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Abstract. We develop an adaptive edge finite element method based on reliable and efficient
residual-based a posteriori error estimates for low-frequency time-harmonic Maxwell’s equations with
singularities. The resulting discrete problem is solved by the multigrid preconditioned minimum
residual iteration algorithm. We demonstrate the efficiency and robustness of the proposed method
by extensive numerical experiments for cavity problems with singular solutions which includes, in
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1. Introduction. Let Ω ⊂ R3 be a bounded polygonal domain with two disjoint
connected boundaries Γ and Σ. Given a current density f , we seek a time-harmonic
electric field E subject to the perfectly conducting boundary condition on Γ and the
impedance boundary condition on Σ:

curl (µ−1
r curlE)− κ2εr E = f in Ω,(1.1)

µ−1
r curlE× ν − i κλEt = g on Σ,(1.2)

E× ν = 0 on Γ,(1.3)

where i is the imaginary unit, ν is the unit outer normal of the boundary, Et :=
(ν × E|Σ) × ν, εr is the complex relative dielectric coefficient, µr > 0 is the relative
magnetic permeability of the material in Ω, κ > 0 is the wave number, and λ > 0
is the impedance on Σ. We allow Σ to be empty in which case (1.1) – (1.3) models
electromagnetic wave propagation in a cavity with a perfectly conducting wall. For
an absorbing boundary condition approximation of a scatting problem, µr = λ = 1 on
Σ and εr = µr = 1 in a neighborhood of Σ, g can be computed from an incident field
Ei (g = curlEi× ν− i κEi,t). In this paper, we focus on low-frequency problems, i.e.
κ is not very large.

It is now well-known that the solution of the time-harmonic Maxwell equations
could have much stronger singularities than the corresponding Dirichlet or Neumann
singular functions of the Laplace operator when the computational domain is non-
convex or the coefficients of the equations are discontinuous. For example, for the
domains that have “screen” or “crack” parts as indicated in Fig 1.1, the regularity of
the solution is only in Hs with s < 1/2. In this case the H1-conforming discretization
cannot be used directly to solve the time-harmonic cavity problem (1.1)–(1.3). One
way to overcome the difficulty is to use the so-called singular field method which
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Fig. 1.1. A domain with screen Γ.

decomposes the solution into a regular part that can be treated by H1-conforming
Lagrangian finite elements and an explicit singular part [2], [10], [18], [19]. For the
mathematical analysis of the singularities of the solutions of Maxwell equations, we
refer to [8], [9], [16], [17], [18], and the references therein.

The first objective of this paper is to explore the possibility of extending the
general framework of adaptive finite element methods based on a posteriori error
estimates initiated in [3] to the time-harmonic Maxwell equations. A posteriori error
estimates are computable quantities in terms of the discrete solution and known data
that measure the actual discrete errors without the knowledge of exact solutions. They
are essential in designing algorithms for mesh modification which equi-distribute the
computational effort and optimize the computation. The ability of error control and
the asymptotically optimal approximation property (see e.g. [11] and [28]) make the
adaptive finite element methods attractive for complicated physical and industrial
processes (cf. e.g. [12], [14], and [15]).

A posteriori error estimates for Nédélec H(curl)-conforming edge elements are
obtained in [26] for Maxwell scattering problems and in [6] for eddy current problems.
The key ingredient in the analysis is the orthogonal Helmholtz decomposition v =
∇ϕ + Ψ, where for any v ∈ H(curl; Ω), ϕ ∈ H1(Ω), and Ψ ∈ H(curl; Ω). Since a
stable edge element interpolation operator is not available for functions in H(curl; Ω),
some kind of regularity result for Ψ ∈ H(curl; Ω) is required. This regularity result
is proved in [26] for domains with smooth boundary and in [6] for convex polyhedral
domains. The key observation in our analysis is that if one removes the orthogonality
requirement in the Helmholtz decomposition, the regularity Ψ ∈ H1(Ω) can be proved
in the decomposition v = ∇ϕ + Ψ for a large class of non-convex polygonal domains
or domains having screens [8], [9], see also [19]. Our extensive numerical experiments
for the lowest order edge element indicate that for the cavity problem (1.1)–(1.3) with
very strong singularities Hs (s < 1/2), the adaptive methods based on our a posteriori
error estimates have the very desirable quasi-optimality property

‖E−Ek‖H(curl; Ω) ≤ C N−1/3
k ,

where Nk is the number of elements of the k-th adaptive mesh Tk, and Ek is the finite
element solution over Tk.

The second objective of this paper concerns the efficient solution of the large
linear system of equations resulting from the edge element discretization of (1.1)–(1.3)
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which is in general non-Hermitian and indefinite. We propose to use preconditioned
MINRES to solve the linear system of equations with the preconditioner is constructed
by the multigrid solver of the stiffness matrix corresponding to the discretization of
the following problem

curl (µ−1
r curl u) + κ2|εr|u = f in Ω,(1.4)

µ−1
r curl u× ν + κλut = g on Σ,(1.5)

u× ν = 0 on Γ.(1.6)

Multigrid methods for the edge element discretization of Maxwell’s equations have
been studied in [1], [22], [23], and the references therein. An important discovery in
[23] is that for the H(curl)-elliptic problems, multigrid relaxations must be performed
both on edges and vertices in order to guarantee the uniform convergence of the
multigrid method. We also refer to [5] for the multigrid preconditioned iterative
scheme for the Helmholtz equation.

