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Abstract. In this paper we propose a direct imaging method based on reverse time migration for reconstructing
extended obstacles by phaseless electromagnetic scattering data. We prove that the imaging resolu-
tion of the method is essentially the same as the imaging results using the scattering data with the
full phase information. This implies the imaginary part of the cross-correlation imaging functional
always peaks on the boundary of the obstacle. Numerical experiments are included to illustrate the
powerful imaging quality.
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1. Introduction. Inverse scattering problems have wide applications in the community
of radar imaging, biomedical tissue imaging, and nondestructive testings. Let the perfect
conducting obstacle occupy a bounded Lipschitz domain D ⊂ R3 with ν the unit outer normal
to its boundary ΓD. Let Ei be the incident wave and the total field E = Es + Ei, where Es

is the solution of the following electromagnetic scattering problem

curl curlEs − k2Es = 0 in R3\D̄,(1.1)

ν × Es = −ν × Ei on ΓD,(1.2)

r (curlEs × x̂− ikEs)→ 0 as r = |x| → ∞,(1.3)

where k > 0 is the wave number and x̂ = x/|x|. The condition (1.3) is the outgoing Silver-
Müller radiation condition which ensures the uniqueness of the physical solution. The existence
and uniqueness of the solution Es ∈ Hloc(curl ;R3\D̄) of the problem (1.1)-(1.3) is a well
studied subject in the literature [13, 23]. We remark that the results in this paper also apply
to penetrable obstacles or non-penetrable obstacles with other boundary conditions on the
scatterer.

In the diffractive optics imaging and radar imaging system, it is easier to measure the
accurate intensity of the scattering field than the phase information of the field [2, 15, 22, 18,
14, 31]. Thus it is very desirable to develop efficient numerical methods for reconstructing the
obstacle with only phaseless data. In this paper, we consider reconstructing the shape of the
extended obstacle with only the amplitude information of the total field, i.e. phaseless data
|E|. There exist several iterative methods for reconstruction of the obstacles with phaseless
data, cf. e.g. [21, 19]. However, because of the non-convexity of the misfit functional, local
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Figure 1. Schematic for the phaseless electromagnetic field data acquisition.

minima may arise and lead to a wrong solution to the inverse problem. Under the condition
that the scattered field is small compared to the incident field, [1] proposes a phaseless imaging
method by first recovering the phase information of the scattered field by solving a simple
least square problem and then using Kirchhoff migration for imaging. For imaging localized
small scatterers using only intensity measurements, [7] formulates the imaging problem as a
non-convex optimization problem that has an exact recovery and [25] proposes an approach by
first restoring the full time reversal matrix and then using the conventional MUSIC algorithm
to find the localized scatterers. The non-convex optimization problem in [7] is further replaced
by a convex optimization problem. We also refer to the phase retrieval method in [16, 6] and
the references therein for finding the missing phase information from the knowledge of the
modulus of both the function and its Fourier transform.

The reverse time migration (RTM) method, which consists of back-propagating the com-
plex conjugated scattering field into the background medium and computing the cross-correlation
between the incident wave field and the backpropagated field to output the final imaging pro-
file, is nowadays a standard imaging technique widely used in seismic imaging [3]. In [9, 10, 11],
the RTM method for reconstructing extended targets using acoustic, electromagnetic and elas-
tic waves at a fixed frequency is proposed and studied. The resolution analysis in [9, 10, 11]
is achieved without the small inclusion or geometrical optics assumption previously made in
the literature.

Let Γs = ∂Bs and Γr = ∂Br, where Bs, Br are the balls centered at the origin of radius
Rs, Rr, respectively. We denote by Ω the sampling domain in which the obstacle is sought, see
Figure 1 for the geometric illustration of the problem. Without loss of generality we assume
Rr = τRs, τ ≥ 1. We remark that the case τ ≤ 1 can be considered by the same method in
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this paper. The imaging function for the electromagnetic waves studied in [10] is

(1.4) IRTM(z) = −k2Im

∫
Γr

∫
Γs

g(z, xs)p ·G(z, xr)
TEs(xr, xs)ds(xs)ds(xr),

where g(x, y) = eik|x−y|

4π|x−y| is the fundamental solution of the 3D Helmholtz equation and G(x, y) is

the dyadic Green function for the time harmonic Maxwell equation (see (2.2) below). Es(x, xs)
is the solution of (1.1)-(1.3) with the incident wave Ei(x, xs) = G(x, xs)p, where p is a unit
polarization vector. It is shown in [10] that IRTM(z) always peaks on the boundary of the
scatterer and decays when z moves away from the scatterer.

