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Abstract. We consider a reverse time migration method for reconstructing extended

obstacles in the half space with finite aperture data using acoustic waves at a fixed

frequency. We prove the resolution of the reconstruction method in terms of the

aperture and the depth of the obstacle embedded in the half space. The resolution

analysis implies that the imaginary part of the cross-correlation imaging function

always peaks on the illuminated boundary of the obstacle. Numerical experiments

are included to illustrate the powerful imaging quality and to confirm our resolution

results.
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1. Introduction

In this paper we study a reverse time migration (RTM) algorithm to find the support of

an unknown obstacle in the half space from the measurement of scattered waves on the

boundary of the half space which is far away from the obstacle. The physical properties

of the obstacle such as penetrable or non-penetrable, and for non-penetrable obstacles,

the type of boundary conditions on the boundary of the obstacle, are not required in

the algorithm.

Let the sound soft obstacle occupy a bounded Lipschitz domain D ⊂ R2
+ =

{(x1, x2)T : x1 ∈ R, x2 > 0} with ν the unit outer normal to its boundary ΓD. We

assume the incident wave is emitted by a point source located at xs on the surface

Γ0 = {(x1, x2)T : x1 ∈ R, x2 = 0} which is far away from the obstacle. The measured

scattering data u is the solution of the following acoustic scattering problem in the half

space:

∆u+ k2u = −δxs(x) in R2
+\D̄, (1.1)

u = 0 on ΓD,
∂u

∂x2

= 0 on Γ0, (1.2)

r1/2

(
∂u

∂r
− iku

)
→ 0 as r = |x| → ∞, (1.3)

where k > 0 is the probe wave number, δxs is the Dirac source located at xs. In this

paper, by the scattering problem or scattering solution we always mean the solution

satisfies the Sommerfeld radiation condition (1.3).

Let Φ(x, y) = i
4
H

(1)
0 (k|x−y|) be the fundamental solution of the Helmholtz equation

and N(x, y) = Φ(x, y)+Φ(x, y′) be the Green function of the Helmholtz equation in the

half space satisfying the homogeneous Neumann condition on Γ0, where y′ = (y1,−y2)T

is the image point of y = (y1, y2)T ∈ R2
+. The solution of (1.1)-(1.3) is understood as

u(x, xs) = N(x, xs) + us(x, xs), where us(x, xs) satisfies Helmholtz equation in R2
+\D̄,

the radiation condition at infinite, us(x, xs) = −N(x, xs) on ΓD, and ∂us(x, xs)/∂x2 = 0

on Γ0.

The reverse time migration (RTM) method, which consists of back-propagating

the complex conjugated data into the background medium and computing the cross-

correlation between the incident wave field and the backpropagated field to output the

final imaging profile, is nowadays widely used in exploration geophysics [3, 9, 2]. In [5, 6],

the RTM method for reconstructing extended targets using acoustic and electromagnetic

waves at a fixed frequency in the free space is proposed and studied. The resolution

analysis in [5, 6] is achieved without using the small inclusion or geometrical optics

assumption previously made in the literature (e.g. [1, 2]). In [7], a new RTM algorithm

is developed for finding extended targets in a planar waveguide which is motivated by

the generalized Helmholtz-Kirchhoff identity for scattering problems in waveguides.

In this paper we study a RTM method proposed in [18, 19] for imaging extended

obstacles in the half space. This RTM method has the nice feature that it provides true

amplitude angle-domain common image gathers. The theoretical study in [19] based



RTM in the Half Space 3

on the geometric optics approximation shows that the imaging functional gives a direct

measurement of the angle-dependent reflection coefficient which is rather desirable for

geophysical applications [2].

The purpose of this paper is to provide a new mathematical understanding of the

RTM method in [18, 19] for extended obstacles without the assumption of geometric

optics approximation. We study the resolution of the RTM method for both penetrable

and non-penetrable obstacles by extending the analysis in [5, 6] for RTM method in

the free space. We introduce the point spread function J(x, y), x, y ∈ R2
+, for the half

space RTM imaging method and show that this point spread function has the similar

features to J0(k|x−y|), the imaginary part of the fundamental solution of the Helmholtz

equation. We also show that the output imaging function is related to the scattering

coefficient of the obstacle for incident plane waves.

The rest of this paper is organized as follows. In section 2 we introduce the RTM

algorithm. In section 3 we study the point spread function. In section 4 we study

the resolution analysis of the RTM method and give the physical interpretation of

the imaging function based on the concept of the scattering coefficient. We consider

the extension of the resolution results for reconstructing penetrable obstacles or non-

penetrable obstacles with impedance boundary conditions in section 5. In section 6

we report extensive numerical experiments to show the competitive performance of the

RTM algorithm.

2. Reverse time migration method

In this section we introduce the RTM method for inverse acoustic scattering problems in

the half space. Assume that there are Ns sources and Nr receivers uniformly distributed

on Γd0, where Γd0 = {(x1, x2)T ∈ Γ0 : x1 ∈ [−d, d]}, d > 0 is the aperture. We denote by Ω

the sampling domain in which the obstacle is sought. Let h = dist(Ω,Γ0) be the distance

of Ω to Γ0. We assume the obstacle D ⊂ Ω and there exist constants 0 < c0 < 1, c1 > 0

such that

|x1| ≤ c0d, |x1 − y1| ≤ c1h, ∀x, y ∈ Ω. (2.4)

The first condition means that the search domain should not be close to the boundary

of the aperture. The second condition is rather mild in practical applications as we are

interested in finding extended obstacles whose size is comparable or smaller than the

probe wavelength and h, the distance of the obstacle to Γ0, is large compared with the

probe wavelength, i.e., kh� 1. In the following we also assume d ≥ h.

Our RTM algorithm consists of two steps [18, 19]. The first step is the back-

propagation in which we back-propagate the complex conjugated data us(xr, xs) as the

Dirichlet boundary condition into the domain. The second step is the cross-correlation

in which we compute the imaginary part of the cross-correlation of the back-propagated

field and the incoming wave which uses the source as the boundary condition on Γ0.
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Algorithm 2.1 (Reverse time migration)

Given the data us(xr, xs) which is the measurement of the scattered field at xr =

(x1(xr), x2(xr))
T when the source is emitted at xs = (x1(xs), x2(xs))

T , s = 1, . . . , Ns,

r = 1, . . . , Nr.

