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Abstract. The adaptive finite element method based on a posteriori error estimates
provides a systematic way to refine or coarsen the meshes according to the local a poste-
riori error estimator on the elements. One of the remarkable properties of the method is
that for appropriately designed adaptive finite element procedures, the meshes and the
associated numerical complexity are quasi-optimal in the sense that the finite element
discretization error is proportional to N−1/2 in terms of the energy norm, where N is the
number of degrees of freedom of the underlying mesh. The purpose of this paper is to
report some of the recent advances in the a posteriori error analysis and adaptive finite
element methods for partial differential equations. Emphases will be paid on an adaptive
perfectly matched layer technique for scattering problems and a sharp L1 a posteriori
error analysis for nonlinear convection-diffusion problems.
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1. Introduction

The aim of the adaptive finite element method (AFEM) for solving partial differ-
ential equations is to find the finite element solution and the corresponding mesh
with least possible number of elements with respect to discrete errors. The task to
find the mesh with the desired property is highly nontrivial because the solution
is a priori unknown. The basic idea of the seminal work [3] is to find the desired
mesh under the principle of error equidistribution, that is, the discretization error
should be approximately equal on each element. The error on the elements which
is also unknown can, however, can be estimated by a posteriori error estimates.
Today AFEM based on a posteriori error estimates attracts increasing interests
and becomes one of the central themes of scientific computation. The purpose of
this paper is to report some of the recent advances in the a posteriori error analysis
and AFEM for partial differential equations.

A posteriori error estimates are computable quantities in terms of the discrete
solution and data, which provide information for adaptive mesh refinement (and
coarsening), error control, and equidistribution of the computational effort. We
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now describe briefly the basic idea of AFEM using the example of solving the
Possion equation on a polygonal domain Ω in R2

−Δu = f in Ω, u = 0 on ∂Ω. (1.1)

Here the source function f is assumed to be in L2(Ω). It is well-known that the
solution of the problem (1.1) may be singular due to the reentrant corners of the
domain in which case the standard finite element methods with uniform meshes
are not efficient.

Let Mh be a regular triangulation of the domain Ω and Bh be the collection
of all inter-element sides of Mh. Denote by uh the piecewise linear conforming
finite element solution over Mh. For any inter-element side e ∈ Bh, let Ωe be the
collection of two elements sharing e and define the local error indicator ηe as

η2
e :=

∑
K∈Ωe

‖ hKf ‖2
L2(K) + ‖ h1/2

e Je ‖2
L2(e),

where hK := diam(K), he := diam(e), and Je := [[∇uh ]]e · ν stands for the jump
of flux across side e which is independent of the orientation of the unit normal ν
to e. The following a posteriori error estimate is well-known [2]

‖ u − uh ‖2
H1(Ω) ≤ C

∑
e∈Bh

η2
e .

That ηe really indicates the error is explained by the following lower bound [39].

η2
e ≤ C

∑
K∈Ωe

‖ u − uh ‖2
L2(K) + C

∑
K∈Ωe

‖ hK(f − fK) ‖2
L2(K),

where fK = 1
|K|
∫

K fdx.
Based on the local error indicator, the usual adaptive algorithm solving the

elliptic problem (1.1) reads as follows

Solve → Estimate → Refine.

The important convergence property, which guarantees the iterative loop termi-
nates in finite steps starting from an initial coarse mesh, is proved in [23, 30]. It is
also observed (cf. e.g. [30]) that for appropriately designed adaptive finite element
procedures, the meshes and the associated numerical complexity are quasi-optimal
in the sense that

‖∇(u − uh) ‖L2(Ω) ≈ CN−1/2 (1.2)

is valid asymptotically, where N is the number of elements of the underlying finite
element mesh. Since the nonlinear approximation theory [5] indicates that N−1/2

is the highest attainable convergence order for approximating functions in H1(Ω)
in two space dimensions over a mesh with N elements, one concludes that AFEM
is an optimal discretization method for solving the elliptic problem (1.1).
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In section 2 we consider to use AFEM to solve the Helmholtz-type scattering
problems with perfectly conducting boundary

Δu + k2u = 0 in R2\D̄, (1.3a)
∂u

∂n
= −g on ΓD, (1.3b)

√
r

(
∂u

∂r
− iku

)
→ 0 as r = |x| → ∞. (1.3c)

