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Abstract We propose a new reverse time migration method for reconstructing extended obstacles in the planar

waveguide using acoustic waves at a fixed frequency. We prove the resolution of the reconstruction method in
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Numerical experiments are included to illustrate the powerful imaging quality and to confirm our resolution

results.
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1 Introduction

We propose a reverse time migration (RTM) method to find the support of an unknown obstacle embedded in

a planar acoustic waveguide from the measurement of the wave field on part of the boundary of the waveguide

which is far away from the obstacle (see Figure 1). Let R2
h = {(x1, x2) ∈ R2 : x2 ∈ (0, h)} be the waveguide of

thickness h > 0. Denote by Γ0 = {(x1, x2) ∈ R2 : x2 = 0} and Γh = {(x1, x2) ∈ R2 : x2 = h} the boundaries

of R2
h. Let the obstacle occupy a bounded Lipschitz domain D included in BR = (−R,R) × (0, h), R > 0,

with ν the unit outer normal to its boundary ΓD. We assume the incident wave is a point source excited at

xs ∈ Γh. The measured wave field satisfies the following equations:

∆u+ k2u = −δxs(x) in R2
h\D̄, (1.1)
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Figure 1 The geometric setting of the inverse problem in planar waveguides.

∂u

∂ν
+ ikη(x)u = 0 on ΓD, (1.2)

u = 0 on Γ0,
∂u

∂x2
= 0 on Γh. (1.3)

Here k > 0 is the wave number and η(x) > 0 is a bounded function on ΓD. The equation (1.1) is understood

as the limit when xs ∈ R2
h\D̄ tends to Γh whose precise meaning will be given below after we introduce the

definition of the radiation condition and the waveguide Green function. The impedance boundary condition

in (1.2) is assumed only for the convenience of the analysis of this paper. The RTM method studied in this

paper does not require any a priori information of the physical properties of the obstacle such as penetrable

and non-penetrable, and for the non-penetrable obstacles, the type of boundary conditions on the boundary

of the obstacle (see section 6 below).

Now we introduce the radiation condition for the planar waveguide problem [27]. Since D ⊂ BR, we have

by separation of variables the following mode expansion:

u(x1, x2) =

∞∑
n=1

un(x1) sin(µnx2), ∀ |x1| > R, (1.4)

where µn = 2n−1
2h π, n = 1, 2, · · · , are called cut-off frequencies. In this paper we will always assume

k 6= 2n− 1

2h
π, n = 1, 2, · · · . (1.5)

The mode expansion coefficients un(x1), n = 1, 2, · · · , satisfy the 1D Helmholtz equation:

u′′n + ξ2
nun = 0, ∀ |x1| > R, n = 1, 2, ..., (1.6)

where ξn =
√
k2 − µ2

n if k > µn and ξn = i
√
µ2
n − k2 if k < µn. The radiation condition for the planar

waveguide problem is then to impose the mode expansion coefficient un(x1) to satisfy

lim
|x1|→∞

(
∂un
∂|x1|

− iξnun

)
= 0, n = 1, 2, · · · , (1.7)

which guarantees the uniqueness of the solution of the 1D Helmholtz equation (1.6). The existence and

uniqueness of the waveguide scattering problem (1.1)-(1.3) with the radiation condition (1.7) is an intensively

studied subject in the literature, see e.g. [2,20–22,27]. The difficulty is the possible existence of the so-called

embedded trapped modes which destroys the uniqueness of the solution [19]. In this paper we will show that

the impedance boundary condition on the scatterer guarantees the uniqueness of the scattering solution. We

also prove the existence of the solution by the limiting absorption principle.
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It is well known that imaging a scatterer in a waveguide is much more challenging than in the free space.

Indeed, because of the presence of two parallel infinite boundaries of the waveguide, only a finite number

of modes can propagate at long distance, while the other modes decay exponentially [27]. We refer to [1]

for MUSIC type algorithm to locate small inclusions, [28] for the generalized dual space method, [3, 6, 24]

for the linear sampling method, [25] for a selective imaging method based on Kirchhoff migration, and the

inversion method in [23] for reconstructing obstacles in waveguides.

The RTM method, which consists of back-propagating the complex conjugated data into the background

medium and computing the cross-correlation between the incident wave field and the backpropagation field

to output the final imaging profile, is nowadays widely used in exploration geophysics [4, 5, 13]. In [10, 11],

the RTM method for reconstructing extended targets using acoustic and electromagnetic waves at a fixed

frequency in the free space is proposed and studied. The resolution analysis in [10, 11] is achieved without

using the small inclusion or geometrical optics assumption previously made in the literature.

The purpose of this paper is to extend the RTM method in [10,11] to find extended targets in the planar

acoustic waveguide. Our new RTM algorithm is motivated by a generalized Helmholtz-Kirchhoff identity

for the waveguide scattering problems. We show our new imaging function enjoys the nice feature that it

is always positive and thus may have better stability properties. The key ingredient in the analysis is a

decay estimate of the difference of the Green function for the waveguide problem and the half space Green

function. We also refer to [17] for the study of the resolution of time-reversal experiments.

The rest of this paper is organized as follows. In section 2 we introduce some necessary results concerning

the direct scattering problem. In section 3 we prove the generalized Helmholtz-Kirchhoff identity and

introduce our RTM algorithm. In section 4 we study the resolution of the finite aperture Helmholtz-Kirchhoff

function which plays a key role in the resolution analysis of RTM algorithm in section 5. In section 6 we

consider the extension of the resolution results for reconstructing penetrable obstacles or non-penetrable

obstacles with sound soft or sound hard boundary conditions. In section 7 we report extensive numerical

experiments to show the competitive performance of the RTM algorithm. In section 8 we include some

concluding remarks. The appendix is devoted to the proof of the existence of the solution of the direct

scattering problem by the limiting absorption principle.

2 Direct scattering problem

We start by introducing the Green function N(x, y), where y ∈ R2
h, which is the radiation solution satisfying

the equations:

∆N(x, y) + k2N(x, y) = −δy(x) in R2
h,

N(x, y) = 0 on Γ0,
∂N(x, y)

∂x2
= 0 on Γh.

Let N̂y(ξ, x2) =
∫∞
−∞N(x, y)e−i(x1−y1)ξdx1 be the Fourier transform in the first variable. It is easy to find

by the assumption that N(x, y) is a radiation solution that

N̂y(ξ, x2) =
i

2µ

(
eiµ|x2−y2| − eiµ(x2+y2) − 2 sin(µx2)

cos(µh)
sin(µy2)eiµh

)
, (2.1)

where µ =
√
k2 − ξ2 and we choose the branch cut of

√
z such that Re (

√
z) > 0 throughout the paper. By

using the limiting absorption principle one can obtain the following formula for the Green function by taking

the inverse Fourier transform on the Sommerfeld Integral Path (SIP) (see Figure 2):

N(x, y) =
1

2π

∫
SIP

N̂y(ξ, x2)eiξ(x1−y1)dξ. (2.2)

We refer to [12, Chapter 2] for more discussion on the SIPs. We will also use the following well-known

normal mode expression for the Green function N(x, y), see e.g. [27]:

N(x, y) =

∞∑
n=1

i

hξn
sin(µnx2) sin(µny2)eiξn|x1−y1|, (2.3)
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Figure 2 The Sommerfeld Integral Path (SIP).

where µn = 2n−1
2h π and ξn =

√
k2 − µ2

n if k > µn, ξn = i
√
µ2
n − k2 if k < µn, n = 1, 2, · · · . It is obvious that

the series in the normal mode expression is absolutely convergent if x1 6= y1. If x1 = y1 but x2 6= y2, the

series in (2.3) is also convergent by using the method of Dirichlet’s test [26, §8.B.13-15].

Lemma 2.1. If |x1−y1| > αh for some constant α > 0, then N(x, y) and ∇xN(x, y) are uniformly bounded.

Proof. We only prove N(x, y) is uniformly bounded. The proof for ∇xN(x, y) is similar. Let M be the

integer such that µM < k < µM+1. Since e−αkh
√
t2−1

√
t2−1

is a decreasing function in (1,∞), we know that

∞∑
n=M+1

1

h|ξn|
e−|ξn||x1−y1| 6

1

h|ξM+1|
+

1

π

∫ ∞
1

e−αkh
√
t2−1

√
t2 − 1

dt 6
1

h|ξM+1|
+

1

αkhπ
.

On the other hand, note that |
∑M
n=1

i
hξn

sin(µnx2) sin(µny2)eiξn|x1−y1|| <
∑M
n=1

1
hξn

, we obtain

M∑
n=1

1

hξn
6

1

h|ξM |
+

M−1∑
n=1

1

hξn
6

1

h|ξM |
+

1

π

∫ 1

0

1√
1− t2

dt =
1

h|ξM |
+

1

2
,

where we have used the fact that 1√
1−t2 is an increasing function in (0, 1). This completes the proof.

Now we consider the existence and uniqueness of the radiation solution of the following waveguide problem:

∆ψ + k2ψ = 0 in R2
h\D̄, (2.4)

∂ψ

∂ν
+ ikη(x)ψ = g on ΓD, (2.5)

ψ = 0 on Γ0,
∂ψ

∂x2
= 0 on Γh, (2.6)

where g ∈ H−1/2(ΓD). We first show the uniqueness of the solution.