The distinct feature of applying multigrid methods on adaptively refined finite
element meshes is that the number of degrees of freedom may not grow exponentially
with respect to the number of mesh refinements k. Following the idea of ”local”
multigrid in [25] for discrete H1-elliptic problems and [7] for discrete H(curl)-elliptic
problems, at each level k of our multigrid algorithm for discrete Maxwell problems,
we perform Gauß-Seidel relaxations only on new edges, new vertices, and their im-
mediate neighboring edges and vertices (see (4.3) and Algorithm 4.2 below). Our
extensive numerical experiments indicate that our multigrid preconditioned MINRES
algorithm has the very desirable property: for low-frequency time harmonic Maxwell
equations with very strong singularity, the numbers of iterations to reduce the initial
residual by a factor 10−8 remain nearly fixed on different levels of adaptively refined
meshes. We also test the influence of the frequency to the performance of the precon-
ditioner. It indicates that with the frequency of the problem increasing, the number
of preconditioned MINRES iterations increases. But for a fixed frequency, it varies
very slightly as the number of degrees of freedom increases. We also refer to [33] for
the proof of uniform convergence of “local” multigrid method for discrete H1-elliptic
problems on adaptively refined meshes.

The rest of the paper is organized as follows: In §2, we prove Helmholtz-type de-
compositions of H(curl; Ω) and introduce conforming finite element approximations
to (1.1)–(1.3). In §3, we derive reliable and efficient residual-based a posteriori error
estimates. In §4, we describe the preconditioned MINRES algorithm. In §5, we report
several numerical experiments to show the competitive performance of the methods
proposed in this paper.

2. Hemlholtz-type decompositions and finite element approximations.

We start by introducing the definition of a “screen”.
Definition 2.1. ̥ is called a Lipschitz screen, if it is a bounded open part of

some two-dimensional C2-smooth manifold such that its boundary ∂̥ is Lipschitz
continuous and ̥ is on one side of ∂̥.

Let Ω be a polyhedral domain in R3 which satisfies one of the following assump-
tions:

Hypothesis 2.2.

(i) Ω is a Lipschitz domain and Γ = ∂D, where D is a bounded Lipschitz domain
embedded in the interior of D̄ ∪ Ω (see Fig. 2.1).

(ii) Γ is a Lipschitz screen such that Ω ∪ Γ is a Lipschitz domain (see Fig. 1.1).
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Fig. 2.1. A domain with an inner scatter D.

(iii) Σ = ∅ and Γ = ∂Ω = Γin ∪ Γout such that Γin satisfies the former two
assumptions for Γ.

We remark that in each case Ω need not to be simply connected and the domain
in the second case is even not Lipschitz. In the third case, we actually solve a time-
harmonic problem with Dirichlet boundary condition.

We introduce some notation and Sobolev spaces used in this paper. L2(Ω) is the
usual Hilbert space of square integrable functions equipped with the following inner
product and norm:

(u, v) :=

∫

Ω

u(x) v(x) dx and ‖u‖0,Ω := (u, u)1/2.

Hm(Ω) := {v ∈ L2(Ω) : Dξv ∈ L2(Ω), |ξ| ≤ m} equipped with the following norm
and semi-norm

‖u‖m,Ω :=





∑

|ξ|≤m

‖Dξu‖20,Ω





1/2

and |u|m,Ω :=





∑

|ξ|=m

‖Dξu‖20,Ω





1/2

,

where ξ represents non-negative triple index. H1
Γ(Ω) is the subspace of H1(Ω) whose

functions have zero traces on Γ. We use boldfaced notations for vectors, such as
L2(Ω) := (L2(Ω))3 and so on. The following Sobolev spaces are used in the paper

H(div; Ω) := {v ∈ L2(Ω) : divv ∈ L2(Ω)},
H(curl; Ω) := {v ∈ L2(Ω) : curl v ∈ L2(Ω)},
HΓ(curl; Ω) := {v ∈ H(curl; Ω) | v × ν = 0 on Γ and vt ∈ L2(Σ)}.

As usual, we denote H1
0 (Ω) := H1

∂ Ω(Ω) and H0(curl; Ω) := H∂ Ω(curl; Ω) for Σ = ∅.
H(div; Ω), H(curl; Ω), and HΓ(curl; Ω) are respectively equipped with the following
norms:

‖v‖H(div; Ω) :=
(

‖v‖20,Ω + ‖divv‖20,Ω

)1/2
,

‖v‖H(curl; Ω) :=
(

‖v‖20,Ω + ‖curl v‖20,Ω

)1/2
,

‖v‖HΓ(curl; Ω) :=
(

‖v‖20,Ω + ‖curl v‖20,Ω + ‖vt‖20,Σ

)1/2
.
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Let f ∈ L2(Ω) and g ∈ L2(Σ) satisfying g · ν = 0 on Σ. The equivalent weak
formulation of (1.1) – (1.3) is: Find E ∈ HΓ(curl; Ω) such that

(2.1) a(E, v) =

∫

Ω

f · v +

∫

Σ

g · vt ∀v ∈ HΓ(curl; Ω),

where

(2.2) a(E, v) := (µ−1
r curlE, curl v)− (κ2εrE, v)− i

∫

Σ

κλEt · vt .