Here D ⊂ R2 is a bounded domain with Lipschitz boundary ΓD, g ∈ H−1/2(ΓD)
is determined by the incoming wave, and n is the unit outer normal to ΓD. We as-
sume the wave number k ∈ R is a constant. We study an adaptive perfectly matched
layer (APML) technique to deal with the Sommerfeld radiation condition (1.3c)
in which the PML parameters such as the thickness of the layer and the fictitious
medium property are determined through sharp a posteriori error estimates. The
APML technique combined with AFEM provides a complete numerical method for
solving the scattering problem in the framework of finite element which has the
nice property that the total computational costs are insensitive to the thickness
of the PML absorbing layers. The quasi-optimality of underlying FEM meshes is
also observed.

Things become much more complicated when applying AFEM to solve time-
dependent partial differential equations. One important question is if one should
use the adaptive time marching (ATM) method in which variable timestep sizes
(but constant at each time step) and variable space meshes at different time steps
are assumed, or one should consider the the space-time adaptive method in which
space-time domain is considered as a whole and AFEM is used without distinguish-
ing the difference of time and space variables. Our recent studies in [9, 10, 11] reveal
that with sharp a posteriori error analysis and carefully designed adaptive algo-
rithms, the ATM method also produces the very desirable quasi-optimal decay of
the error with respect to the computational complexity

|||u − U |||Ω×(0,T ) ≤ CM−1/3 (1.4)

for a large class of convection-diffusion parabolic problems in two space dimen-
sions using backward Euler scheme in time and conforming piecewise linear finite
elements in space. Here |||u − U |||Ω×(0,T ) is the energy norm of the error between
the exact solution u and the discrete solution U , and M is the sum of the num-
ber of elements of the space meshes over all time steps. Thus if one takes the
quasi-optimality of the computational complexity as the criterion to assess the
adaptive methods, then the space-time adaptive method which is less studied in
the literature will not have much advantage over the ATM method.

A posteriori error analysis for parabolic problems in the framework of ATM has
been studied intensively in the literature. The main tool in deriving a posteriori
error estimates in [25, 26, 14, 31, 7] is the analysis of linear dual problems of the
corresponding error equations. The derived a posteriori error estimates, however,
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depend on the H2 regularity assumption on the underlying elliptic operator. With-
out using this regularity assumption, energy method is used in [34, 10] to derive an
a posteriori error estimate for the total energy error of the approximate solution
for linear heat equations. A lower bound for the local error is also derived for the
associated a posteriori error indicator in [34, 9]. In [9] an adaptive algorithm is
constructed which at each time step, is able to reduce the error indicators (and
thus the error) below any given tolerance within finite number of iteration steps.
Moreover, the adaptive algorithm is quasi-optimal in terms of energy norm. In
[10] an quasi-optimal ATM method in terms of the energy norm is obtained for
the linear convection-dominated diffusion problems based on L1 a posteriori error
estimates.

In section 3 we study the ATM method for the initial boundary value problems
of nonlinear convection-diffusion equations of the form

∂u

∂t
+ divf(u) − ΔA(u) = g.

We derive sharp L∞(L1) a posteriori error estimates under the non-degeneracy
assumption A′(s) > 0 for any s ∈ R. The problem displays both parabolic and
hyperbolic behavior in a way that depends on the solution itself. It is discretized
implicitly in time via the method of characteristic and in space via continuous
piecewise linear finite elements. The analysis is based on the Kružkov “doubling
of variables” device and the recently introduced “boundary layer sequence” tech-
nique to derive the entropy error inequality on bounded domains. The derived a
posteriori error estimate leads to a quasi-optimal adaptive method in terms of the
norm ‖ · ‖L1 in (1.4).

2. The APML technique for scattering problems

In this section we consider the APML technique for the scattering problem (1.3a)-
(1.3c). Since [4] proposed a PML technique for solving the time dependent Maxwell
equations, various constructions of PML absorbing layers have been proposed and
studied in the literature [38, 37]. Here we introduce the PML technique for (1.3a)-
(1.3c) following the method in [19].

