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Abstract In this paper we prove the uniform convergence of the standard multigrid
V-cycle algorithm with Gauss-Seidel relaxation performed only on new nodes and their
“immediate” neighbors for discrete elliptic problems on adaptively refined finite element
meshes using the newest vertex bisection algorithm. The proof depends on sharp esti-
mates on the relationship of local mesh sizes and a new stability estimate for the space
decomposition based on Scott-Zhang interpolation operator. Extensive numerical results
are reported which confirm the theoretical analysis.
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1 Introduction

Let Ω be a bounded polygonal domain in R2 with possibly reentrant corners. Consider
the variational problem of finding u ∈ H1

0 (Ω) such that

A(u, v) = F (v) ∀v ∈ H1
0 (Ω), (1.1)

where F ∈ H−1(Ω), the dual space of H1
0 (Ω), and

A(u, v) =
∫

Ω

[p(x)∇u · ∇v + r(x)uv] dx ∀u, v ∈ H1
0 (Ω).

We assume that p ∈ C1(Ω), r ∈ C0(Ω), p(x) > 0 on Ω, and r(x) > 0 on Ω.

In this paper we study the V-cycle multigrid methods for discretized elliptic problems on
adaptively refined finite element meshes. The adaptive finite element method based on a
posteriori error estimates initiated in [1] provides a systematic way to refine or coarsen the
mesh according to the local a posteriori error estimator on the elements. Recent studies (cf.
e.g. [2], [3]) indicate that for appropriately designed adaptive finite element procedures,
the meshes and the associated numerical complexity are quasi-optimal in the sense that the
finite element discretization error is proportional to N−1/2 in terms of the energy norm and
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proportional to N−1 in terms of the maximum norm, where N is the number of degrees
of freedom of the underlying mesh. Therefore, in order to achieve an optimal solution
method for elliptic problems, it is imperative to study efficient algorithms for solving the
linear system of equations arising from the adaptive finite element discretization of elliptic
problems.

Let Mj, 0 ≤ j ≤ J , be a sequence of nested finite element meshes of Ω, Nj the set
of interior nodes of Mj , and Xj ⊂ H1

0 (Ω) the piecewise linear finite element space over
Mj with dimension nj . The distinct feature of applying multigrid methods on adaptively
refined finite element meshes is that the number of nodes of the mesh Mj may not grow
exponentially with respect to the number of the mesh refinements j. Thus the number
of operations used for the multigrid method in which the relaxation is performed on all
nodes can be as bad as O(n2

j) [4]. To reduce the computational cost, various local re-
laxation schemes are proposed in applying multigrid methods on adaptively refined finite
element meshes. Numerical experiments in [4] strongly suggest that the “local” multi-
grid algorithm which, at each level j, performs relaxation only at new nodes (i.e. the
nodes in Nj\Nj−1) and their neighboring nodes can guarantee uniform convergence of
the multigrid methods for discrete elliptic problems with smooth coefficients. Here the set
of neighboring nodes is defined conventionally as all those nodes, whose basis functions
have a support that intersects with the support of basis functions of the new nodes.

The purpose of this paper is to show that the multigrid V-cycle algorithm which per-
forms Gauss-Seidel relaxation at new nodes and the old nodes whose support of nodal
basis function have changed can already guarantee uniform convergence of the multigrid
V-cycle algorithm. Note that the set of nodes where relaxation is performed in our multi-
grid V-cycle algorithm is smaller than the set of nodes where the relaxation is performed in
the “local” multigrid V-cycle algorithm [4]. Similarly, we also obtain the uniform conver-
gence of the “local” multigrid V-cycle algorithm in [4] with Gauss-Seidel relaxations. We
recall that performing relaxation only at new nodes can not lead to uniform convergence
[5].

The proof of uniform convergence of our V-cycle algorithm is based on the practical
condition that the adaptive mesh refinements are carried out by the “newest vertex bisec-
tion” algorithm developed in [6], [7], [4] and [8]. This refinement algorithm has been
widely used in the adaptive finite element community (see e.g. [2], [3], [9]–[12]) and has
been implemented in the package ALBERT [13]. Our result is quite general and can apply
to any adaptive finite element strategy that use the newest vertex bisection algorithm for
mesh refinements. In each local refinement step of the adaptive finite element method, the
elements marked for refinements can be anywhere in the whole domain. As long as the
local relaxation at each level (step) is performed at new nodes and the old nodes whose
support of nodal basis function have changed, our V-cycle algorithm converges uniformly.
In this paper, the old nodes whose support of nodal basis function have changed are also
called the “immediate” neighboring nodes of new nodes, since they are endpoints of some
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old edges that are bisected.

To the best of our knowledge, the uniform convergence result of our V-cycle algorithm
as well as that of the “local” multigrid V-cycle algorithm on the newest vertex bisection
does not fall under previous results. In particular, it is not assumed that the subdomains
where the refinements take place at different levels are nested. The analysis in the paper
contains substantial differences from the analysis developed for the fast adaptive compos-
ite grid (FAC) methods studied in [14], [15], [16], [17] or the multilevel adaptive technique
(MLAT) studied in [18], [19], [20], [21], [22]. For example, the extension operators Qj

introduced in [20, Section 5] for the analysis cannot be defined for the meshes generated
by the “newest vertex bisection” algorithm. We also remark that the multigrid conver-
gence analyses for locally refined finite element meshes in [23], [24], [25], [26] are under
more restrictive conditions on the meshes which are not satisfied by the “newest vertex
bisection” algorithm. Other references on the convergence analysis for multigrid methods
can be found in [27], [28], [29], [30], [31], [32], [33], [34].

Our convergence proof depends on a powerful identity of Xu and Zikatanov [35] for
estimating the norm of the product of non-expansive operators and the following property
of a properly defined Scott-Zhang interpolation operator Πj : XJ → Xj (see Lemma 3.3
below)

J∑
j=1

∑

z∈ eNj

|(Πjv −Πj−1v)(z)|2 6 CA(v, v) ∀v ∈ XJ ,

Here Ñj is the set of new nodes (i.e. the nodes in Nj\Nj−1) and their “immediate”
neighboring nodes. This estimate is proved based on establishing appropriate connection
between the adaptive meshes and uniformly refined meshes which extends similar idea in
the analysis in [36], [20], and [22] but contains essential differences.

Throughout the paper, we use the notation A1 . B1 to represent the inequality A1 6
constant×B1, where the constant is positive and independent of all the variables in the
inequality, and it is always assumed to be mesh-independent. The notation A1

=∼B1 is
equivalent to the statement A1 . B1 and B1 . A1.

The rest of the paper is organized as follows. In §2 we recall the “newest vertex bi-
section” algorithm for mesh refinements, introduce the multigrid V-cycle algorthim with
Gauss-Seidel relaxation performed only on the new nodes and their “immediate” neigh-
bors, and present the main convergence theorems for our algorithm and the “local” multi-
grid algorithm in [4], respectively. In §3 we prove the uniform convergence theorems.
In §4 we discuss implementation details and present several numerical examples to con-
firm our theoretical analysis. We also compare the performance of our algorithm with the
“local” multigrid algorithm in [4]. In §5 we present some concluding remarks.
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2 The main result

In this section we consider the uniform convergence of the multigrid V-cycle algorithm
with local Gauss-Seidel relaxation performed only on new nodes and their “immediate”
neighbors. This leads to an algorithm of optimal complexity for solving the linear system
of equations resulting from the discretization of (1.1) by adaptive finite element methods.
Here “optimal” means that one step of multigrid iteration can reduce the norm of the error
of the approximate solution of the linear system by a factor that is bounded away from
1 independent of N , the size of the linear system, while using only O(N) operations.
We will first recall the “newest vertex bisection” algorithm for the mesh refinements in
§2.1, and then introduce our multigrid V-cycle with local relaxation and present the main
convergence theorems for our algorithm and the “local” multigrid algorithm respectively
in §2.2.

