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Abstract. We review some of our recent efforts in developing upscaling meth-

ods for simulating the flow transport through heterogeneous porous media.
In particular, the steady flow transport through highly heterogeneous porous

media driven by extraction wells and the flow transport through unsaturated

porous media will be considered.

1. Introduction

The central difficulty in the modeling of subsurface flow and transport is the
accounting for the spatial variability in the parameters used to characterize the
relevant physical properties of the natural porous media. In realistic situations, the
precise spatial distribution of the parameters required to characterize the problem
is never available due to the lack of enough data. Thus sophisticated geological
and geostatistical modeling tools are used in practice to generate highly detailed
medium parameters based on some site-specific measurements and experience from
other sites. There exists a vast literature on the upscaling or homogenization tech-
niques that lump the small-scale details of the medium into a few representative
macroscopic parameters on a coarse scale which preserve the large-scale behavior
of the medium and are more appropriate for reservoir simulations. We refer to the
book of Christakos [7] for more information on the random field modeling of the
natural porous medium parameters and the recent review paper [24] on the existent
upscaling techniques in the engineering literature.

The recently introduced multiscale finite element method [15, 16] for solving
elliptic equations with oscillating coefficients provides an effective way to capture
the large scale structures of the solutions on a coarse mesh without resolving all the
fine scale structures. The central idea of the method is to incorporate the local small
scale information of the leading order differential operator into the finite element
bases. It is through these multiscale bases and the finite element formulation that
the effect of small scales on the large scales is correctly captured. We also refer to
the related analysis of the heterogeneous multiscale method (HMM) [19] for solving
the elliptic problem with oscillating coefficients. In section 2 we will describe one
engineering upscaling technique and discuss its relation with the multiscale finite
element method.
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The study of steady flow through highly heterogeneous porous medium driven
by extraction wells is of great importance in hydrology, petroleum reservoir en-
gineering. It is observed in the engineering literature (cf. e.g. [8] and [21] and
the references therein) that in the near-well region, many of the existing upscaling
methods do not provide satisfactory results. The reason may be explained as the
standard upscaling methods generally assume the pressure field is slowly varying,
that is clearly not true in the vicinity of the flowing wells [8]. This fact may also
be explained mathematically from the homogenization theory for the second order
elliptic equations with periodic coefficients. In the homogenization theory, multi-
scale convergence is ensured under the assumption that the source should be at
least in H−1 so that the solution is bounded in Sobolev space H1. As we will see
below, however, well singularities can be modeled as Dirac sources and thus in the
near-well region, the solution behaves like Green function which is not uniformly
bounded in H1. In section 3 we will describe an upscaling technique for dealing
with well singularities.

The nonlinear Richards equation which models the flow transport in unsaturated
porous media is of significant importance in engineering applications. We consider
the following nonlinear partial differential equations

∂θ

∂t
− ∂K

∂x3
−∇ · (K∇u) = f,

where θ is volumetric water content, K is the absolute permeability tensor, u is
the fluid pressure, x3 denotes the vertical coordinate in the medium, and f stands
for possible sources/sinks. The sources of nonlinearity of Richards equation come
from the moisture retention function θ(u) and relative hydraulic conductivity func-
tion K(θ), respectively. Based on experimental results, many different functional
relations have been proposed in the literature through various combinations of the
dependent variables θ, u and K, and a certain number of fitting parameters (e.g.,
[13, 14]). There are several widely known formulations of the constitutive relations
such as the van Genuchten-Mualem model [14], or the Garder model [13]. For
example, in the Garder model, also called exponential model,

θ(u) = θr + (θs − θr)e−β|u|, K(u) = Kse
−α|u|,

where θr and θs represent the residual water content and saturated water content
respectively, Ks is the saturated hydraulic conductivity, and α, β are parameters
of the porous media. In section 4 we develop an upscaling method for a class of
nonlinear parabolic equations which includes the Richards equation in the parabolic
range as a special case.

2. Upscaling of the permeability

The purpose of this section is to show that one of the well-known engineering
upscaling techniques (see e.g. [20]) is equivalent to the multiscale finite element
method proposed in [10, 15]. We remark that multiscale finite element method is
shown to be convergent under the condition that the permeability is locally periodic
Kε(x) = K(x, x/ε), where K(x, ·) is periodic with respect to the second variable.
As a consequence, the convergence of the engineering approach described in this
section is guaranteed.