Lemma 2.2. Let η > 0 be bounded on ΓD. The scattering problem (2.4)-(2.6) has at most one radiation

solution.

Proof. We include a proof here for the sake of completeness. Let g = 0 in (2.5). We multiply (2.4) by ψ̄ and

integrate over BR\D̄ to obtain by integration by parts that

−Im

∫
ΓD

ψ̄
∂ψ

∂ν
ds+ Im

∫
∂BR

ψ̄
∂ψ

∂ν
ds = 0, (2.7)

where ν is the unit outer normal to ∂BR on ∂BR and to ΓD on ΓD. By the boundary condition satisfied by

ψ,
∫

(Γ0∪Γh)∩∂BR ψ̄
∂ψ
∂ν ds = 0. On the other hand, for |x1| > R, similar to (1.4) we have the mode expansion
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ψ(x) =
∑∞
n=1 ψn(x1) sin(µnx2) with ψn(x1) satisfying (1.6)-(1.7). Thus there exist constants ψ±n such that

ψn(x1) = ψ±n e
iξn|x1| for ±x1 > R. By the Parseval identity, we have then∫

Γ+
R

⋃
Γ−R

ψ̄
∂ψ

∂ν
ds =

h

2

M∑
n=1

iξn(|ψ+
n |2 + |ψ−n |2)− h

2

+∞∑
n=M+1

|ξn|(|ψ+
n |2 + |ψ−n |2)e−2|ξn|R,

where Γ±R = {(x1, x2) ∈ R2 : x1 = ±R, x2 ∈ (0, h)}. Thus by taking the imaginary part of the above identity

and inserting it into (2.7) we have

−Im

∫
ΓD

ψ̄
∂ψ

∂ν
ds+

h

2

M∑
n=1

ξn(|ψ+
n |2 + |ψ−n |2) = 0. (2.8)

By using the impedance condition and the assumption η > 0 on ΓD we have ψ = 0 on ΓD and ψ±n = 0, n =

1, 2, ...,M . This implies that ∂ψ
∂ν = 0 on ΓD. By the unique continuation principle we conclude ψ = 0 in

R2
h\D̄. This completes the proof.

In this paper, we call ψ±n , n = 1, 2, · · · ,M , which are the coefficients of the propagating modes, the far-field

pattern of the radiation solution ψ of the planar waveguide problem (2.4)-(2.6).

We remark that under some assumption on the geometry of the obstacle, the uniqueness of the solution

to the acoustic waveguide scattering problem for the sound soft obstacle was first proved in [20] based on

the Rellich type identity. The proof was refined in [22] and was also used in Arens [2] for 3D scattering

problems. For general geometry of the obstacle, the embedded trapped mode may appear which makes the

uniqueness fail [19].

The following theorem which is useful in our resolution analysis for the RTM algorithm will be proved in

the Appendix by using the method of limiting absorption principle.

Theorem 2.3. Let g ∈ H−1/2(ΓD) and η(x) > 0 be bounded on ΓD. Then the problem (2.4)-(2.6) admits a

unique radiation solution ψ ∈ H1
loc(R2

h\D̄) . Moreover, for any bounded open set O ⊂ R2\D̄, there exists a

constant C such that ‖ψ‖H1(O) 6 C‖g‖H−1/2(ΓD).

To conclude this section we remark that the solution u in (1.1)-(1.3) is defined as u(x) = N(x, y) + us(x)

with us(x) being the radiation solution of (2.4)-(2.6) with g = −∂N(x,y)
∂ν − ikη(x)N(x, y).

3 The reverse time migration algorithm

In this section we develop the reverse time migration type algorithm for inverse scattering problems in the

planar acoustic waveguide. Let G(x, y) be the half-space Green function, where y ∈ R2
+ = {(x1, x2) ∈ R2 :

x2 > 0}, which satisfies the Sommerfeld radiation condition and the following equations:

∆G(x, y) + k2G(x, y) = −δy(x) in R2
+,

G(x, y) = 0 on Γ0.

It is well known by the image method that

G(x, y) =
i

4
H

(1)
0 (k|x− y|)− i

4
H

(1)
0 (k|x− y′|), (3.1)

where H
(1)
0 (z) is the first Hankel function of zeroth order and y′ = (y1,−y2) is the image point of y = (y1, y2)

with respect to y2 = 0.

We start by proving the generalized Helmholtz-Kirchhoff identity which plays a key role in this paper.

Lemma 3.1. Let S(x, y) = N(x, y)−G(x, y). Then we have∫
Γh

∂G(x, ζ)

∂ζ2
N(ζ, y)ds(ζ) = 2i ImN(x, y)− S(x, y), ∀x, y ∈ R2

h. (3.2)
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Proof. Let x, y ∈ BR = (−R,R)× (0, h) for some R > 0. Since ImG(x, ·) satisfies the Helmholtz equation,

by the integral representation formula we obtain

ImG(x, y) =

∫
∂BR

(
∂ ImG(x, ζ)

∂ν(ζ)
N(ζ, y)− ∂N(ζ, y)

∂ν(ζ)
ImG(x, ζ)

)
ds(ζ).

Again by the integral representation formula we have∫
∂BR

(
∂G(x, ζ)

∂ν(ζ)
N(ζ, y)− ∂N(ζ, y)

∂ν(ζ)
G(x, ζ)

)
ds(ζ) = −N(x, y) +G(x, y) = −S(x, y).

Thus, since ImG(x, y) = 1
2i (G(x, y)−G(x, y)), we have

2i ImG(x, y) + S(x, y) = −
∫
∂BR

(
∂G(x, ζ)

∂ν(ζ)
N(ζ, y)− ∂N(ζ, y)

∂ν(ζ)
G(x, ζ)

)
ds(ζ)

= −
∫

Γh∩∂BR

∂G(x, ζ)

∂ν(ζ)
N(ζ, y)ds(ζ)

−
∫

Γ±R

(
∂G(x, ζ)

∂ν(ζ)
N(ζ, y)− ∂N(ζ, y)

∂ν(ζ)
G(x, ζ)

)
ds(ζ), (3.3)

where we have used ∂N(ζ,y)
∂ν(ζ) = 0 on Γh and G(x, ζ) = N(ζ, y) = 0 on Γ0. By (3.1) we know that |G(x, ζ)| =

O(|x− ζ|−1/2) and |∂G(x,ζ)
∂ζ1

| = O(|x− ζ|−1/2) as |x− ζ| → ∞. Therefore, by using Lemma 2.1 we conclude

that the integral on Γ±R in (3.3) vanishes as R→∞. This shows by letting R→∞ that

2i ImG(x, y) + S(x, y) = −
∫

Γh

∂G(x, ζ)

∂ν(ζ)
N(ζ, y)ds(ζ).

This completes the proof by taking the complex conjugate and noticing 2i ImG(x, y)+S(x, y) = 2i ImN(x, y)+

S(x, y) .

Now assume that there are Ns sources and Nr receivers uniformly distributed on Γdh, where Γdh =

{(x1, x2) ∈ Γh : x1 ∈ (−d, d)}, d > 0 is the aperture. We denote by Ω ⊂ Bd = (−d, d) × (0, h) the

sampling domain in which the obstacle is sought. Let ui(x, xs) = N(x, xs) be the incident wave and

us(xr, xs) = u(xr, xs) − ui(xr, xs) be the scattered field measured at xr, where u(x, xs) is the solution of

the problem (1.1)-(1.3) and (1.7). Our RTM algorithm consists of two steps. The first step is the back-

propagation in which we back-propagate the complex conjugated data us(xr, xs) into the domain using

the half space Green function G(x, y). The second step is the cross-correlation in which we compute the

imaginary part of the cross-correlation of ∂G(x,y)
∂y2

and the back-propagated field.

Algorithm 3.1. (Reverse time migration)

Given the data us(xr, xs) which is the measurement of the scattered field at xr = (x1(xr), x2(xr)) when the

source is emitted at xs = (x1(xs), x2(xs)), s = 1, . . . , Ns, r = 1, . . . , Nr.

1◦ Back-propagation: For s = 1, . . . , Ns, compute the back-propagation field

vb(z, xs) =
|Γdh|
Nr

Nr∑
r=1

∂G(z, xr)

∂x2(xr)
us(xr, xs), ∀z ∈ Ω. (3.4)

2◦ Cross-correlation: For z ∈ Ω, compute

Id(z) = Im

{
|Γdh|
Ns

Ns∑
s=1

∂G(z, xs)

∂x2(xs)
vb(z, xs)

}
. (3.5)
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The back-propagation field vb can be viewed as the solution which satisfies the Sommerfeld radiation

condition and the following equations:

∆vb(x, xs) + k2vb(x, xs) =
|Γdh|
Nr

Nr∑
r=1

us(xr, xs)
∂

∂x2
δxr (x) in R2

+,

vb(x, xs) = 0 on Γ0.