2.1 The newest vertex bisection algorithm

We now recall the “newest vertex bisection” algorithm for the mesh refinements. A de-
tailed description of the algorithm can be found in [6], [4] or [13]. The “newest vertex
bisection” algorithm consists of two steps:

1. The marked triangles for refinements are bisected by the edge opposite to the newest
vertex a fixed number of times (the newest vertex of an element in the initial mesh is the
vertex opposite to the longest edge). The resultant triangulation may have nodes that are
not the common vertices of two triangles. Such nodes are called hanging nodes.

2. All triangles with hanging nodes are bisected by the edge opposite to the newest
vertex, this process is repeated until there are no hanging nodes.

It is proved in [6] that the iteration in the second step to remove the hanging nodes can
be completed in finite number of steps. Let Mj, j = 1, 2, · · · , be a sequence of nested
meshes generated by the newest vertex bisection algorithm. It is clear that each element
K ∈ Mj is obtained by refining some element K ′ ∈ Mj−1 finite number of times so
that hK′ . hK , where hK is the diameter of the element K. It is also proved in [6] that
there exists a constant θ > 0 such that

θK ≥ θ ∀K ∈Mj, j = 1, 2, · · · , (2.1)

where θK is the minimum angle of the element K.

An important property of the newest vertex bisection algorithm is that the algorithm
generates a sequence of meshes that all the descendants of an original triangle fall into
four similarity classes indicated in Figure 1.

To conclude this subsection, we remark that the meshes considered in this paper are
determined through a posteriori error estimators. In each refinement step, the elements
marked for refinements can be anywhere in the whole domain, not necessarily confined
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Figure 1: Four similarity classes of triangles generated by “newest vertex bisection”.

to some specific subdomain. Moreover, the mesh size of the elements refined in each
refinement step can vary largely. Depending on different refinement strategies based on a
posteriori error estimators, it is well possible that some element is refined again after many
refinement steps done in the other places of the domain. This a posteriori nature of doing
mesh refinements makes the multigrid convergence analysis difficult, but it provides the
great flexibility for applying the adaptive finite element methods based on a posteriori error
estimates also to nonlinear problems in which the singularities of the solutions are a priori
unknown. In Figure 2, we show two successional meshes generated by the newest vertex
bisection algorithm for solving the Laplace equation on a domain with a crack (Example
4.2 in §4) by using adaptive finite element method based on a posteriori error estimates.

−1 −0.5 0 0.5 1
−1

0

1
J = 7,  DOFs = 48

−1 −0.5 0 0.5 1
−1

0

1
J = 8,  DOFs = 63

Figure 2: The adaptively refined mesh of 48 interior nodes after 7 adaptive iterations (left) and the mesh of 63

interior nodes after 8 adaptive iterations (right) for the Laplace equation on the domain with a crack.

2.2 The multigrid V-cycle algorithm

Let Mj, 0 6 j 6 J , be a sequence of nested conforming finite element triangulations of
the domain Ω such that Mj is a refinement of Mj−1. Let Xj ⊂ H1

0 (Ω) be the standard
continuous piecewise linear finite element space over Mj . Denote by Nj the collection
of interior nodes of Mj . For any node z ∈ Nj , we use the notation φz

j to represent the
associated nodal finite element basis function of Xj which takes the value 1 at the node z

and the value 0 at all other nodes. Let Ñj be the set of nodes on which local Gauss-Seidel
relaxation are carried out:

Ñj =
{
z ∈ Nj : z ∈ Nj \ Nj−1 or z ∈ Nj−1 but φz

j 6= φz
j−1

}
, (2.2)
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i.e., Ñj is the set of new nodes and their “immediate” neighboring nodes — the old
nodes whose support of nodal basis function have changed. For convenience, we denote

Ñj =
{
xk

j , k = 1, · · · , ñj

}
and let φk

j = φ
xk

j

j be the nodal finite element basis function
corresponding to xk

j . We remark that our set of nodes on which local relaxation are carried
out is smaller than the set of nodes for relaxation in the “local” multigrid algorithm in [4].

For any 0 ≤ j ≤ J , we define Aj : Xj → Xj by

(Ajw, v) = A(w, v), ∀w, v ∈ Xj,

where the pairing (·, ·) is the inner product in L2(Ω). Then the j th level finite element
discretization of (1.1) reads as: Find uj ∈ Xj such that

Ajuj = fj, (2.3)

where fj ∈ Xj satisfying (fj, v) = F (v),∀v ∈ Xj . We also define the orthogonal
projections Qj, Pj : XJ → Xj by

(Qjw, v) = (w, v), A(Pjw, v) = A(w, v), ∀v ∈ Xj, ∀w ∈ XJ .

For k = 1, · · · , ñj , let P k
j : XJ → Xk

j := span
{
φk

j

}
be defined by

A(P k
j w, φk

j ) = A(w, φk
j ) ∀w ∈ XJ .

Let Rj : Xj → Xj be the operator defined by

Rj =
(
I −

ñj∏
k=1

(I − P k
j )

)
A−1

j .

We remark that Rj is the smoothing operator which performs Gauss-Seidel relaxation only
at new nodes and their “immediate” neighboring nodes.

The standard V-cycle multigrid algorithm solves the system (2.3) by the iterative method

u
(m+1)
j = u

(m)
j + Bj(fj −Aju

(m)
j ).

The operators Bj : Xj → Xj, 0 6 j 6 J are recursively defined as follows:

Algorithm 2.1 (V-cycle). Let B0 = A−1
0 . For j > 0 and g ∈ Xj , we define Bjg = w3.

(i) Pre-smoothing: w1 = Rjg,

(ii) Correction: w2 = w1 + Bj−1Qj−1(g −Ajw1),

(iii) Post-smoothing: w3 = w2 + Rt
j(g −Ajw2).

It is easy to see that the multigrid V-cycle operator BJ in Algorithm 2.1 satisfies the
following relation (cf. e.g. [36, (3.4)])

I −BJAJ =
[
(I − P0)

J∏
j=1

ñj∏
k=1

(I − P k
j )

]∗[
(I − P0)

J∏
j=1

ñj∏
k=1

(I − P k
j )

]
,

where L∗ denotes the adjoint operator of the linear operator L : H1
0 (Ω) → H1

0 (Ω) with
respect to A(·, ·). Denote by ‖·‖A = A(·, ·) 1

2 . Then since I −BJAJ is self-adjoint with
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respect to the inner product A(·, ·), we have

‖I −BJAJ‖A = sup
0 6=v∈XJ

A((I −BJAJ)v, v)
‖v‖A

=
∥∥∥(I − P0)

J∏
j=1

ñj∏
k=1

(I − P k
j )

∥∥∥
2

A
.

To proceed, we recall the following result of Xu and Zikatanov [35, Corollary 4.3].

Lemma 2.2. Let V be a Hilbert space and Vi ⊂ V (i = 1, · · · , M) a number of closed
subspaces satisfying V =

∑M

i=1 Vi. Let Pi : V → Vi (i = 1, · · · ,M) be the orthogonal
projection with respect to the inner product of V . Then the following identity holds:

‖(I − PM) · · · (I − P1)‖2
L(V,V ) =

c0

1 + c0

,

where

c0 = sup
‖v‖=1

inf
v=
PM

i=1 vi

M∑
i=1

‖Pi

M∑
j=i+1

vj‖2.