The existence and uniqueness of the solution of the problem (2.1) under various con-
ditions on the domain Ω, the coefficients εr, µr have been studied in [27]. Here for
the sake of simplicity we simply assume that the problem (2.1) has a unique solution.
Thus there exists a constant β > 0 depending only on Ω, εr, µr, λ and the wave
number κ such that [4, Chapter 5]

(2.3) sup
06=v∈HΓ(curl; Ω)

a(E, v)

‖v‖HΓ(curl; Ω)
≥ β‖E‖HΓ(curl; Ω).

Furthermore, it follows from (2.3) that there exists a constant C > 0 independent of
E, f , and g such that

(2.4) ‖E‖HΓ(curl; Ω) ≤ C(‖f‖0,Ω + ‖g‖0,Σ).

The following Hemlholtz-type decomposition theorem is applicable to polyhedral
domains with smooth screens ̥.

Theorem 2.3. Let D be a bounded domain such that either
• D is a Lipschitz domain,

or
• D has a Lipschitz inner screen ̥ such that ∂D = Γ∪̥, Γ∩̥ = ∅, and D∪̥

is a Lipschitz domain (see Fig. 1.1).
Then for any v ∈ H0(curl; D), there exist ψ ∈ H1

0 (D) and vs ∈ H1(D)∩H0(curl; D)
such that

v = ∇ψ + vs in D,(2.5)

‖ψ‖1,D + ‖vs‖1,D ≤ C‖v‖H(curl;D),(2.6)

where the constant C depends only on D.
Proof. The proof for the case when D is a Lipschitz domain is contained in [19,

Proposition 5.1]. For the completeness we sketch the proof here. The proof below for
the case when D has a Lipschitz inner screen ̥ simplifies the argument in [9].

Let O := B(0, R) be a ball containing D. We extend v by zero to the exterior of
D and denote the extension by ṽ. Clearly ṽ ∈ H0(curl;O). By Theorem 3.4 of [20,
p. 45], there exists a w ∈ H1(O) such that

curlw = curl ṽ, divw = 0 in O,(2.7)

‖w‖1,O ≤ C(‖curlw‖0,O + ‖divw‖0,O) = C‖curl v‖0,D.(2.8)

Moreover, by (2.7) and Theorem 2.9 of [20, p. 31], there exists a ϕ ∈ H1(O)/R such
that

ṽ = w +∇ϕ in O,(2.9)

‖ϕ‖1,O ≤ C|ϕ|1,O ≤ C‖v‖H(curl;D),(2.10)

|ϕ|2,O\D̄ ≤ ‖w‖1,O ≤ C‖curl v‖0,D.(2.11)
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Since O\D̄ is a Lipschitz domain, by the extension theorem [21, Theorem 1.4.3.1,
p. 25], there exists an extension of ϕ|O\D̄ denoted by ϕ̃ ∈ H2(R3) such that

ϕ̃ = ϕ in O \ D̄ and ‖ϕ̃‖2,R3 ≤ C‖ϕ‖2,O\D̄ ≤ C‖v‖H(curl;D).(2.12)

This completes the proof for the case when D is a Lipschitz domain by setting ψ =
ϕ− ϕ̃ ∈ H1

0 (D) and vs = w +∇ϕ̃ ∈ H1(D) ∩H0(curl; D).
If D has a Lipschitz screen ̥ ⊂ D such that ∂D = Γ ∪ ̥ and Γ ∩ ̥ = ∅, we

choose a closed C2-smooth surface ̥0 ⊃ ̥ such that ̥0 ∩ ∂D̄ = ∅. In view of (2.9),
we know that ∇̥ϕ = (ν ×∇ϕ) × ν = ν × (ν ×w) ∈ H1/2(̥), thus ϕ|̥ ∈ H3/2(̥),
where [21, p. 20]

Hm+1/2(̥) = {v ∈ L2(̥) : ‖v‖m+1/2,̥ <∞}, m = 0, 1,

‖v‖2m+1/2,̥ = ‖v‖2m,̥ +

∫

̥

∫

̥

|∇̥v(x)−∇̥v(y)|2
|x− y|3 dsxdsy, m = 0, 1.

H3/2(̥0) is defined similarly. Since any function in H3/2(D1) can be continuously
extended to be a function in H3/2(R2) for any Lipschitz bounded domain D1 ⊂ R2

[21, Theorem 1.4.3.1, p. 25], we know that ϕ|̥ can be extended continuously to be
a function in H3/2(̥0) by working on the atlas of the C2-smooth manifold ̥0. We
denote the extension by ϕ

̥
∈ H3/2(̥0) which satisfies, by (2.8) and (2.11),

ϕ
̥

= ϕ on ̥,(2.13)

‖ϕ
̥
‖3/2,̥0

≤ C‖ϕ‖3/2,̥ ≤ C(‖ϕ‖1,O + ‖w‖1,O) ≤ C‖v‖H(curl;D).(2.14)

Since ϕ̃ ∈ H2(R3), we have ϕ̃ ∈ H3/2(̥0). Thus ϕ̥ − ϕ̃ ∈ H3/2(̥0) which we
may extend to be a function ϕ0 ∈ H2

0 (D) satisfying

(2.15) ϕ0 = ϕ̥ − ϕ̃ on ̥ and ‖ϕ0‖2,D ≤ C‖ϕ̥ − ϕ̃‖3/2,̥0
≤ C‖v‖H(curl;D),

where we have used (2.12)–(2.14). Define ψ := ϕ − ϕ̃ − ϕ0 ∈ H1
0 (D) and vs :=

w +∇ϕ̃+∇ϕ0 ∈ H1(D) ∩H0(curl; D). Combining (2.8), (2.12), and (2.15) leads to
(2.5) and (2.6).