Taking the imaginary part of the cross-correlation of the incident field and the back-propagated field in (3.5)

is motivated by the resolution analysis in the next section. It is easy to see that

Id(z) = Im

{
|Γdh||Γdh|
NsNr

Ns∑
s=1

Nr∑
r=1

∂G(z, xr)

∂x2(xr)

∂G(z, xs)

∂x2(xs)
us(xr, xs)

}
, ∀z ∈ Ω. (3.6)

This formula is used in all our numerical experiments in section 7. By letting Ns, Nr → ∞, we know that

(3.6) can be viewed as an approximation of the following continuous integral:

Îd(z) = Im

∫
Γdh

∫
Γdh

∂G(z, xr)

∂x2(xr)

∂G(z, xs)

∂x2(xs)
us(xr, xs)ds(xs)ds(xr), ∀z ∈ Ω. (3.7)

We will study the resolution of the function Îd(z) in the section 5. To this end we will first consider the

resolution of the finite aperture Helmholtz-Kirchhoff function in the next section.

4 Resolution of the finite aperture Helmholtz-Kirchhoff function

By the Helmholtz-Kirchhoff identity (3.2) we know that for any x, y ∈ Rh,∫
Γdh

∂G(x, ζ)

∂ζ2
N(ζ, y)ds(ζ) = 2i ImN(x, y)− S(x, y)− Sd(x, y), (4.1)

where

Sd(x, y) :=

∫
Γh\Γ̄dh

∂G(x, ζ)

∂ζ2
N(ζ, y)ds(ζ), ∀x, y ∈ Rh. (4.2)

The integral on the left-hand side of (4.1), Hd(x, y) =
∫

Γdh

∂G(x,ζ)
∂ζ2

N(ζ, y)ds(ζ), will be called the finite

aperture Helmholtz-Kirchhoff function in the following. In this section we will estimate S(x, y) and Sd(x, y)

in (4.1) which provides the resolution of Hd(x, y).

We assume the obstacle D ⊂ Ω and there exist positive constants c0, c1, c2, where c0, c1 ∈ (0, 1), such that

|y1| 6 c0d, |y2| 6 c1h, k|y1 − z1| 6 c2
√
kh, ∀y, z ∈ Ω. (4.3)

The first condition means that the search domain should not be close to the boundary of the aperture. The

second condition is rather mild in practical applications as we are interested in finding obstacles far away from

the surface of the waveguide where the data is collected. The third condition indicates that the horizontal

width of the search domain should not be very large comparing with the thickness of the waveguide. This is

reasonable since we are interested in the case when the size of the scatterer is smaller than or comparable

with the probe wavelength and the thickness h is large compared with the probe wavelength, i.e., kh� 1.

We start with the following formula for S(x, y).

Lemma 4.1. Let S(x, y) = N(x, y)−G(x, y). Then we have

S(x, y) =
1

2π

∫
SIP

Ŝy(ξ, x2)eiξ|x1−y1|dξ, Ŝy(ξ, x2) = −2i

µ

sin(µx2)

e2iµh + 1
sin(µy2)e2iµh.
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Proof. Let

Ĝy(ξ, x2) =

∫ ∞
−∞

G(x, y)e−i(x1−y1)ξdx1, Ŝy(ξ, x2) =

∫ ∞
−∞

S(x, y)e−i(x1−y1)ξdx1,

be the Fourier transform of G(x, y) and S(x, y) in the first variable, respectively. It is easy to find that

Ĝy(ξ, x2) =
i

2µ

(
eiµ|x2−y2| − eiµ(x2+y2)

)
.

Thus by (2.1) we know that

Ŝy(ξ, x2) = − i

µ

sin(µx2)

cos(µh)
sin(µy2)eiµh.

This completes the proof by taking the inverse Fourier transform along SIP.

Theorem 4.2. Let kh > π/2 and (4.3) be satisfied. We have

|S(x, y)| 6 C

| cos(kh)|
1√
kh
, |∇xS(x, y)| 6 Ck

| cos(kh)|
1√
kh
, ∀x, y ∈ Ω, (4.4)

where C is a constant independent of k, h but may depend on c1, c2.

We remark that since µ1 = π/(2h), the condition kh > π/2 means that there exists at least one propagating

mode in the received scattering field on Γh, which is the minimum requirement that any imaging method

could work. We also remark that the decay estimate (4.4) can not hold uniformly for x, y ∈ R2
h since N(x, y)

keeps oscillatory and bounded as |x1 − y1| → ∞ but G(x, y) decays to 0 as |x1 − y1| → ∞.

Proof. Denote by γ = 1/
√

2kh and by the assumption kh > π/2, γ 6 1/
√
π. Write ξ = ξ1 + iξ2, ξ1, ξ2 ∈ R.

Let SIP+ be the part of the SIP in the fourth quadrant. By taking the coordinate transform ξ → −ξ in the

second quadrant we know from Lemma 4.1 that

S(x, y) =
1

2π

∫
SIP+

Ŝy(ξ, x2)(eiξ(x1−y1) + e−iξ(x1−y1))dξ := S1(x, y) + S2(x, y),

where Sj(x, y) = 1
2π

∫
Lj
Ŝy(ξ, x2)(eiξ(x1−y1) + e−iξ(x1−y1))dξ, j = 1, 2, and L1, L2 are the sections of SIP+

(see Figure 2):

L1 = {ξ ∈ C : ξ1 ∈ (0, kγ), ξ2 = −ξ1}, L2 = {ξ ∈ C : ξ1 ∈ (kγ,∞), ξ2 = −kγ}.

Let µ =
√
k2 − ξ2 = µ1 + iµ2, µ1, µ2 ∈ R. It is easy to see that

|µ|2 =
√

(k2 − ξ2
1 + ξ2

2)2 + 4ξ2
1ξ

2
2 , µ2 =

√
2 ξ1|ξ2|√

|µ|2 + (k2 − ξ2
1 + ξ2

2)
. (4.5)

It is clear by using (4.3) that

|eiξ(x1−y1) + e−iξ(x1−y1)| 6 2e−ξ2|x1−y1| 6 2ec2/
√

2, ∀ξ ∈ L1 ∪ L2.

Thus, since | sin(µx2) sin(µy2)eiµh| 6 e−µ2(2h−x2−y2), we have

|Sj(x, y)| 6 C

∣∣∣∣∣
∫
Lj

1

|µ|
1

|1 + e2iµh|
e−µ2(2h−x2−y2)dξ

∣∣∣∣∣ . (4.6)

We first estimate S1(x, y) and thus assume ξ ∈ L1. By (4.5) it is clear that |µ| > k. Next

1

|1 + e2iµh|
6

∣∣∣∣ 1

1 + e2iµh
− 1

1 + e2ikh

∣∣∣∣+
1

|1 + e2ikh|
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=
1

2| cos(kh)|

(
1 +
|e2iµh − e2ikh|
|1 + e2iµh|

)
. (4.7)

By using the elementary inequality 1−e−t > t−t2/2 for t > 0, we have |1+e2iµh| > 1−e−2µ2h > 2µ2h(1−µ2h).

By (4.5) we have µ2 =
√

2ξ21√
|µ|2+k2

which implies µ2h 6 ξ21h
k 6 1

2 for ξ ∈ L1. Therefore |1 + e2iµh| >
√

2ξ21h√
|µ|2+k2

.

On the other hand, since µ =
√
k2 + 2iξ2

1 on L1, µ(0) = k, by using elementary calculus one obtains

|e2iµh − e2ikh| 6
√

2 max
t∈(0,ξ1)

∣∣∣∣de2iµh

dξ1

∣∣∣
ξ1=t

∣∣∣∣× ξ1
=
√

2 max
t∈(0,ξ1)

(
4hte−2µ2(t)h

|µ(t)|

)
ξ1 6 4

√
2
ξ2
1h

k
.

Thus by (4.7)

1

|1 + e2iµh|
6

C

| cos(kh)|

√
|µ|2 + k2

k
6

C

| cos(kh)|
,

where we have used the fact that |µ| = (k4 + 4ξ4
1)1/4 6 k(1 + 4γ4)1/4 6 Ck for ξ ∈ L1. Now it follows from

(4.6) that

|S1(x, y)| 6 C

| cos(kh)|
γ 6

C

| cos(kh)|
1√
kh
. (4.8)

Now we estimate S2(x, y) and thus let ξ ∈ L2. By (4.5) we have |µ|2 6 k2 + ξ2
1 + ξ2

2 and thus

µ2 >
ξ1|ξ2|√
k2 + ξ2

2

=
ξ1γ√
1 + γ2

>
ξ1γ√

2
, (4.9)

which implies µ2h > khγ2/
√

2 = 1/(2
√

2) and consequently |1 + e2iµh| > 1 − e−1/
√

2 for ξ ∈ L2. Now by

(4.6) we have

|S2(x, y)| 6 C

∫ +∞

kγ

1

|µ|
e−µ2(2h−x2−y2)dξ1. (4.10)

For ξ1 ∈ (kγ, k/
√
π), we know from (4.5) that |µ| >

√
k2 − ξ2

1 > k
√

1− 1/π. This implies by using (4.9)

that ∫ k√
π

kγ

1

|µ|
e−µ2(2h−x2−y2)dξ1 6

C

k

∫ k√
π

kγ

e
−(1−c1)

ξ1h√
kh dξ1

= − C√
kh

[
e
−(1−c1)

ξ1h√
kh

]∣∣∣ k√π
kγ

6 C
1√
kh
.

For ξ1 >
k√
π

, by (4.5), we have |µ| >
√

2ξ1|ξ2| >
√

2
4
√
π
kγ1/2. Thus∫ +∞

k√
π

1

|µ|
e−µ2(2h−x2−y2)dξ1 6

C

kγ1/2

∫ +∞

k√
π

e
−(1−c1)

ξ1h√
kh dξ1

= − C
4
√
kh

[
e
−(1−c1)

ξ1h√
kh

]∣∣∣+∞
k√
π

6 C
1√
kh
.

This shows the first estimate in (4.4) upon substituting into (4.10) and noticing (4.8). The estimate for

∇xS(x, y) can be proved in a similar way by noticing that

∂S(x, y)

∂x1
=

1

2π

∫
SIP+

ξ

µ

sin(µx2)

cos(µh)
sin(µy2)eiµh(eiξ(x1−y1) − e−iξ(x1−y1))dξ,

∂S(x, y)

∂x2
=

1

2π

∫
SIP+

(−i)cos(µx2)

cos(µh)
sin(µy2)eiµh(eiξ(x1−y1) + e−iξ(x1−y1))dξ.