Let D be contained in the interior of the circle BR = {x ∈ R2 : |x| < R}. In
the domain R2\B̄R, the solution u of (1.3a)-(1.3c) can be written under the polar
coordinates as follows

u(r, θ) =
∑
n∈Z

H (1)
n (kr)

H (1)
n (kR)

ûneinθ, ûn =
1
2π

∫ 2π

0

u(R, θ)e−inθdθ. (2.1)

where H (1)
n is the Hankel function of the first kind and order n. The series in (2.1)

converges uniformly for r > R [20].
The basic idea of PML technique is to surround the fixed domain ΩR = BR\D̄

with a PML layer of thickness ρ−R and choose the fictitious medium property so
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that either the wave never reaches its external boundary or the amplitude of the
reflected wave is so small that it does not essentially contaminate the solution in
ΩR.

Let α = 1+ iσ be the model medium property satisfying σ ∈ C(R), σ ≥ 0, and
σ = 0 for r ≤ R. The most widely used model medium property σ in the literature
is the power function, that is,

σ = σ0

(
r − R

ρ − R

)m

, m ≥ 1, σ0 > 0 constant. (2.2)

Denote by r̃ the complex radius defined by

r̃ = r̃(r) =
{

r if r ≤ R,∫ r

0
α(t)dt = rβ(r) if r ≥ R.

Since H (1)
n (z) ∼

√
2

πz ei(z−π
2 n−π

4 ) as |z| → ∞, [19] obtained the PML equation by

considering the following extension of u in the exterior domain R2\B̄R

w(r, θ) =
∑
n∈Z

H (1)
n (kr̃)

H (1)
n (kR)

ûneinθ, ûn =
1
2π

∫ 2π

0

u(R, θ)e−inθdθ. (2.3)

It is easy to check that w satisfies

∇ · (A∇w) + αβk2w = 0 in R2\B̄R,

where A = A(x) is a matrix which satisfies, in polar coordinates,

∇ · (A∇) =
1
r

∂

∂r

(
βr

α

∂

∂r

)
+

α

β

1
r2

∂2

∂θ2
.

The PML problem then becomes

∇ · (A∇û) + αβk2û = 0 in Bρ\D̄, (2.4a)
∂û

∂n
= −g on ΓD, û = 0 on Γρ. (2.4b)

It is proved in [22, 21] that the resultant PML solution converges exponentially
to the solution of the original scattering problem as the thickness of the PML
layer tends to infinity. We remark that in practical applications involving PML
techniques, one cannot afford to use a very thick PML layer if uniform finite
element meshes are used because it requires excessive grid points and hence more
computer time and more storage. On the other hand, a thin PML layer requires a
rapid variation of the artificial material property which deteriorates the accuracy
if too coarse mesh is used in the PML layer.

The APML technique was first proposed in [16] for solving scattering by pe-
riodic structures (the grating problem) which uses a posteriori error estimates to
determine the PML parameters such as the thickness and the medium property
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like σ0 in the (2.2). For the scattering problem (1.3a)-(1.3c), the main difficulty
of the analysis is that in contrast to the grating problems in which there are only
finite number of outgoing modes [16], now there are infinite number of outgoing
modes expressed in terms of Hankel functions. We overcome this difficulty by the
by exploiting the following uniform estimate for the Hankel functions H1

ν , ν ∈ R.

Lemma 2.1. For any ν ∈ R, z ∈ C++ = {z ∈ C : (z) ≥ 0,�(z) ≥ 0}, and Θ ∈ R
such that 0 < Θ ≤ |z|, we have

|H (1)
ν (z)| ≤ e

−�(z)
“
1− Θ2

|z|2
”1/2

|H (1)
ν (Θ)|.

The proof of the lemma which depends on the Macdonald formula for the
modified Bessel functions can be found in [16]. Lemma 2.1 allows us to prove
the exponentially decaying property of the PML solution without resorting to the
integral equation technique in [22] or the representation formula in [21]. As a
corollary of Lemma 2.1, we know that the function w in (2.3) satisfies

‖w ‖H1/2(Γρ) ≤ e
−k�(ρ̃)

“
1− R2

|ρ̃|2
”1/2

‖ u ‖H1/2(ΓR).

We remark that in [22], [21], it is required that the fictitious absorbing coeffi-
cient must be linear after certain distance away from the boundary where the PML
layer is placed. We also remark that since (2.5) is valid for all real order ν, the
results of [12] can be extended directly to study three dimensional Helmholtz-type
scattering problems.

