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Abstract. We propose a direct imaging method based on the reverse time

migration method for finding extended obstacles with phaseless total field data
in the half space. We prove that the imaging resolution of the method is

essentially the same as the imaging results using the scattering data with full

phase information when the obstacle is far away from the surface of the half-
space where the measurement is taken. Numerical experiments are included to

illustrate the powerful imaging quality.

1. Introduction. In this paper, we study a direct imaging method for finding the
support of an unknown extended obstacle embedded in the half space using the
amplitude of the total field, which is measured on the boundary of half space far
away from the obstacle. The algorithm does not require any a priori information
of the physical properties of the obstacle such as penetrable or non-penetrable, and
for non-penetrable obstacles, the type of boundary conditions on the boundary of
the obstacle.

Let the penetrable obstacle occupy a bounded Lipschitz domain D ⊂ R2
+ =

{(x1, x2)T : x1 ∈ R, x2 > 0} with ν the unit outer normal to its boundary ΓD. We
assume the incident wave is emitted by a point source located at xs on the surface
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Γ0 = {(x1;x2)T : x1 ∈ R, x2 = 0}. Let N(x, y) be the Neumann Green function of
the Hemholtz equation in the half space,

N(x, y) = Φ(x, y) + Φ(x, y′), (1)

where Φ(x, y) = i
4H

(1)
0 (k|x− y|) is the fundamental solution of the Hemholtz equa-

tion, and y′ = (y1,−y2)T is the image point of y = (y1, y2)T ∈ R2
+. The total field

is u(x, xs) = N(x, xs) + us(x, xs), where us(x, xs) is the solution of

∆us(x, xs) + k2n(x)us(x, xs) = −k2(n(x)− 1)N(x, xs) in R2
+, (2)

∂us

∂x2
(x, xs) = 0 on Γ0, (3)

√
r

(
∂us

∂r
− ikus

)
→ 0 as r →∞, r = |x|, (4)

where k > 0 is the wave number, n(x) ∈ L∞(R2
+) is a positive scalar function which

is equal to 1 outside the scatter D. Condition (4) is the well known Sommerfeld
radiation condition which guarantees the uniqueness of the solution. In this paper,
by the scattering problem or scattering solution we always mean the solution satisfies
the Sommerfeld radiation condition (4) .

In the diffractive optics imaging and radar imaging systems, measurement of the
intensity of the total field is much easier and cheaper than the phase information of
the field [13, 14]. There are two types of approaches proposed in the literature to
solve the inverse scattering problems with phaseless data. The first kind of approach
is first to apply the phase retrieval algorithm to extract the phase information of the
scattering field from the measurement of the intensity and then use the retrieved full
field data in the classical imaging algorithms, see e.g. [15, 1, 24]. The second one is
the iterative method which directly minimizes the difference between the received
amplitude of the far field pattern and the synthesized phaseless data in the least
square sense [23, 21, 22, 2, 5].

The reverse time migration (RTM) method, which consists of back-propagating
the complex conjugated scattering field into the background medium and computing
the crosscorrelation between the incident wave field and the backpropagated field to
output the final imaging profile, is nowadays a standard imaging technique widely
used in seismic imaging [3]. In [7, 8, 9], the RTM method for reconstructing extended
targets using acoustic, electromagnetic and elastic waves at a fixed frequency is
proposed and studied. Without using the small inclusion or geometrical optics
assumption previously made in the literature, it is shown in [7, 8, 9] that the RTM
imaging function is the total far field pattern of the scattering solution with the
imaginary part of the fundamental solution as the incoming wave. This implies the
RTM imaging function will always peak on the boundary of the scatterer.

We also remark that several direct sampling schemes for locating multiple mul-
tiscale acoustic scatterers are proposed in a very general and practical setting in
[17, 20], which are fast and robust against measurement noise. We also refer to
[18, 19] for direct sampling approaches to recover multiscale electromagnetic scat-
terers located in a homogeneous space.

In [11], the first attempt to apply direct imaging method using the idea of RTM
method with phaseless data is made. It is shown that the proposed phaseless imag-
ing function can achieve the same resolution as the RTM method applied to full
phase data in [7]. The idea of developing direct imaging methods based on RTM
has been extended to the electromagnetic waves in [12].
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In this paper we study the phaseless imaging method in the half space since in
practical applications, one may only be able to access the amplitude of the scatter-
ing data in the limited aperture. In [10], the RTM method for finding the extended
obstacle embedded in the half space from scattering data with full phase infor-
mation has been proposed and the resolution analysis is also proved under proper
conditions. The half-space imaging function in [10] can be viewed as the frequency
domain counterpart of the time domain imaging function previously proposed in
the literature [27, 26].

We denote by Ω the sampling domain in which the obstacle is sought. Let
h = dist(Ω,Γ0) be the distance of Ω to Γ0. Let ui(x, xs) = N(x, xs), with the
source xs at Γd0 = {(x1, x2)T ;x1 ∈ (−d, d), x2 = 0}, where d > 0 is the aperture.
Let us(x, xs) be the scattering solution of (2) − (3). The RTM imaging function
proposed in [10] using full phase scattering data for imaging extended targets in the
half space is given by,

IRTM(z) = Im

∫
Γd0

∫
Γd0

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)
us(xr, xs)ds(xr)ds(xs), ∀z ∈ Ω.