Here we omit the details. This completes the proof.
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Now we consider the effect of the finite aperture by estimating Sd(x, y) in (4.2). We first recall the

following estimate for the first Hankel function in [29, P.197].

Lemma 4.3. For any t > 0, we have

H
(1)
0 (t) =

(
2

πt

)1/2

ei(t−π/4) +R0(t), H
(1)
1 (t) =

(
2

πt

)1/2

ei(t−3π/4) +R1(t),

where |Rj(t)| 6 Ct−3/2, j = 0, 1, for some constant C > 0 independent of t.

For any x, y ∈ Ω, by the normal mode expression of the Green function N(x, y) in (2.3) we know that

Sd(x, y) =

∞∑
n=1

−i
hξ̄n

sin(µnh) sin(µny2)

∫
Γh\Γ̄dh

∂G(x, ζ)

∂ζ2
e−iξ̄n|ζ1−y1|dζ1. (4.11)

For ζ = (ζ1, h) ∈ Γh, G(x, ζ) = i
4H

(1)
0 (k|x − ζ|) − i

4H
(1)
0 (k|x − ζ ′|), where ζ ′ = (ζ1,−h). Thus, since

H
(1)′

0 (ξ) = −H(1)
1 (ξ) for any ξ ∈ C,

∂G(x, ζ)

∂ζ2
= f(x1, ζ1, h+ x2)− f(x1, ζ1, h− x2), ∀ζ ∈ Γh, (4.12)

where

f(x1, ζ1, t) =
i

4
H

(1)
1 (kΘ)

kt

Θ
, Θ =

√
(ζ1 − x1)2 + t2, t ∈ [h− x2, h+ x2].

By Lemma 4.3 we have

f(x1, ζ1, t) =
i

4
e−i

3π
4

(
2

πkΘ

)1/2
kt

Θ
eikΘ +

i

4
R1(kΘ)

kt

Θ
.

Inserting the above equation into (4.11) we obtain

|Sd(x, y)| 6 max
t∈[h−x2,h+x2]

∞∑
n=1

k1/2t

h|ξn|

∣∣∣∣∣
∫

Γh\Γ̄dh
Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣∣
+ max

t∈[h−x2,h+x2]

∞∑
n=1

1

h|ξn|

∣∣∣∣∣
∫

Γh\Γ̄dh
R1(kΘ)

kt

Θ
e−iξ̄n|ζ1−y1|dζ1

∣∣∣∣∣ , (4.13)

where fn(x1, ζ1, t) = kΘ − ξ̄n|ζ1 − y1|. We note that for 1 6 n 6 M , in which case ξn =
√
k2 − µ2

n is real,

fn(x1, ζ1, t) has a critical point at ζ1 = x1 + pn:

∂fn
∂ζ1

(x1, x1 + pn, t) = 0, where pn = t
ξn
µn
, 1 6 n 6M.

Lemma 4.4. Let 1 6 n 6 M and (4.3) be satisfied. Then there exists a constant C > 0 independent of

k, h, d such that for any x, y ∈ Ω and t ∈ [h− x2, h+ x2], we have,∣∣∣∣∫ ∞
η

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣ 6 C

(
kt2

p2
n

)−1

(η − x1)−3/2, ∀η > x1 + 2pn, (4.14)

and if x1 + pn/2 > d, ∣∣∣∣∣
∫ x1+pn/2

d

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣∣ 6 C

(
kt2

p2
n

)−1

(d− x1)−3/2. (4.15)

Proof. It is clear that for any ζ1 > η > x1 + 2pn,

∂fn
∂ζ1

(x1, ζ1, t) = k
ζ1 − x1

Θ
− ξn > k

(
2pn√

4p2
n + t2

− pn√
p2
n + t2

)
> C

kt2

p2
n

. (4.16)
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Thus Θ(x1,ζ1,t)
−3/2

i∂ζ1fn(x1,ζ1,t)
→ 0 as ζ1 →∞. By integration by parts we have then∫ ∞
η

Θ−3/2eifn(x1,ζ1,t)dζ1 = −Θ(x1, η, t)
−3/2

i∂ζ1fn(x1, η, t)
eifn(x1,η,t)

−
∫ ∞
η

∂

∂ζ1

(
Θ(x1, ζ1, t)

−3/2

i∂ζ1fn(x1, ζ1, t)

)
eifn(x1,ζ1,t)dζ1. (4.17)

Since ∂2fn(x1,ζ1,t)
∂ζ21

= kt2

Θ3 , ∂
∂ζ1

(
Θ(x1,ζ1,t)

−3/2

∂ζ1fn(x1,ζ1,t)

)
6 0. Thus∣∣∣∣∫ ∞

η

∂

∂ζ1

(
Θ(x1, ζ1, t)

−3/2

i∂ζ1fn(x1, ζ1, t)

)
eifn(x1,ζ1,t)dζ1

∣∣∣∣ 6
∫ ∞
η

∣∣∣∣ ∂∂ζ1
(

Θ(x1, ζ1, t)
−3/2

∂ζ1fn(x1, ζ1, t)

)∣∣∣∣ dζ1
=

∣∣∣∣∫ ∞
η

∂

∂ζ1

(
Θ(x1, ζ1, t)

−3/2

∂ζ1fn(x1, ζ1, t)

)
dζ1

∣∣∣∣
6 [∂ζ1fn(x1, η, t)]

−1(η − x1)−3/2.

This shows (4.14) by using (4.17) and (4.16). The estimate (4.15) can be proved similarly since for d 6 ζ1 6
x1 + pn/2, ∣∣∣∣∂fn∂ζ1

(x1, ζ1, t)

∣∣∣∣ = ξn − k
ζ1 − x1

Θ
> k

(
pn√
p2
n + t2

− pn√
p2
n + 4t2

)
> C

kt2

p2
n

.

This completes the proof.

We will use the following Van der Corput lemma, see e.g. in [15, Corollary 2.6.8], to estimate the oscillatory

integral around the critical point.

Lemma 4.5. There is a constant C > 0 such that for any −∞ < a < b < ∞, for every real-valued C2

function u that satisfies u′′(t) > 1 for t ∈ (a, b), for any function ψ defined on (a, b) with an integrable

derivative, and for any λ > 0,∣∣∣∣∣
∫ b

a

eiλu(t)ψ(t)dt

∣∣∣∣∣ 6 Cλ−1/2

[
|ψ(b)|+

∫ b

a

|ψ′(t)|dt

]
,

where the constant C is independent of the constants a, b, λ and the functions u, ψ.

We remark that if the function ψ in Lemma 4.5 is monotonic decreasing and non-negative in (a, b), then

we have

|ψ(b)|+
∫ b

a

|ψ′(t)|dt = |ψ(b)|+

∣∣∣∣∣
∫ b

a

ψ′(t)dt

∣∣∣∣∣ = |ψ(a)|. (4.18)

Lemma 4.6. Let 1 6 n 6 M and (4.3) be satisfied. Then there exists a constant C > 0 independent of

k, h, d such that for any x, y ∈ Ω and t ∈ [h− x2, h+ x2], we have∣∣∣∣∫ x1+2pn

η

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣ 6 Ckt−1ξ−3/2
n , ∀η > x1 + pn/2. (4.19)

Proof. It is easy to see that for any x1 + pn/2 6 ζ1 6 x1 + 2pn,

∂2
ζ1
fn(x1, ζ1, t)

∂2
ζ1
fn(x1, x1 + pn, t)

=
Θ(x1, x1 + pn, t)

3

Θ(x1, ζ1, t)3
>

(
p2
n + t2

4p2
n + t2

)3/2

>
1

8
.