Let Mh be a regular triangulation of Bρ\D̄ and uh be the finite element solution
of the PML problem (2.4a)-(2.4b). Let Bh denote the set of all sides that do not
lie on ΓD and Γh

ρ . For any K ∈ Mh, we introduce the residual:

Rh := ∇ · (A∇uh|K) + αβk2uh|K .

For any interior side e ∈ Bh which is the common side of K1 and K2 ∈ Mh, we
define the jump residual across e:

Je := (A∇uh|K1 − A∇uh|K2) · νe,

using the convention that the unit normal vector νe to e points from K2 to K1. If
e = ΓD ∩ ∂K for some element K ∈ Mh, then we define the jump residual

Je := 2(∇uh|K · n + g)

For any K ∈ Mh, denote by ηK the local error estimator which is defined by

η
K

= max
x∈K̃

ω(x) ·
(
‖hKRh‖2

L2(K) +
1
2

∑
e⊂∂K

he‖ Je ‖2
L2(e)

)1/2

,

where K̃ is the union of all elements having nonempty intersection with K, and

ω(x) =

{
1 if x ∈ B̄R\D̄,

|α0α|e−k�(r̃)
“
1− r2

|r̃|2
”1/2

if x ∈ B̄ρ\BR,
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Theorem 2.2. There exists a constant C depending only on the minimum angle
of the mesh Mh such that the following a posterior error estimate is valid

‖ u − uh ‖H1(ΩR) ≤ CΛ(kR)1/2(1 + kR)

( ∑
K∈Mh

η2
K

)1/2

+C(1 + kR)2|α0|2e−k�(ρ̃)
“
1− R2

|ρ̃|2
”1/2

‖ uh ‖H1/2(ΓR).

Here Λ(kR) = max

(
1,

|H(1)
0

′(kR)|
|H(1)

0 (kR)|

)
.

From Theorem 3.1 we know that the a posteriori error estimate consists of two
parts: the PML error and the finite element discretization error. An adaptive
algorithm is developed in [12] which uses the a posteriori error estimate to deter-
mine the PML parameters. We first choose ρ and σ0 such that the exponentially
decaying factor

ω̂ = e
−k�(ρ̃)(1− R2

|ρ̃|2 )1/2

≤ 10−8,

which makes the PML error negligible compared with the finite element discretiza-
tion errors. Once the PML region and the medium property are fixed, we use
the standard finite element adaptive strategy to modify the mesh according to the
a posteriori error estimate. The extensive numerical experiments reported in [12]
show the competitive behavior of the proposed adaptive method. In particular, the
quasi-optimality of meshes is observed and the adaptive algorithm is robust with
respect to the choice of the thickness of PML layer: the far fields of the scattering
solutions are insensitive to the choices of the PML parameters.

3. The ATM method for nonlinear convection

diffusion problems

Let Ω is a bounded domain in Rd(d = 1, 2, 3) with Lipschitz boundary and T > 0.
We consider the following nonlinear convection-diffusion equation

∂u

∂t
+ divf(u) − ΔA(u) = g in Q (3.1)

with the initial and boundary conditions

u|t=0 = u0, u|∂Ω×(0,T ) = 0. (3.2)

Here u = u(x, t) ∈ R, with (x, t) ∈ Q = Ω×(0, T ). We assume that the function f :
R → Rd is locally Lipschitz continuous, the function A : R → R is nondecreasing
and locally Lipschitz continuous, g ∈ L∞(Q) and u0 ∈ L∞(Ω).

Problems of the type (3.1) model a wide variety of physical phenomena in-
cluding porous media flow, flow of glaciers and sedimentation processes, or flow
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transport through unsaturated porous media which is governed by the so-called
Richards equation. For the Richards equation, the existence of weak solutions is
considered in [1] and the uniqueness of weak solutions is proved in [33] based on
the Kružkov “doubling of variables” technique. Entropy solutions for (3.1) are
studied in [6, 29].