(5)
It is shown in [10] that this imaging function always peaks on the upper boundary
of the obstacle.

In this paper, inspired by [11] we propose the following imaging function based
on RTM for imaging obstacles with only intensity measurement |u(xr, xs)|:

IPhaseless
RTM (z) = Im

∫
Γd0

∫
Γd0

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)
∆(xr, xs)ds(xr)ds(xs), ∀z ∈ Ω.

(6)
where

∆(xr, xs) =
|u(xr, xs)|2 − |ui(xr, xs)|2

ui(xr, xs)
. (7)

We will show in Theorem 4.1 below that

IPhaseless
RTM (z) = IRTM(z) +O

(
1√
kh

)
, ∀z ∈ Ω. (8)

Therefore the imaging resolution of our new phaseless RTM algorithm is essentially
the same as the imaging results using the scattering data with the full phase infor-
mation when the sources and measurements are placed far away from the scatterer.

The rest of this paper is organized as follows. In section 2 we introduce our half-
space RTM algorithm for imaging the obstacle with phaseless data. In section 3 we
introduce some preliminary results. In section 4 we consider the resolution of our
algorithm for imaging penetrable obstacles. In section 5 we extend our theoretical
results to non-penetrable obstacles with sound soft, sound hard, and impedance
boundary condition. In section 6 we report several numerical examples to show the
competitive performance of our phaseless RTM algorithm.

2. Reverse time migration algorithm. In this section, we introduce the phase-
less RTM method for inverse acoustic scattering problems in the half space. As-
sume that there are Ns sources and Nr receivers uniformly distributed on Γd0, where
Γd0 = {(x1, x2)T : x1 ∈ (−d, d), x2 = 0}, where d > 0 is the aperture. We always
assume the obstacle D ⊂ Ω.

Let ui(x, xs) = N(x, xs) be the incident wave with source at xs ∈ Γd0, and
|u(xr, xs)| = |us(xr, xs)+ui(xr, xs)| be the phaseless total data received at xr ∈ Γd0,
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where us(·, xs) is the scattering solution of (2)-(3). We always assume that xs 6= xr
for all s = 1,. . .,Ns, r = 1,. . .,Nr, to avoid the singularity of the incident field
ui(x, xs) at x = xr. This assumption can be easily satisfied in practical applications.

The phaseless RTM algorithm consists of back-propagating the corrected data

∆(xr, xs) into the sampling domain using ∂Φ(xr,z)
∂x2(xr) , and then computing the imagi-

nary part of the cross-correlation between ∂Φ(xs,z)
∂x2(xs)

and the back-propagated field.

Algorithm 2.1. (Phaseless RTM in the Half Space)
Given the data |u(xr, xs)|=|us(xr, xs)+ui(xr, xs)| which is the measured amplitude
of the total field at xr ∈ Γd0, when the point source is emitted at xs ∈ Γd0.
1◦ Back-propagation: For s = 1, . . . , Ns, compute the back-propagation field

vb(z, xs) =
|Γd0|
Nr

Nr∑
r=1

∂Φ(xr, z)

∂x2(xr)
∆(xr, xs), ∀z ∈ Ω. (9)

2◦ Cross-correlation: For z ∈ Ω, compute

Id(z) = Im

{
|Γd0|
Ns

Ns∑
s=1

∂Φ(xs, z)

∂x2(xs)
vb(z, xs)

}
. (10)

It is easy to see that

Id(z) = Im

{
|Γd0||Γd0|
NsNr

Ns∑
s=1

Nr∑
r=1

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)
∆(xr, xs)

}
, ∀z ∈ Ω.

(11)
This formula is used in all the numerical experiments in section 6. By letting

Ns, Nr → ∞, we know that it can be viewed as an approximation of the following
integral:

IPhaseless
RTM (z) = Im

∫
Γd0

∫
Γd0

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)
∆(xr, xs)ds(xr)ds(xs), ∀z ∈ Ω.

We will show in section 4 that the above integral is indeed absolutely convergent.

3. Preliminary results. We first introduce some notations. For any bounded
domain U ⊂ R2, let

‖u‖H1(U) = (‖∇φ‖2L2(U) + d−2
U ‖φ‖

2
L2(U))

1/2

be the weighted H1(U) norm, where dU is the diameter U . We introduce the
following stability estimate of the forward acoustic scattering problem for penetrable
obstacle in the half space, which can be proved by the same argument as in [4,
Theorem 5.26].

Lemma 3.1. Let 1 − n(x) ∈ L∞(D), g ∈ L2(D) be scalar functions supported in
D, then the scattering problem of Hemholtz equation in the half space

∆w + k2n(x)w = k2(1− n(x))g in R2
+,

∂w

∂x2
= 0 on Γ0, (12)

has a unique radiating solution w ∈ H1(D). Moreover, there exists a constant
C > 0, such that

‖w‖H1(D) ≤ C‖n‖L∞(D)‖g‖L2(D). (13)
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By Lemma 3.1, we can introduce the solution operator S : L2(D) → H1(D) by
w = Sg which maps the incident wave g ∈ L2(D) to the scattering field w ∈ H1(D).
In this paper we will denote by ‖S‖ the operator norm of S which depends generally
on k, n(x) and the domain D.