Note that ‖(I − P1) · · · (I − PM)‖L(V,V ) = ‖(I − PM) · · · (I − P1)‖L(V,V ), and any
function v ∈ XJ can be decomposed as

v = v0 +
J∑

j=1

ñj∑
k=1

vk
j , where v0 ∈ X0, vk

j ∈ Xk
j ,

we deduce from Lemma 2.2 that

‖I −BJAJ‖A =
c0

1 + c0

(2.4)

with

c0 = sup
‖v‖A=1

inf
v0+

PJ
j=1

Pñj
k=1 vk

j =v

(∥∥∥P0

J∑
j=1

ñj∑
k=1

vk
j

∥∥∥
2

A
+

J∑
j=1

ñj∑
k=1

∥∥∥P k
j

∑

(i,l)>(j,k)

vl
i

∥∥∥
2

A

)
,

where (i, l) > (j, k) means either i > j or i = j but l > k. The identity (2.4) is the
starting point of our convergence analysis.

The following theorem whose proof will be given in the next section is the main result
of this paper.

Theorem 2.3. Let the meshesMj, 1 6 j 6 J , be a sequence of nested conforming finite
element triangulations of the domain Ω such thatMj is a refinement ofMj−1 obtained by
the “newest vertex bisection” algorithm. Then there exists a constant δ < 1 independent
of the meshes Mj and J such that

‖I −BJAJ‖A < δ.

Now we consider the uniform convergence of the “local” multigrid V-cycle algorithm
[4] when performing Gauss-Seidel relaxations on the set

N̄j =
{

z ∈ Nj : support(φz
j )

⋂
support(φz′

j ) 6= ∅ for some new node z′ in Nj

}
.
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It is clear that Ñj ⊂ N̄j . Without loss of generality, we denote N̄j = {xk
j : k =

1, · · · , n̄j}, where n̄j ≥ ñj . Denote by B̄j : Xj → Xj, 1 ≤ j ≤ J , the operators defined
as in Algorithm 2.1 with the smoothing operator Rj being replaced by the smoothing
operator R̄j which performs Gauss-Seidel relaxations on N̄j . By Lemma 2.2, we have

∥∥I − B̄JAJ

∥∥
A

=
c̄0

1 + c̄0

with

c̄0 = sup
‖v‖A=1

inf
v0+

PJ
j=1

Pn̄j
k=1 vk

j =v

(∥∥∥P0

J∑
j=1

n̄j∑
k=1

vk
j

∥∥∥
2

A
+

J∑
j=1

n̄j∑
k=1

∥∥∥P k
j

∑

(i,l)>(j,k)

vl
i

∥∥∥
2

A

)
.

We have the following theorem on the uniform convergence of the “local” multigrid
V-cycle algorithm with Gauss-Seidel relaxations [4].

Theorem 2.4. Let the meshesMj, 1 6 j 6 J , be a sequence of nested conforming finite
element triangulations of the domain Ω such thatMj is a refinement ofMj−1 obtained by
the “newest vertex bisection” algorithm. Then there exists a constant δ < 1 independent
of the meshes Mj and J such that

‖I − B̄JAJ‖A < δ.

This theorem can be proved by following the proof in the next section of Theorem 2.3
with merely Ñj’s replaced by N̄j’s. We omit the details.

3 Convergence analysis

We start by introducing some notation. For any z ∈ Mj , we denote by Ωz
j the closure of

the support of the corresponding finite element basis function φz
j . Recall that elements K

in Mj are considered as closed. Define hj(z) the length of the shortest edge of Mj with
one vertex at z and introduce

ρj(z) =
[ ln(hj(z)/h0)

ln(1/2)

]
, h0 = max

K∈M0

hK . (3.1)

Here [a] stands for the largest integer less than or equal to a, hK is the diameter of the
element K. Roughly speaking, ρj(z) characterizes the actual number of refinements made
for the elements inside Ωz

j . It is easy to see that
(
1/2

)ρj(z)+1

h0 < hj(z) 6
(
1/2

)ρj(z)

h0. (3.2)

For any xk
j ∈ Ñj , for simplifying the notation, we also denote by Ωk

j = Ω
xk

j

j the closure
of the support of the basis function φk

j , and hk
j the length of the shortest edge ofMj with

one vertex at xk
j .

Lemma 3.1. Let the meshes Mj, 1 6 j 6 J , be a sequence of nested conforming finite
element triangulations of the domain Ω such that Mj is a refinement of Mj−1 obtained
by the “newest vertex bisection” algorithm. Then
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(i) Given an integer m > 0 and z ∈ NJ , the cardinality of the set σ1(m, z) =
{
j :

z ∈ Ñj, ρj(z) = m, 0 6 j 6 J
}

is bounded by some constant independent of
m, z and J .

(ii) Given an integer m > 0 and z ∈ NJ , the cardinality of the set σ2(m, z) ={
(k, j) : xk

j ∈ Ñj, ρj(xk
j ) = m, z ∈ Ωk

j , 0 6 j 6 J
}

is bounded by some
constant independent of m, z and J .

Recall that Ñj is the set of new nodes and their “immediate” neighboring nodes in Nj ,
it is well possible that z ∈ Ñj and z ∈ Ñj+l for some l ≥ 1 such that ρj(z) = ρj+l(z).
σ1(m, z) is defined as the number of such levels j that z ∈ Ñj and ρj(z) = m. On the
other hand, for any z ∈ NJ , z possibly belongs to many sets Ωk

j corresponding to some
xk

j ∈ Ñj , σ2(m, z) is defined as the number of such nodes that ρj(xk
j ) = m.

Proof. We first notice that the set σ1(m, z) or σ2(m, z) may be empty, in which case, the
lemma is trivial. To prove (i), we first note that if z ∈ Ñj1 and z ∈ Ñj2 with j1 < j2, then
at least one edge in Ωz

j1
will be bisected to obtain the new mesh Mj2 . Let j ∈ σ1(m, z),

by (2.1) there exists an integer d1 depending only on θ in (2.1) such that each edge in Ωz
j

will be bisected after d1 bisections. Note that if hj+k(z) 6 hj(z)/2 for some k, then
ρj+k(z) > ρj(z) + 1 = m + 1. Thus the number of integers in the set σ1(m, z) is
bounded by d1. This proves (i).

To show (ii), we first prove that the number of nodes in the set N (m, z) =
{
y : y ∈

Ñj, ρj(y) = m, |y − z| 6 Hj(y) for some 0 6 j 6 J
}

is bounded by some constant
independent of m, z and J . Here Hj(y) is the length of the longest edge of Mj with
one vertex at y. Note that by (2.1) and (3.2), Hj(y) 6 βhj(y) 6 β(1/2)mh0 for some
constant β depending only on θ in (2.1). Now suppose that y1 ∈ Ñj1 , ρj1(y1) = m and
y2 ∈ Ñj2 , ρj2(y2) = m. Without loss of generality, we may assume j1 > j2, thus y2 is
also a node of Mj1 . Therefore |y1 − y2| > hj1(y1) > (1/2)m+1h0. This implies that
the number of nodes in N (m, z) is bounded by some constant independent of m, z and
J , i.e. #N (m, z) . 1. Now

#σ2(m, z) = #
{

(y, j) : y ∈ Ñj, ρj(y) = m, z ∈ Ωy
j , 0 6 j 6 J

}

. # {(y, j); y ∈ N (m, z), j ∈ σ1(m, y)}

. #N (m, z)× max
y∈NJ

#σ1(m, y) . 1.