1◦ Back-propagation: For s = 1, . . . , Ns, compute the back-propagation field

vb(z, xs) =
|Γd0|
Nr

Nr∑
r=1

∂Φ(xr, z)

∂x2(xr)
us(xr, xs), ∀ z ∈ Ω. (2.5)

2◦ Cross-correlation: For z ∈ Ω, compute

Id(z) = Im

{
|Γd0|
Ns

Ns∑
s=1

∂Φ(xs, z)

∂x2(xs)
vb(z, xs)

}
. (2.6)

It is easy to see that

Id(z) = Im

{
|Γd0||Γd0|
NsNr

Ns∑
s=1

Nr∑
r=1

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)
us(xr, xs)

}
, ∀ z ∈ Ω. (2.7)

This formula is used in all our numerical experiments in section 6. By letting

Ns, Nr → ∞, we know that (2.7) can be viewed as an approximation of the following

continuous integral:

Îd(z) = Im

∫
Γd0

∫
Γd0

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)
us(xr, xs)ds(xr)ds(xs), ∀ z ∈ Ω. (2.8)

For x, y ∈ R2
+, let G(x, y) = Φ(x, y) − Φ(x, y′) be the Green function of the Helmholtz

equation in the half space satisfying the homogeneous Dirichlet condition on Γ0, where

y′ = (y1,−y2)T is the image point of y. Since ∂G(xs,z)
∂x2(xs)

= 2∂Φ(xs,z)
∂x2(xs)

and ∂G(xr,z)
∂x2(xr)

= 2∂Φ(xr,z)
∂x2(xr)

for xs, xr ∈ Γ0. The imaging function proposed in [18, 19] is exactly the limit of Îd(z)

as d → ∞. We will study the resolution of the function Îd(z) in the section 4. To this

end we will first consider the resolution of the finite aperture point source function in

the next section.

3. The point spread function

We start by introducing some notation. For any bounded domain U ⊂ R2 with

Lipschitz boundary Γ, we will use the weighted H1(U) norm ‖u‖H1(U) = (‖∇φ‖2
L2(U) +

d−2
U ‖φ‖2

L2(U))
1/2 and the weighted H1/2(Γ) norm ‖v‖H1/2(Γ) = (d−1

U ‖v‖2
L2(Γ) + |v|21

2
,Γ

)1/2,

where dU is the diameter of U and

|v| 1
2
,Γ =

(∫
Γ

∫
Γ

|v(x)− v(y)|2

|x− y|2
ds(x)ds(y)

)1/2

.

By the scaling argument and the trace theorem we know that there exist constants

C1, C2 > 0 independent of dU such that for any v ∈ H1/2(Γ),

C1
|U | 12
|Γ|
‖v‖H1/2(Γ) ≤ inf

φ|Γ=v, φ∈H1(U)
‖φ‖H1(U) ≤ C2

|U | 12
dU
‖v‖H1/2(Γ). (3.9)
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The point spread function measures the resolution for finding a point source [1]. We

introduce the following point spread function for half space inverse scattering problems:

J(z, y) =

∫
Γ0

∂G(x, z)

∂x2

N(x, y)ds(x), ∀z, y ∈ R2
+. (3.10)

This point spread function states that for finding the point source y ∈ R2
+, the received

data N(x, y), x ∈ Γ0, is back-propagated to the domain R2
+ as the Dirichlet boundary

condition. Since ∂G(x,z)
∂x2

= 2∂Φ(x,z)
∂x2

and N(x, y) = 2Φ(x, y) for x ∈ Γ0, we have

J(z, y) = 4

∫
Γ0

∂Φ(x, z)

∂x2

Φ(x, y)ds(x), ∀z, y ∈ R2
+. (3.11)

Lemma 3.1 For any z, y ∈ R2
+, J(z, y) = F (z, y) +R(z, y), where

F (z, y) = − i

2π

∫ π

0

eik(z1−y1) cos θ+ik(z2−y2) sin θdθ, (3.12)

R(z, y) =
1

π

∫ +∞

k

1√
ξ2

1 − k2
e−
√
ξ2
1−k2(z2+y2) cos(ξ1(z1 − y1))dξ1. (3.13)

Moreover, |R(z, y)|+ k−1|∇yR(z, y)| ≤ 1
πk(z2+y2)

uniformly for z, y ∈ R2
+.

Proof. By the limiting absorption principle Φ(x, y) is the limit of the fundamental

solution Φε(x, y) of the Helmholtz equation with the complex wave number k + iε as

ε→ 0. It is easy to see that [8, P. 59]

Φε(x, y) =
1

2π

∫ +∞

−∞

i

2µε
eiµε|x2−y2|+iξ1(x1−y1)dξ1,

where µε = ((k + iε)2 − ξ2
1)1/2. Here we take the branch cut of the complex plane such

that Re (z1/2) ≥ 0 for any z ∈ C\{0}.
Applying the Fourier transformation to the first horizontal variable of Φε(x, y), we

have

F [Φε](ξ1, x2; y1, y2) =
i

2µε
eiµε|x2−y2|e−iξ1y1 ,

F
[
∂Φε

∂x2

]
(ξ1, x2; z1, z2) =

1

2
sgn(z2 − x2)eiµε|x2−z2|e−iξ1z1 .

Using Parseval identity combined with the above two equations, we know that

Jε(z, y) : = 4

∫ ∞
−∞

[
∂Φε(x, z)

∂x2

Φε(x, y)

]
x2=0

dx1

=
2

π

〈
F
[
∂Φε

∂x2

]
(·, 0; z1, z2),F [Φε](·, 0; y1, y2)

〉
= − i

2π

∫ ∞
−∞

1

µ̄ε
eiµεz2−iµ̄εy2+iξ1(y1−z1)dξ1.