We can use Lemma 4.5 and (4.18) for λ = ∂2
ζ1
fn(x1, x1 + pn, t)/8 = µ3

n/(8k
2t) and u(ζ1) =

8∂2
ζ1
fn(x1,ζ1,t)

∂2
ζ1
fn(x1,x1+pn,t)

to obtain, for any η > x1 + pn/2,∣∣∣∣∫ x1+2pn

η

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣ 6 C

(
µ3
n

8k2t

)−1/2

p−3/2
n ,

This completes the proof by using pn = tξn/µn.
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Lemma 4.7. Let n > M + 1 and (4.3) be satisfied. Let the aperture d > c3h for some constant c3 > 0

independent of k, h, d. Then there exists a constant C > 0 independent of k, h, d such that for any x, y ∈ Ω

and t ∈ [h− x2, h+ x2], we have∣∣∣∣∫ ∞
d

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣ 6 Ck−1d−3/2χn,

where χn = e−(1−c0)|ξn|d for n >M + 1 and χn = 1 for n 6M .

Proof. Since ξn = i
√
µ2
n − k2 for n >M + 1, by (4.3) we know that |e−iξ̄n|ζ1−y1|| 6 χn for any ζ1 > d. The

proof of this lemma is essentially the same as that of Lemma 4.4 by using (4.17) and noticing that now we

have |∂ζ1fn(x1, ζ1, t)| > k |ζ−x1|
Θ > Ck since |ζ1 − x1| > (1− c0)d > (1− c0)c3h and |t| 6 (1 + c1)h. We omit

the details.

Theorem 4.8. Let kh > π
2 and (4.3) be satisfied. Let d > c3h for some constant c3 > 0 independent of

k, h, d. Then there exists a constant C > 0 independent of k, h, d such that for any x, y ∈ Ω,

|Sd(x, y)| 6 C

(
1√
kd

+
h

d

)
, |∇xSd(x, y)| 6 Ck

(
1√
kd

+
h

d

)
.

Proof. The starting point is (4.13). We first estimate the second term. Since |R1(kΘ)| 6 C(kΘ)−3/2 by

Lemma 4.3, we have∣∣∣∣∣
∫

Γh\Γ̄dh
R1(kΘ)

kt

Θ
eiξn|ζ1−y1|dζ1

∣∣∣∣∣ 6 Cχnk
−1/2h max

|x1|6c0d

∫ ∞
d

Θ−5/2dζ1 6
Cχn√
kd
,

where χn is defined in Lemma 4.7 and we have used d− x1 > (1− c0)d > (1− c0)c3h. This implies

∞∑
n=1

1

h|ξn|

∣∣∣∣∣
∫

Γh\Γ̄dh
R1(kΘ)

kt

Θ
eiξn|ζ1−y1|dζ1

∣∣∣∣∣ 6 C√
kd
, (4.20)

where have used the fact that
∑∞
n=1

χn
h|ξn| 6 C by the argument in the proof of Lemma 2.1. For estimating

the first term in (4.13), we first use Lemma 4.7 to obtain that

∞∑
n=M+1

k1/2t

h|ξn|

∣∣∣∣∣
∫

Γn\Γ̄dh
Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣∣ 6
∞∑

n=M+1

k1/2t

h|ξn|
Cχn
kd3/2

6
C√
kd
. (4.21)

It remains to estimate

M∑
n=1

k1/2t

h|ξn|

∣∣∣∣∣
∫

Γn\Γ̄dh
Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣∣
6

M∑
n=1

2

h|ξn|
max
|x1|6c0d

∣∣∣∣∫ ∞
d

k1/2tΘ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣ . (4.22)

Let n0 > 1 be such that x1 + 2pn0 > d and x1 + 2pn0+1 6 d, which is equivalent to

k−1µn0
<

2t√
d2

1 + 4t2
, k−1µn0+1 >

2t√
d2

1 + 4t2
, d1 := d− x1. (4.23)

Clearly n0 6M since k−1µn0 < 1. For n > n0 + 1, we have x1 + 2pn 6 d and thus by (4.14) with η = d we

obtain

M∑
n=n0+1

k1/2t

hξn

∣∣∣∣∫ ∞
d

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣ 6 C

M∑
n=n0+1

k1/2t

hξn

(
kt2

p2
n

)−1

d−3/2

6 C
k1/2t

d3/2

M∑
n=n0+1

µ−2
n

h
6

C√
kd
, (4.24)
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where we have used ξn 6 k for n 6 M and the fact that by (4.23),
∑M
n=n0+1 h

−1µ−2
n 6 h−1µ−2

n0+1 +

π−1µ−1
n0+1 6 Cd/(kh).

For n 6 n0, by (4.23), we have ξn > kd1√
d21+4t2

> Ck. By (4.14) with η = x1 + 2pn we obtain

n0∑
n=1

k1/2t

hξn

∣∣∣∣∫ ∞
x1+2pn

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣ 6 C

n0∑
n=1

k1/2t

hξn

p
1/2
n

kt2

6 C

n0∑
n=1

1

kt1/2
µ
−1/2
n

h
6

C√
kd
, (4.25)

where we have used the fact that
∑n0

n=1 h
−1µ

−1/2
n 6 2

πµ
1/2
n0 6 C(kh)1/2/d1/2 by (4.23).

To proceed, let n1 > 1 be such that x1 + pn1
/2 > d and x1 + pn1+1/2 6 d, which is equivalent to

k−1µn1
<

t√
4d2

1 + t2
, k−1µn1+1 >

t√
4d2

1 + t2
, d1 := d− x1. (4.26)

Clearly n1 6 n0. We write

n0∑
n=1

k1/2t

hξn

∣∣∣∣∫ x1+2pn

d

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣
6

n1∑
n=1

k1/2t

hξn

∣∣∣∣∣
∫ x1+pn/2

d

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣∣
+

n1∑
n=1

k1/2t

hξn

∣∣∣∣∣
∫ x1+2pn

x1+pn/2

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣∣
+

n0∑
n=n1+1

k1/2t

hξn

∣∣∣∣∫ x1+2pn

d

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣ := I + II + III. (4.27)

Let n2 = kh√
kd

. If n1 6 n2, then since ξn > Ck for n 6 n0,

I 6 C

n2∑
n=1

k1/2t

hξn
d−1/2 6 C

n2√
kd

6 C
h

d
.

Otherwise, if n1 > n2 + 1, we split the sum and use (4.15) to have

I 6 C
h

d
+

n1∑
n=n2+1

k1/2t

hξn

∣∣∣∣∣
∫ x1+pn/2

d

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣∣
6 C

h

d
+ C

n1∑
n=n2+1

k1/2t

hξn

(
kt2

p2
n

)−1

d−3/2 6 C
h

d
,

where we have used the fact that

n1∑
n=n2+1

h−1µ−2
n 6 h−1µ−2

n2+1 + π−1µ−1
n2+1 6 Chn−1

2 = Ck−1/2d1/2.

Therefore, we have I 6 Ch/d. By using (4.19) with η = x1 +pn/2 for the term II and with η = d > x1 +pn/2

for the term III, we have

II + III 6 C

n0∑
n=1

k1/2t

hξn
kt−1ξ−3/2

n 6 C

n0∑
n=1

1

hξn
6 C

h

d
,

where we have used n0 6 Ckh2/d by (4.23). Therefore, by (4.27),

n0∑
n=1

k1/2t

hξn

∣∣∣∣∫ x1+2pn

d

Θ−3/2eifn(x1,ζ1,t)dζ1

∣∣∣∣ 6 C
h

d
+

C√
kd
.
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This shows the estimate for |Sd(x, y)| by (4.13), (4.20), (4.21)-(4.22), (4.24)-(4.25), and the above estimate.

The estimate for ∇xSd(x, y) can be proved similarly by noticing that

∂2G(x, ζ)

∂x2∂ζ2
=
∂f

∂t
(x1, ζ1, h+ x2) +

∂f

∂t
(x1, ζ1, h− x2),

∂2G(x, ζ)

∂x1∂ζ2
=

∂f

∂x1
(x1, ζ1, h+ x2)− ∂f

∂x1
(x1, ζ1, h− x2),

where after using the identity H
(1)′

1 (ξ) = H
(1)
0 (ξ)− 1

ξH
(1)
1 (ξ) for any ξ ∈ C,

∂f

∂t
(x1, ζ1, t) =

i

4
H

(1)
0 (kΘ)

k2t2

Θ2
+

i

4
H

(1)
1 (kΘ)

(
k

Θ
− 2kt2

Θ3

)
,

∂f

∂x1
(x1, ζ1, t) =

i

4
H

(1)
0 (kΘ)

k2(x1 − ζ1)t

Θ2
− i

4
H

(1)
1 (kΘ)

2k(x1 − ζ1)t

Θ3
.

We omit the details. This completes the proof.

We remark that by Theorem 4.2 and Theorem 4.8, the resolution of the finite aperture Helmholtz-Kirchhoff

function Hd(x, y) is the same as the resolution of ImN(x, y) for x, y ∈ Ω when kh� 1 and kd/(kh)� 1.

5 The resolution analysis of the RTM algorithm

In this section we study the resolution of the imaging function in (3.6). We first notice that since S(·, z)
satisfies the Helmholtz equation in R2

h, it follows from Theorem 4.2 that

‖S(·, z)‖H1/2(ΓD) +
∥∥∥∂S(·, z)

∂ν

∥∥∥
H−1/2(ΓD)

6 C‖S(·, z)‖H1(D) + ‖∆S(·, z)‖L2(D)

6
C

| cos(kh)|
1√
kh
, ∀z ∈ Ω, (5.1)

for some constant C independent of h. Similarly, since Sd(·, z) also satisfies the Helmholtz equation, by

Theorem 4.8, for any z ∈ Ω,

‖Sd(·, z)‖H1/2(ΓD) +
∥∥∥∂Sd(·, z)

∂ν

∥∥∥
H−1/2(ΓD)

6 C

(
1√
kh

+
h

d

)
, (5.2)

for some constant C independent of h, d. Here we have used the assumption d > c3h.