The discretization of (3.1) is based on combining continuous piecewise linear
finite elements in space with the characteristic finite difference in time. The method
of characteristic originally proposed in [24, 35] is widely used to solve convection-
diffusion problems in finite element community (cf. e.g. [26, 14]). Given Un−1

h

as the finite element approximation of the solution at time tn−1, let τn and V n
0 ⊂

H1
0 (Ω) be the time step and the conforming linear finite element space at the nth

time step, then our discrete scheme reads as following: find Un
h ∈ V n

0 such that

〈
Un

h − Ūn−1
h

τn
, v

〉
+ 〈∇A(Un

h ),∇v〉 = 〈ḡn, v〉 ∀v ∈ V n
0 , (3.3)

where ḡn = τ−1
n

∫ tn

tn−1 g(x, t)dt, Ūn−1
h (x) = Un−1

h (X̃(tn−1)), and the approximate
characteristic X̃(t) is defined by

dX̃/dt = f ′(Un−1
h (X̃(t))), X̃(tn) = x.

The well-known Kružkov “doubling of variables” technique originally appeared
in [28] plays a decisive role in the error estimation (both a posteriori and a priori)
for numerical schemes solving the Cauchy problems of nonlinear conservation laws
(see e.g. [17, 18, 27] and the reference therein). It is also used recently in [32] for
the implicit vortex centered finite volume discretization of the Cauchy problems
of (3.1) for general non-negative A′(s) ≥ 0 for all s ∈ R. The common feature of
these studies is that the derived error indicators are of the order

√
h in the region

where the solution is smooth, where h is the local mesh size. We remark that in
the region where the diffusion is dominant, the error indicators developed for the
parabolic equations (cf. e.g. [34, 9]) are of order h. Thus the degeneration of
the order of the error indicators used in [32] may cause over-refinements for the
solution of (3.1) in the region where the diffusion is dominant.

The basic assumption in this paper is that the diffusion is positive

A′(s) > 0, ∀s ∈ R.

This assumption includes the Richards equation and the viscosity regularization
of degenerate parabolic equations, for example, the regularized continuous casting
problem which is considered in [14]. The novelty of our analysis with respect to
the analysis for nonlinear conservation laws in [17, 18, 27] or nonlinear degenerate
parabolic equations in [32] lies in the following aspects. Firstly, only Cauchy
problems are considered in [17, 18, 27, 32]. The difficulty to include boundary
condition is essential. Here we use the recently introduced technique of “boundary
layer sequence” in [29] to overcome the difficulty. The technique of “boundary layer
sequence” allows us to truncate the standard Kružkov test function (see Definition
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3.4 below) to obtain the admissible test function in the entropy error identity.
Secondly, the nature of the estimators are different: our estimators emphasize the
diffusion effect of the problem which requires the assumption A′(s) > 0 for any
s ∈ R; the estimates in [32] are valid for any nonlinear function A such that
A′(s) ≥ 0. The nice consequence of the analysis is that our a posteriori error
estimates are able to recover the standard sharp a posteriori error estimators in
the literature derived for parabolic problem with diffusion coefficients bounded
uniformly away from zero.

Now we elaborate the main steps to derive sharp L1 a posteriori error estimate
for the discrete scheme (3.3) based on the Kružkov “doubling of variables” device.
By testing (3.1) with any function ϕ ∈ L2(0, T ; H1

0(Ω)) such that φ(·, 0) = φ(·, T ) =
0, we have

∫ T

0

〈∂tu, ϕ〉dt +
∫

Q

(−f(u) + ∇A(u)) · ∇ϕdxdt =
∫

Q

gϕdxdt. (3.4)

For any ε > 0, let

Hε(z) = sgn(z)min(1, |z|/ε)

be the regularization of the sign function sgn(z). For any k ∈ R, define the entropy
pair (Uε, Fε) by

Uε(z, k) =
∫ z

k

Hε(A(r) − A(k))dr, Fε(z, k) =
∫ z

k

Hε(A(r) − A(k))f ′(r)dr.

The following result is well-known (cf. e.g. [6, 29]) by taking ϕ = Hε(A(u)−A(k))φ
in (3.4).