This implies by letting ε→ 0 and using (3.11) that

J(z, y) = − i

2π

∫ k

−k

1

µ
eiµ(z2−y2)−iξ1(z1−y1)dξ1 +R(z, y),
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where µ = (k2 − ξ2
1)1/2. Finally, it is easy to check that

|R(z, y)| ≤ 1

πk(z2 + y2)
,

∣∣∣∣∂R(z, y)

∂yj

∣∣∣∣ ≤ 1

π(z2 + y2)
, j = 1, 2,

for any z, y ∈ R2
+. This completes the proof. 2

Figure 1 shows the surface plot of the point spread function J(z, y). Lemma 3.1

indicates that for z, y far away from Γ0, the main contribution to the point spread

function is from F (z, y). Our next goal is to show that F (z, y) has the similar decay

behavior to the Bessel function J0(k|z − y|) as |z − y| → ∞. We need the following

slight generalization of Van der Corput lemma for the oscillatory integral [12, P.152].

Lemma 3.2 Let −∞ < a < b <∞, λ > 0, and u is a C2 function in ]a, b[.

1◦ If |u′′(t)| ≥ 1 for t ∈]a, b[, then there exists a constant C independent of λ, a, b, u such

that |
∫ b
a
eiλu(t)dt| ≤ Cλ−1/2.

2◦ If |u′(t)| ≥ 1 for t ∈]a, b[ and u′ is monotone in ]a, b[, then |
∫ b
a
eiλu(t)dt| ≤ 3λ−1.

Proof. The assertion 1◦ is in [12, Exercise 2.6.1] which can be proved by extending the

argument for the case u′′(t) ≥ 1 of the Van der Corput lemma. The assertion 2◦ can be

proved by extending the argument for the case u′(t) ≥ 1 of the Van der Corput lemma.

Here we omit the details. 2

Figure 1. The surface plot of the point spread imaging function J(z, y) (z ∈
[−2, 2]× [0, 4], y = (0, 2)T ) for k = 2π: real part (left) and imaginary part (right).

Lemma 3.3 For any z, y ∈ R2
+, F (z, y) = −i/2 when z = y and for z 6= y,

|F (z, y)| ≤ C
[
(k|z − y|)−1/2 + (k|z − y|)−1

]
.

where the constant C is independent of k, |z − y|.
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Proof. It is obvious that F (z, y) = −i/2 when z = y. For z 6= y, we denote

y − z = |y − z|(cosφ, sinφ)T for some 0 ≤ φ < 2π. Then it is easy to see that

F (z, y) = − i

2π

∫ π

0

eik|z−y| cos(θ−φ)dθ.

The phase function f(θ) = cos(θ−φ) satisfies f ′(θ) = − sin(θ−φ), f ′′(θ) = − cos(θ−φ).

For any given 0 ≤ φ < 2π, we can decompose ]0, π[ into several intervals such that in

each interval either |f ′′(θ)| ≥ 1/2 or |f ′(θ)| ≥ 1/2 and f ′(θ) is monotone. The estimate

for F (z, y) follows by using Lemma 3.2. 2

The following consequence of Lemma 3.1 and Lemma 3.3 will be used in the next

section.

Corollary 3.1 There exists a constant C independent of k,h such that

‖F (z, ·)‖H1/2(ΓD) + ‖∂F (z, ·)/∂ν‖H−1/2(ΓD) ≤ C(1 + kdD),

‖R(z, ·)‖H1/2(ΓD) + ‖∂R(z, ·)/∂ν‖H−1/2(ΓD) ≤ C(1 + kdD)(kh)−1,

uniformly for z ∈ Ω, where dD is the diameter of the obstacle D.

Proof. We first observe that for any function φ ∈ H1(D), by (3.9),

‖φ‖H1/2(ΓD) ≤ C(d−1
D ‖φ‖L2(D) + ‖∇φ‖L2(D)) ≤ C max

x∈D
(|φ(x)|+ dD|∇φ(x)|). (3.14)

Next by the definition of the H−1/2(ΓD) norm we have

‖∂φ/∂ν‖H−1/2(ΓD) ≤ Cd
1/2
D ‖∂φ/∂ν‖L2(ΓD) ≤ CdD max

x∈D
|∇φ(x)|. (3.15)

Now the estimate for F (z, ·) follows from the fact that |F (z, y)| ≤ 1/2, |∇yF (z, y)| ≤ k/2

for any z, y ∈ Ω. The estimate for R(z, ·) follows from Lemma 3.1. 2

Now we consider the finite aperture point spread function Jd(z, y):

Jd(z, y) =

∫ d

−d

[
∂G(x, z)

∂x2

N(x, y)

]
x2=0

dx1. (3.16)

Our aim is to estimate the difference J(z, y) − Jd(z, y). We first recall the following

estimate for the first kind Hankel function [4, (1.22)-(1.23)].

Lemma 3.4 For any t > 0, we have

|H(1)
0 (t)| ≤

(
2

πt

)1/2

, |H(1)
1 (t)| ≤

(
2

πt

)1/2

+
2

πt
.

Theorem 3.1 Assume d ≥ h, for any z, y ∈ Ω, we have

|J(z, y)− Jd(z, y)|+ k−1|∇y(J(z, y)− Jd(z, y))| ≤ C
(h
d

)
,

where the constant C is independent of k, h, d.
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Proof. By definition we have

J(z, y)− Jd(z, y) = 4

∫
(−∞,−d)∪(d,+∞)

[
∂Φ(x, z)

∂x2

Φ(x, y)

]
x2=0

dx1. (3.17)

Notice that for any z ∈ R2
+, x ∈ Γ0,

∂Φ(x, z)

∂x2

=
i

4
H

(1)
1 (k|x− z|) kz2

|x− z|
. (3.18)

By Lemma 3.4, we have∣∣∣∣∣
∫ +∞

d

[
∂Φ(x, z)

∂x2

Φ(x, y)

]
x2=0

dx1

∣∣∣∣∣
≤
∫ +∞

d

[
kz2

16|x− z|

((
2

kπ|x− z|

)1/2

+
2

kπ|x− z|

)(
2

kπ|x− y|

)1/2
]
x2=0

dx1

≤ C

(
h

d

)
.