For any y, z ∈ Ω, define

F (z, y) = − i

2π

∫ π

0

eik(z1−y1) cos θ+ik(z2−y2) sin θdθ.

Obviously, F (z, y) = −i/2 if z = y. It is shown in [10, Lemma 3.3] that, for some
constant C independent of k,

|F (z, y)| ≤ C[(k|z − y|)−1/2 + (k|z − y|)−1], ∀z, y ∈ Ω. (14)

Therefore, F (z, y) shares the same property as the point spread function: peaks
when z = y and decays as the |z− y| becomes large. The following theorem for the
imaging function IRTM(z) in (5) is given in [10, Theorem 5.2].

Theorem 3.2. For any z ∈ Ω, let ψ(y, z) be the radiation solution of the problem

∆yψ(y, z) + k2n(y)ψ(y, z) = −k2(n(y)− 1)F (z, y) in R2.

Then we have, for any z ∈ Ω,

IRTM(z) = −1

4
Im

∫
D

k2(1− n(y))(ψ(y, z) + F (z, y))F (z, y)dy +WÎ(z),

where
∣∣WÎ(z)

∣∣ ≤ C(1 + kdD)4((kh)−1/2 + h/d), uniformly for z ∈ Ω.

We remark that for the penetrable scatterers, ψ(y, z) is the scattering solution

with the incoming field F (z, y). By (14) we expect the imaging function IRTM(z)
will peak on the boundary of the scatterer and decay away from the scatterer. For
the sound soft obstacles, when kh� 1 and d� h, it is shown in [10] by using the
stationary phase theorem and Kirchhoff approximation that one cannot imaging
the back part of the obstacle with the scattering data collected only on Γ0. The
extensive numerical examples in [10] confirm the effectiveness of the RTM imaging
function IRTM(z) in (5).

4. Resolution analysis for the phaseless RTM algorithm. In this section,
we prove the following theorem which shows that our RTM algorithm for the half-
space phaseless scattering data is asymptotically the same as the RTM algorithm
using the scattering data with full phase information. In this section we make the
following assumption:

|y1 − z1| ≤ Ch, z2 ≤ Ch, ∀y, z ∈ Ω, where h = dist(Ω,Γ0). (15)

Theorem 4.1. If the measured field |u(xr, xs)| = |us(xr, xs) + ui(xr, xs))| with
us(x, xs) the scattering solution of (2)-(3) with the incident field ui(x, xs) = N(x, xs),
we have

Iphaseless
RTM (z) = IRTM(z) +Rphaseless

RTM (z), ∀z ∈ Ω,

where ∣∣∣Rphaseless
RTM (z)

∣∣∣ ≤ C(1 + ‖S‖)2(kh)−1/2, ∀z ∈ Ω.

Here the constant C may dependent on kdD and ‖n(·)‖L∞(D), but is independent
of k, h, dD.
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We remark that ‖S‖ includes complicated dependence on k and the domain D
in the stability estimate of the forward scattering problem. The constant C in the
theorem may depend on the dimensionless constant kdD, but it does not depend
on k or dD separately.

The proof of Theorem 4.1 depends on several lemmas that follow. We first
observe that

∆(xr, xs) = us(xr, xs) +
|us(xr, xs)|2

ui(xr, xs)
+
us(xr, xs)ui(xr, xs)

ui(xr, xs)
.

This yields

IPhaseless
RTM (z) = Im

∫
Γd0

∫
Γd0

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)
us(xr, xs)ds(xr)ds(xs)

+ Im

∫
Γd0

∫
Γd0

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)

|us(xr, xs)|2

ui(xr, xs)
ds(xr)ds(xs)

+ Im

∫
Γd0

∫
Γd0

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)

us(xr, xs)ui(xr, xs)

ui(xr, xs)
ds(xr)ds(xs)

:= IRTM(z) + I2 + I3 (16)

Our goal now is to show that I2, I3 are small when kh � 1. The following
estimates for the Hankel functions are proved in [6, (1.22)-(1.23)].

Lemma 4.2. We have

|H(1)
0 (t)| ≤

(
1

πt

) 1
2

, |H(1)
1 (t)| ≤

(
1

πt

) 1
2

+
1

πt
, ∀t > 0.

Lemma 4.3. For any xs, xr ∈ Γd0, we have

|us(xr, xs)| ≤ C(1 + ‖S‖)[kd(xr, D)]−1/2[kd(xs, D)]−1/2,

where d(x,D) = miny∈D̄ |x − y| is the distance between x ∈ Γd0 and D, and the
constant C may depend on kdD, ‖n(·)‖L∞(D), but is independent of k, dD.

Proof. By the integral representation theorem

us(xr, xs) = k2

∫
D

[n(y)− 1]N(xr, y)[us(y, xs) +N(y, xs)]ds(y).

This implies by Lemma 3.1 that

|us(xr, xs)| ≤ Ck2‖n‖L∞(D)(1 + ‖S‖)‖N(xr, ·)‖L2(D)‖N(·, xs)‖L2(D).