Theorem 2.4. Let Ω be a bounded domain with boundary ∂Ω = Σ∪Γ and satisfy
Hypothesis 2.2. For any v ∈ H(curl; Ω) satisfying v × ν = 0 on Γ, there exists a
function vs ∈ H1(Ω) satisfying vs × ν = 0 on Γ and ϕ ∈ H1

Γ(Ω) such that

v = ∇ϕ+ vs in Ω,(2.16)

‖vs‖1,Ω + ‖ϕ‖1,Ω ≤ C ‖v‖H(curl; Ω).(2.17)

Proof. For the case (iii) in Hypothesis 2.2, Theorem 2.4 follows directly from
Theorem 2.3. For the case (i) in Hypothesis 2.2, Γ = ∂D with D being a bounded
Lipschitz domain and D̄ embedded in the interior of Ω∪D̄. Let O be a ball containing
Ω. Extend v by zero to D such that the extension ṽ ∈ H(curl; Ω ∪ D̄). By Lemma
2.2 of [13], we may extend ṽ to the exterior of Ω ∪ D̄ such that the extension E ṽ ∈
H0(curl; O) and

E ṽ = ṽ in Ω ∪ D̄,
‖E ṽ‖H(curl;O) ≤ C ‖v‖H(curl; Ω),
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where C depends only on Ω. Since E ṽ ∈ H0(curl; O \ D̄), by Theorem 2.3, there
exist ϕ ∈ H1

0 (O \ D̄) and vs ∈ H1(O \ D̄) ∩H0(curl;O \ D̄) such that

E ṽ = ∇ϕ+ vs in O \ D̄,
‖ϕ‖1,O\D̄ + ‖vs‖1,O\D̄ ≤ C‖E ṽ‖H(curl;O\D̄) ≤ C ‖v‖H(curl; Ω),

where the constant C depends only on Ω. Clearly, ϕ and vs matches all requirements
in Theorem 2.4. The case (ii) of Hypothesis can be proved similarly using Theorem
2.3.

Remark 2.5. The decompositions in Theorem 2.3 and 2.4 extends the so-called
Birman-Solomyak decomposition of H0(curl; Ω) in [8], [19], and [30].

Let Tk be a sequence of tetrahedral triangulations of Ω and Fk be the set of faces
not lying on Γ, k ≥ 0. The finite element space Uk over Tk is defined by

Uk :={u ∈ H(curl; Ω) : u× ν|Γ = 0 and

u|T = aT + bT × x with aT , bT ∈ R
3, ∀T ∈ Tk

}

.

Degrees of freedom on every T ∈ Tk are
∫

Ei
u · d l, i = 1, · · · , 6, where E1, · · · , E6

are six edges of T . For any T ∈ Tk and F ∈ Fk, we denote the diameters of T and F
by hT and hF respectively.

The finite element approximation to (2.1) is: Find Ek ∈ Uk such that

(2.18) a(Ek, v) =

∫

Ω

f · v +

∫

Σ

g · vt, ∀v ∈ Uk.

3. Residual based a posteriori error estimates. Let E and Ek be the solu-
tions of (2.1) and (2.18) respectively. Define the total error function by ek := E−Ek.
By (2.3), we know that

‖ek‖HΓ(curl; Ω) ≤ β−1 sup
v∈HΓ(curl; Ω)

a(ek, v)

‖v‖HΓ(curl; Ω)
.(3.1)

To derive a posteriori error estimates, we introduce the Scott-Zhang Operator
Ik : H1

Γ(Ω) → Vk [32] and the Beck-Hiptmair-Hoppe-Wohlmuth Operator Πk :
H1(Ω)∩HΓ(curl; Ω)→ Uk [6], where Vk is the piecewise linear H1

Γ-conforming finite
element space over Tk defined by

Vk :=
{

v ∈ H1
Γ(Ω) : v|T = aT + bT · x with aT ∈ R

1 and bT ∈ R
3, ∀T ∈ Tk

}

.(3.2)

Ik and Πk satisfy the following approximation and stability properties: for any T ∈ Tk,
F ∈ Fk,



















Ikφh = φh ∀φh ∈ Vk,

‖∇Ikφ‖0,T ≤ C |φ|1,DT
,

‖φ− Ikφ‖0,T ≤ C hT |φ|1,DT
,

‖φ− Ikφ‖0,F ≤ C h
1/2
F |φ|1,DF

,

(3.3)

and


















Πkwh = wh ∀wh ∈ Uk,

‖Πkw‖H(curl; T ) ≤ C ‖w‖1,DT
,

‖w −Πkw‖0,T ≤ C hT |w|1,DT
,

‖w −Πkw‖0,F ≤ C h
1/2
F |w|1,DF

,

(3.4)
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where DA is the union of elements in Tk with non-empty intersection with A, A = T
or F . In (3.3) and (3.4), the constant C depends on the ratio of the diameter of
T to the diameter of the maximal ball contained in T . In the procedure of mesh
refinements used in ALBERT [31], each element is similar to one of a small number
of reference tetrahedra in shape. Thus C in (3.3)–(3.4) is bounded in the refinement
procedure.