Here we have used the first inequality in (2.4). Similarly, we can prove that the estimate

for the integral in ]−∞, d[ in (3.17). This shows the estimate for J(z, y)−Jd(z, y). The

estimate for ∇y(J(z, y)− Jd(z, y)) can be proved similarly. 2

By (3.14)-(3.15) we obtain the following corollary.

Corollary 3.2 There exists a constant C independent of k,h such that

‖J(z, ·)− Jd(z, ·)‖H1/2(ΓD) + ‖∂(J(z, ·)− Jd(z, ·))/∂ν‖H−1/2(ΓD) ≤ C(1 + kdD)

(
h

d

)
.

uniformly for z ∈ Ω, where dD is the diameter of the obstacle D.

4. The resolution analysis

In this section we study the imaging resolution of the RTM Algorithm 2.1 for the sound

soft obstacle in the half space. We first introduce the following stability estimate of

the forward acoustic scattering problem in the half space which can be proved by the

limiting absorption principle by extending the classical argument in [14, 7].

Lemma 4.1 Let g ∈ H1/2(ΓD), then the scattering problem of Helmholtz equation in

the half space

∆u+ k2u = 0 in R2
+\D̄, u = g on ΓD,

∂u

∂x2

= 0 on Γ0, (4.19)

has a unique solution u ∈ H1
loc(R2

+\D̄). Moreover, there exists a constant C > 0 such

that ‖∂u/∂ν‖H−1/2(ΓD) ≤ C‖g‖H1/2(ΓD).

The following theorem shows that the difference between the half space scattering

solution and the full space scattering solution is small if the scatterer is far away from

the boundary Γ0. The theorem will be proved in the appendix of this paper.
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Theorem 4.1 Let g ∈ H1/2(ΓD) and u1, u2 be the scattering solutions of following

problems:

∆u1 + k2u1 = 0 in R2
+\D̄, u1 = g on ΓD,

∂u1

∂ν
= 0 on Γ0, (4.20)

∆u2 + k2u2 = 0 in R2\D̄, u2 = g on ΓD. (4.21)

Then there exists a constant C such that ‖∂(u1 − u2)/∂ν‖H−1/2(ΓD) ≤ C(1 +

kdD)2(kh)−1/2‖g‖H1/2(ΓD).

The following theorem is the main result of this section.

Theorem 4.2 For any z ∈ Ω, let ψ(y, z) be the scattering solution to the following

problem:

∆yψ(y, z) + k2ψ(y, z) = 0 in R2\D̄, ψ(y, z) = −F (z, y) on ΓD. (4.22)

Then, we have

Îd(z) =
1

4
Im
{∫

ΓD

∂(F (z, y) + ψ(y, z))

∂ν(y)
F (z, y)ds(y)

}
+WÎ(z), (4.23)

where |WÎ(z)| ≤ C(1 + kdD)4((kh)−1/2 + h/d) uniformly for z in Ω.

Proof. By the integral representation, we have,

us(xr, xs) =

∫
ΓD

(
us(y, xs)

∂N(xr, y)

∂ν(y)
− ∂us(y, xs)

∂ν(y)
N(xr, y)

)
ds(y).

From (3.16) we get for any z ∈ Ω,∫
Γd0

∂Φ(xr, z)

∂x2(xr)
us(xr, xs)ds(xr)

=
1

2

∫
ΓD

[
us(y, xs)

∂Jd(z, y)

∂ν(y)
− ∂us(y, xs)

∂ν(y)
Jd(z, y)

]
ds(y).

By the definition of the imaging function Îd(z), we have then

Îd(z) =
1

4
Im

∫
ΓD

[
vs(y, z)

∂Jd(z, y)

∂ν(y)
− ∂vs(y, z)

∂ν(y)
Jd(z, y)

]
ds(y), (4.24)

where vs(y, z) = 2
∫

Γd0

∂Φ(xs,z)
∂x2(xs)

us(y, xs)ds(xs). Taking the complex conjugate we get

vs(y, z) = 2

∫
Γd0

∂Φ(xs, z)

∂x2(xs)
us(y, xs)ds(xs).

Therefore, vs(y, z) can be viewed as the weighted superposition of us(y, xs). Then

vs(y, z) satisfies the Helmholtz equation

∆yvs(y, z) + k2vs(y, z) = 0 in R2
+\D̄.
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On the boundary of the obstacle ΓD, we have

vs(y, z) = 2

∫
Γd0

∂Φ(xs, z)

∂x2(xs)
us(y, xs)ds(xs)

= − 2

∫
Γd0

∂Φ(xs, z)

∂x2(xs)
N(y, xs)ds(xs)

= − Jd(z, y), ∀y ∈ ΓD.

Moreover, ∂vs(y, z)/∂y2 = 0 on Γ0 since ∂us(y, xs)/∂y2 = 0 on Γ0. Let wd(y, z) be the

scattering solution of the problem:

∆ywd(y, z) + k2wd(y, z) = 0 in R2
+\D̄,

wd(y, z) = F (z, y)− Jd(z, y) on ΓD,
∂wd(y, z)

∂y2

= 0 on Γ0.

By Lemma 4.1 and Corollaries 3.1-3.2 we have

‖∂wd(·, z)/∂ν‖H−1/2(ΓD) ≤ C‖F (z, ·)− Jd(z, ·)‖H1/2(ΓD)

≤ C(1 + kdD)((kh)−1 + h/d). (4.25)

Let w(y, z) := vs(y, z)−wd(y, z)−ψ(y, z). Since vs(y, z)−wd(y, z) satisfies the half-space

scattering problem (4.20) with g(y) = −F (z, y), by using Theorem 4.1 and Corollary

3.1,

‖∂w(·, z)/∂ν‖H−1/2(ΓD) ≤ C(1 + kdD)2(kh)−1/2‖F (z, ·)‖H1/2(ΓD)

≤ C(1 + kdD)3(kh)−1/2. (4.26)

Now we substitute vs(y, z) = ψ(y, z) + w(y, z) + wd(y, z) into (4.24) to obtain,

Îd(z) =
1

4
Im

{∫
ΓD

[
ψ(y, z)

∂Jd(z, y)

∂ν
− ∂ψ(y, z)

∂ν(y)
Jd(z, y)

]
ds(y)

}
+RÎ(z), (4.27)

where since w(y, z) = 0 on ΓD,

RÎ(z) = − 1

4
Im

∫
ΓD

∂w(y, z)

∂ν(y)
Jd(z, y)ds(y)

+
1

4
Im

∫
ΓD

[
wd(y, z)

∂Jd(z, y)

∂ν(y)
− ∂wd(y, z)

∂ν(y)
Jd(z, y)

]
ds(y).