By Lemma 4.2 we have for any xr ∈ Γd0, y ∈ D, |N(xr, y)| = 2|Φ(xr, y)| ≤ (k|xr −
y|)−1/2 ≤ [kd(xr, D)]−1/2. Similarly, |N(y, xs)| ≤ [kd(xs, D)]−1/2 for any xs ∈
Γd0, y ∈ D. Thus

|us(xr, xs)| ≤ C(kdD)2‖n‖L∞(D)(1 + ‖S‖)[kd(xr, D)]−1/2[kd(xs, D)]−1/2.

This completes the proof. �

Lemma 4.4. Let kh ≥ 1 and denote Γ
(a,b)
0 = {x ∈ Γ0 : x1 ∈ (a, b)}, where

a, b ∈ R, a < b. For any z ∈ Ω, we have∣∣∣∣∣
∫

Γ
(a,b)
0

∂Φ(x, z)

∂x2
f(x)ds(x)

∣∣∣∣∣ ≤ (kz2)1/2‖f‖
L∞(Γ

(a,b)
0 )

.
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Proof. Since k|x− z| ≥ kh ≥ 1 for any x ∈ Γ
(a,b)
0 , z ∈ Ω, by Lemma 4.2 we have∣∣∣∣∂Φ(x, z)

∂x2

∣∣∣∣ =

∣∣∣∣ ik4 H(1)
1 (k|x− z|) z2

|x− z|

∣∣∣∣ ≤ 1

2
√
π

k1/2z2

|x− z|3/2
. (17)

Thus by using the transform t = (x1 − z1)/z2,∣∣∣∣∣
∫

Γ
(a,b)
0

∂Φ(x, z)

∂x2
f(x)ds(x)

∣∣∣∣∣ ≤ (kz2)1/2

2
√
π
‖f‖

L∞(Γ
(a,b)
0 )

∫ ∞
−∞

1

(1 + t2)3/2
dt.

On the other hand,∫ ∞
−∞

1

(1 + t2)3/2
dt ≤ 2

[
1 +

∫ ∞
1

t

(1 + t2)3/2
dt

]
= 2(1 + 1/

√
2) ≤ 2

√
π.

This completes the proof. �

Now we can give an estimate of the second term in the right hand side (16).

Lemma 4.5. Let kh ≥ 1. For any z ∈ Ω, we have |I2| ≤ C(1 + ‖S‖)2(kh)−1/2,
for some constant C that may depend on kdD, ‖n(·)‖L∞(D), but is independent of
k, h, dD.

Proof. Denote Ωk = {(xr, xs) ∈ Γd0 × Γd0 : |xr − xs| ≤ 1/(2k)}. By the estimate in
[11, Lemma 3.3], we know

|H(1)
0 (k|xr − xs|)| ≥

2

5πe
ln(k|xr − xs)| ≥

2 ln 2

5πe
, ∀(xr, xs) ∈ Ωk.

Since d(x,D) ≥ h for x ∈ Γd0, we obtain by Lemma 4.3 that∣∣∣∣us(xr, xs)2

ui(xr, xs)

∣∣∣∣ ≤ C(1 + ‖S‖)2(kh)−2,

which implies by Lemma 4.4 that∣∣∣∣∫∫
Ωk

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)

|us(xr, xs)|2

ui(xr, xs)
ds(xr)d(xs)

∣∣∣∣ ≤ C(1 + ‖S)2(kh)−1, (18)

where we have used the fact that z2 ≤ Ch for z ∈ Ω by the assumption (15).

Next we estimate the integral in Γd0 × Γd0\Ω̄k. Since t|H(1)
0 (t)|2 is an increasing

function of t > 0 [25, p. 446], we have for (xr, xs) ∈ Γd0×Γd0\Ω̄k, |xr−xs| ≥ 1/(2k),
and thus

|xr − xs||ui(xr, xs)|2 ≥
1

32
k−1

∣∣∣∣H(1)
0

(
1

2

)∣∣∣∣2 = Ck−1.

Since |xr − xs| ≤ d(xr, D) + d(xs, D) and d(x,D) ≥ h for x ∈ Γd0, we obtain by
using Lemma 4.3 again that∣∣∣∣us(xr, xs)2

ui(xr, xs)

∣∣∣∣ ≤ C(1 + ‖S‖)2 k1/2|xr − xs|1/2

k2d(xr, D)d(xs, D)
≤ C(1 + ‖S)2(kh)−3/2.

Thus by Lemma 4.4 we have∣∣∣∣∣
∫∫

Γd0×Γd0\Ω̄k

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)

|us(xr, xs)|2

ui(xr, xs)
ds(xr)d(xs)

∣∣∣∣∣
≤ C(1 + ‖S‖)2(kh)−1/2. (19)
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This completes the proof by combining the estimates (18)-(19). �

We now start at estimating the third term of the right hand side (16). Denote

by δ = (h/k)
1
2 , and we introduce the set Qδ = {(xr, xs) ∈ Γd0 ×Γd0 : |xs− xr| ≤ δ}.

We will also use the notation that for xs, xr ∈ R2
+,

xs = (x1s, x2s), xr = (x1r, x2r).