By Theorem 2.4, for any v ∈ HΓ(curl; Ω), there exist a ϕ ∈ H1
Γ(Ω) and a

vs ∈ H1(Ω) ∩HΓ(curl; Ω) such that

v = ∇ϕ+ vs,(3.5)

‖ϕ‖1,Ω + ‖vs‖1,Ω ≤ C ‖v‖H(curl; Ω),(3.6)

where the constant C depends only on Ω. Since ∇Ikϕ and Πkvs belong to Uk, by
the Galerkin orthogonality, we have

a(ek, v) = a(ek, ∇ϕ−∇Ikϕ) + a(ek, vs −Πkvs) ∀v ∈ HΓ(curl; Ω).(3.7)

For any face F ∈ Fk, assuming F = T1∩T2, T1, T2 ∈ Tk and the unit normal ν points
from T2 to T1, we denote the jump of a function v across F by [v]F := v|T1

− v|T2
.

Lemma 3.1. Let g ∈ L2(Σ) satisfying divΣ g ∈ L2(Σ) and g · ν = 0 on Σ. There
exists a constant C0 independent of κ and the mesh Tk such that

a(ek, ∇ϕ−∇Ikϕ) ≤ C0

(

∑

T∈Tk

η2
0,T +

∑

F∈Fk

η2
0,F +

∑

F⊂Σ

η2
0,Σ,F

)1/2

‖v‖H(curl; Ω),(3.8)

where the the surface divergence divΣ on Σ is defined by the L2-duality of the surface
gradient ∇Σ := −ν × (ν ×∇), and the error indicators are defined by

η0,T := hT ‖div (κ2εr Ek)‖0,T ,

η0,F := h
1/2
F ‖[κ2εr Ek · ν]F ‖0,F ,

η0,Σ,F := h
1/2
F ‖divΣ(g + i κλEk,t)‖0,F .

Proof. Since the tangential field Ek,t is continuous on Σ and piecewise linear,
Ek,t ∈ H(divΣ; Σ). In view that f is divergence-free, by (2.1) and the formula of
integration by part, we deduce that

a(ek, ∇ϕ−∇Ikϕ)

= (f + κ2εr Ek, ∇ϕ−∇Ikϕ) +

∫

Σ

(g + i κλEk,t) · ∇Σ(ϕ− Ikϕ)

= −
∑

T∈Tk

∫

T

div(κ2εr Ek)(ϕ− Ikϕ) +
∑

F∈Fk

∫

F

[κ2εr Ek · ν]F (ϕ− Ikϕ)

−
∑

F⊂Σ

∫

F

divΣ(g + i κλEk,t) (ϕ − Ikϕ)

≤
∑

T∈Tk

‖div(κ2εr Ek)‖0,T ‖ϕ− Ikϕ‖0,T +
∑

F∈Fk

‖[κ2εr Ek · ν]F ‖0,F‖ϕ− Ikϕ‖0,F

+
∑

F⊂Σ

‖divΣ(g + i κλEk,t)‖0,F ‖ϕ− Ikϕ‖0,F .
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We reach (3.8) by virtue of Schwartz’s inequality, (3.3), and (3.6).

Lemma 3.2. There exists a constant C1 independent of κ and the mesh Tk such
that

a(ek, vs −Πkvs) ≤ C1

(

∑

T∈Tk

η2
1,T +

∑

F∈Fk

η2
1,F +

∑

F⊂Σ

η2
1,Σ,F

)1/2

‖v‖H(curl; Ω),(3.9)

where

η1,T = hT ‖f + κ2εr Ek − curl(µ−1
r curlEk)‖0,T ,

η1,F = h
1/2
F ‖[µ−1

r curlEk × ν]F ‖0,F ,

η1,Σ,F = h
1/2
F ‖g + i κλEk,t + ν × µ−1

r curlEk‖0,F .

Proof. By (2.1) and the formula of integration by part, we deduce that

a(ek, vs −Πkvs)

=
∑

T∈Tk

∫

T

(f + κ2εr Ek − curlµ−1
r curlEk) · (vs −Πkvs)

+
∑

F∈Fk

∫

F

[ν × µ−1
r curlEk]F · (vs −Πkvs)

+
∑

F⊂Σ

∫

F

(g + i κλEk,t + ν × µ−1
r curlEk) · (vs −Πkvs)

≤
∑

T∈Tk

‖f + κ2εr Ek − curlµ−1
r curlEk‖0,T‖vs −Πkvs‖0,T

+
∑

F∈Fk

‖[µ−1
r curlEk × ν]F ‖0,F‖vs −Πkvs‖0,F

+
∑

F⊂Σ

∫

F

‖g + i κλEk,t + ν × µ−1
r curlEk‖0,F ‖vs −Πkvs‖0,F .

We reach (3.9) by Schwartz’s inequality, (3.4), and (3.6).

Combining (3.1) and (3.7) – (3.9) leads to the following theorem.

Theorem 3.3. Let g ∈ L2(Σ) satisfying divΣ g ∈ L2(Σ) and g · ν = 0 on Σ.
Then

‖ek‖2HΓ(curl; Ω) ≤
2(C2

0 + C2
1 )

β2

1
∑

i=0

{

∑

T∈Tk

η2
i,T +

∑

F∈Fk

η2
i,F +

∑

F⊂Σ

η2
i,Σ,F

}

,

where β, C0, and C1 is the constants in (2.3), (3.8), and (3.9).

Similar to the argument in [6, Section 5], we can prove the following lower bound
estimates.