Lemma 3.1. For any φ ∈ L2(0, T ; H1
0 (Ω)) such that φ(·, 0) = φ(·, T ) = 0, and

any k ∈ R, we have

−
∫

Q

Uε(u, k)∂tφ −
∫

Q

Fε(u, k) · ∇φ +
∫

Q

Hε(A(u) − A(k))∇A(u) · ∇φ

+
∫

Q

H ′
ε(A(u) − A(k))|∇A(u)|2φ =

∫
Q

gHε(A(u) − A(k))φ. (3.5)

Let (H1(Ω))′ be the dual space of H1(Ω), we define the discrete residual R ∈
L2(0, T ; (H1(Ω))′) through the following relation, for any ϕ ∈ H1(Ω),

〈∂tUh, ϕ〉 − 〈f(Uh),∇ϕ〉 + 〈∇A(Uh),∇ϕ〉 = 〈g, ϕ〉 − 〈R, ϕ〉. (3.6)

For any k′ ∈ R, by taking ϕ = Hε(A(Uh) − A(k′))φ in (3.6), we have the
following result.
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Lemma 3.2. For any φ ∈ L2(0, T ; H1
0 (Ω)) such that φ(·, 0) = φ(·, T ) = 0, and

any k′ ∈ R, we have

−
∫

Q

Uε(Uh, k′)∂tφ −
∫

Q

Fε(Uh, k′) · ∇φ +
∫

Q

Hε(A(Uh) − A(k′))∇A(u) · ∇φ

+
∫

Q

H ′
ε(A(Uh) − A(k′))|∇A(Uh)|2φ

=
∫

Q

gHε(A(Uh) − A(k′))φ −
∫ T

0

〈R, Hε(A(Uh) − A(k′))φ〉. (3.7)

Now we are going to apply the Kružkov “doubling of variables” technique and
will always write u = u(y, s), Uh = Uh(x, t), unless otherwise stated. By taking
k = Uh(x, t) in (3.5) and k′ = u(y, s) in (3.7), we have the following entropy error
identity.

Lemma 3.3. Let φ = φ(x, t; y, s) be non-negative function such that

(x, t) �→ φ(x, t; y, s) ∈ C∞
c (Q) for every (y, s) ∈ Q,

(y, s) �→ φ(x, t; y, s) ∈ C∞
c (Q) for every (x, t) ∈ Q.

Then we have

−
∫

Q×Q

Uε(u, Uh)(∂tφ + ∂sφ) −
∫

Q×Q

Fε(u, Uh)(∇xφ + ∇yφ)

+
∫

Q×Q

Hε(A(u) − A(Uh))∇yA(u) · (∇xφ + ∇yφ)

+
∫

Q×Q

Hε(A(Uh) − A(u))∇xA(Uh) · (∇xφ + ∇yφ)

+
∫

Q×Q

H ′
ε(A(u) − A(Uh))|∇xA(Uh) −∇yA(u)|2φ

= −
∫

Q×Q

∂t[Uε(Uh, u) − Uε(u, Uh))]φ

−
∫

Q×Q

∇x[Fε(Uh, u) − Fε(u, Uh))]φ

−
∫

Q(y,s)

∫ T

0

〈R, Hε(A(Uh) − A(u))φ〉dt. (3.8)

The next objective is to remove the restriction that the test functions in the
entropy error identity (3.8) must have vanishing trace. This is achieved by using
the technique of boundary layer sequence introduced in [29]. For any δ > 0, the
boundary layer sequence ζδ is defined as the solution of the elliptic problem

−δ2Δζδ + ζδ = 1 in Ω, ζδ = 0 on ∂Ω.

We specify now the choice of the test function φ in the entropy error identity
(3.8), which is similar to that used in [29].
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Definition 3.4. Let

φ(x, t, y, s) = ζδ(x)ζη(y)ξ(x, t, y, s)θ(t),

where θ ∈ C∞
c (0, T ) such that θ ≥ 0, and ξ is defined as follows. Let {ϕj}0≤j≤J be

a partition of unity subordinate to open sets B0, B1, · · · , BJ such that Ω̄ ⊂ ∪J
j=0Bj ,

B0 ⊂⊂ Ω and ∂Ω ⊂ ∪J
j=1Bj . Let ϕ̂j ∈ C∞

c (Rd), 0 ≤ ϕ̂j ≤ 1, such that supp(ϕ̂j) ⊂
Bj and ϕ̂j(x) = 1 on the support of ϕj so that ϕj(x)ϕ̂j(x) = ϕj(x). We use ϕj

as a function of y and ϕ̂j as a function of x, and denote ϕ̂j(x)ϕj(y) = ψj(x, y).
Define

ξ(x, t, y, s) =
J∑

j=0

ωl(t − s)ωm(x′ − y′)ωn(xd − yd)ψj(x, y),

where ωl, ωn are sequences of symmetric mollifiers in R, ωm is a sequence of sym-
metric mollifier in Rd−1, and for j = 1, 2, · · · , J , x = (x′, xd), y = (y′, yd) are
local coordinates induced by ψj(x, y) in Bj , that is, Bj ∩ ∂Ω = {x ∈ Bj : xd =
ρj(x′)}, B ∩ Ω = {x ∈ Bj : xd < ρj(x′)} for some Lipschitz continuous function
ρj : Rd−1 → R.