In [12], the authors proposed a reliable imaging method based on reverse time migration
for acoustic waves using only phaseless total field data and obtained quite impressive imaging
results. In this paper we extend the idea in [12] to electromagnetic waves and propose the
following imaging function for phaseless imaging using electromagnetic waves

(1.5) Iphaseless
RTM (z) = −k2 Im

∫
Γs

∫
Γr

g(z, xs)g(xr, z)Dε(xr, xs)ds(xr)ds(xs), ∀ z ∈ Ω,

where ε = (kRs)
−1 and Dε(xr, xs) is the corrected data depending only on the phaseless

total field data |E(xr, xs) · p| (see (2.5) below). We will show that Iphaseless
RTM (z) = IRTM(z) +

O(| ln(kRs)|2R−1
s ) in Theorem 4.1 which implies the imaging output of our new algorithm

is essentially the same as the imaging results using the scattering data with the full phase
information when Rs � 1. To the best of the authors knowledge, this is the first attempt
in the literature to develop a direct imaging method for reconstructing extended obstacles by
using phaseless electromagnetic scattering data only.

The rest of this paper is organized as follows. In section 2 we introduce our RTM algorithm
for imaging the obstacle with phaseless electromagnetic total field data. In section 3 we
introduce some preliminary results on the forward problem and the imaging function IRTM(z).
In section 4 we consider the resolution of our algorithm for imaging perfectly conducting
obstacles. In section 5 we report several numerical experiments to show the imaging results
of our phaseless electromagnetic RTM algorithm in 2D and 3D. In the appendix we consider
the high frequency limit of the RTM imaging function.

2. Reverse time migration method. In this section we introduce the RTM method for
inverse scattering problems with phaseless electromagnetic scattering data. We assume that
there are Ns emitters and Nr transducers uniformly distributed on Γs and Γr, respectively. We
assume the obstacle D is contained in the search domain Ω and Ω is inside Bs, Br. Without
loss of generality we assume Rr = τRs, τ ≥ 1.

Let G(x, y) ∈ C3×3 be the dyadic Green function to the time harmonic Maxwell equation

G(x, y) = g(x, y)I +
∇x∇x
k2

g(x, y),(2.1)

where I is the R3×3 identity matrix and g(x, y) = eik|x−y|

4π|x−y| is the fundamental solution of 3D
Helmholtz equation. Direct calculation shows that

(2.2) G(x, y) = (I− J(x, y)J(x, y)T )g(x, y) + A(x, y)g(x, y),
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where J(x, y) = x−y
|x−y| and A(x, y) = ( i

k|x−y| −
1

k2|x−y|2 )(I− 3J(x, y)J(x, y)T ).

Let the incident wave Ei(x, xs) = G(x, xs)p with the unit polarization vector p. The
measurement |E(xr, xs) ·p| is the modulus of the total field E(xr, xs) = Es(xr, xs)+Ei(xr, xs)
in the polarization p, where Es(x, xs) is the solution of the Maxwell scattering problem (1.1)-
(1.3) with the incident wave Ei(x) = Ei(x, xs). We additionally assume that xs 6= xr to avoid
the singularity of the incident point source field Ei(x, xs) measured at xr, which can be easily
satisfied in practical applications.

For any ε > 0, denote

(2.3) Θε :=
{

(x̂r, x̂s) ∈ S2 × S2 : |τ x̂r − x̂s| > ε and 1− |J(τ x̂r, x̂s) · p|2 > ε
}
,

where S2 is the unit sphere in R3. Obviously, J(xr, xs) = J(τ x̂r, x̂s) for (xr, xs) ∈ Γr × Γs.
We define, for (xr, xs) ∈ Γr × Γs,

(2.4) βε(xr, xs) =

{
(1− |J(xr, xs) · p|2)−1 if (x̂r, x̂s) ∈ Θε,
0 otherwise.

(2.3)-(2.4) serve to select certain sources and receivers for our phaseless RTM functional. The
first condition in the set Θε is to avoid the singularity of the data and the second condition is
introduced to cancel the amplitude effect of the incident electromagnetic wave (see the Green
function in (2.2)). The importance of the selection will be clear for dealing with the second
and third terms in (4.2) by using (4.3) below.

Our imaging algorithm consists of back-propagating the corrected data

(2.5) Dε(xr, xs) = (|E(xr, xs) · p|2 − |Ei(xr, xs) · p|2)
βε(xr, xs)

g(xr, xs)

into the domain using the fundamental solution g(xr, z) and computing the imaginary part of
the cross-correlation between g(z, xs) and the back-propagated field.