Lemma 4.6. We have, for z ∈ Ω,∣∣∣∣∣
∫∫

Qδ

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)

us(xr, xs)ui(xr, xs)

ui(xr, xs)
ds(xr)d(xs)

∣∣∣∣∣ ≤ C(1 + ‖S‖)(kh)−1/2,

where C may depend on kdD, ‖n(·)‖L∞(D), but is independent of k, h, dD.

Proof. It is obvious that∫∫
Qδ

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)

us(xr, xs)ui(xr, xs)

ui(xr, xs)
ds(xr)d(xs)

=

∫ −d+δ

−d

∂Φ(xs, z)

∂x2(xs)

∫ x1s+δ

−d

∂Φ(xr, z)

∂x2(xr)

us(xr, xs)ui(xr, xs)

ui(xr, xs)
dx1rdx1s

+

∫ d−δ

−d+δ

∂Φ(xs, z)

∂x2(xs)

∫ x1s+δ

x1s−δ

∂Φ(xr, z)

∂x2(xr)

us(xr, xs)ui(xr, xs)

ui(xr, xs)
dx1rdx1s

+

∫ d

d−δ

∂Φ(xs, z)

∂x2(xs)

∫ d

x1s−δ

∂Φ(xr, z)

∂x2(xr)

us(xr, xs)ui(xr, xs)

ui(xr, xs)
dx1rdx1s

:= II1 + II2 + II3.

Since |xs − z| ≥ z2 for xs ∈ Γd0, by (17), Lemma 4.3 and Lemma 4.4, we obtain

|II1| ≤ δ ·
k1/2z2

z
3/2
2

· (kz2)1/2 · C(1 + ‖S‖)(kh)−1 ≤ C(1 + ‖S‖)(kh)−1/2.

where we have used δ = (h/k)1/2. The other terms can be estimated similarly. This
completes the proof. �

To proceed the estimate of the integral in Γd0×Γd0\Q̄δ, we first recall the following
von der Corput lemma for the oscillatory integral [16, P.152], [10, Lemma 3.2].

Lemma 4.7. Let −∞ < a < b < ∞, λ > 0, and u is a C2 function in (a, b). If
|u′(t)| ≥ 1 for t ∈ (a, b) and u′ is monotone in (a, b), then for any φ defined in (a, b)
with integrable derivatives∣∣∣∣∣

∫ b

a

φ(t)eiλu(t)dt

∣∣∣∣∣ ≤ 3λ−1

[
|φ(b)|+

∫ b

a

|φ′(t)|dt

]
.

Lemma 4.8. For any a, b ∈ R, a < b, we have∣∣∣∣∣
∫

Γ
(a,b)
0

∂Φ(x, z)

∂x2
Φ(x, y)e−2ikx1ds(x)

∣∣∣∣∣ ≤ C(kh)−1, ∀y, z ∈ Ω,

where C may depend on kdD, ‖n(·)‖L∞(D), but is independent of k, h, dD, a, b.
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Proof. By Lemma 4.2 and the asymptotic formula of Hankel functions [25, P.197],
for n = 1, 2,

H(1)
n (t) =

(
2

πt

) 1
2

ei(t−
nπ
2 −

π
4 ) +Rn(t), |Rn(t)| ≤ Ct− 3

2 , ∀t > 0, (20)

we can obtain

∂Φ(x, z)

∂x2
Φ(x, y) = − 1

8π

z2

|x− z|2
eik(|x−z|+|x−y|) +R(x, y, z),

where

|R(x, y, z)| ≤ Ck−1|x− z|−1/2|x− y|−3/2 + Ck−1|x− z|−3/2|x− y|−1/2

+ Ck−2|x− z|−3/2|x− y|−3/2.

It is easy to show that∣∣∣∣∣
∫

Γ
(a,b)
0

R(x, y, z)e−2ikx1ds(x)

∣∣∣∣∣ ≤ C(kh)−1. (21)

We are then left to estimate the following integral

III =

∫
Γ
(a,b)
0

z2

|x− z|2
eik(|x−z|+|x−y|−2x1)ds(x).

By taking the transform t = (x1 − z1)/z2 we obtain

III = e−2ikz1

∫ b′

a′

1

1 + t2
eikz2v(t)dt,

where b′ = (b− z1)/z2, a
′ = (a− z1)/z2, and

v(t) =
√

1 + t2 +
√

(t+ t1)2 + t22 − 2t, t1 =
x1 − z1

z2
, t2 =

x2

z2
.

By simple calculation we have

v′(t) =
t√

1 + t2
+

t+ t1√
(t+ t1)2 + t22

− 2, v′′(t) =
1

(1 + t2)3/2
+

t22
[(t+ t1)2 + t22]3/2

.

Let t0 = max(0,−t1). It is easy to see that v′(t) ≤ −1 for t ≤ t0. Thus by Lemma
4.7 ∣∣∣∣∣

∫ min(t0,b
′)

a′

1

1 + t2
eikz2v(t)

∣∣∣∣∣ ≤ C(kh)−1. (22)

If t0 ≥ b′, the proof of the lemma finishes by combining (21) and (22). Otherwise,
we let t0 < b′ and obtain by integration by parts∫ b′

t0

1

1 + t2
eikz2v(t)dt =

[
eikz2v(t)

ikz2(1 + t2)v′(t)

]b′
t0

−
∫ b′

t0

−2tv′(t)− (1 + t2)v′′(t)

ikz2(1 + t2)2v′(t)2
dt.