By taking limit δ, η → 0 in the entropy error identity (3.8), we obtain the
following entropy error inequality.

Theorem 3.5. Let θ and ξ be defined in Definition 3.4. Then we have the following
entropy error inequality

−
∫

Q×Q

Uε(u, Uh)ξθt −
∫

Q×Q

Kε(u, Uh) · (∇xξ + ∇yξ)θ

+
∫

Q×Q

H ′
ε(A(u) − A(Uh))|∇xA(Uh) −∇yA(u)|2ξθ

≤ −
∫

Q×Q

∂t[Uε(Uh, u) − Uε(u, Uh))]ξθ

−
∫

Q×Q

∇x[Fε(u, Uh) − Fε(u, Uh))]ξθ

−
∫

Q(y,s)

∫
Σ(x,t)

(
Fε(u, Uh) − Hε(A(u) − A(Uh))∇yA(u)

)
· νxξθ

−
∫

Q(x,t)

∫
Σ(y,s)

(
Fε(u, Uh) − Hε(A(Uh) − A(u))∇xA(Uh)

)
· νyξθ

−
∫

Q(y,s)

∫ T

0

〈R, Hε(A(Uh) − A(u))ξθ〉dt, (3.9)

where Kε(u, Uh) = Fε(u, Uh)−Hε(A(u)−A(Uh))(∇yA(u)−∇xA(Uh)), Σ = ∂Ω×
(0, T ), and Σ(x,t) or Σ(y,s) are the domain of integration of Σ with respect to (x, t)
or (y, s) respectively.
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For any ε > 0 and z ∈ R, define

ν(ε, z) = min{A′(s) : |A(s) − A(z)| ≤ ε}.

Assume A′ ◦ A−1 is Lipschitz, then we have the following elementary estimate
which extends the result in [18, Corollary 6.4]

|∂z[Uε(z, k) − Uε(k, z)]| ≤ ε

ν(ε, z)
K1, |∂z[Fε(z, k) − Fε(k, z)]| ≤ ε

ν(ε, z)
K2,(3.10)

where k, z ∈ R, K1 = L(A′ ◦ A−1), K2 = K1‖ f ′ ‖L∞(R) + L(f ′) with L(A′ ◦ A−1)
and L(f ′) being the Lipschitz constant of A′ ◦ A−1 and f ′ respectively.

To complete the Kružkov “doubling of variables” technique, we let first l, m →
∞ then n → ∞ in the entropy error inequality (3.9). The first two terms on the
right-hand side of (3.9) can be treated by using (3.10) and the third and fourth
terms can be shown to tend to zero. Thus we have

−
∫

Q

Uε(u, Uh)θt +
∫

Q

H ′
ε(A(u) − A(Uh))|∇(A(Uh) − A(u))|2θ

≤ Kε

∫
Q

1
ν(ε, Uh)

(|∂tUh| + |∇xUh|)θ −
∫ T

0

〈R, Hε(A(Uh) − A(u))θ〉dt.

where K = max(K1,K2).
To proceed, we introduce the interior residual

Rn := ḡn − Un
h − Ūn−1

h

τn
+ ΔA(Un

h ) on any K ∈ Mn,

where we recall that ḡn = τ−1
n

∫ tn

tn−1 g(x, t)dt.