Let MH be a finite element mesh of Ω with the mesh size H much larger than
the ε, the characteristic length representing the small scale variability of the media.
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Usually, ε is equal to the correlation length in the statistical random field modeling
of the media. Let WH be the standard conforming linear finite element space over
MH and W 0

H = WH ∩H1
0 (Ω). In the engineering literature, the problem

−div (Kε(x)∇uε) = f in Ω, uε = 0 on Γ(2.1)

is approximated by the homogenized or upscaled problem: Find u∗H ∈ W 0
H such

that ∫
Ω

K∗(x)∇u∗H∇vHdx =
∫

Ω

fvHdx ∀vH ∈W 0
H(2.2)

with K∗ being piecewise constant on the coarse mesh MH . The so-called effective
permeability matrix K∗ on each T ∈ MH is defined as follows. For any G ∈ R2,
let θε be the solution of the problem

−div (Kε∇θε) = 0 in T, θε|∂T = G · x.
Simple integration by parts implies that

∇θε =
1
|T |

∫
T

∇θεdx =
1
|T |

∫
∂T

Gx · νds =
1
|T |

∫
T

∇(Gx)dx = G.(2.3)

On the other hand, since Q = Kε∇θε = 1
|T |

∫
T
Kε∇θεdx is linear in G, there exists

a matrix K∗ such that

Q = K∗ ·G ⇐⇒ −Kε∇θε = −K∗∇θε.(2.4)

The multiscale finite element method introduced in [10, 15] is based on multiscale
finite element base functions. For any T ∈ MH , let ψi, i = 1, 2, 3, be the linear
nodal bases. Define φT

i , i = 1, 2, 3, as the solution of the local problem

−div (Kε∇φT
i ) = 0 in T, φT

i |∂T = ψi.

Denote by V (T ) = span {φT
i , i = 1, 2, 3} and VH the finite element space

VH = {vH ∈ H1(Ω) : vH |T ∈ V (T )}.
Then the multiscale finite element approximation to (2.1) is: Find uH ∈ V 0

H =
VH ∩H1

0 (Ω) such that∫
Ω

Kε∇uH∇vHdx =
∫

Ω

fvHdx ∀vH ∈ V 0
H .(2.5)

It is easy to show that the stiffness matrices corresponding to the discrete prob-
lems (2.2) and (2.5) are identical.

3. Upscaling of the well singularity

Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary Γ. B(x0, r) will be
denoted as the disk centered at x0 with radius r > 0. Let Bj = B(x̄j , δ), 1 ≤ j ≤ N ,
be mutually disjoint subdomains inside Ω that are occupied by the wells. Denote
by Ωδ = Ω\(∪N

j=1B̄j). We consider the following single phase pressure equation
which is formed by combining Darcy’s law with the conservation of mass

−div (K(x)∇uδ) = 0 in Ωδ,(3.1)

where uδ is pressure, K is the permeability which is typically highly variable in
space. We will impose homogeneous Dirichlet boundary condition uδ|Γ = 0 on the
exterior boundary. The other types of boundary conditions can be treated similarly
without any essential difficulties. On the well boundary Γj = ∂Bj , two quantities
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are of particular importance in practical applications: the well bore pressure uδ|Γj

and the well flow rate
∫

Γj

K
∂uδ

∂ν
ds, where ν is the unit outer normal to ∂Ωδ. The

boundary condition to be imposed on Γj is either the Dirichlet boundary condition
which fixes the well bore pressure αj (assume to be constant)

uδ|Γj
= αj ,(3.2)

or the following mixed boundary condition which fixes the well flow rate qj

uδ|Γj
= cj = const ,

∫
Γj

K
∂uδ

∂ν
ds = qj .(3.3)

The constant cj in (3.3) is unknown.
The purpose of this section is to develop a complete coarse grid algorithm for

solving steady flow problem involving well singularities in heterogeneous porous
medium based on the upscaling method in the last section. The additional well
singularities of the problem are resolved locally by adding finite element base func-
tions. The final coarse grid model is based on a variational formulation which is
different from the heuristic techniques in [8, 21]. We emphasize that as pointed out
in [9], the spatial periodicity assumption does not a priori restrict the applicability
of the results only to media which do exhibit such strict repetitive spatial ordering
in the properties of interest. The numerical experiments carried out for random
log-normal relative permeabilities in [6] using the over-sampling multiscale finite
element method demonstrate clearly the applicability of our method beyond the
periodic structures.

