems in unbounded domains. The method is independent of the special meshes and
discretization methods used in the subdomains. We will extend the method to solve elec-
tromagnetic and elastic wave propagation problems in unbounded domains in forthcoming
works.

References

[1] P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L’Excellent, A fully asynchronous multifrontal solver
using distributed dynamic scheduling, SIAM Journal of Matrix Analysis and Applications, 2001,
15-41.

[2] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent and S. Pralet, Hybrid scheduling for the parallel
solution of linear systems, Parallel Computing, 2006, 136-156.

[3] J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering
problems in R2 and R3, Inter. J. Numer. Anal. Model. (2012), to appear.

[4] J.-D. Benamou and B. Després, A domain decomposition method for the Helmholtz equation and
related optimal control problems, J. Comput. Phys. 136 (1997), 68-82.

[5] J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput.
Phys. 114 (1994), 185-200.

[6] A. Brandt and I. Livshits, Wave-ray multigrid method for standing wave equations, Electronic
Trans. Numer. Anal. 6 (1997), 162-181.

[7] W.C. Chew and W. Weedon, A 3D perfectly matched medium from modified Maxwell’s equa-
tions with stretched coordinates. Microwave Opt. Tech. Lett. 7 (1994), 599-604.

[8] Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scattering
problems, SIAM J. Numer. Anal. 41 (2003), 799-826.

[9] Z. Chen and X.M. Wu, An adaptive uniaxial perfectly matched layer technique for Time-Harmonic
Scattering Problems, Numerical Mathematics: Theory, Methods and Applications, 1 (2008), 113-
137.

[10] Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-
harmonic scattering problems in two-layered media, SIAM J. Numer. Anal, 48 (2011), 2158-2185.

[11] Z, Chen and X. Xiang, A Source Transfer Domain Decomposition Method For Helmholtz Equa-
tions in Unbounded Domain, submitted.

[12] H.C. Elman, O.G. Ernst, and D.P. O’Leary, A multigrid nethod enhanced by Krylov subspace
iteration for discrete Helmholtz equations, SIAM J. Sci. Comput. 23 (2001), 1291-1315.

[13] B. Engquist and L. Ying, Sweeping preconditioner for the Helmholtz equation: Moving perfectly
matched layers, Multiscle Model. Simul. 9 (2011), 686-710.

[14] Y. A. Erlangga, Advances in iterative methods and preconditioners for the Helmholtz equation,
Arch. Comput. Methods Eng. 15 (2008), 37-66.

[15] M.J. Gander, F. Magoules, and F. Nataf, Optimized Schwarz methods without overlap for the
Helmholtz equation, SIAM J.Sci. Comput. (2002), 38-60.



18 Zhiming Chen and Xueshuang Xiang

[16] S. Kim and J.E. Pasciak, Analysis of a Cartisian PML approximation to acoustic scattering prob-
lems in R2, J. Math. Anal. Appl. 370 (2010), 168-186.

[17] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations.
Computing 60 (1998), 229-241.

[18] M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry. Proc.
Roy. Soc. Eding. 131 (2001), 1183-1207.

[19] D. Osei-Kuffuor and Y. Saad, Preconditioning Helmholtz linear systems, Technical Report, umsi-
2009-30, Minnesota Supercomputer Institute, University of Minnesota, 2009.

[20] F.L. Teixeira and W.C. Chew, Advances in the theory of perfectly matched layers, Fast and Effi-
cient Algorithms in Computational Electromagnetics, 2001, 283-346.