This completes the proof of (ii).

Denote by Ek
j the collection of edges of Mj that are included in Ωk

j . The following
lemma whose proof may be of independent interest.

Lemma 3.2. Let the meshes Mj, 1 6 j 6 J , be a sequence of nested conforming finite
element triangulations of the domain Ω such that Mj is a refinement of Mj−1 obtained
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by the “newest vertex bisection” algorithm. Then we have, for any xk
j ∈ Ñj,

J∑
i=j+1

∑

xl
i∈ eNi,xl

i∈Ek
j

(
hl

i/hk
j

)3/2 . 1,
J∑

i=j+1

∑

xl
i∈ eNi,xl

i∈Ωk
j

(
hl

i/hk
j

)3 . 1, (3.3)

and, for any xl
i ∈ Ñi,

i−1∑
j=1

∑

xk
j∈ eNj ,xl

i∈Ek
j

(
hl

i/hk
j

)1/2 . 1,
i−1∑
j=1

∑

xk
j∈ eNj ,xl

i∈Ωk
j

(
hl

i/hk
j

)
. 1. (3.4)

Proof. By (2.1), as in the proof of (ii) of Lemma 3.1 we have there exists a constant β > 1
depending only on the minimum angle of the meshes such that Hj(xk

j ) 6 βhk
j . Then for

any xl
i ∈ Ñi, x

l
i ∈ Ek

j , we have hl
i 6 Hj(xk

j ) 6 βhk
j . Thus by the definition (3.1),

ρi(xl
i) > ρj(xk

j )− [ln β/ ln 2]− 1. Let n0 = [lnβ/ ln 2] + 1 > 0. By (3.2) we have

J∑
i=j+1

∑

xl
i∈ eNi,xl

i∈Ek
j

(
hl

i

)3/2

. h
3/2
0

J∑
i=j+1

∑

xl
i∈ eNi,xl

i∈Ek
j

( 1√
2

)3ρi(x
l
i)

6 h
3/2
0

∞∑

m=ρj(xk
j )−n0

∑

z∈fNi,z∈Ek
j

ρi(z)=m,j+16i6J

( 1√
2

)3m

6 h
3/2
0

∞∑

m=ρj(xk
j )−n0

∑

z∈NJ ,z∈Ek
j

i∈σ1(m,z)

( 1√
2

)3m

.

Since the distance of any two distinct nodes z1, z2 ∈ Ek
j such that ρj1(z1) = ρj2(z2) =

m for some j1, j2 > 0 is greater than (1/2)m+1h0, the number of the nodes z ∈ Ek
j

satisfying ρi(z) = m for some i > 0 is . hk
j /((1/2)m+1h0). Thus by (i) of Lemma 3.1,

we deduce that

J∑
i=j+1

∑

xl
i∈ eNi,xl

i∈Ek
j

(
hl

i

)3/2

. h
3/2
0

∞∑

m=ρj(xk
j )−n0

( 1√
2

)3m

· hk
j

(1/2)m+1h0

. h
1/2
0

∞∑

m=ρj(xk
j )−n0

( 1√
2

)m

· hk
j . h

1/2
0

(1
2

)ρj(x
k
j )/2

hk
j

. (hk
j )

3/2.

This proves the first estimate in (3.3). The second estimate in (3.3) can be proved similarly.
Here we omit the details.

Now we turn to (3.4) and again we only prove the first estimate. By (ii) of Lemma 3.1
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and (3.2), we have
i−1∑
j=1

∑

xk
j∈ eNj ,xl

i∈Ek
j

(hk
j )
−1/2 . h

−1/2
0

i−1∑
j=1

∑

xk
j∈ eNj ,xl

i∈Ek
j

( 1√
2

)−ρj(x
k
j )

. h
−1/2
0

ρi(x
l
i)+n0∑

m=0

∑

(k,j)∈σ2(m,xl
i)

( 1√
2

)−m

. h
−1/2
0

ρi(x
l
i)+n0∑

m=0

(
√

2)m . h
−1/2
0 (

√
2)ρi(x

l
i)+n0

. (hl
i)
−1/2.

This completes the proof.

Now we introduce the Scott-Zhang interpolation operator Πj : H1
0 (Ω) → Xj . For any

z ∈ Nj , let ez be an edge with one vertex at z, then the Scott-Zhang interpolation operator
is defined as [37]:

(Πjv)(z) =
∫

ez

ψz(x)v(x)ds ∀v ∈ H1
0 (Ω), (3.5)

where the linear function ψz(x) satisfies
∫

ez
ψz(x)w(x)ds = w(z) for any linear func-

tion w(x) on ez . It is easy to check that ψz(x) = (4− 6 |x− z| /hez
)/hez

, where hez
is

the length of the edge ez , and

(Πjv)(z) = v(z) for any function v(x) that is linear on ez, (3.6)

in particular, Πjvj = vj for any vj ∈ Xj . For any z ∈ Nj \Ñj , that is, z is also a node in
Ñj−1 so that φz

j = φz
j−1, we require in addition that the edge ez in the definition (3.5) is

the same as the edge used in defining Πj−1. This implies the following important property

(Πjv −Πj−1v) (z) = 0 ∀z ∈ Nj \ Ñj. (3.7)

Lemma 3.3. Let the meshes Mj, 1 6 j 6 J , be a sequence of nested conforming finite
element triangulations of the domain Ω such that Mj is a refinement of Mj−1 obtained
by the “newest vertex bisection” algorithm. Then we have

J∑
j=1

∑

z∈ eNj

|(Πjv −Πj−1v)(z)|2 . ‖v‖2

A .

Proof. The proof depends on a close relation between the adaptively refined meshesMj,

0 6 j 6 J , and a sequence of uniformly refined meshes M̂j which is obtained by
connecting the edge midpoints of M̂j−1 starting from M̂0 = M0. Denote by N̂j the set
of interior nodes of M̂j and ĥj = (1/2)jh0.

We start by observing from the newest vertex bisection algorithm that each element
K ∈ Mj is included in some element K0 ∈ M0, for example, K0 is the triangle in
Figure 1(a), and K is similar to one of the four types of triangles K

(i)
0 , i = 1, 2, 3, 4,
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where K
(1)
0 = K0 and K

(i)
0 (i = 2, 3, 4) is the triangle marked by i in Figure 1(b)(c).

Moreover, there exists an integer n(K) such that hK = (1/2)n(K)h
K

(i)
0

. Thus K is

included in some element K̂ ∈ M̂n(K). For any z ∈ Nj , we choose an element K ′ ∈
Mj−1 which contains z and define

Lj(z) = min
{

n(K) : K ∈Mj−1,K
⋂

K ′ 6= ∅
}

,

Sj(z) =
⋃ {

K ∈Mj−1 : K
⋂

K ′ 6= ∅
}

.

Obviously, for each element K ⊂ Sj(z) that is in Mj−1, there exists some element
K̂ ∈ M̂Lj(z) such that K ⊆ K̂. We make the following claims:

Claim 1◦: ρj(z) 6 Lj(z) + d, for some constant d depending only on θ in (2.1).

Claim 2◦: z ∈ N̂ρj(z) and hj(z) =∼ ĥρj(z).