Theorem 5.1. Let kh > π/2, d > c3h, and (4.3) be satisfied. For any z ∈ Ω, let ψ(x, z) be the radiation

solution of the problem

∆ψ(x, z) + k2ψ(x, z) = 0 in R2
h\D̄, (5.3)

ψ = 0 on Γ0,
∂ψ

∂x2
= 0 on Γh, (5.4)

∂ψ

∂ν
+ ikηψ = −

(
∂ ImN(x, z)

∂ν
+ ikη ImN(x, z)

)
on ΓD. (5.5)

Then we have, for any z ∈ Ω,

Îd(z) = 2h

M∑
n=1

ξn(|ψ+
n |2 + |ψ−n |2) + 4k

∫
ΓD

η(ζ) |ψ(ξ, z) + ImN(ζ, z)|2 ds(ξ) + wÎ(z),

where ψ±n , n = 1, 2, · · · ,M , are the far-field pattern of the radiation solution of ψ(·, z) and ‖wÎ‖L∞(Ω) 6
C

| cos(kh)|
1√
kh

+ C h
d .
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Proof. By the integral representation formula we know that

us(xr, xs) =

∫
ΓD

(
us(ζ, xs)

∂N(xr, ζ)

∂ν(ζ)
− ∂us(ζ, xs)

∂ν(ζ)
N(xr, ζ)

)
ds(ζ).

By using Lemma 4.2 we obtain that, for any z ∈ Ω,

v̂b(z, xs) =

∫
Γdh

∂G(z, xr)

∂x2(xr)
us(xr, xs)ds(xr)

=

∫
ΓD

us(ζ, xs)
∂

∂ν(ζ)

(
2iImN(ζ, z)− S(ζ, z)− Sd(ζ, z)

)
ds(ζ)

−
∫

ΓD

∂us(ζ, xs)

∂ν(ζ)

(
2iImN(ζ, z)− S(ζ, z)− Sd(ζ, z)

)
ds(ζ),

where we have used the reciprocity relation N(ζ, z) = N(z, ζ), G(ζ, z) = G(z, ζ). By (3.6) we obtain then

Îd(z) = Im

∫
ΓD

vs(ζ, z)
∂

∂ν(ζ)

(
2i ImN(ζ, z)− S(ζ, z)− Sd(ζ, z)

)
ds(ζ)

− Im

∫
ΓD

∂vs(ζ, z)

∂ν(ζ)

(
2iImN(ζ, z)− S(ζ, z)− Sd(ζ, z)

)
ds(ζ), (5.6)

where vs(ζ, z) =
∫

Γdh

∂G(z,xs)
∂x2(xs)

us(ζ, xs)ds(xs). By taking the complex conjugate, we have

vs(ζ, z) =

∫
Γdh

∂G(z, xs)

∂x2(xs)
us(ζ, xs)ds(xs).

Thus vs(ζ, z) is a weighted superposition of the scattered waves us(ζ, xs). Therefore, vs(ζ, z) is the radiation

solution of the Helmholtz equation

∆ζvs(ζ, z) + k2vs(ζ, z) = 0 in R2
h\D̄,

vs(ζ, z) = 0 on Γ0,
∂vs(ζ, z)

∂ζ2
= 0 on Γh,

satisfying the impedance boundary condition(
∂

∂ν(ζ)
+ ikη(ζ)

)
vs(ζ, z)

=

∫
Γdh

∂G(z, xs)

∂x2(xs)

(
∂

∂ν(ζ)
+ ikη(ζ)

)
us(ζ, xs)ds(xs)

=

∫
Γdh

∂G(z, xs)

∂x2(xs)

(
∂

∂ν(ζ)
+ ikη(ζ)

)
(−N(ζ, xs))ds(xs)

=

(
∂

∂ν(ζ)
+ ikη(ζ)

)
(2i ImN(ζ, z) + S(ζ, z) + Sd(ζ, z)) on ΓD,

where we have used (4.1) in the last equality. This implies by using (5.3)-(5.5) that vs(ζ, z) = −2iψ(ζ, z) +

w(ζ, z), where w(·, z) satisfies the impedance scattering problem in Theorem 2.3 with g(·) =
(
∂
∂ν + ikη(·)

)
(S(·, z)+

Sd(·, z)).
By Theorem 2.3, (5.1)-(5.2), and the boundary condition satisfied by w on ΓD, we know that w satisfies

‖w(·, z)‖H1/2(ΓD) +
∥∥∥∂w(·, z)

∂ν

∥∥∥
H−1/2(ΓD)

6
C

| cos(kh)|
1√
kh

+ C
h

d
.

Moreover, since N(·, z) = G(·, z) + S(·, z), we also have

‖N(·, z)‖H1/2(ΓD) +
∥∥∥∂N(·, z)

∂ν

∥∥∥
H−1/2(ΓD)

6 C, ∀z ∈ Ω.
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Now substituting vs(ζ, z) = 2iψ(ζ, z) + w(ζ, z) into (5.6) we obtain

Î(z) = −4 Im

∫
ΓD

(
ψ(ζ, z)

∂ImN(ζ, z)

∂ν(ζ)
− ∂ψ(ζ, z)

∂ν(ζ)
ImN(ζ, z)

)
ds(ζ) + wÎ(z)

= 4 Im

∫
ΓD

(
ψ(ζ, z)

∂ImN(ζ, z)

∂ν(ζ)
− ∂ψ(ζ, z)

∂ν(ζ)
ImN(ζ, z)

)
ds(ζ) + wÎ(z),

where

|wÎ(z)| 6 2‖ψ(·, z)‖H1/2(ΓD)

∥∥∥∂(S(·, z) + Sd(·, z))
∂ν

∥∥∥
H−1/2(ΓD)

+2‖S(·, z) + Sd(·, z)‖H1/2(ΓD)

∥∥∥∂ψ(·, z)
∂ν

∥∥∥
H−1/2(ΓD)

+‖w(·, z)‖H1/2(ΓD)

∥∥∥∂(2i ImN(·, z)− S(·, z)− Sd(·, z))
∂ν

∥∥∥
H−1/2(ΓD)

+‖2i ImN(·, z)− S(·, z)− Sd(·, z)‖H1/2(ΓD)

∥∥∥∂w(·, z)
∂ν

∥∥∥
H−1/2(ΓD)

6
C

| cos(kh)|
1√
kh

+ C
h

d
.

By (5.4) we have

Im

∫
ΓD

(
ψ(ζ, z)

∂ImN(ζ, z)

∂ν(ζ)
− ∂ψ(ζ, z)

∂ν(ζ)
ImN(ζ, z)

)
ds(ζ)

= Im

∫
ΓD

[
ψ(ζ, z)

(
∂ImN(ζ, z)

∂ν(ζ)
− ikη(ζ)ImN(ζ, z)

)
−
(
∂ψ(ζ, z)

∂ν(ζ)
+ ikη(ζ)ψ(ζ, z)

)
ImN(ζ, z) + 2ikη(ζ)ImN(ζ, z)ψ(ζ, z)

]
ds(ζ)

= Im

∫
ΓD

[
− ψ(ζ, z) ·

(
∂ψ(ζ, z)

∂ν(ζ)
− ikη(ζ)ψ(ζ, z)

)

+

(
∂ImN(ζ, z)

∂ν(ζ)
+ ikη(ζ)ImN(ζ, z)

)
ImN(ζ, z) + 2ikη(ζ)ImN(ζ, z)ψ(ζ, z)

]
ds(ζ)

= −Im

∫
ΓD

ψ(ζ, z)
∂ψ(ζ, z)

∂ν(ζ)
ds(ζ) + k

∫
ΓD

η(ζ) |ψ(ζ, z) + ImN(ζ, z)|2 ds(ζ).

By (2.8) we know that the far-field pattern ψ±n , n = 1, 2, · · · ,M , satisfy

− Im

∫
ΓD

ψ
∂ψ̄

∂ν
ds =

h

2

M∑
n=1

ξn(|ψ+
n |2 + |ψ−n |2).

This completes the proof.