Since the size of the wells δ is negligible in practical situations, the first approx-
imation to be made is to replace (3.1)-(3.3) by the following problem

−div (K(x)∇u) =
N∑

j=1

qjδx̄j in Ω(3.4)

with the boundary condition u|Γ = 0. Here δx̄j is the Dirac measure at x̄j , 1 ≤ j ≤

N . Denote by Kj = K(x̄j), φj = − 1
2πKj

ln |x− x̄j | and U = u−
∑N

j=1 qjφj . Note

that the flow rates qi for i ∈ ID in (3.4) are unknown. They are determined through
the following additional conditions which are obtained by requiring u|Γi ≈ αi as
the approximation of the boundary conditions (3.2):

− qi

2πKi
ln δ +

∑
j 6=i

qjφj(x̄i) + U(x̄i) = αi, i ∈ ID.(3.5)

The following error estimate is proved in [6] between the solution uδ of the original
problem (3.1)-(3.3) and the solution u of (3.4)-(3.5)

max
x∈Ω̄δ

|u− uδ| ≤ Cδ| ln δ|
N∑

j=1

|qj |.

To introduce our multiscale algorithm, we first introduce an equivalent varia-
tional formulation for (3.4) which is suitable for our multiscale approximation. Let
Ωj , 1 ≤ j ≤ N , be mutually disjoint subdomains inside Ω such that B̄j ⊂⊂ Ωj . Let
Gj be the Green function associated with the domain Ωj

−div (K(x)∇Gj) = δx̄j
in Ωj , Gj |Σj

= 0,(3.6)



UPSCALING METHODS 5

where Σj = ∂Ωj . Now for any v ∈ C∞
0 (Ω) we have

v(x̄j) =
∫

Ωj

−div (K(x)∇Gj)vdx

=
∫

Ωj

K(x)∇Gj∇vdx−
∫

Σj

K
∂Gj

∂ν
vds.

On the other hand, from (3.4) we know that
N∑

j=1

qjv(x̄j) =
∫

Ω

K(x)∇u∇vdx.

Let Gj = 0 for x ∈ Ω\Ω̄j and ζ = u −
∑N

j=1 qjGj , then we know that ζ ∈ H1
0 (Ω)

satisfies the following variational form∫
Ω

K(x)∇ζ∇vdx = −
N∑

j=1

qj

∫
Σj

K
∂Gj

∂ν
vdx ∀v ∈ C∞

0 (Ω).(3.7)

Denote by wj = Gj +
1

2πKj
ln |x− x̄j | in Ωj , then the complementary condition

(3.5) to determine qi for i ∈ ID becomes

− qi

2πKi
ln δ + qiwi(x̄i) + ζ(x̄i) = αi, i ∈ ID.(3.8)

We note that for ζ the singularities of the original solution u are removed and we
can use the upscaling method in Section 2 to discretize it on a coarse grid.

Let MH be a finite element mesh of Ω with the mesh size H much larger than
the ε, the characteristic length representing the small scale variability of the media.
Let WH be the standard conforming linear finite element space over MH and
W 0

H = WH ∩ H1
0 (Ω). Then we introduce the following discrete problem: Find

ζH ∈W 0
H and {qH

i }i∈ID
such that∫

Ω

K∗(x)∇ζH∇χHdx = −
N∑

j=1

qH
j

∫
Σj

Kε

∂Gε
j

∂ν
χHds ∀χH ∈W 0

H ,(3.9)

− qH
i

2πKi
ln δ + qH

i wi(x̄i) + ζH(x̄i) = αi ∀i ∈ ID,(3.10)

where K∗ is defined elementwise as in (2.4), and we set qH
j = qj for j ∈ IM to

simplify the notation.
In [6], the problem (3.7)-(3.8) is solved by the over-sampling multiscale finite

element method and the convergence of the physically interested quantities like
the well bore pressure for the wells that prescribe the flow rate and the flow rate
for the wells that prescribe the well bore pressure has been established. A similar
convergence analysis can also be proved for the upscaling method in (3.9)-(3.10).

In the practical computation, the following algorithm can be used to the problem
(3.1)-(3.3) which is a good approximation of the original problem (3.4)-(3.5) when
the size of the wells is negligible. The algorithm adapts the corresponding algorithm
proposed and studied in [6] in which the reduced problem (3.7)-(3.8) is solved by
the over-sampling multiscale finite element method.

Algorithm. Given the well bore pressure αi for i ∈ ID and the well flow rate
qj for j ∈ IM . The following procedure finds the approximate well bore pressure
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αH
j for j ∈ IM , the approximate well flow rate qH

i for i ∈ ID, and the approximate
pressure uH = ζH +

∑N
j=1 qH

j G
h
j , where qH

j = qj for j ∈ IM .