By (4.25)-(4.26) and Corollaries 3.1-3.2 it is easy to see that

|RÎ(z)| ≤ C(1 + kdD)4((kh)−1/2 + h/d). (4.28)

Finally, by (4.27) and ψ(y, z) = −F (z, y) on ΓD, we have

Îd(z) = −1

4
Im

∫
ΓD

∂(F (z, y) + ψ(y, z))

∂ν(y)
ψ(y, z)ds(y) +RÎ(z) + wÎ(z),

where

wÎ(z) = 4 Im

∫
ΓD

[
ψ(y, z)

∂(Jd(z, y)− F (z, y))

∂ν(y)
− ∂ψ(y, z)

∂ν(y)
(Jd(z, y)− F (z, y))

]
ds(y).
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By Lemma 4.1, Corollary 3.1 and Corollary 3.2 we have

|wÎ(z)| ≤ C(1 + kdD)4((kh)−1/2 + h/d).

This completes the proof by using (4.28). 2

By (3.12) we know that for any fixed z ∈ Ω, F (z, ·) satisfies the Helmholtz equation.

Thus ψ(y, z) can be viewed as the scattering solution of the Helmholtz equation with the

incident wave F (z, y). By Lemma 3.3 we know that F (z, y) decays as |y − z| becomes

large. Therefore the imaging function Îd(z) becomes small when z moves away from the

boundary ΓD outside the scatterer D if kh� 1 and d� h.

To understand the behavior of the imaging function when z is close to the boundary

of the scatterer, we introduce the concept of the scattering coefficient for incident plane

waves.

Definition 4.1 For any unit vector η ∈ R2, let vi = eikx·η be the incident wave and

vs = vs(x, η) be the radiation solution of the Helmholtz equation:

∆vs + k2vs = 0 in R2\D̄, vs = −eikx·η on ΓD.

The scattering coefficient R(x, η) for x ∈ ΓD is defined by the relation

∂(vs + vi)

∂ν
= ikR(x, η)eikx·η on ΓD.

It is clear that the scattering coefficient R(x, η) is well defined by the uniqueness

and existence of the solution of the Helmholtz scattering problems. One can define

analogously the scattering coefficients for penetrable scatterers or non-penetrable

scatterers with sound hard or impedance boundary conditions. We also remark that

the scattering coefficient is closely related to the concept of reflection coefficients that

are widely used in the geophysics literature in different context based on geometric

optics approximations.

Now we consider the physical interpretation of the imaging function Îd(z) when

z ∈ ΓD. Since

F (z, y) =
i

2π

∫ π

0

eik(y−z)·ηθdθ, ηθ := (cos θ, sin θ)T ,

we obtain from Theorem 4.2 and Definition 4.1 that

Îd(z) = − k

8π
Im

∫
ΓD

∫ π

0

F (z, y)R(y, ηθ)e
ik(y−z)·ηθdθds(y) +O

(
1√
kh

+
h

d

)
. (4.29)

The main contribution in the above integral comes from y ∈ ΓD around z due to

the property of the function F (z, y) studied in section 3. This indicates that the

imaging function Îd(z) is proportional to the scattering coefficient surrounding z from

all directions ηθ, 0 < θ < π, that is, the imaging function can be regard as “blurred

scattering coefficient”.

Now we consider the high frequency limit when k � 1 by the method of stationary

phase. The following theorem of the stationary phase is well-known, see e.g. in [13,

Theorem 7.7.5].
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Lemma 4.2 Let g ∈ C2
0(R) and the phase function f ∈ C2(R) has a stationary point

at t0 such that f ′(t0) = 0, f ′′(t0) 6= 0, and f ′(t) 6= 0 for t 6= t0. Then for any λ > 0,

there is a constant C such that∣∣∣∣∣
∫
R
g(t)eiλf(t)dt− g(t0)eiλf(t0)

(
λf ′′(t0)

2πi

)−1/2
∣∣∣∣∣ ≤ Cλ−1‖g′′‖C(R).

For simplicity we assume D is strictly convex. Let y(s) be the arc length

parametrization of the boundary ΓD, 0 < s < L. The phase function f(s) = (y(s)−z)·ηθ
satisfies f ′(s) = y′(s) · ηθ, f ′′(s) = y′′(s) · ηθ. Let y±(ηθ) = y(s±) be the points on ΓD
such that ν(y(s±)) = ±ηθ. Clearly we have f ′(s±) = ±y′(s±) · ν(y(s±)), f ′′(s±) =

±y′′(s±) · ν(y(s±)) = ±κ(y(s±))|y′(s±)|2, where κ is the curvature of ΓD. By using the

stationary phase Lemma 4.2 we have∫
ΓD

F (z, y)R(y, ηθ)e
ik(y−z)·ηθds(y)

≈ F (z, y+(ηθ))R(y+(ηθ), ηθ)e
ik(y+(ηθ)−z)·ηθ

(
kκ(y+(ηθ))

2πi

)−1/2

+ F (z, y−(ηθ))R(y−(ηθ), ηθ)e
ik(y−(ηθ)−z)·ηθ

(
−kκ(y−(ηθ))

2πi

)−1/2

.

Thus,

Îd(z) ≈ −
( k

32π

)1/2

Im

∫ π

0

F (z, y+(ηθ))R(y+(ηθ), ηθ)√
κ(y+(ηθ))

eik(y+(ηθ)−z)·ηθ+iπ
4 dθ

−
( k

32π

)1/2

Im

∫ π

0

F (z, y−(ηθ))R(y−(ηθ), ηθ)√
κ(y−(ηθ))

eik(y−(ηθ)−z)·ηθ−iπ4 dθ.