We remark that ψ(x, z) is the scattering solution of the Helmholtz equation in the waveguide with the

incoming field ImN(x, z). Since

ImN(x, z) = ImG(x, z) + ImS(x, z)

=
1

4
J0(k|x− z|)− 1

4
J0(k|x− z′|) + ImS(x, z),

where J0(t) is the first kind Bessel function of zeroth order and z′ = (z1,−z2) is the imagine point of

z = (z1, z2). It is well-known that J0(t) peaks at t = 0 and decays like t−1/2 away from the origin. By

Theorem 4.2, S(x, z) is small when kh� 1 which implies ImN(x, z) of the problem (5.3)-(5.5) will peak at

the boundary of the scatterer D and becomes small when z moves away from ∂D. Thus we expect that the

imaging function Îd(z) will have contrast at the boundary of the scatterer D and decay outside the boundary

∂D if kh� 1 and kd/(kh)� 1. This is indeed confirmed in our numerical experiments.
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6 Extensions

In this section we consider the reconstruction of the sound soft and penetrable obstacles in the planar

waveguide by our RTM algorithm. For the sound soft obstacle, the measured data us(xr, xs) = u(xr, xs)−
ui(xr, xs), where u(x, xs) is the radiation solution of the following problem

∆u+ k2u = −δxs(x) in R2
h\D̄, (6.1)

u = 0 on ΓD, (6.2)

u = 0 on Γ0,
∂u

∂x2
= 0 on Γh. (6.3)

The well-posedness of the problem under some geometric condition of the obstacle D is known [20,22]. Here

we assume that the scattering problem (6.1)-(6.3) has a unique solution. By modifying the argument in

Theorem 5.1 we can show the following result whose proof is omitted.

Theorem 6.1. Let kh > π/2, d > c3h, and (4.3) be satisfied. For any z ∈ Ω, let ψ(x, z) be the radiation

solution of the problem

∆ψ(x, z) + k2ψ(x, z) = 0 in R2
h\D̄,

ψ = 0 on Γ0,
∂ψ

∂x2
= 0 on Γh,

ψ(x, z) = −ImN(x, z) on ΓD.

Then we have, for any z ∈ Ω,

Îd(z) = 2h

M∑
n=1

ξn(|ψ+
n |2 + |ψ−n |2) + wÎ(z),

where ψ±n , n = 1, 2, · · · ,M , are the far-field pattern of the radiation solution of ψ(·, z) and ‖wÎ‖L∞(Ω) 6
C

| cos(kh)|
1√
kh

+ C h
d .

For the penetrable obstacle, the measured data us(xr, xs) = u(xr, xs) − ui(xr, xs), where u(x, xs) is the

radiation solution of the following problem

∆u+ k2n(x)u = −δxs(x) in R2
h, (6.4)

u = 0 on Γ0,
∂u

∂x2
= 0 on Γh, (6.5)

where n(x) ∈ L∞(R2
h) is a positive function which is equal to 1 outside the scatterer D. The well-posedness

of the problem under some condition on n(x) is known [8]. Here we assume that the scattering problem

(6.4)-(6.5) has a unique solution. By modifying the argument in Theorem 5.1, the following theorem can be

proved. We refer to [10, Theorem 3.1] for a similar result. Here we omit the details.

Theorem 6.2. Let kh > π/2, d > c3h, and (4.3) be satisfied. For any z ∈ Ω, let ψ(x, z) be the radiation

solution of the problem

∆ψ(x, z) + k2n(x)ψ(x, z) = −k2(n(x)− 1)ImN(x, z) in R2
h,

ψ = 0 on Γ0,
∂ψ

∂x2
= 0 on Γh.

Then we have, for any z ∈ Ω,

Îd(z) = 2h

M∑
n=1

ξn(|ψ+
n |2 + |ψ−n |2) + wÎ(z),

where ψ±n , n = 1, 2, · · · ,M , are the far-field pattern of the radiation solution of ψ(·, z) and ‖wÎ‖L∞(Ω) 6
C

| cos(kh)|
1√
kh

+ C h
d .

We remark that for the penetrable scatterers, ψ(x, z) is again the scattering solution with the incoming

field ImN(x, z). Therefore we again expect the imaging function Îd(z) will have contrast on the boundary

of the scatterer and decay outside the scatterer if kh� 1 and kd/(kh)� 1.
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Figure 3 The imaging results with the aperture d = 10, 20, 30, 50 from left to right, respectively.

7 Numerical experiments

In this section we present several numerical examples to demonstrate the effectiveness of our RTM method

for planar acoustic waveguide. To synthesize the scattering data we compute the solution us(xr, xs) of

the scattering problem by representing the ansatz solution as the double layer potential with the Green

function N(x, y) as the kernel and discretizing the integral equation by standard Nyström methods [14].

The boundary integral equations on ΓD are solved on a uniform mesh over the boundary with ten points per

probe wavelength. The sources and receivers are both placed on the surface Γdh with equal-distribution, where

d is the aperture. The boundaries of the obstacles used in our numerical experiments are parameterized as

follows:

Circle: x1 = ρ cos(θ), x2 = ρ sin(θ), θ ∈ (0, 2π],

Kite: x1 = cos(θ) + 0.65 cos(2θ)− 0.65, x2 = 1.5 sin(θ), θ ∈ (0, 2π],

Rounded Square: x1 = 0.5(cos3(θ) + cos(θ)), x2 = 0.5(sin3(θ) + sin(θ)), θ ∈ (0, 2π].

Example 7.1. In this example we consider the imaging of a sound soft circle of radius ρ = 1 for different

values of the aperture d. We take the probe wavelength λ = 0.5, where λ = 2π/k, the thickness h = 10,

and Ns = Nr = 401. We choose the aperture d = 10, 20, 30, 50 for the tests. The imaging results are shown

in Figure 3. We observe that our RTM imaging function peaks at the boundary of the obstacle and the

imaging quality improves with the increase of the aperture d. This conforms with our theoretical results in

Theorem 6.1.

Example 7.2. In this example we first consider the imaging of a circle of radius ρ = 1, a kite, and

a rounded square with the impedance boundary condition with η = 1 or η = 1000 on ΓD. Let Ω =

(−4, 4) × (1, 7) be the search region. The imaging function is computed at the nodal points of a uniform

201× 201 mesh with the probed wavelength λ = 0.5. The imaging results on the top and bottom row shown

in Figure 4 correspond to the surface impedance η = 1 and η = 1000, respectively. We observe our imaging

algorithm is quite robust with respect to the magnitude of the surface impedance η.

We then consider to find a penetrable obstacle with the refraction index n(x) = 0.25, a non-penetrable

obstacle with homogeneous Neumann, homogeneous Dirichlet, and partially coated impedance boundary

condition (η = 1000 on the upper half boundary and η = 1 on the lower half boundary), respectively. The

results are shown in Figure 5 which indicates clearly that our RTM method can reconstruct the boundary

of the obstacle without a priori information on penetrable or non-penetrable obstacles, and in the case of

non-penetrable obstacles, the type of the boundary conditions on the boundary of the obstacle.

Example 7.3. In this example we consider the stability of the imaging function with respect to the

complex additive Gaussian random noise. We introduce the additive Gaussian noise as follows (see e.g. [10]):

unoise = us + νnoise,

where us is the synthesized data and νnoise is the complex Gaussian noise with mean zero and standard

deviation µ times the maximum of the data |us|, i.e. νnoise = µmax |us|√
2

(ε1 + iε2), and εj ∼ N (0, 1) for the

real (j = 1) and imaginary part (j = 2).
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Figure 4. The imaging results with the probe wavelength λ = 0.5, the thickness h = 10, the aperture d = 30, and Ns = Nr =

401 for a circle, a kite, and a rounded square, respectively, The top and bottom row show the imaging results of the RTM

method for the surface impedance η = 1 and η = 1000, respectively.
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Figure 5. The imaging results, from left to right, for the penetrable obstacle with n(x) = 0.25, a non-penetrable obstacle

with homogeneous Neumann condition, homogeneous Dirichlet condition, and partially coated impedance boundary condition

(η = 1000 on the upper half boundary and η = 1 on the lower half boundary), respectively. The probe wavelength λ = 0.5, the

thickness h = 10, the aperture d = 30, and Ns = Nr = 401.
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Figure 6. The imaging results using data added with additive Gaussian noise and µ = 10%, 20%, 30%, 40% from left to right,

respectively. The probe wavelength λ = 0.5, the thickness h = 10, the aperture d = 30, and Ns = Nr = 401.
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Table 1. The signal level and noise level in the case of single frequency data (left) and multi-frequency data

(right).

µ σ ‖us‖`2 ‖νnoise‖`2

0.1 0.0360 0.1033 0.0293

0.2 0.0720 0.1033 0.0589

0.3 0.1079 0.1033 0.0876

0.4 0.1439 0.1033 0.1178

µ σ ‖us‖`2 ‖νnoise‖`2

0.1 0.0355 0.1033 0.0290

0.2 0.0710 0.1033 0.0580

0.3 0.1064 0.1033 0.0869

0.4 0.1419 0.1033 0.1159

For the fixed probe wavelength λ = 0.5, we choose one kite and one circle in our test. The search domain

is Ω = (−4, 4) × (1, 7) with a sampling 201 × 201 mesh. Figure 6 shows the imaging results with the noise

level µ = 10%, 20%, 30%, 40% in the single frequency scattered data, respectively. The left table in Table

1 shows the noise level in this case, where σ = µmaxxr,xs |us(xs, xr)|, ‖us‖2`2 = 1
NsNr

∑Ns,Nr
s,r=1 |us(xs.xr)|2,

‖νnoise‖2`2 = 1
NsNr

∑Ns,Nr
s,r=1 |νnoise(xs.xr)|2.