First, by (2.1) and the property that any element in Mj is obtained by refining some
element in Mj−1 a fixed number of times, we know that there exists a constant γ > 0
such that hj(z) > γhK for any K ⊂ Sj(z), that is, hj(z) > γ(1/2)n(K)h

K
(i)
0

>
γ′(1/2)n(K)h0 for some constant γ′ by the quasi-uniformity of the initial mesh M0. By
the definition of ρj(z) we see that ρj(z) 6 n(K) + [ln γ′/ ln(1/2)] for any K ⊂ Sj(z),
which implies Claim 1◦ with d = [ln γ′/ ln(1/2)].

Next, by the newest vertex bisection algorithm, there is an edge ez of Mj started at
z such that ez is an edge of M̂m for some m. Thus z ∈ N̂m and hj(z) 6 |ez| 6
ĥm = (1/2)mh0. On the other hand, ρj(z) > (1/2)ρj(z)+1h0 by (3.2), we conclude then
m < ρj(z) + 1, i.e. m 6 ρj(z). Thus Claim 2◦ holds.

Let Q̂j : L2(Ω) → X̂j be the standard L2–projection operator and Q̂j = Q̂0 if j < 0,
where X̂j ⊂ H1

0 (Ω) is the piecewise linear finite element space over M̂j . From Claim
1◦, Q̂ρj(z)−dv ∈ X̂Lj(z) is linear on each element in M̂Lj(z), and hence is linear on each
element K ⊂ Sj(z). Therefore from (3.6),

(
ΠjQ̂ρj(z)−dv

)
(z) =

(
Q̂ρj(z)−dv

)
(z) =

(
Πj−1Q̂ρj(z)−dv

)
(z). (3.8)

By the stability property of the Scott-Zhang interpolation operator [37] we have then that
for any α ∈ (1

2
, 1),

|(Πj −Πj−1)v(z)| =
∣∣∣(Πj −Πj−1)

(
v − Q̂ρj(z)−dv

)
(z)

∣∣∣
. hj(z)−1

∥∥∥v − Q̂ρj(z)−dv
∥∥∥

L2(Sj(z))
+ hj(z)α−1

∥∥∥v − Q̂ρj(z)−dv
∥∥∥

Hα(Sj(z))
.

(3.9)

By Claim 2◦, Sj(z) ⊂ B(z, cĥρj(z)) =
{

y ∈ Ω : |y − z| < cĥρj(z)

}
for some constant
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c depending only on θ in (2.1), summing up (3.9) we know that

J∑
j=1

∑

z∈ eNj

|(Πj −Πj−1)v(z)|2

.
J∑

j=1

∑

z∈ eNj

(
ĥ−2

ρj(z)

∥∥∥v − Q̂ρj(z)−dv
∥∥∥

2

L2(Sj(z))
+ ĥ2α−2

ρj(z)

∥∥∥v − Q̂ρj(z)−dv
∥∥∥

2

Hα(Sj(z))

)

.
∞∑

m=0

∑

z∈fNj ,ρj(z)=m

16j6J

(
ĥ−2

m

∥∥∥v − Q̂m−dv
∥∥∥

2

L2(B(z,cĥm))
+ ĥ2α−2

m

∥∥∥v − Q̂m−dv
∥∥∥

2

Hα(B(z,cĥm))

)

.
∞∑

m=0

∑

z∈ bNm∩NJ

∑

j∈σ1(m,z)

(
ĥ−2

m

∥∥∥v − Q̂m−dv
∥∥∥

2

L2(B(z,cĥm))

+ ĥ2α−2
m

∥∥∥v − Q̂m−dv
∥∥∥

2

Hα(B(z,cĥm))

)
.

By (i) of Lemma 3.1 we have then

J∑
j=1

∑

z∈ eNj

|(Πj −Πj−1)v(z)|2

.
∞∑

m=0

∑

z∈ bNm

(
ĥ−2

m

∥∥∥v − Q̂m−dv
∥∥∥

2

L2(B(z,cĥm))
+ ĥ2α−2

m

∥∥∥v − Q̂m−dv
∥∥∥

2

Hα(B(z,cĥm))

)

.
∞∑

m=0

(
ĥ−2

m

∥∥∥v − Q̂m−dv
∥∥∥

2

L2(Ω)
+ ĥ2α−2

m

∥∥∥v − Q̂m−dv
∥∥∥

2

Hα(Ω)

)

.
∞∑

m=0

(
ĥ−2

m

∥∥∥v − Q̂mv
∥∥∥

2

L2(Ω)
+ ĥ2α−2

m

∥∥∥v − Q̂mv
∥∥∥

2

Hα(Ω)

)
.

To conclude the proof the lemma, it is enough to show that: For any s ∈ [0, 1),

∞∑
m=0

ĥ−2(1−s)
m

∥∥∥v − Q̂mv
∥∥∥

2

Hs(Ω)
. ‖v‖2

H1(Ω) .

By [22, Theorem 4.32] we have

∥∥∥w − Q̂0w
∥∥∥

2

Hs′ (Ω)

=∼
∞∑

l=1

ĥ−2s′
l

∥∥∥(Q̂l − Q̂l−1)w
∥∥∥

2

L2(Ω)
∀w ∈ H1

0 (Ω), s′ ∈ [0, 1].

(3.10)
Hence, by taking w = v − Q̂mv in (3.10) and using Q̂lQ̂mv = Q̂min(l,m)v, we obtain

∥∥∥v − Q̂mv
∥∥∥

2

Hs(Ω)

=∼
∞∑

l=m+1

ĥ−2s
l

∥∥∥(Q̂l − Q̂l−1)v
∥∥∥

2

L2(Ω)
.
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So
∞∑

m=0

ĥ−2(1−s)
m

∥∥∥v − Q̂mv
∥∥∥

2

Hs(Ω)

=∼
∞∑

m=0

∞∑
l=m+1

ĥ−2(1−s)
m ĥ−2s

l

∥∥∥(Q̂l − Q̂l−1)v
∥∥∥

2

L2(Ω)

=
∞∑

l=1

( l−1∑
m=0

ĥ−2(1−s)
m

)
ĥ−2s

l

∥∥∥(Q̂l − Q̂l−1)v
∥∥∥

2

L2(Ω)

=∼
∞∑

l=1

ĥ−2
l

∥∥∥(Q̂l − Q̂l−1)v
∥∥∥

2

L2(Ω)
. ‖v‖2

H1(Ω) .

We have used (3.10) and
∥∥∥Q̂0v

∥∥∥
H1(Ω)

. ‖v‖H1(Ω) to derive the last inequality. This

completes the proof.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. We only need to estimate c0 in (2.4). For any v ∈ XJ , we
consider the decomposition

v = Π0v +
J∑

j=1

vj, vj = Πjv −Πj−1v =
ñj∑

k=1

vk
j , vk

j = vj(xk
j )φ

k
j .

Then

c0 6 sup
‖v‖A=1

c(v), (3.11)

where

c(v) :=
∥∥∥P0

J∑
j=1

ñj∑
k=1

vk
j

∥∥∥
2

A
+

J∑
j=1

ñj∑
k=1

(∥∥∥P k
j

ñj∑
l=k+1

vl
j

∥∥∥
2

A
+

∥∥∥P k
j

J∑
i=j+1

ñi∑
l=1

vl
i

∥∥∥
2

A

)
. (3.12)

By the stability estimate of Scott-Zhang interpolation operator, we have

∥∥∥P0

J∑
j=1

ñj∑
k=1

vk
j

∥∥∥
2

A
= ‖P0(v −Π0v)‖2

A . ‖v‖2

A (3.13)

Since there are only finite number of nodes xl
j ∈ Ωk

j the closure of the support of the basis
function φk

j , we have

J∑
j=1

ñj∑
k=1

∥∥∥P k
j

ñj∑
l=k+1

vl
j

∥∥∥
2

A
.