This formula indicates that the imaging function Îd(z) is related to R(z,ηθ)√
κ(z)

, both the

scattering coefficient and the curvature at z, by the property of F (z, y) studied in

section 3.

In the case of Kirchhoff high frequency approximation, see e.g. [2] and the

mathematical justification for strictly convex obstacles in [15], the scattering coefficient

can be approximated by

R(x, η) =

{
2ν(x) · η If x ∈ ∂D−η := {x ∈ ΓD : ν(x) · η < 0},
0 If x ∈ ∂D+

η := {x ∈ ΓD : ν(x) · η > 0}.

Here ∂D−η and ∂D+
η are respectively the illuminating and shadow region for the incident

wave eikx·η. This implies, since R(y+(ηθ), ηθ) = 0, R(y−(ηθ), η) = −2,

Îd(z) ≈
( k

8π

)1/2

Im

∫ π

0

F (z, y−(ηθ))√
κ(y−(ηθ))

eik(y−(ηθ)−z)·ηθ−iπ4 dθ.

Now for z in the part of ΓD which is back to Γ0 , i.e. ν(z) · ηθ > 0 for any θ ∈]0, π[, we

know that z and y−(ηθ) are far away and thus Îd(z) ≈ 0. This means one cannot image

the back part of the obstacle with only the data collected on Γ0. This is confirmed in

our numerical examples in section 6.
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5. Extensions

In this section we consider the reconstruction of non-penetrable obstacles with the

impedance boundary condition and penetrable obstacles in the half space by our RTM

algorithm 2.1. For non-penetrable obstacles with the impedance boundary condition on

the obstacle, the measured data us(xr, xs) = u(xr, xs)−N(xr, xs), where us(x, xs) is the

radiation solution of the following problem:

∆us + k2us = 0 in R2
+\D̄, (5.30)

∂us

∂ν
+ ikη(x)us = −

(
∂

∂ν
+ ikη(x)

)
N(x, xs) on ΓD, (5.31)

∂us

∂x2

= 0 on Γ0. (5.32)

By modifying the argument in Theorem 4.2 we can show the following result whose

proof is omitted.

Theorem 5.1 For any z ∈ Ω, let ψ(y, z) be the radiation solution of the problem

∆yψ(y, z) + k2ψ(y, z) = 0 in R2
+\D̄,

∂ψ(y, z)

∂ν(y)
+ ikη(y)ψ(y, z) = −

( ∂

∂ν(y)
+ ikη(y)

)
F (z, y) on ΓD.

Then we have, for any z ∈ Ω,

Îd(z) = −1

4
Im

∫
∂D

(∂F (z, y)

∂ν(y)
+ ikη(y)F (z, y)

)
(ψ(y, z) + F (z, y))ds(y) +WÎ(z),

where |WÎ(z)| ≤ C(1 + kdD)4((kh)−1/2 + h/d) uniformly for z in Ω.

For the penetrable obstacle, the measured data us(xr, xs) = u(xr, xs) − N(xr, xs),

where us(x, xs) is the radiation solution of the following problem:

∆us + k2n(x)us = −k2(n(x)− 1)N(x, xs) in R2
+, (5.33)

∂us

∂x2

= 0 on Γ0, (5.34)

where n(x) ∈ L∞(R2
+) is a positive function which is equal to 1 outside the scatterer D.

By modifying the argument in Theorem 4.2, the following theorem can be proved.

Theorem 5.2 For any z ∈ Ω, let ψ(y, z) be the radiation solution of the problem

∆yψ(y, z) + k2n(y)ψ(y, z) = −k2(n(y)− 1)F (z, y) in R2
+.

Then we have, for any z ∈ Ω,

Îd(z) = −1

4
Im

∫
D

k2(1− n(y))(ψ(y, z) + F (z, y))F (z, y)dy +WÎ(z),

where |WÎ(z)| ≤ C(1 + kdD)4((kh)−1/2 + h/d) uniformly for z in Ω.

We remark that for the penetrable scatterers, ψ(y, z) is again the scattering solution

with the incoming field F (z, y). Therefore we again expect the imaging function Îd(z)

will have contrast on the boundary of the scatterer and decay outside the scatterer if

kh� 1 and d� h.
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Figure 2. From left to right: imaging results of a sound soft, a sound hard, a non-

penetrable obstacle with the impedance η(x) = 2, and a penetrable obstacle with the

diffractive index n(x) = 0.5.

6. Numerical experiments

In this section we present several numerical examples to show the effectiveness of our

RTM method. To synthesize the scattering data we compute the solution us(xr, xs) of

the scattering problem by representing the ansatz solution as the double layer potential

with the Green function N(x, y) as the kernel and discretizing the integral equation by

standard Nyström methods [10]. The boundary integral equations on ΓD are solved on

a uniform mesh over the boundary with ten points per probe wavelength. The sources

and receivers are both placed on the surface Γd0 with equal-distribution, where d is the

aperture. In all our numerical examples we choose h = 10 and d = 50. The boundaries

of the obstacles used in our numerical experiments are parameterized as follows, where

θ ∈ [0, 2π],

Circle: x1 = ρ cos(θ), x2 = ρ sin(θ);

Penut: x1 = cos(θ) + 0.2 cos(3θ), x2 = sin(θ) + 0.2 sin(3θ);

Kite: x1 = cos(θ) + 0.65 cos(2θ)− 0.65, x2 = 1.5 sin(θ);

Example 6.1 We consider imaging of a sound soft, a sound hard, a non-penetrable

obstacle with the impedance condition, and a penetrable obstacle. The imaging domain

is Ω = (−2, 2) × (8, 12) with the sampling grid 201 × 201 and Ns = Nr = 401. The

wavenumber is k = 4π.

The imaging results are shown in Figure 2. It demonstrates clearly that our RTM

algorithm can effectively image the upper boundary illuminated by the sources and

receivers distributed along the boundary Γ0 for non-penetrable obstacles. The imaging

values decrease on the shadow part of the obstacles and at the points away from the

boundary of the obstacle. This confirms with our theoretical results in section 4 and

section 5. The last picture shows that our imaging algorithm can also locate part of the

lower boundaries for penetrable obstacles.