The imaging quality can be improved by using multi-frequency data as illustrated in Figure 7, in which

we show the imaging results added with the noise level µ = 10%, 20%, 30%, 40% Gaussian noise by summing

the imaging functions for the probed wavelengths λ = 1/1.8, 1/1.9, 1/2.0, 1/2.1, 1/2.2. The right table in

Table 1 shows the noise level in the case of multi-frequency data, where σ, ‖us‖`2 , and ‖νnoise‖`2 are the

arithmetic mean of the corresponding values for different frequencies, respectively. The imaging result is

visually much more better than the single frequency imaging result, and the noise is greatly suppressed after

the summation over individual frequency imaging results.
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Figure 7. The imaging results using multi-frequency data added with additive Gaussian noise and µ = 10%, 20%, 30%, 40%

from left to right, respectively. The probe wavelengths λ = 1/1.8, 1/1.9, 1/2.0, 1/2.1, 1/2.2, the thickness h = 10, the aperture

d = 30, and Ns = Nr = 401.

8 Concluding remarks

In this paper we have developed a novel reverse time migration algorithm based on the generalized Helmholtz-

Kirchhoff identity for the obstacle shape reconstruction in planar acoustic waveguide. The algorithm consists

of using the half space Green function instead of the waveguide Green function in both the back-propagation

and cross-correlation processes. The algorithm is quite robust with respect to the random noise. Our

numerical experiments indicate that the RTM algorithm based on multiple frequency superposition can

effectively suppress the random noise. Extending the results in this paper to the electromagnetic and elastic

waveguide imaging problem is of considerable practical interests and will be pursued in our future works.
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9 Appendix: Proof of Theorem 2.3

We will prove the existence of the radiation solution of the problem (2.4)-(2.6) by the method of limiting

absorption principle. The argument is standard and generalizes that for Helmholtz scattering problem in

the free space, see e.g. [18]. Here we only outline the main steps.

For any z = 1 + iε, ε > 0, f ∈ L2(R2
h) with compact support in BR = (−R,R)× (0, h), where R > 0, we

consider the problem

∆uz + zk2uz = −f in R2
h, (9.1)

uz = 0 on Γ0,
∂uz
∂x2

= 0 on Γh. (9.2)

By Lax-Milgram lemma we know that (9.1)-(9.2) has a unique solution uz ∈ H1(R2
h). For any domain

D ⊂ R2
h, we define the weighted space L2,s(D), s ∈ R, by

L2,s(D) = {v ∈ L2
loc(D) : (1 + |x1|2)s/2v ∈ L2(D)}

with the norm ‖v‖L2,s(D) = (
∫
D(1 + |x1|2)s|v|2dx)1/2. The weighted Sobolev space H1,s(D), s ∈ R, is

defined as the set of functions in L2,s(D) whose first derivative is also in L2,s(D). The norm ‖v‖H1,s(D) =

(‖v‖2L2,s(D) + ‖∇v‖2L2,s(D))
1/2.

Lemma 9.1. Let f ∈ L2(R2
h) with compact support in BR. For any z = 1 + iε, 0 < ε < 1, we have, for any

s > 1/2, ‖uz‖H1,−s(R2
h) 6 C‖f‖L2(R2

h) for some constant independent of ε, uz, and f .

Proof. We first note that by testing (9.1) by (1 + |x1|2)−sūz, s > 1/2, one can obtain ‖uz‖H1,−s(R2
h) 6

C‖uz‖L2,s(R2
h) + C‖f‖L2(R2

h) by standard argument. It remains to show ‖uz‖L2,s(R2
h) 6 C‖f‖L2(R2

h). It is

obvious that we only need to prove the estimate for f ∈ C∞0 (R2
h). We start with the following integral

representation formula

uz(x) =

∫
R2
h

Nz(x, y)f(y)dy, x ∈ R2
h. (9.3)

Here Nz(x, y) is the Green function of the problem (9.1)-(9.2) with the complex wave number kz1/2, where

Im (z1/2) > 0 for ε > 0. Similar to (2.3), it is easy to check that

Nz(x, y) =

∞∑
n=1

i

hξzn
sin(µnx2) sin(µny2)eiξ

z
n|x1−y1|, (9.4)

where ξzn =
√
zk2 − µ2

n whose imaginary part Im ξzn > 0. It follows from (9.3)-(9.4) that uz has the mode

expansion

uz(x) =

∞∑
n=1

uzn(x1) sin(µnx2), (9.5)

where, since f is supported in BR,

uzn(x1) =
h

2

∫ R

−R

i

hξzn
eiξ

z
n|x1−y1|fn(y1)dy1, fn(x1) =

2

h

∫ h

0

f(x) sin(µnx2)dx2.

Since Im ξzn > 0 and |ξzn|2 =
√

(µ2
n − k2)2 + (k2ε)2 > |µ2

n − k2|, we have

|uzn(x1)| 6 h

2

√
2R

h|µ2
n − k2|1/2

‖fn‖L2(R).

Therefore

‖u‖2L2,−s(R2
h) =

h

2

∞∑
n=1

∫ ∞
−∞

(1 + |x1|2)−s|uzn(x1)|2dx1
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(
h

2

)2

‖f‖2L2(R2
h)

∞∑
n=1

∫ +∞

−∞

2R

h2|µ2
n − k2|

(1 + |x1|2)−sdx1

6 C‖f‖2L2(R2
h).

where we have used ‖f‖2
L2(R2

h)
= h

2

∑∞
n=1 ‖fn‖2L2(R). This completes the proof.

Now we are ready to prove Theorem 2.3.

Proof of Theorem 2.3. For any 0 < ε < 1, we consider the problem

∆uε + (1 + iε)k2uε = 0 in R2
h\D̄, (9.6)

uε = 0 on Γ0,
∂uε
∂x2

= 0 on Γh, (9.7)

∂uε
∂ν

+ ikηuε = g on ΓD. (9.8)

We know that the above problem has a unique solution uε ∈ H1(R2
h\D̄) by the Lax-Milgram Lemma.

Let χ ∈ C∞(R2
h) be the cut-off function such that 0 6 χ 6 1, χ = 0 in BR, and χ = 1 outside of BR+1.

Let vε = χuε, then vε satisfies the equation (9.1) with z = 1 + iε and f = uε∆χ+ 2∇uε· ∇χ. Obviously, f

is supported in BR+1. By Lemma 9.1, we have ‖vε‖H1,−s(R2
h\D̄) 6 C‖uε‖H1(BR+1\D̄). Since χ = 1 outside

BR+1, we have then

‖uε‖H1,−s(R2
h\D̄) 6 C‖uε‖H1(BR+1\D̄). (9.9)

Next let χ1 ∈ C∞0 (R2
h) be the cut-off function with that 0 6 χ1 6 1, χ1 = 1 in BR+1, and χ1 = 0 outside of

BR+2. For g ∈ H−1/2(ΓD), let ug ∈ H1(R2
h\D̄) be the lifting function such that

∂ug
∂ν + ikηug = g on ΓD and

‖ug‖H1(R2
h\D̄) 6 C‖g‖H−1/2(ΓD) hold. By testing (9.6) with χ2

1(uε − ug), we have by the standard argument

‖uε‖H1(BR+1\D̄) 6 C(‖uε‖L2(BR+2\D̄) + ‖g‖H−1/2(ΓD)). (9.10)

Now we claim

‖uε‖L2(BR+2\D̄) 6 C‖g‖H−1/2(ΓD), (9.11)

for any g ∈ H−1/2(ΓD) and ε > 0. If it were false, there would exist sequences {gm} ⊂ H−1/2(ΓD) and

{εm} ⊂ (0, 1), and {uεm} be the corresponding solution of (9.6)-(9.8) such that

‖uεm‖L2(BR+2\D̄) = 1 and ‖gm‖H−1/2(ΓD) 6
1

m
. (9.12)

Then ‖uεm‖H1,−s(R2
h\D̄) 6 C, and thus there is a subsequence of {εm}, which is still denoted by {εm}, such

that εm → ε′ ∈ [0, 1], and a subsequence of {uεm}, which is still denoted by {uεm}, such that it converges

weakly to some uε′ ∈ H1,−s(R2
h\D̄). The function uε′ satisfies (9.6)-(9.8) with g = 0 and ε = ε′ . By the

integral representation formula, we have, for x ∈ R2
h\D̄,

uε′(x) = −
∫

ΓD

(
∂N1+iε′(x, y)

∂ν(y)
uε′(y)−N1+iε′(x, y)

∂uε′(y)

∂ν(y)

)
ds(y). (9.13)

If ε′ > 0, we deduce from (9.13) that uε′ decays exponentially and thus uε′ ∈ H1(R2
h\D̄), then uε′ = 0 by the

uniqueness of the solution in H1(R2
h\D̄) with positive absorption. If ε′ = 0, (9.13) implies that uε′ satisfies

the mode radiation condition (1.7), and then uε′ = 0 by the uniqueness Lemma 2.2. Therefore, in any case,

uε′ = 0, which, however, contradicts to (9.12).

This shows (9.11). Consequently, by (9.9) and (9.10),

‖uε‖H1,−s(R2
h\D̄) 6 C‖g‖H−1/2(ΓD). (9.14)

Now, it is easy to see that uε has a convergent subsequence which converges weakly to some u ∈ H1,−s(R2
h\D̄)

and satisfies (2.4)-(2.6). The desired estimate follows from (9.14). This completes the proof. 2
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