Since v′(t) ≤ −1 + t/
√

1 + t2, we have (1 + t2)v′(t) ≤ −1/2, ∀t ≥ 0. This implies∣∣∣∣∣
∫ b′

t0

1

1 + t2
eikz2v(t)dt

∣∣∣∣∣ ≤ C(kh)−1 + C(kh)−1

∫ b′

t0

|2tv′(t) + (1 + t2)v′′(t)|dt. (23)

Now denote v = v1 + v2, where

v1(t) =
√

1 + t2 − t, v2(t) =
√

(t+ t1)2 + t22 − t.
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Write ∆ = [(t+ t1)2 + t22]1/2, by simple calculation,

2tv′2(t) + (1 + t2)v′′2 (t) =
t22 [−2t∆2 + (1 + t2)(t+ t1 + ∆)]

∆3[t+ t1 + ∆]
.

The key observation is that for t ≥ t0, t+ t1 ≥ 0, we have |2tv′2(t) + (1 + t2)v′′2 (t)| ≤
Ct2/∆4 ≤ C∆−2, where we have used |t1| ≤ C by (15). Similarly, |2tv′1(t) + (1 +
t2)v′′1 (t)| ≤ C(1 + t2)−1. Now since ∆ ≥ |t2| ≥ C, the integral in (23) is bounded.
Thus ∣∣∣∣∣

∫ b′

t0

1

1 + t2
eikz2v(t)dt

∣∣∣∣∣ ≤ C(kh)−1. (24)

This completes the proof by combining the above estimate with (21)-(22). �

Lemma 4.9. Let a, b ∈ R, a < b. For any xr ∈ Γd0, z ∈ Ω, we have,∣∣∣∣∣
∫

Γ
(a,b)
0

∂Φ(xs, z)

∂x2(xs)
us(xr, xs)e

−2ikx1sds(xs)

∣∣∣∣∣ ≤ C(1 + ‖S‖)(kh)−1,∣∣∣∣∣
∫

Γ
(a,b)
0

∂Φ(xr, z)

∂x2(xr)
us(xr, xs)e

−2ikx1rds(xr)

∣∣∣∣∣ ≤ C(1 + ‖S‖)(kh)−1,

where C may be dependent on kdD, ‖n(·)‖L∞(D), but is independent of k, h, dD, a, b.

Proof. We only prove the first estimate. The second one is similar. Let

w(y, z) =

∫
Γ
(a,b)
0

∂Φ(xs, z)

∂x2(xs)
us(y, xs)e

−2ikx1sds(xs), ∀y ∈ R2
+, (25)

be the linear superposition of the scattering wave us(·, xs) along the source direction.
Then w(y, z) is the scattering solution to (12) with

g(y, z) =

∫
Γ
(a,b)
0

∂Φ(xs, z)

∂x2(xs)
N(y, xs)e

−2ikx1sds(xs).

By Lemma 4.8, we have |g(y, z)| ≤ C(kh)−1. By the integral representation theorem

w(xr, xs) = k2

∫
D

[n(y)− 1]N(xr, y)[w(y, xs) + g(y, xs)]ds(y).

By Lemma 3.1, we have

|w(xr, z)| ≤ k2‖n(·)‖L∞(D)‖N(xr, ·)‖L2(D)(‖S‖‖g‖L2(D) + ‖g(xs, ·)‖L2(D))

≤ C(1 + ‖S‖)(kh)−1.

This completes the proof. �

Lemma 4.10. We have∣∣∣∣∣
∫∫

Γd0×Γd0\Q̄δ

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)

us(xr, xs)ui(xr, xs)

ui(xr, xs)
ds(xr)d(xs)

∣∣∣∣∣
≤ C(1 + ‖S‖)(kh)−1/2.

where C may be dependent on kdD, ‖n(·)‖L∞(D), but is independent of k, h, dD.
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Proof. Notice that ui(xr, xs) = 2Φ(xr, xs), by the asymptotic formula (20), we
have

ui(xr, xs)

ui(xr, xs)
= −e−2ik|xr−xs|+iπ2 + ρ0(xr, xs), |ρ0(xr, xs)| ≤ C(k|xr − xs|)−1.