J∑
j=1

ñj∑
k=1

∥∥vk
j

∥∥2

A
.

J∑
j=1

ñj∑
k=1

|vj(xk
j )|2. (3.14)

Since for any w ∈ H1
0 (Ω), P k

j w = [A(w, φk
j )/A(φk

j , φ
k
j )]φ

k
j and A(φk

j , φ
k
j ) =∼ 1 we

have
∥∥∥∥∥P k

j

J∑
i=j+1

ñi∑
l=1

vl
i

∥∥∥∥∥

2

A

.
∣∣∣

J∑
i=j+1

ñi∑
l=1

A(vl
i, φ

k
j )

∣∣∣
2

.
( J∑

i=j+1

∑

xl
i∈ eNi,xl

i∈Ωk
j

∣∣A(φl
i, φ

k
j )vi(xl

i)
∣∣
)2
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Now, for xl
i ∈ Ωk

j , we know that

A(φl
i, φ

k
j ) =

∑

K⊂Ωk
j ,K∈Mj

∫

K

(
p(x)∇φk

j∇φl
i + r(x)φk

j φ
l
i

)
dx

=
∑

K⊂Ωk
j ,K∈Mj

∫

∂K

p(x)(∇φk
j · ν)φl

i ds

+
∑

K⊂Ωk
j ,K∈Mj

∫

K

(
−∇p(x) · ∇φk

j + r(x)φk
j

)
φl

i dx.

Note that for xl
i /∈ Ek

j and K ⊂ Ωk
j , φl

i = 0 on ∂K, thus

∑

xl
i∈ eNi,xl

i∈Ωk
j

∣∣∣
∑

K⊂Ωk
j ,K∈Mj

(∫

∂K

p(x)(∇φk
j · ν)φl

ids
)
vi(xl

i)
∣∣∣

=
∑

xl
i∈ eNi,xl

i∈Ek
j

∣∣∣
∑

K⊂Ωk
j ,K∈Mj

(∫

∂K

p(x)(∇φk
j · ν)φl

ids
)
vi(xl

i)
∣∣∣

.
∑

xl
i∈ eNi,xl

i∈Ek
j

(hl
i/hk

j )|vi(xl
i)|,

where in the second inequality we have used |∇φk
j | . (hk

j )
−1. Therefore, we have

∥∥∥∥∥P k
j

J∑
i=j+1

ñi∑
l=1

vl
i

∥∥∥∥∥

2

A

.
( J∑

i=j+1

∑

xl
i∈ eNi,xl

i∈Ek
j

(hl
i/hk

j )|vi(xl
i)|

)2

+
( J∑

i=j+1

∑

xl
i∈ eNi,xl

i∈Ωk
j

(hl
i)

2(hk
j )
−1|vi(xl

i)|
)2

. (3.15)

By (3.3) and Cauchy-Schwarz inequality, we have

( J∑
i=j+1

∑

xl
i∈ eNi,xl

i∈Ek
j

(hl
i/hk

j )|vi(xl
i)|

)2

.
J∑

i=j+1

∑

xl
i∈ eNi,xl

i∈Ek
j

(hl
i/hk

j )
1/2|vi(xl

i)|2

=
J∑

i=j+1

∑

xl
i∈ eNi

(hl
i/hk

j )
1/2|vi(xl

i)|2δ(xk
j , x

l
i),
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where δ(xk
j , x

l
i) = 1 if xl

i ∈ Ek
j and δ(xk

j , x
l
i) = 0 otherwise. Thus

J∑
j=1

∑

xk
j∈ eNj

( J∑
i=j+1

∑

xl
i∈ eNi,xl

i∈Ek
j

(hl
i/hk

j )|vi(xl
i)|

)2

.
J∑

j=1

∑

xk
j∈ eNj

J∑
i=j+1

∑

xl
i∈ eNi

(hl
i/hk

j )
1/2|vi(xl

i)|2δ(xk
j , x

l
i)

=
J∑

i=2

∑

xl
i∈ eNi

( i−1∑
j=1

∑

xk
j∈ eNj

(hl
i/hk

j )
1/2δ(xk

j , x
l
i)

)
|vi(xl

i)|2

.
J∑

i=2

∑

xl
i∈ eNi

|vi(xl
i)|2, (3.16)

where we have used the first inequality in (3.4). Similarly, we can show that
J∑

j=1

∑

xk
j∈ eNj

( J∑
i=j+1

∑

xl
i∈ eNi,xl

i∈Ωk
j

(hl
i)

2(hk
j )
−1|vi(xl

i)|
)2

.
J∑

i=2

∑

xl
i∈ eNi

|vi(xl
i)|2. (3.17)

It follows then from (3.11)-(3.17) and Lemma 3.3 that

c0 . 1 + sup
‖v‖A=1

J∑
j=1

∑

xk
j∈ eNj

∣∣vj(xk
j )

∣∣2 . 1.

This completes the proof of Theorem 2.3.

Remark 3.4. The Xu-Zikatanov identity in Lemma 2.2 is used in [35] to prove the uniform
convergence of multigrid methods on uniformly refined meshes. In [38] this identity is
used to prove the uniform convergence of MLAT on locally refined meshes. The current
work is inspired by the lecture notes of Xu in [38].

Remark 3.5. The assumption that the meshesMj, 0 6 j 6 J , are obtained by using the
“newest vertex bisection” algorithm can be weakened. Let M̂j be a sequence of meshes of
Ω obtained by uniform refinement: edge midpoints in M̂j−1 are connected by new edges
to form M̂j . Then it is proved in [39] for the Poisson equation that ‖I−BJAJ‖A < δ for
some constant δ < 1 if the meshesMj, 0 6 j 6 J, satisfy that each element K ∈Mj is
obtained by refining some element K ′ ∈Mj−1 finite number of times so that hK′ . hK ,
(2.1), and that each element K ∈ Mj is included in some element K̂ ∈ M̂n for some
n so that hK

=∼ ĥn, where hK is the diameter of K ∈ Mj and ĥn is the mesh size of the
uniform mesh M̂n. The proof of Theorem 2.3 modifies and extends the ideas in [39].

4 Numerical Results

We make use of the so-called non-recursive implementation of multigrid method (cf. e.g.
[22]). Let g̃ ∈ Rnj be the vector in Rnj , then the matrix B̃j ∈ Rnj×nj which corresponds
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to the operator Bj : Vj → Vj in Algorithm 2.1 is defined through the following algorithm.

Algorithm 4.1. (Non-recursive implementation)

rtmp = g̃ btmp = Ã−1
0 rtmp

for i = j : 1 for i = 1 : j

ṽi = 0 btmp← ṽi + I i
i−1btmp

ṽi ← ṽi + R̃i(rtmp− Ãiṽi) btmp← btmp+ R̃t
i(r̃i − Ãibtmp)

r̃i ← rtmp(nsi) end for

rtmp← (I i
i−1)

t(rtmp− Ãiṽi)

end for B̃j g̃ = btmp

Here Ãi ∈ Rni×ni is the stiffness matrix of the discrete problem at the i-th level,
R̃i ∈ Rni×ni is the local Gauss-Seidel relaxation matrix, and I i

i−1 ∈ Rni×ni−1 is the
standard prolongation matrix. Let Ñi = {xk1

i , · · · , x
kñi

i } be the collection of new nodes
and their “immediate” neighboring nodes at level i, and denote by nsi = {k1, · · · , kñi

},
then rtmp(nsi) ∈ Rñi stands for the collection of the k1, · · · , kñi

-th components of the
vector rtmp. (I i

i−1)
t and R̃t

i are the transpose matrix of I i
i−1 and R̃i, respectively.