Example 6.2 We consider the imaging of two sound soft obstacles. The first model

consists of two circles along horizontal direction and the second one is a circle and a

peanut along the vertical direction. The wavenumber is k = 4π for the test of the single
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Figure 3. From left to right, true obstacle model with two circles, the imaging result

with single frequency, the imaging result with multiple frequencies.
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Figure 4. From left to right, true obstacle model with one circle and one peanut, the

imaging result with single frequency, the imaging result with multiple frequencies.

frequency and the probed wavenumbers k = 2π × (2 + (i − 1)/8), i = 1, 2, ..., 9, for the

test of multiple frequencies. Figure 3 shows the imaging result of the first model. The

imaging domain is [−4, 4]× [8, 12] with mesh size 401× 201 and Ns = Nr = 301. Figure

4 shows the imaging result of the second model. The imaging domain is [−4, 4]× [8, 16]

with mesh size 201×401 and Ns = Nr = 301. The multi-frequency RTM imaging results

in Figure 3 and Figure 4 are obtained by adding the imaging results from different

frequencies and then dividing the number of the used frequencies. We observe from

these two figures that imaging results can be greatly improved by stacking the multiple

single frequency imaging results.

Example 6.3 In this example we consider the stability of our half space RTM imaging

function with respect to the complex additive Gaussian random noise. We introduce

the additive Gaussian noise as follows [5]:

unoise = us + νnoise,

where us is the synthesized data and νnoise is the Gaussian white noise with mean

zero and standard deviation µ multiplied by the maximum of the data |us|, i.e.

νnoise = µmax |us|√
2

(ε1 + iε2), and εj ∼ N (0, 1) for the real (j = 1) and imaginary part

(j = 2).

Figure 5 shows the imaging results using single frequency data added with additive

Gaussian noise. The imaging quality can be improved by using multi-frequency data

as illustrated in Figure 6, in which we show the imaging results added with the noise
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Figure 5. The imaging results using single frequency data added with additive

Gaussian noise and µ = 10%, 20%, 40%, 60% from left to right, respectively. The

probe wavenumbers are k = 2π and Ns = Nr = 301.
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Figure 6. The imaging results using multi-frequency data added with additive

Gaussian noise and µ = 10%, 20%, 40%, 60% from left to right, respectively. The

probe wavenumbers are k = π × (1 + (i− 1)/4), i = 1, 2, ..., 9, and Ns = Nr = 301.

Table 1. The signal level and noise level in the case of single frequency data (left)

and multi-frequency data (right).

µ σ ‖us‖`2 ‖νnoise‖`2
0.1 0.0639 0.0136 0.0522

0.2 0.1279 0.0136 0.1045

0.4 0.2558 0.0136 0.2086

0.6 0.3836 0.0136 0.3127

µ σ ‖us‖`2 ‖νnoise‖`2
0.1 0.0593 0.0126 0.0484

0.2 0.1185 0.0126 0.0967

0.4 0.2370 0.0126 0.1936

0.6 0.3555 0.0126 0.2902

level µ = 10%, 20%, 40%, 60% Gaussian noise by summing the imaging functions for

nine probed wavenumbers k = π × (1 + (i− 1)/4), i = 1, 2, ..., 9.

The left table in Table 1 shows the noise level in this case, where

σ = µmaxxr,xs |us(xs, xr)|, ‖us‖2
`2 = 1

NsNr

∑Ns,Nr
s,r=1 |us(xs, xr)|2, ‖νnoise‖2

`2 =
1

NsNr

∑Ns,Nr
s,r=1 |νnoise(xs, xr)|2. The right table in Table 1 shows the noise level in the

case of multi-frequency data, where σ, ‖us‖`2 , and ‖νnoise‖`2 are the arithmetic mean of

the corresponding values for different frequencies, respectively.

Appendix A. The proof of Theorem 4.1.

We first recall the following Van der Corput lemma, see e.g. in [12, Corollary 2.6.8],

which is useful to estimate the oscillatory integral around the critical point.
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Lemma A.1 There is a constant C > 0 such that for any −∞ < a < b <∞, for every

real-valued C2 function u that satisfies u′′(t) ≥ 1 for t ∈]a, b[, for any function φ defined

on ]a, b[ with an integrable derivative, and for any λ > 0,∣∣∣∣∫ b

a

eiλu(t)φ(t)dt

∣∣∣∣ ≤ Cλ−1/2

(
|φ(b)|+

∫ b

a

|φ′(t)|dt
)
,

where the constant C is independent of the constants a, b, λ and the functions u, φ.

Lemma A.2 For any x, y ∈ Ω, there exists a constant C > 0 independent of k, h such

that for m = 1, 2, 3, n = 1, 2,∣∣∣ ∫
Γ0

( ym2
|ξ − y|m+1

+
(ξ1 − y1)2yn2
|ξ − y|n+3

)
eik(|ξ−x|+|ξ−y|)ds(ξ)

∣∣∣ ≤ C(kh)−1/2.

Proof. For simplicity, we only prove the estimate when m = 1. The other estimates

can be obtained similarly. By the change of variable t = (ξ1 − y1)/y2 we know that∫
Γ0

y2

|ξ − y|2
eik(|ξ−x|+|ξ−y|)ds(ξ) =

∫ ∞
−∞

1

1 + t2
eiky2f(t)dt, (A.1)

where f(t) =
√

1 + t2 +
√

(t+ a)2 + b2, a = (y1 − x1)/y2, b = x2/y2. By the second

inequality in the assumption (2.4), |a| ≤ c1b for some c1 > 0. Simple calculation shows

that

f ′(t) =
t√

1 + t2
+

t+ a√
(t+ a)2 + b2

, f ′′(t) =
1

(1 + t2)3/2
+

b2

((t+ a)2 + b2)3/2
.