Since k|xr − xs| ≥ C
√
kh for xr, xs ∈ Γd0 × Γdo\Q̄δ, by Lemma 4.3 and Lemma 4.4

we have ∣∣∣∣∣
∫∫

Γd0×Γd0\Q̄δ

∂Φ(xs, z)

∂x2(xs)

∂Φ(xr, z)

∂x2(xr)
us(xr, xs)ρ0(xr, xs)ds(xr)d(xs)

∣∣∣∣∣
≤ C(1 + ‖S‖)(kh)−

1
2 . (26)

We are now estimating the following integral∫∫
Γd0×Γd0\Q̄δ

∂Φ(xr, z)

∂x2(xr)

∂Φ(xs, z)

∂x2(xs)
us(xr, xs)e

−2ik|xr−xs|ds(xr)ds(xs)

=

∫ d−δ

−d

∂Φ(xr, z)

∂x2(xr)

[∫ d

x1r+δ

∂Φ(xs, z)

∂x2(xs)
us(xr, xs)e

−2ik(x1s−x1r)dx1s

]
dx1r

+

∫ d−δ

−d

∂Φ(xs, z)

∂x2(xs)

[∫ d

x1s+δ

∂Φ(xr, z)

∂x2(xr)
us(xr, xs)e

−2ik(x1r−x1s)dx1r

]
dx1s

:= IV1 + IV2. (27)

By Lemma 4.9, we have∣∣∣∣∣
∫ d

x1r+δ

∂Φ(xs, z)

∂x2(xs)
us(xr, xs)e

−2ikx1sdx1s

∣∣∣∣∣ ≤ C(1 + ‖S‖)(kh)−1.

By Lemma 4.4 we have |IV1| ≤ C(1 + ‖S‖)(kh)−1/2. Similarly, we can prove
|IV2| ≤ C(1 + ‖S‖)(kh)−1/2. This completes the proof by combining with (26)-
(27). �

Now we are in the position to prove the main theorem of this section.

Proof of Theorem 4.1. The theorem now follows from (16), Lemma 4.5,
Lemma 4.6 and Lemma 4.10. �

5. Extensions. In this section we consider the reconstruction of sound-soft and
impedance obstacles in the half space with phaseless data. For sound-soft obstacles,
the measured data |u(xr, xs)| = |us(xr, xs) + N(xr, xs)|, where us(xr, xs) is the
scattering solution of the following problem,

∆us + k2us = 0 in R2
+\D̄, (28)

us(x, xs) = −N(x, xs) on ΓD, (29)

∂us

∂x2
(x, xs) = 0 on Γ0. (30)

By modifying the argument in Section 4 we can show the following theorem whose
proof is omitted.
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Theorem 5.1. If the measured field |u(xr, xs)| = |us(xr, xs) + N(xr, xs)| with
us(xr, xs) satisfying (28)− (30), we have

Iphaseless
RTM (z) = IRTM(z) +Rphaseless

RTM (z), ∀z ∈ Ω,

where ∣∣∣Rphaseless
RTM (z)

∣∣∣ ≤ C(1 + ‖S‖)2(kh)−
1
2 , ∀z ∈ Ω.

Here S is the Dirichlet to Neumann map, and the constant C may depend on
kdD, ‖n(·)‖L∞(D), but is independent of k, h, dD.

For impedance obstacles, the measured data |u(xr, xs)| = |us(xr, xs)+N(xr, xs)|,
where us(xr, xs) is the scattering solution of the following problem,

∆us + k2us = 0 in R2
+\D̄, (31)

∂us

∂ν
+ ikη(x)us = −

(
∂

∂ν
+ ikη(x)

)
N(x, xs) on ΓD, (32)

∂us

∂x2
(x, xs) = 0 on Γ0. (33)

By modifying the argument in Section 4 we can show the following theorem whose
proof is omitted.

Theorem 5.2. If the measured field |u(xr, xs)| = |us(xr, xs) + N(xr, xs)| with
us(xr, xs) satisfying (31)− (33), we have

Iphaseless
RTM (z) = IRTM(z) +Rphaseless

RTM (z), ∀z ∈ Ω,

where ∣∣∣Rphaseless
RTM (z)

∣∣∣ ≤ C(1 + ‖S‖)2(kh)−
1
2 , ∀z ∈ Ω.

Here S is the Dirichlet to Neumann map, and the constant C may depend on
kdD, ‖n(·)‖L∞(D), but is independent of k, h, dD.

For sound-soft or impedance obstacles, the studies in [10] show that the imaging
function IRTM will peak at the boundary of the scatterer if kh � 1 and d � h.

Therefore we again expect the imaging function Iphaseless
RTM (z) will have contrast on

the boundary of the scatterer and decay outside the scatterer also for imaging
impedance or sound-soft scatterers.

6. Numerical examples. In this section, we show several numerical examples
by using the synthesized scattering data which are computed by standard Nyström
methods. We use a uniform mesh with ten points per wavelength over the boundary
to solve the boundary integral equation. The boundaries of the obstacles used in
our numerical experiments are parameterized as follows:

Circle : x1 = ρ cos θ, x2 = ρ sin θ,

p− leaf : x1 = r(θ) cos θ, x2 = r(θ) sin θ, where r(θ) = 1 + 0.2 cos(pθ),

P eanut : x1 = cos θ + 0.2 cos 3θ, x2 = sin θ + 0.2 sin 3θ,

Rounded square : x1 = cos3 θ + cos θ, x2 = sin3 θ + sin θ.

In all our examples, we always choose h = 10 and d = 50. The sources xs and
receivers xr are uniformly distributed on Γd0 with

x1s = −d+
2d

Ns
(s− 1) +

d

Ns
, x1r = −d+

2d

Nr
(r − 1),

where s = 1, . . . , Ns, r = 1, . . . , Nr.
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Example 6.1. We consider the imaging of penetrable obstacles with different
shapes including circle, peanut, kite and rounded square using phaseless data. Let
the diffraction index n(x) = 1 outside D and n(x) = 0.5 inside D. The sampling
domain is Ω = [−2, 2] × [8, 12], with uniform mesh 201 × 201. The probe wave
number is k = 4π, and Ns = 512, Nr = 512.