We remark that in Algorithm 4.1, all the computations at the i-th level involve only the
components corresponding to the nodes in Ñi, all the other components corresponding to
the nodes in Ni\Ñi remain unchanged. Therefore each iteration to compute B̃j g̃ ∈ Rnj

for given g̃ ∈ Rnj uses only O(nj) operations.

4.1 Numerical examples

In this subsection we present several numerical examples to illustrate the optimality of
the algorithm studied in the paper. In the computation we make use of the adaptive FEM
solver in MATLAB PDE toolbox to discretize the equations but replace the linear sys-
tem solver of MATLAB by our multigrid V-cycle solver whose implementation as shown
in Algorithm 4.1. The local error estimator for element K of the adaptive algorithm is
defined as follows

η
T

= 0.15×
[
hK‖RK‖L2(K) +

(1
2

∑
e⊂K

he‖ Je ‖2
L2(e)

)1/2]
, (4.1)

where hK is the diameter of the element K, he is the length of the side e, RK and Je

are the element residual and jump residual respectively. Computations are performed on a
Pentium 3.4GHz computer with Linux operating system.

The stopping rule of the multigrid iteration is as follows. At the j-th level, let u
(0)
j =

uj−1, the multigrid solution of the previous level, then the multigrid iteration is terminated
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when the following relation is satisfied

‖ fj −Aju
(m)
j ‖∞

‖ fj −Aju
(0)
j ‖∞

≤ 10−6.

Example 4.1. The Laplace equation on the L-shaped domain of Figure 3 with the Dirichlet
boundary condition so chosen that the true solution is r2/3 sin(2θ/3) in polar coordinates.

Figure 3 shows a sample of adaptively refined mesh of 1165 interior nodes which is
obtained after 14 adaptive iterations. The area of the smallest element is 3.05 × 10−7.
Table 1 shows the number of interior nodes, the energy error |u− uh|1,Ω between the true
solution u and the discrete solution uh computed by the multigrid method, and the energy
error |ûh − uh|1,Ω between uh and the exact discrete solution ûh computed by the direct
linear system solver on various adaptive levels. It clearly shows that the multigrid solution
uh approximates the true solution well up to the discretization error.

−1 −0.5 0 0.5 1
−1

0

1
L−shaped

Figure 3: The adaptively refined mesh of 1165 interior nodes after 14 adaptive iterations for the Laplace equation
on L-shaped domain

Table 1: The level of adaptive iterations J , the number of interior nodes DOFs, the error |u− uh|1,Ω between the
true solution u and the discrete solution uh computed by the multigrid method, and the error |ûh − uh|1,Ω between
uh and the exact discrete solution ûh for the Laplace equation on the L-shaped domain.

J 14 20 26 32 38 44

DOFs 1165 4689 18688 74329 295989 1181007

|u− uh|1,Ω 3.07e-2 1.53e-2 7.71e-3 3.88e-3 1.94e-3 9.74e-4

|ûh − uh|1,Ω 1.70e-9 8.57e-10 3.32e-10 1.81e-10 4.56e-11 1.99e-11

On the finest mesh with 1, 181, 007 interior nodes at 44-th level, our multigrid solver
solves the discrete problem using CPU time 20.14 seconds. As a comparison, the direct
solver provided by MATLAB uses CPU time 138.66 seconds.

Figure 4 shows the reduction factor ‖ I − BJAJ ‖A (left) and the CPU time of each
multigrid V-cycle iteration (right). Since I − BJAJ is symmetric with respect to the



Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes 19

bilinear form A(·, ·), ‖I − BJAJ‖A is equal to the maximum eigenvalue of I − BJAJ

which is computed by the power method in this paper. We observe ‖I −BJAJ‖A is
independent of the number of levels J as predicted by our theoretical analysis. We also
observe that the CPU time of each multigrid V-cycle iteration is linear in terms of the
number of interior nodes used. This clearly indicates the optimality of the algorithm: one
multigrid V-cycle iteration at the J -th level requires only O(nJ) operations to reduce the
norm the error of the approximate solution of AJuJ = fJ by a factor independent of nJ .

0 11 22 33 44
0

0.25

0.5

0.75

1

J

||I
−

B
JA

J|| A

L−shaped

0      563841 1181007
0

0.2

0.4

0.6

0.8

1

1.2

Number of interior nodes

C
P

U
 ti

m
e 

pe
r 

ite
ra

tio
n

L−shaped

Figure 4: The reduction factors ‖I −BJAJ‖A (left) and the CPU time (seconds) of each multigrid V-cycle itera-
tion (right) for the Laplace equation on the L-shaped domain.

Example 4.2. Let Ω = {(x1, x2) : |x1| + |x2| < 1}\{(x1, x2) : 0 ≤ x1 < 1} be the
domain with a crack. We consider the Poisson equation

−∆u = 1

with Dirichlet boundary condition so chosen that the true solution is r1/2 sin(θ/2)− 1
4
r2

in polar coordinates.

Figure 5 shows a sample of adaptively refined mesh of 1060 interior nodes which is
obtained after 23 adaptive iterations. The area of the smallest element is 5.96 × 10−8.
Table 2 shows the number of interior nodes, the energy error |u− uh|1,Ω between the true
solution u and the discrete solution uh computed by the multigrid method, and the energy
error |ûh − uh|1,Ω between uh and the exact discrete solution ûh on various adaptive
levels.

On the finest mesh with 1, 028, 747 interior nodes at 68-th level, our multigrid solver
uses CPU time 12.25 seconds, which is about 8 times faster than the direct solver provided
by MATLAB that needs CPU time 114.97 seconds.

Figure 6 shows the reduction factor ‖ I − BJAJ ‖A (left) and the CPU time of each
multigrid V-cycle iteration (right). Here again we observe ‖I −BJAJ‖A is independent
of the number of levels J and the optimality of the algorithm.
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Figure 5: The adaptively refined mesh of 1060 interior nodes after 23 adaptive iterations for the Poisson equation
on the domain with a crack.

0 17 34 51 68
0

0.25

0.5

0.75

1
Crack

J

||I
−

B
JA

J|| A

0 552688 1028747
0

0.2

0.4

0.6

0.8

1

Number of interior nodes

C
P

U
 ti

m
e 

pe
r 

ite
ra

tio
n

Crack

Figure 6: The reduction factors ‖I −BJAJ‖A (left) and the CPU time (seconds) of each multigrid V-cycle itera-
tion (right) for the Poisson equation on the domain with a crack.
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Table 2: The level of adaptive iterations J , the number of interior nodes DOFs, the error |u− uh|1,Ω between the
true solution u and the exact discrete solution uh computed by the multigrid method, and the error |ûh − uh|1,Ω

between uh and the exact discrete solution ûh for the Poisson equation on the domain with a crack.

J 23 31 39 47 57 68

DOFs 1060 4299 17227 66780 259371 1028747

|u− uh|1 5.87e-2 2.91e-2 1.46e-2 7.39e-3 3.75e-3 1.88e-3

|ûh − uh|1 2.12e-8 1.09e-8 4.14e-9 6.96e-10 2.30e-10 1.09e-10

Example 4.3. We consider the approximation of Green function on the unit circle

−∆u = δ(x1, x2).