Theorem 3.4. If the material parameters µr, εr, and λ are piecewise constants,
there exists a constant C depending on µr, εr, λ, and κ, but independent of the mesh
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Tk such that

∑

T∈Tk

(

η2
0,T + η2

1,T

)

+
∑

F∈Fk

(

η2
0,F + η2

1,F

)

+
∑

F⊂Σ

(

η2
0,Σ,F + η2

1,Σ,F

)

(3.10)

≤ C ‖ek‖2H(curl; Ω) + C
∑

T∈Tk

h2
T ‖f − PT f‖20,T + C

∑

F⊂Σ

hF ‖divΣ(g − PF
div g)‖20,F

+ C
∑

F⊂Σ

hF ‖g− PF g‖20,F ,

where PT : L2(T ) → P2(T ) and PF : L2(F ) → P2(F ) are L2-projections, and PF
div:

H(divF ; F ) → P1(F ) is the H(divF )-projection. Pk(D) is the space of vector poly-
nomials of maximum degree k defined on D, D = T or F .

4. Multigrid preconditioned MINRES algorithm. In this section we in-
troduce our preconditioned MINRES (PMINRES) algorithm for solving (2.18). Our
preconditioner is a multigrid solver of the stiffness matrix corresponding to the fol-
lowing coercive and Hermitian sesquilinear form on Uk:

(4.1) amg(u, v) := (µ−1
r curl u, curl v) + (κ2 |εr|u, v) +

∫

Σ

κλut · v̄t .

It is easy to see that amg(·, ·) is the sesquilinear form corresponding to the variational
formulation of (1.4)–(1.6).

Let T0, · · · , TJ be a sequence of nested triangulations by repeated adaptive re-
finements. Let Uk be the finite element space in (2.18) and Vk be the linear La-
grangian finite element space in (3.2) over Tk. Denote the canonical basis of Uk by
{

w
(k)
1 , · · · ,w(k)

nk

}

and the canonical basis of Vk by
{

φ
(k)
1 , · · · , φ(k)

n̄k

}

, where nk and n̄k

are respectively the numbers of edges and vertices not on Γ.
We now specify the local multigrid algorithm for the solution of the following

algebraic system of equations

(4.2) Ak Xk = Fk,

where Ak =
(

amg(w
(k)
i , w

(k)
j )
)

nk×nk

. The algorithm is based on the following space

decomposition proposed in [7]:

(4.3) UJ = U0 +

J
∑

k=1

∑

E∈Enew

k

span {wE}+

J
∑

k=1

∑

a∈Vnew

k

span {∇φa} ,

where Enew

k and Vnew

k are respectively the set of edges and the set of vertices in new
elements of Tk. None of the edges and vertices in (4.3) is on Γ. The algorithm of
multigrid V-cycle is defined recursively as follows:

Algorithm 4.1. Multigrid V-cycle:
MGsolver(AJ , FJ , m)
{

Given initial guess X0

For l = 0 : m− 1
Xl+1 ← MG(J, AJ , FJ , Xl)
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return Xm

}
MG(j, Aj , f, x), j = 0, · · · , J recursively defined by
{

if (j = 0)
return A−1

0 f
else
{

x← GSsmooth(Aj , f, x) [Pre-smoothing]

y ← MG(j − 1, Aj−1, Rj−1
j (f −Aj x), 0)

x← x+ Ij
j−1 y

x← GSsmooth(Aj , f, x) [Post-smoothing]
}

}

In Algorithm 4.1, Ij
j−1 is a nj × nj−1 matrix reflecting the identical embedding

Uj−1 →֒ Uj such that

nj−1
∑

i=1

yiw
(j−1)
i =

nj
∑

i=1

(

Ij
j−1 y

)

i
w

(j)
i .

We choose the restriction matrix Rj−1
j to be the transpose of Ij

j−1, that is Rj−1
j =

(

Ij
j−1

)T

. Define Aj,∇ =
(

amg(∇φ(j)
m , ∇φ(j)

n )
)

n̄j×n̄j

and IE

V
to be a nj × n̄j matrix

reflecting the identical embedding ∇Vj →֒ Uj such that

n̄j
∑

i=1

yi∇φ(j)
i =

nj
∑

i=1

(IE

V
y)i w

(j)
i .

GSsmooth(Aj , f, x) is the Gauß-Seidel iterations on level j with initial guess x.

Algorithm 4.2. Gauß-Seidel sweeping:
GSsmooth(Aj , f, x)
{

Gauß-Seidel sweep on d.o.f.s of Aj x = f related to Enew

j

y ← f −Aj x

y
∇
← (IE

V
)T y

x
∇
← 0

Gauß-Seidel sweep on d.o.f.s of Aj,∇ x∇
= y

∇
related to Vnew

j

return x+ IE

V
x

∇

}
5. Adaptive algorithm and numerical results. The implementation of our

adaptive algorithm is based on the adaptive finite element package ALBERT [31] and
is carried out on Origin 3800. We define the local a posteriori error estimator over an
element T ∈ Th by

ηT :=

{

η2
0,T + η2

1,T +
1

2

∑

F⊂∂T

(η2
0,F + η2

1,F + η2
0,Σ,F + η2

1,Σ,F )

}1/2
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and define the global a posteriori error estimate, the maximal element error estimate
over Th respectively by

(5.1) ηh :=

(

∑

T∈Th

η2
T

)1/2

, ηmax = max
T∈Th

ηT .