Theorem 3.6. Let ε0 =
∑3

i=1 Ei, where E1, E2, E3 are the error indicators defined
below. For any m ≥ 1, let Qm = Ω × (0, tm), and define

Λm = max
(

1,

∫
Qm

1
ν(ε0, Uh)

(|∂tUh| + |∇Uh|) +
∫

Ω

1
ν(ε0, Um

h )

)
, (3.11)

where for any z ∈ R, ν(ε0, z) = min{A′(s) : |A(s) − A(z)| ≤ ε0}. Then there
exists a constant C depending only on the minimum angles of the meshes Mn,
n = 1, · · · , m, such that the following a posteriori error estimate is valid

‖ um − Um
h ‖L1(Ω) ≤ E0 + E4 + E5 + CΛ1/2

m

(
3∑

i=1

Ei

)
,
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where the error indicators Ei, i = 0, · · · , 5, are defined by

E0 = ‖ u0 − U0
h ‖L1(Ω) initial error

E1 =

(
m∑

n=1

τn|||h1/2
n [[∇A(Un

h )]]|||2L2(Ω)

)1/2

jump residual

E2 =

(
m∑

n=1

τn‖ hnRn ‖2
L2(Ω)

)1/2

interior residual

E3 =

(
m∑

n=1

τn‖∇(A(Un
h ) − A(Un−1

h )) ‖2
L2(Ω)

)1/2

time residual

E4 =
m∑

n=1

∫ tn

tn−1

∥∥∥∥Un
h − Ūn−1

h

τn
− (∂tUh + divf(Uh))

∥∥∥∥
L1(Ω)

dt characteristic

and coarsening

E5 =
m∑

n=1

∫ tn

tn−1
‖ g − ḡn ‖L1(Ω)dt source.

In the case of strong diffusion A′(s) ≥ β > 0 for any s ∈ R and A′ is uniformly
Lipschitz continuous, then Λn is bounded by β−1‖Uh ‖BV (Qn) which is expected to
be bounded in practical computations. The a posteriori error estimator in Theorem
3.6 then recovers the standard a posteriori error estimator derived in the literature
for parabolic problems [34, 9]. In particular, the space error indicators En

1 , En
2 ,

which control the adaptation of finite element meshes at each time step, are sharp
in the sense that a local lower bound for the error can be established by extending
the argument in [9, Theorem 2.2] for linear parabolic equations.

We also remark that the method of the a posteriori error analysis here is differ-
ent from those for nonlinear conservation laws in [17, 18, 27] or nonlinear degenerate
parabolic equations in [32]. Recall that there are several parameters introduced in
the analysis

• The regularizing parameter ε in Hε(z);
• The boundary layer sequence parameters δ, η and the mollifier parameters

l, m, n.

The analysis for Cauchy problems in [17, 18, 27] is based on letting ε → 0
and taking finite mollifier parameters l, m, n. The analysis in [32] takes both finite
ε and finite mollifier parameters l, m, n. Note that there are no boundary layer
sequence parameters δ, η for the analysis for Cauchy problems. The analysis in
this paper is based on letting δ, η → 0 and l, m, n → ∞ but taking a finite ε. We
are not able to use the same technique as that in [17, 18, 27, 32] by choosing finite
mollifier parameters l, m, n to treat the problem with boundary conditions.

Based on the a posteriori error estimate in Theorem 3.6, an adaptive algorithm
is proposed and implemented in [11]. In particular, the numerical experiments in
[11] indicate that the total estimated error is roughly proportional to M−1/3, i.e.
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η ≈ CM−1/3 for some constant C > 0. This implies the quasi-optimal decay of
the error

‖ u − Uh ‖L∞(0,T ;L1(Ω)) +
∫

Q

H ′
ε(A(u) − A(Uh))|∇(A(Uh) − A(u))|2 ≤ CM−1/3

is valid asymptotically. Here M is the sume of the number of elements of the space
meshes over all time steps.

Figure 3.1 shows the meshes and the surface plots of the solutions at time
t = 0.251278 and t = 0.500878 for the Burger’s equation with small viscosity

∂u

∂t
+ u∂xu − εΔu = 0 in Q,

where Ω = (0, 1)2, T = 1.0, ε = 10−3, and the initial condition and boundary
condition

u(x, y, t)|∂Ω = u0(x, y) = 0.5 sin(πx) + sin(2πx).

The adaptive algorithm is based on the a posteriori error estimate in Theorem 3.6
and is described in [11]. We observe from Figure 3.1 that the method captures the
internal and boundary layers of the solution.
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[27] Kröner, D. and Ohlberger, M., A posteriori error estimates for upwind finite volume
schemes for nonlinear conservation laws in multi-dimensions, Math. Comp. 69 (2000),
25-39.



16 Zhiming Chen
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Figure 3.1. The meshes (top) and the surface plots (bottom) of the solutions t = 0.400317
(left) and t = 1.0 (right) with 35286 and 5020 nodes.