Figure 7 shows a sample of adaptively refined mesh of 11, 158 interior nodes which is
obtained after 99 adaptive iterations. The area of the smallest element is about 3.38 ×
10−33.
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Figure 7: The adaptively refined mesh of 11, 158 interior nodes after 99 adaptive iterations for the approximation
of Green function on the unit circle.

Figure 8 shows the reduction factor ‖ I − BJAJ ‖A (left) and the CPU time of each
multigrid V-cycle iteration (right). Here again we observe ‖I −BJAJ‖A is independent
of the number of levels J and the optimality of the algorithm.

4.2 Influence of the number of smoothing iterations

It is well-known that, for a multigrid V-cycle method on uniformly refined meshes with
full relaxations, the reduction factor approaches zero when the number of smoothing iter-
ations goes to infinity. This property is usually not true for a multigrid V-cycle method on
adaptively refined meshes with local relaxations, because one usually can not obtain the
exact solution of the finite element linear systems in the smoothing procedure even if local
relaxations are performed infinite times. Recall that infinite times of full relaxations im-
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Figure 8: The reduction factors ‖I −BJAJ‖A (left) and the CPU time (seconds) of each multigrid V-cycle itera-
tion (right) for the approximation of Green function on the unit circle.
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plies we get the exact solution after smoothing procedure and hence the multigrid method
converges in one step.

Figure 9 shows the reduction factors ‖I −BJAJ‖A for our algorithm (left) and the re-
duction factors

∥∥I − B̄JAJ

∥∥
A

for the “local” multigrid V-cycle algorithm (right) when 1,
2, and 100 local relaxation sweeps are carried out for the discrete problem in Example 4.1,
respectively. Table 3 and 4 show the CPU times of our multigrid V-cycle solver and that
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Figure 9: The comparison of the reduction factors for our algorithm (left) and that for the “local” multigrid V-cycle
algorithm (right) when 1, 2, and 100 local relaxation sweeps are performed for the Laplace equation on the L-shaped
domain, respectively. Here m is the number local relaxation sweeps.

of the “local” multigrid V-cycle solver on various adaptive levels with 1, 2, and 3 local re-
laxations sweeps for the discrete problem in Example 4.1 and Example 4.2, respectively.

Table 3: The level of adaptive iterations J , the number of interior nodes DOFs, The CPU time tmJ of our algorithm
and the CPU time tcm

J of the “local” multigrid V-cycle algorithm at level J with m times of relaxations for the Laplace
equation on the L-shaped domain.

J 14 20 26 32 38 44

DOFs 1165 4689 18688 74329 295989 1181007

t1J (seconds) 0.02 0.06 0.22 0.95 4.78 20.14

t2J (seconds) 0.02 0.07 0.25 1.11 5.61 23.68

t3J (seconds) 0.03 0.07 0.30 1.33 6.98 29.45

tc1J (seconds) 0.01 0.04 0.16 0.79 3.57 14.69

tc2J (seconds) 0.01 0.04 0.12 0.63 2.96 12.14

tc3J (seconds) 0.01 0.03 0.15 0.78 3.74 15.36

We observe that increasing the number of smoothing iterations helps little to improve the
efficiency of both algorithms. We remark that our algorithm is cheaper per cycle since it
restricts the smoothing to a smaller set of nodes. But the convergence rate of our algorithm
may be slower than that of the “local” multigrid V-cycle algorithm. For both examples,
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Table 4: The level of adaptive iterations J , the number of interior nodes DOFs, The CPU time tmJ of our algorithm
and the CPU time tcm

J of the “local” multigrid V-cycle algorithm at level J with m times of relaxations for the Poisson
equation on the domain with a crack.

J 23 31 39 47 57 68

DOFs 1060 4299 17227 66780 259371 1028747

t1J (seconds) 0.01 0.03 0.14 0.67 3.05 12.25

t2J (seconds) 0.01 0.04 0.17 0.73 3.45 14.91

t3J (seconds) 0.01 0.05 0.21 0.88 4.24 18.49

tc1J (seconds) 0.00 0.02 0.13 0.54 2.52 10.31

tc2J (seconds) 0.00 0.03 0.13 0.56 2.67 10.59

tc3J (seconds) 0.01 0.03 0.15 0.60 2.89 13.42



Uniform convergence of multigrid V-cycle on adaptively refined finite element meshes 25

our algorithm is a little slower than the “local” multigrid one.

5 Concluding remarks

In this paper we have shown the uniform convergence of our multigrid V-cycle algorithm
(and the “local” multigrid V-cycle algorithm [4]) with local Gauss-Seidel relaxation per-
formed only on new nodes and their “immediate” neighbors (their “conventional” neigh-
bors) under the practical assumption that the adaptive meshes are generated by using the
“newest vertex bisection” algorithm. This leads to an algorithm of optimal complexity for
solving the linear system of equations resulting from the discretization of (1.1) by adap-
tive finite element methods at each level k. We remark that the analysis in the paper is
applicable to the two dimensional case only. The extension of the analysis to the three
dimensional case is an interesting open problem.

In practical applications, multigrid methods are often applied to solve partial differential
equations by the way of full multigrid (FMG) methods [40]. To conclude this paper, we
show that Theorem 2.3 implies that discretization error can be achieved in one FMG cycle
based on the argument in [36]. Recall that uk ∈ Xk is the kth level finite element solution
satisfying Akuk = fk. It is proved in [2] that for properly designed adaptive finite element
procedures, there exist positive constants C0 and β < 1, depending only the given data
and the initial grid, such that

‖u− uk‖A 6 C0β
k, k > 0. (5.1)

The FMG method (cf. e.g. [18]) is based on the following two observations: (1) uk−1 ∈
Xk−1 ⊂ Xk is closed to uk ∈ Xk and hence can be used as an initial guess for an
iterative scheme for solving uk; and (2) Each uk can be solved within its truncation error
by a multigrid iterative scheme.

Algorithm 5.1. (FMG method)

(i) For k = 0, û0 = A−1
0 f0

(ii) For k > 1, let ûk = ûk−1, and iterate ûk ← ûk + Bk(fk − Akûk) for l times,
where Bk is defined in Algorithm 2.1.

Now let the integer l so chosen that δl < β, then by Theorem 2.3 we have

‖uk − ûk‖A 6 δl ‖uk − ûk−1‖A 6 δl ‖uk − uk−1‖A + δl ‖uk−1 − ûk−1‖A

6 δl ‖u− uk−1‖A + δl ‖uk−1 − ûk−1‖A

6 C0δ
lβk−1 + δl ‖uk−1 − ûk−1‖A .

Since ‖u0 − û0‖A = 0, we conclude that

‖uk − ûk‖A 6 C0

k∑
n=1

(δl)nβk−n 6 δl

β − δl
C0β

k.
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This estimate implies that the discretization error can be achieved with one FMG cycle on
adaptively refined finite element meshes. It is easy to see that the work involved in the
FMG is O(

∑k

j=0 nj) which is optimal in the sense that the work is of the same order as
the work involved in computing a posteriori error estimators in an adaptive finite element
algorithm. However, the practical application of the FMG algorithm has the difficulty of
choosing the number of iterations l in Algorithm 5.1 which depends on the unknown con-
stant β in (5.1). How to adaptively choose the integer l in Algorithm 5.1 is an interesting
topic for future research. We refer to [18] for more discussion on FMG in the context of
MLAT methods.
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