Now we describe the adaptive algorithm used in this paper.

Algorithm 5.1. Given a tolerance Tol > 0 and the initial mesh T0. Set Th = T0.
(I) Solve the discrete problem (2.18) on T0.

(II) Compute the local error estimator ηT on each T ∈ T0, the global error estimate
ηh, and the maximal element error estimate ηmax.

(III) While ηh > Tol do
• Refine the mesh Th according to the following strategy

if ηT > 3
5ηmax, refine the element T ∈ Th.

• Solve the discrete problem (2.18) on Th.
• Compute the local error estimator ηT on each T ∈ Th, the global error

estimate ηh, and the maximal element error estimate ηmax.
end while.

In the following, we report several numerical experiments to demonstrate the
competitive behavior of the proposed algorithm. In our PMINRES solver, we use
only one step of local multigrid iteration and one Gauß-Seidel sweep for pre- and
post-smoothing.

Example 5.1. We consider the Maxwell equation (1.1) on the three-dimensional
“L-shaped” domain Ω = (−1, 1)3 \ {(0, 1)× (−1, 0)× (−1, 1)}. Let µr = κ = εr = 1
and Γ = ∂Ω. The non-dimensional wavelength is 2π/(κ diam(Ω)) = π/

√
3, since the

diameter of Ω is 2
√

3. The Dirichlet boundary condition and the source f are so
chosen that the exact solution is E := ∇

{

r1/2 sin(φ/2)
}

in cylindrical coordinates.
Fig. 5.1 shows the curves of log ‖E−Ek‖H(curl; Ω) versus logNk, where Nk is the

number of elements and Ek is the finite element solution of (2.18) over the mesh Tk.
Fig. 5.2 shows the log ηk – logNk curves, where ηk is the associated a posteriori error
estimate over Tk defined in Theorem 3.3. They indicate that the adaptive meshes and
the associated numerical complexity are quasi-optimal, i.e.

ηk = C N
−1/3
k and(5.2)

‖E−Ek‖H(curl; Ω) = C N
−1/3
k(5.3)

are valid asymptotically. They also show clearly the advantage of adaptive method
compared with the uniform refinements.

Table 5.1 shows the numbers of PMINRES iterations required to reduce the initial
residual by a factor 10−8 on different levels. We observe that PMINRES algorithm
converges in very few steps with the number of degrees of freedom varying from 722
to 1,616,983. Fig. 5.3 shows the CPU time versus the number of degrees of freedom
on different adaptive meshes.

Fig. 5.4 shows an adaptive mesh of 18,874,368 elements after 12 adaptive itera-
tions. We observe that the mesh is locally refined near the corner line x1 = x2 = 0
where the solution is singular.
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Fig. 5.1. Quasi-optimality of the adaptive mesh refinements of the error ‖u − uh‖H(curl; Ω)

(Example 5.1).
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(Example 5.1).
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Table 5.1

The Number of PMINRES iterations (Nitrs) required to reduce the initial residual by a factor
10−8 (Example 5.1) .

Level 1 3 5 7 8 9 10
DOFs 722 5668 26810 138667 319360 725217 1616983
Nitrs 5 6 6 7 7 8 8
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Fig. 5.3. CPU time for PMINRES iterations on adaptively refined grids (Example 5.1).

Example 5.2. We consider a time-harmonic problem containing an inner screen
Γ := {(x, y, z) : −0.5 ≤ x, z ≤ 0.5, y = 0}. We define Ω = (−1, 1)3 \ Γ and
Σ = ∂Ω \ Γ. We set µr = εr = λ = 1 in (1.1) and (1.2) and define

f := 0, g := curlEi × ν − i κEi,t,

where Ei = (ei y, 0, ei y)T /
√

2 perpendicular to the perfect conducting “screen”. Thus
(1.1)–(1.3) models the scattering by Γ under the incident field Ei. In this case, only
Hs-regularity (s < 1/2) of the solution is guaranteed.

In this experiment, we test the performance of the a posteriori error estimate
and the preconditioned MINRRS algorithm under different frequencies, i.e. κ2 =
1, 1.5, 10, 20, 36, 64, 100 in (1.1) and (1.2). The non-dimensional wavelength here
is π/(

√
3κ). Fig. 5.5 – Fig. 5.7 show the results for κ = 1 , while Fig. 5.8 and Fig.

5.9 show the result for κ > 1.

Fig. 5.5 shows the log ηk – logNk curves and indicates that the adaptive meshes
and the associated numerical complexity are quasi-optimal and (5.2) is valid asymp-
totically. It also shows clearly the advantage of adaptive method compared with the
uniform refinements.
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Fig. 5.4. An adaptively refined mesh of 18,874,368 elements after 12 adaptive iterations
(Example 5.1).

Fig. 5.6 shows the CPU time versus the number of degrees of freedom on different
adaptive meshes.

Fig. 5.7 shows an adaptive mesh of 2,947,848 elements after 11 adaptive iterations.
We observe that the mesh is locally refined near the boundary of the “screen”.

Fig. 5.8 shows the log ηk – logNk curves for κ2 = 1.5, 10, 20, 36, 64, 100.
It indicates that the adaptive meshes and the associated numerical complexity are
quasi-optimal and (5.2) is valid asymptotically for all these values of κ.