It is easy to check that f ′(t) is strictly increasing and f ′(t0) = 0, t0 = −a/(1 + b). In

the interval where |t + a| < c1b we know that f ′′(t) ≥ b−1(1 + c2
1)−3/2 ≥ C and thus by

Lemma A.1 ∣∣∣∣∫ −a+c1b

−a−c1b

1

1 + t2
eiky2f(t)dt

∣∣∣∣ ≤ C(kh)−1/2. (A.2)

In the intervals where |t+ a| ≥ c1b, since f ′(t) is increasing,

|f ′(t)| ≥ min(|f ′(−a+ c1b)|, |f ′(−a− c1b)|) ≥
c1√

1 + c2
1

.

Thus by integration by parts one can obtain the following estimate by the standard

argument ∣∣∣∣∫
(−∞,−a−c1b)∪(−a+c1b,∞)

1

1 + t2
eiky2f(t)dt

∣∣∣∣ ≤ C(kh)−1. (A.3)

This completes the proof by substituting (A.2)-(A.3) into (A.1). 2

Lemma A.3 For any x, y ∈ D, let

v(x, y) =

∫
Γ0

Φ(x, ξ)
∂Φ(ξ, y)

∂ξ2

ds(ξ).

Then there exists a constant C > 0 independent of k, h such that

|v(x, y)|+ k−1|∇xv(x, y)|+ k−1|∇yv(x, y)|+ k−2|∇x∇yv(x, y)| ≤ C(1 + kdD)(kh)−1/2,

uniformly for x, y ∈ D.
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Proof. By using the asymptotic formula for the Hankel functions

H
(1)
j (t) =

(
2

πt

)1/2

ei(t−
π
4
− j

2
π) +Rj(t), |Rj(t)| ≤ Ct−3/2, ∀t > 0, j = 0, 1, (A.4)

we obtain by using (3.18)

v(x, y) = − 1

8π

∫
Γ0

y2

|ξ − y|3/2|ξ − x|1/2
eik(|ξ−y|+|ξ−x|)ds(ξ) + γ(x, y), (A.5)

where

γ(x, y) ≤ C

∫
Γ0

y2

k|ξ − y|3
ds(ξ) ≤ C(kh)−1.

Notice that ||ξ − y|−1/2 − |ξ − x|−1/2| ≤ C|x − y|/|ξ − y|3 for any x, y ∈ D, ξ ∈ Γ0, we

have ∣∣∣∣∫
Γ0

y2

|ξ − y|3/2|ξ − x|1/2
eik(|ξ−y|+|ξ−x|)ds(ξ)

∣∣∣∣
≤
∣∣∣∣∫

Γ0

y2

|ξ − y|2
eik(|ξ−y|+|ξ−x|)ds(ξ)

∣∣∣∣+ C

∫
Γ0

y2|x− y|
|ξ − y|3

ds(ξ).

By the change of variable t = (ξ1 − y1)/y2 we obtain∫
Γ0

y2|x− y|
|ξ − y|3

ds(ξ) =

∫ ∞
−∞

|x− y|
y2(1 + t2)3/2

dt ≤ C
|x− y|
y2

≤ C(kdD)(kh)−1.

This completes the proof of the estimate for |v(x, y)| by using Lemma A.2. The other

estimates can be proved by a similar argument using Lemma A.2. We omit the details. 2

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Let w be the radiation solution of the problem:

∆w + k2w = 0 in R2
+,

∂w

∂x2

= −∂u2

∂x2

on Γ0.

Then u1−u2−w satisfies (4.19) with the boundary condition u1−u2−w = −w on ΓD.

Thus by Lemma 4.1 and (3.14)-(3.15) we obtain

‖∂(u1 − u2)/∂ν‖H−1/2(ΓD) ≤ C(‖w‖H1/2(ΓD) + ‖∂w/∂ν‖H−1/2(ΓD))

≤ C max
x∈D

(|w(x)|+ dD|∇w(x)|).

By the integral representation formula we have for any ξ ∈ Γ0

u2(ξ) =

∫
ΓD

[
u2(y)

∂Φ(y, ξ)

∂ν(y)
− ∂u2(y)

∂ν(y)
Φ(y, ξ)

]
ds(y),

which yields by using the integral representation again that for x ∈ D,

w(x) =

∫
Γ0

N(x, ξ)
∂u2(ξ)

∂ξ2

ds(ξ)

= 2

∫
ΓD

[
u2(y)

∂v(x, y)

∂ν(y)
− ∂u2(y)

∂ν(y)
v(x, y)

]
ds(y),
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where we have used the fact that N(ξ, x) = 2Φ(ξ, x) for ξ ∈ Γ0. Therefore, since

‖∂u2/∂ν‖H−1/2(ΓD) ≤ C‖g‖H1/2(ΓD), we obtain by using (3.14) again

|w(x)| ≤ C‖g‖H1/2(ΓD) max
y∈D

(|v(x, y)|+ dD|∇yv(x, y)|).

Similarly, we have

|∇w(x)| ≤ C‖g‖H1/2(ΓD) max
y∈D

(|∇xv(x, y)|+ dD|∇x∇yv(x, y)|).

This completes the proof by using Lemma A.3. 2
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[13] Hörmander L 1983 The Analysis of Linear Partial Differential Operators, I (Berlin: Springer)

[14] Leis R 1986 Initial Boundary Value Problems in Mathematical Physics (Stuttgart: B.G. Teubner)

[15] Melrose R B and Taylor M E 1985 Near peak scattering and the corrected Kirchhoff approximation

for a convex obstacle Advances in Mathematics 55 242-315

[16] Stein E M and Timothy S M 1993 Harmonic Analysis: Real-Variable Methods, Orthogonality, and

Oscillatory integrals (Princeton: Princeton University Press)



RTM in the Half Space 20

[17] Watson G N 1922 A Treatise on the Theory of Bessel Functions (Cambridge: Cambridge University

Press)

[18] Zhang Y and Sun J 2009 Practicle issues in reverse time migration: true amplitude gathers, noise

removal and harmonic source encoding First Break 26 29-35

[19] Zhang Y, Xu S, Bleistein N and Zhang G 2007 True-amplitude, angle-domain, common-image

gathers from one-way wave-equation migration Geophysics 72 S49-S58


	Introduction
	Reverse time migration method
	The point spread function
	The resolution analysis
	Extensions
	Numerical experiments
	The proof of Theorem 4.1.