• For j = 1, · · · , N , compute the discrete Green function Gh
j on each subdo-

main Ωj , i.e. Gh
j ∈ V 0

h (Ωj) such that∫
Ωj

K(x)∇Gh
j∇vhdx = vh(x̄j) ∀vh ∈ V 0

h (Ωj).(3.11)

Here V 0
h (Ωj) = Vh(Ωj) ∩ H1

0 (Ωj), and Vh(Ωj) is the standard conforming
linear finite element space over the mesh Mh(Ωj) of Ωj with the mesh size
h resolving the scale of the permeability field K(x). Compute the associate
effective radius r̄j from Gh

j according to the following relation

1
2πKj

ln r̄j =
∫

Ωj

(K −Kj)∇φ∇Gh
j dx−

∫
Ωj

K∇Gh
j∇ψh,(3.12)

where φ = − 1
2πKj

ln |x − xj | and ψh ∈ Vh(Ωj) whose nodal values are
defined by

ψh(xk) =
{
φ(xk) if xk ∈ ∂Ωj ,

0 otherwise,

Thus the approximate value of the Green function Gj on Γj is

αh
j = Gh

j (x̄j)−
1

2πKj
ln

δ

r̄j
, Kj = K(x̄j).

• Find ζH ∈W 0
H and {qH

i }i∈ID
such that∫

Ω

K∗(x)∇ζH∇χHdx = −
N∑

j=1

qH
j

∫
Σj

K
∂Gh

j

∂ν
χHds ∀χH ∈W 0

H ,

qH
i α

h
i + ζH(x̄i) = αi for i ∈ ID,

where K∗ is computed elementwise according to (2.4).
• Compute the approximate well bore pressure αH

j for j ∈ IM through the
relation

αH
j = ζH(x̄j) + qjα

h
j .

The formula (3.12) defining the effective radius extends the well-known Peace-
man method [22, 23] in the engineering literature for five point finite difference
discretization and constant permeability to the general case and is convergent for
any finite element meshes and any heterogeneous porous media, as proved in [6].

4. Upscaling of nonlinear parabolic equations

Let Ω ⊂ Rd, d = 2, 3 be a bounded polyhedral domain with boundary ∂Ω. We
set QT = Ω × (0, T ), ST = ∂Ω × (0, T ) for 0 < T < ∞. Consider the following
parabolic equation

(4.1)

∂tb(uε)−∇ · (gε(x, uε) + aε(x, uε)∇uε) = f(x, t) in QT ,

uε(x, t) = 0 on ST ,

uε(x, 0) = u0(x) in Ω,
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where aε(x, uε) = (aε
ij(x, uε)) is a symmetric, positive definite, bounded tensor:

(4.2) λ|ξ|2 ≤ aε
ij(x, s)ξiξj ≤ Λ|ξ|2 ∀ξ ∈ Rd, x ∈ Ω̄, s ∈ R

for some positive constants λ and Λ, and gε(x, uε) = (gε
i (x, uε)) is a bounded

vector. ε is the characteristic length representing the small scale variability of the
media. We also assume that ∂

∂sa
ε
ij(x, s),

∂
∂sg

ε
i (x, s) are uniformly bounded and b(s)

satisfies

(4.3) 0 < b1 ≤ b′(s) ≤ b2 <∞, b′′(s) < C ∀s ∈ R.
Define the space

W = {u : u ∈ L2(0, T ;H1
0 (Ω)), u ∈ H1(0, T ;H−1(Ω))}.

The variational problem of (4.1) is to seek uε(x, t) ∈ W, for almost every t ∈ (0, T ),
uε(·, t) ∈ H1

0 (Ω) such that uε(x, 0) = u0(x) in Ω, and

(4.4) (∂tb(uε), w) + (gε(x, uε) + aε(x, uε)∇uε,∇w) = (f, w) ∀w ∈ H1
0 (Ω).

Here and henceforth, (·, ·) stands for the inner product of L2(Ω) or the duality
pairing between H−1(Ω) and H1

0 (Ω).
Instead of solving (4.4) on a fine mesh with a mesh size resolving the small scale

variability ε, the basic idea of the upscaling methods is to solve the homogenized
or upscaled equation

(∂tb(u), w) + (g∗(x, u) + a∗(x, u)∇u,∇w) = (f, w) ∀w ∈ H1
0 (Ω).

The homogenized coefficients a∗(x, s), g∗(x, s), for s ∈ R, can be computed ana-
lytically from aε, gε if they are periodic with respect to the second variable, see
e.g. [17, 2, 4]. Unfortunately, for practical natural porous media, such analytical
formulae do not exist. In the following we shall develop a way to compute the
nonlinear relations a∗(x, ·), g∗(x, ·) numerically.