The top row of Figure 1 shows the imaging results of penetrable obstacles with
different shapes. We observe that the location and upper boundary of the obstacle
can be found effectively for different shapes. The interesting point is that the lower
boundary of obstacles can also be imaged due to the diffraction energy back to
the receivers after penetrating the media. As a comparison, we also compute the
imaging results with the full phase scattering data which is shown in the bottom row
of Figure 1. The imaging results with our method using phaseless data are almost
the same as results using full phase scattering data, which confirms our theory in
this paper.

Example 6.2. We consider the imaging of an ellipse like obstacle with different
boundary conditions, including sound soft, sound hard and impedance boundary
with η = 1. The sampling domain is Ω = [−2, 2] × [8, 12] with the uniform mesh
201× 201. The probe wave number is k = 4π and Ns = 512, Nr = 512.

Figure 2 shows that the location and upper boundary of the obstacles with dif-
ferent boundary conditions can be found without knowing any phase information of
the data. Unlike the penetrable obstacle, the lower boundary of the obstacles can
not be located as the scattering signals induced by the lower part of the obstacle
propagate out without being recorded by receivers.

Example 6.3. We consider the stability of our imaging algorithm with respect
to the additive Gaussian random noises in two tests using single frequency and
multifrequency data. We introduce the additive Gaussian noise as follows,

|u|noise = |u|+ vnoise,

where

vnoise = µmax |u|ε, and ε ∼ N(0, 1).

The sampling domain is Ω = [−2, 2]×[8, 12], with the uniform mesh 201×201. We
assume Ns = 256, Nr = 256, and the wave number k = 4π, or k = 2π× [1 : 0.25 : 3].

In our first test, we choose a single penetrable obstacle as the imaging object
and the probe wavenumber is k = 4π for imaging with single frequency data.
The top row of Figure 3 shows the imaging results with the noise level µ =
10%, 20%, 30%, 40% in the single frequency scattered phaseless data, respectively.
The imaging results are still quite stable with the increasing of the noise level. We
then generate multi-frequency data using the probe wavenumber k = 2π × [1 :
0.25 : 3]. As shown in the bottom row of Figure 3, the noise has been sucessfully
suppressed and some undesired oscillations in imaging result with single frequency
data are also cancelled by using multi-frequency data, which improves the imaging
resolution of the imaging result.

For the second test, we choose two sound soft obstacles as imaging objects and
the probe wavenumer is k = 4π for imaging with single frequency data. The search
domain is Ω = [−5, 5]× [6, 16] with a sampling mesh 201×201. The results shown in
Figure 4 are imaged with phaseless data correlated with the nosie level as our pre-
vious test from left to right. Similarly, we also observe the noise can be suppressed
and imaging results are improved by using multi-frequecy data.
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Figure 1. Examples 6.1: Imaging results of penetrable obstacles
with different shapes from left to right. The top results are imaged
with phaseless data by our RTM algorithm, and the bottom one
are imaing results with full phase data. The probe wave number is
k = 4π, and Ns = 512, Nr = 512.

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

8

8.5

9

9.5

10

10.5

11

11.5

12

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

8

8.5

9

9.5

10

10.5

11

11.5

12

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

8

8.5

9

9.5

10

10.5

11

11.5

12

−6

−4

−2

0

2

4

6

x 10
−3

Figure 2. Example 6.2: Imaging results of an elliptic obstacle
with boundary conditions as sound soft, sound hard and impedance
boundary with λ = 1, respectively. The probe wave number k =
4π, and Ns = 512, Nr = 512.
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Figure 3. Examples 6.3 (first test): Imaging results of a pene-
trable obstacle with noise levels µ = 0.1, 0.2, 0.3, 0.4 (from left to
right). The top row is imaged with single frequency data, and the
bottom row is imaged with multi-frequency data.
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Figure 4. Example 6.3 (second test): Imaging results of two
sound soft obstacles. All the parameters are the same as that in
Figure 3.
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Figure 5. Example 6.4: Imaging results of two sound soft ob-
stacles overlaid with the true obstacle model. The left column is
imaged with the single frequency data, and the right one is imaged
with the multi-frequency data.

Example 6.4. We switch the position of two obstacles in Example 6.3 to
show the impact of the limited data acquisition aperture. All the parameters are
the same as in Example 6.3. The top row in Figure 5 are imaging results of two
closely located obstacles with single frequency data (left plot) and multi-frequency
data (right plot). We observe that the upper boundary of the larger obstacle is
imaged as expected, but the smaller elliptic one below is completely invisible even
we use the multi-frequency data. In the bottom row of Figure 5, we show the
imaging results when these two obstacles are separated with a larger distance. We
can image the upper boundary of the elliptic obstacle below even only using single
frequency data. The imaging result is also improved by using multi-frequency data.
This indicates that the bottom obstacle can be imaged as long as the incident waves
are not blocked by the larger top obstacle and the reflected waves can be acquisited
on the surface.
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