Algorithm 2.1.(RTM for phaseless electromagnetic scattering data)
Given the data |E(xr, xs) · p| which is the modulus of the total field E(x, xs) in the unit
polarization p at xr with the point source excitation Ei(x, xs) = G(x, xs)p, s = 1, . . . , Ns,
r = 1, . . . , Nr. Set ε = (kRs)

−1.
1◦ Back-propagation: For s = 1, . . . , Ns, compute the back-propagation field

(2.6) Fb(z, xs) = − 1

Nr

Nr∑
r=1

|∆(xr)| g(xr, z)Dε(xr, xs), ∀ z ∈ Ω,

where |∆(xr)| = 2π2R2
r sin θr is the surface element at xr.

2◦ Cross-correlation: For z ∈ Ω, compute

(2.7) I(z) = k2 Im

{
1

Ns

Ns∑
s=1

|∆(xs)| g(z, xs)Fb(z, xs)

}
,

where |∆(xs)| = 2π2R2
s sin θs is the surface element at xs.
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The dimensionless parameter ε chosen here is based on our error estimate in Theorem
4.1, which states our new method with phaseless data is asymptotically identical to the RTM
method with full phase information with the error of order | ln(kRs)|2R−1

s if one chooses
ε = (kRs)

−1.

We remark that Fb(·, xs) is the scattering solution of the following Helmholtz equation

∆Fb(x, xs)− k2Fb(x, xs) =
1

Nr

Nr∑
r=1

|∆(xr)|Dε(xr, xs)δxr(x).

It is easy to see that

(2.8) I(z) = −k2 Im

{
1

NsNr

Ns∑
s=1

Nr∑
r=1

|∆(xr)| |∆(xs)| g(z, xs)g(xr, z)Dε(xr, xs)

}
.

This is the formula used in our numerical experiments in section 5. By letting Ns, Nr → ∞,
we know that (2.8) can be viewed as an approximation to the continuous integral defined in
(1.5).

To conclude this section, we show some preliminary properties of the function βε(xr, xs).

Lemma 2.1. There exists a constant C independent of k and τ such that |(S2 × S2)\Θ̄ε| ≤
Cε, and ∣∣∣∣∫

S2×S2

βε(xr, xs)dx̂rdx̂s

∣∣∣∣ ≤ C| ln ε|,(2.9) ∣∣∣∣∫
S2×S2

|A(xr, xs)p · p|βε(xr, xs)dx̂rdx̂s
∣∣∣∣ ≤ C(kRs)

−1| ln ε|2.(2.10)

Proof. We use a coordinate transform for double integral over spheres introduced in [5].
Let r = |τ x̂r − x̂s| and ŷ ∈ S2 such that τ x̂r − x̂s = rŷ and ψ be the unit vector lying in the
plane spanned by x̂r, x̂s, ŷ and is perpendicular to ŷ. By [5, (2.8)]

(2.11) dx̂rdx̂s =
1

τ
rdrdψdŷ, r ∈ (τ − 1, τ + 1), ψ ∈ S1, ŷ ∈ S2.

By (2.3) we know that Θε = {(x̂r, x̂s) ∈ S2 × S2 : r > ε and 1− |ŷ · p|2 > ε}. Then

|(S2 × S2)\Θ̄ε| ≤
1

τ

∫
r<ε

∫
S1

∫
S2

rdrdψdŷ +
1

τ

∫ τ+1

τ−1

∫
S1

∫
1−|ŷ·p|2<ε

rdrdψdŷ.

The first term is obviously bounded by Cε2. To estimate the second integral, let Q ∈ R3×3

be the orthogonal matrix such that Qp = (0, 0, 1)T . We denote the spherical coordinates of
Qŷ = (sin θ cosφ, sin θ sinφ, cos θ)T , θ ∈ [0, π], φ ∈ [0, 2π]. Clearly 1 − |ŷ · p|2 = sin2 θ. This
implies

1

τ

∫ τ+1

τ−1

∫
S1

∫
1−|ŷ·p|2<ε

rdrdψdŷ ≤ C
∫ 2π

0

∫
sin2 θ<ε

sin θdθdφ ≤ Cε.
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This shows |(S2 × S2)\Θ̄ε| ≤ Cε.
Now we show (2.9). Since βε(xr, xs) = (1− |ŷ · p|2)−1χΘε

, where χΘε
is the characteristic

function of Θε, we know that∫
S2×S2

βε(xr, xs)dx̂rdx̂s ≤
1

τ

∫ τ+1

τ−1

∫
S1

∫
1−|ŷ·p|2>ε

(1− |ŷ · p|2)−1rdrdψdŷ

≤ C
∫

1−|ŷ·p|2>ε
(1− |ŷ · p|2)−1dŷ,

= C

∫ 2π

0

∫
sin2 θ>ε

1

sin θ
dθdφ.