Let MH be a regular triangulation of Ω with mesh size H and τ = T/N be
the time step length, tn = nτ , n = 0, 1, · · · , N . Further, let WH be the standard
conforming linear finite element space over MH and W 0

H = WH ∩H1
0 (Ω). For any

K ∈MH , denote

〈·〉K =
1
|K|

∫
K

(·)dx

as the volume average over K.
Set v = b(u). For n = 1, · · · , N , our discrete problem is to seek vn

H ∈ W 0
H , the

approximate solution of v at time t = tn, such that
(4.5)(

vn
H − vn−1

H

τ
, wH

)
+ (g̃(x, ũn) + ã(x, ũn)∇ũn,∇wH) = (f̄n, wH) ∀wH ∈W 0

H ,

where ũn = b−1(vn
H), v0

H = b(u0) and f̄n = τ−1
∫ tn

tn−1 f(x, t)dt. For any s ∈ R, the
nonlinear functions ã(x, s) and g̃(x, s) are piecewise constant over MH defined as
follows.

For any K ∈MH , s ∈ R, let pε
i , i = 1, 2, · · · , d, be the solution of the problem

(4.6)
−∇ · (aε(x, s)∇pε

i ) = 0 in K,

pε
i = xi on ∂K.

Then, on K, ã is a constant tensor determined by the following system

(4.7) ã〈∇pε
i 〉K = 〈aε(x, s)∇pε

i 〉K , i = 1, 2, · · · , d.
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It is well-defined since by using Green formula

(4.8) 〈∇pε
i 〉K =

1
|K|

∫
∂K

xindσ = ei,

where ei is the unit vector in the ith direction. Similar to the argument in [3, 25]
for the linear case, we know that ã is symmetric, bounded, and positive definite.
Moreover,

(4.9) ei · (ãej) = 〈∇pε
i · (aε(x, s)∇pε

j)〉K .

Further, g̃(x, s) is a constant vector in K determined by

(4.10) g̃i(x, s) = 〈gε(x, s) · ∇pε
i 〉K , i = 1, 2, · · · , d.

Recently a number of multiscale numerical methods, such as multiscale finite
element method [11], heterogeneous multiscale method [19], and numerical homog-
enization method [12] have been proposed to solve the nonlinear problems. The key
idea of our method is that we upscale the nonlinear constitutive relations such as
the relationship between hydraulic conductivity versus pressure before we solve the
nonlinear problems. We stress that the real significance of the method lies in its
ability to solve the problems in coarse meshes. This is particularly advantageous
when multiple simulations or realizations are necessary due to changes of boundary
conditions or source functions for certain given fine micro-structures of the highly
heterogeneous permeability of the porous media. Based on the homogenization the-
ory, a sharp error estimate of the method can be established under the periodicity
assumption in [4]. This assumption allows us to use the homogenization theory to
obtain the asymptotic structure of the solutions. We emphasize that as pointed out
in [9], the spatial periodicity assumption does not a priori restrict the applicability
of the results only to media which do exhibit such strict repetitive spatial ordering
in the properties of interest. The numerical experiments in [4] indicate that our
method works fine for the well-accepted random log-normal permeability models in
the engineering literature.

Another new feature of our method is the way by which we deal with the nonlin-
ear convection term. Our numerical procedure, as we show in the paper, shares a
common element with the other multiscale methods, that is, the local information
is coupled in the global formulation. The difference is the coupling way we use.
Our local problem does not involve the convection term which is different from
the multiscale finite element method and the numerical homogenization approach
introduced in [11, 12]. This idea has been introduced in a previous paper for the
solute transport model in [3].
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[21] O. Mascarenhas and L.J. Durlofsky, Scale up in the vicinity of horizontal wells, Proceedings of

the 20th Annual International Energy Agency Workshop and Symposium, Paris, September

22-24, 1999.

[22] D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulations,
SPEJ, 183-194, June 1978.

[23] D.W. Peaceman, Interpretation of well-block pressures in numerical reservoir simulations

with non-square grid blocks and anisotropic permeability, SPEJ, 531-543, June 1983.

[24] Ph. Renard and G. de Marsily, Calculating equivalent permeability: A review, Advances in

Water Resources, 20 (1997), 253-278.

[25] X.H. Wu, Y. Edendiev and T.Y. Hou, Analysis of upscaling absolute permeability, Discrete
and Continuous Dynamical Systems-series B, 2 (2002), 185–204.

LSEC, Institute of Computational Mathematics, Academy of Mathematics and Sys-

tem Sciences, Chinese Academy of Sciences, Beijing 100080, China.

E-mail address: zmchen@lsec.cc.ac.cn