Fig. 5.9 shows the CPU time versus the number of degrees of freedom on different
adaptive meshes for κ2 = 1.5, 10, 20, 36, 64, 100. All lines show a quasi-linear
increasing of the CPU time of the solution of the algebraic system with respect to
the number of degrees of freedom. However, when κ2 ≥ 20, the CPU time increases
dramatically compared with the time for small κ.

Table 5.2 shows the numbers of PMINRES iterations required to reduce the initial
residual by a factor 10−8 for κ2 = 1, 1.5, 10, 20, 36, 64, 100 on different levels. We
observe that it remains nearly fixed for κ2 ≤ 10 with the number of degrees of freedom
varying from 1,322 to 1,513,049. When κ2 ≥ 20, the number of iterations increases
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Fig. 5.5. Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimate
(Example 5.2).
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Fig. 5.6. CPU time for PMINRES iterations on adaptively refined meshes (Example 5.2).
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rapidly as κ increases, but it varies slightly for all κ with the number of degrees of
freedom increasing.

Fig. 5.7. An adaptively refined mesh of 2,947,848 elements after 11 adaptive iterations
(Example 5.2).
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Fig. 5.8. Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimate
for κ2 = 1.5, 10, 20, 36, 64, 100 (Example 5.2).
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Fig. 5.9. CPU time for PMINRES iterations on adaptively refined meshes for κ2 =
1.5, 10, 20, 36, 64, 100 (Example 5.2).

Table 5.2

The Number of PMINRES iterations (Nitrs) required to reduce the initial residual by a factor
10−8 (Example 5.2) .

κ2 = 1 Level 1 3 5 6 7 8 9
DOFs 1322 18376 74655 137309 258991 599640 1022905
Nitrs 36 32 32 32 31 31 31

κ2 = 1.5 Level 1 3 5 6 7 8 9
DOFs 604 6252 34471 74415 133960 254531 591946
Nitrs 36 44 44 44 46 46 46

κ2 = 10 Level 1 4 5 6 7 8 9
DOFs 604 18040 33302 72094 133515 250203 580971
Nitrs 44 56 58 56 58 58 58

κ2 = 20 Level 1 4 5 6 7 8 9
DOFs 604 32163 34225 46611 131532 278454 488868
Nitrs 272 1091 1035 1068 879 854 833

κ2 = 36 Level 1 3 5 7 8 9 10
DOFs 604 3938 14956 40788 100672 184125 330495
Nitrs 845 1917 3358 2166 2167 2231 2314

κ2 = 64 Level 1 3 5 7 8 9 10
DOFs 604 3603 16212 53104 55350 74246 212931
Nitrs 2413 7012 6852 6757 6424 6547 7302

κ2 = 100 Level 1 4 5 6 7 8 9
DOFs 604 7224 19516 27888 45018 47534 162770
Nitrs 2464 55223 15916 9437 17278 10479 15775
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We remark that the frequency of the problem influences the total value of the
a posteriori error estimate, but does not influence its reduction rate. These phe-
nomena coincide with Theorem 3.3 and 3.4, where the frequency only influences the
constants and the estimates in the theorem, but does not influence the convergence
rate. Furthermore, the frequency make a strong impact on the performance of the
preconditioned MINRES algorithm.

Example 5.3. This experiment is to test the robustness of our method for cavity
problems on non-Lipschitz domains. The scatter consists of two perfect tetrahedral
conductors S1 and S2 with vertices

S1 : (0, 0, 0), (0.5, 0.5, −0.5), (0, 0.5, −0.5), (0, 0, −0.5) and

S2 : (0, 0, 0), (−0.5, −0.5, 0.5), (0, −0.5, 0.5), (0, 0, 0.5).

The computational domain is defined by Ω = (−1, 1)3 \ (S1 ∪S2) (see Fig. 5.10). We
set µr = εr = λ = κ = 1 in (1.1) and (1.2) and define

f := 0, g := curlEi × ν − i κEi,t,

where Ei = (ei y, 0, ei y)T /
√

2. The non-dimensional wavelength here is π/
√

3.

Fig. 5.10. Two tetrahedral conductors with a common vertex (Example 5.3).

Fig. 5.11 shows the log ηk – logNk curves and indicate that the adaptive meshes
and the associated numerical complexity are quasi-optimal and (5.2) is valid asymp-
totically. It also shows clearly the advantage of adaptive method compared with the
uniform refinements.
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Fig. 5.11. Quasi-optimality of the adaptive mesh refinements of the a posteriori error estimate
(Example 5.3).
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Fig. 5.12. CPU time for PMINRES iterations on adaptively refined meshes (Example 5.3).

Fig. 5.12 shows the CPU time versus the number of degrees of freedom on different
adaptive meshes.
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Table 5.3 shows the numbers of PMINRES iterations required to reduce the initial
residual by a factor 10−8 on different levels. We observe that it remains nearly fixed
with the number of degrees of freedom varying from 2,102 to 1,394,075.

Table 5.3

The Number of PMINRES iterations (Nitrs) required to reduce the initial residual by a factor
10−8 (Example 5.3) .

Level 1 3 5 7 9 11 13 14
DOFs 2102 11134 33437 74735 179603 450971 903251 1394075
Nitrs 42 42 42 40 41 41 42 42

Fig. 5.13 shows an adaptive mesh of 1,856,117 elements after 15 adaptive itera-
tions. We observe that the mesh is locally refined near the boundary of the scatter.

Fig. 5.13. An adaptively refined mesh of 1856117 elements after 15 adaptive iterations
(Example 5.3).
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