This yields (2.9). The estimate (2.10) can be proved similarly by the definition of A(xr, xs)
in (2.2). We omit the details.

3. Preliminary results. In this section introduce some preliminary results on the forward
scattering problem (1.1)-(1.3) and the imaging function IRTM(z) in (1.4). We start by intro-
ducing some notation. Let D ⊂ R3 be a Lipschitz domain with boundary Γ whose unit outer
normal is denoted by n. The space H(curl;D) = {u ∈ L2(D)3 : curlu ∈ L2(D)3} is a Hilbert
space under the norm ‖u‖H(curl;D) = (‖u‖2L2(D) + ‖curlu‖2L2(D))

1/2. For any u ∈ H(curl;D),

the tangential trace γτu = n× u|Γ is a surjective mapping to the space

H−1/2(div; Γ) = {λ ∈ Vπ(Γ)′ : divΓλ ∈ H−1/2(Γ)},

which is a Hilbert space under the norm ‖λ‖H−1/2(div;Γ) = (‖λ‖2Vπ(Γ)′+‖divΓλ‖2H−1/2(Γ)
)1/2 (see

e.g. [4]) . Here Vπ(Γ)′ is the dual space of Vπ(Γ) = π(H1/2(Γ)3), where for any u ∈ H1/2(Γ)3,
π(u) = n× u× n. In the following, we will use the weighted H1/2(Γ) norm

‖ v ‖H1/2(Γ) =

(
d−1
D ‖ v ‖

2
L2(Γ) +

∫
Γ

∫
Γ

|v(x)− v(x′)|2

|x− x′|3
ds(x)ds(x′)

)1/2

,

and the weighted H−1/2(div; Γ) norm

‖µ ‖H−1/2(div;Γ) =
(
d−2
D ‖µ‖

2
V ′π(Γ) + ‖divΓµ‖2H−1/2(Γ)

)1/2
,

where dD is the diameter of D. By the scaling argument and the trace theorem we know that
there exists constant C > 0 independent of dD, such that

‖φ‖H1/2(ΓD) ≤ Cd
1/2
D max

x∈D̄
(|φ(x)|+ dD|∇φ(x)|), ∀φ ∈ C1(D̄),(3.1)

‖ ν × u ‖H−1/2(div;ΓD) ≤ Cd
1/2
D max

x∈D̄
(|u(x)|+ dD|curlu(x)|), ∀u ∈ C1(D̄)3.(3.2)

Now we recall the definition of the Dirichlet-to-Neumann mapping for Maxwell scattering
problems [23]. For any g ∈ H−1/2(div; ΓD), define Ge(g) = 1

ikν × curlU on ΓD, where
U ∈ Hloc(curl ;R3\D̄) is the solution of the problem:

curl curlU − k2U = 0 in R3\D̄,(3.3)

ν × U = g on ΓD, r (curlU × x̂− ikU)→ 0 as r →∞.(3.4)
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It is known that Ge : H−1/2(div; ΓD)→ H−1/2(div; ΓD) is a bounded linear operator for which
we will denote ‖Ge‖ by its operator norm in the remainder of this paper.

The far field pattern U∞(x̂) of the solution U to the scattering problem (3.3)-(3.4) is
defined as [13, Theorem 6.8]

(3.5) U∞(x̂) =
1

4π
x̂×

∫
ΓD

[
ν(y)× curlU(y)× x̂+ ikν(y)× U(y)

]
e−ikx̂·yds(y).

In the following, we will always use the superscript ∞ to denote the far field pattern of
scattering solutions. The following lemma is essentially proved in [13, Theorem 6.8]. We will
give a sketch of the proof in the appendix of this paper.

Lemma 3.1. Let U be the solution of (3.3)-(3.4). Then the following asymptotic behavior
is valid

(3.6) U(x) =
eik|x|

|x|
U∞(x̂) + γ(x), ∀x ∈ R3\D̄, |x| � 1,

where |γ(x)| ≤ Cd
3/2
D (1 + ‖Ge‖)|x|−2‖g‖H−1/2(div;ΓD) for some constant C depending on kdD

but independent of k, dD.
The following identity for the solution of (3.3)-(3.4) is well-known, see e.g. [10, Lemma

3.4].

(3.7) Im 〈ν × U × ν, ν × curlU〉ΓD = k

∫
S2

|U∞(x̂)|2dx̂,

where 〈·, ·〉ΓD is the duality pairing between H−1/2(curl ; ΓD) and H−1/2(div; ΓD).
The following corollary of the Helmholtz-Kirchhoff identity in [10, Lemma 3.2] plays a

key role in the analysis of the imaging resolution of the RTM method for imaging extended
targets using electromagnetic waves with full phase information.

Lemma 3.2. We have

k

∫
Γs

g(z, xs)G(x, xs) ds(xs) = ImG(x, z) + Ws(x, z), ∀x, z ∈ Ω,

where |wijs (x, z)|+ k−1|∇xwijs (x, z)| ≤ CR−1
s for some constant C depending on k|x|, k|z| but

independent of k. Here wijs (x, z) is the (i, j)-element of the matrix Ws(x, z), i, j = 1, 2, 3.
For the sake of convenience, we introduce the following notation:

(3.8) G(W,U) =

∫
ΓD

[W (x) · ν × curlU(x)− ν × curlW (x) · U(x)] ds(x).

Using this notation, the integral representation formula of the solution U(x) to the scattering
problem (3.3)-(3.4) reads: U(x) · q = G(G(x, ·)q, U), for any x ∈ R3\D̄, q ∈ S2.

Lemma 3.3. Let W ∈ C1(D̄)3 and U ∈ Hloc(curl;R3\D̄) be the solution of the scattering
problem (3.3)-(3.4) with the boundary condition g = ν × u on ΓD for some function u ∈
C1(D̄)3. Then we have

|G(W,U)| ≤ CdD(1 + ‖Ge‖) max
x∈D̄

[(|W (x)|+ dD|∇W (x)|)(|u(x)|+ dD|curlu(x)|)]
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for some constant C depending on kdD but independent of k, dD.
Proof. By (3.2) and the definition of the Dirichlet-to-Neumann mapping we have∣∣∣∣∫

ΓD

W (x) · ν × curlU(x)ds(x)

∣∣∣∣
≤ dD‖W‖Vπ(ΓD)‖ν × curlU‖H−1/2(div;ΓD)

≤ CkdD‖Ge‖‖W‖H1/2(ΓD)‖ν × u‖H−1/2(div;ΓD)

≤ CdD‖Ge‖max
x∈D̄

[(|W (x)|+ dD|∇W (x)|)(|u(x)|+ dD|curlu(x)|)].

On the other hand,∣∣∣∣∫
ΓD

ν × curlW (x) · U(x)ds(x)

∣∣∣∣ ≤ Cd2
D max
x∈ΓD

(|curlW (x)| · |u(x)|).

This completes the proof.
The following theorem for the imaging function IRTM(z) in (1.4) can be proved by the

method in [10] where the analysis for penetrable and impedance non-penetrable obstacles is
given. The extension to the case of perfect conducting obstacles considered in (1.1)-(1.3) is
similar and is omitted here.

Theorem 3.1. For any z ∈ Ω, let Ψ(x, z) be the scattering solution to the problem

curl curl Ψ(x, z)− k2Ψ(x, z) = 0 in R3\D̄,(3.9)

ν ×Ψ(x, z) = −ν × [ImG(x, z)p] on ΓD,(3.10)

r
(

curl Ψ(x, z)× x̂− ikΨ(x, z)
)
→ 0, as r → +∞.(3.11)

Then we have

IRTM(z) = k

∫
S2

|Ψ∞(x̂, z)|2dx̂+RRTM(z), ∀z ∈ Ω,

where ‖RRTM‖L∞(Ω) ≤ C(1 + ‖Ge‖)R−1
s for some constant C that may depend on kdD, k|z|

but is independent of k,Rr, Rs.
We remark that Ψ(x, z) is the scattering solution of the problem (3.9)-(3.11) with the

incoming wave ImG(x, z)p. Since ImG(x, z)p =
[
(I + ∇x∇x

k2 ) sin(k|x−z|)
4π|x−z|

]
p which peaks when

x = z and decays as |x − z| becomes large, the source of (3.9)-(3.11) becomes small when
z moves away from ∂D outside the scatterer. Therefore the imaging function IRTM(z) will
have a contrast at the boundary of the scatterer D and decay away from the scatterer which
is confirmed by the numerical results in [10]. The high frequency analysis for the imaging
function in the appendix of this paper reveals that for z ∈ ΓD, IRTM(z) is inversely proportional
to the Gauss curvature of the boundary around z (see (6.2) in the appendix).

From Theorem 3.1 we know that the RTM imaging functional IRTM(z) is asymptotically
proportional to the integration of the far field pattern over all directions when the incoming
wave is ImG(·, z)p. This incoming wave is the point spread function (PSF) for imaging a
point source z by incident waves G(x, ·)p (see Lemma 3.2 which is the consequence of the
Helmholtz-Kirchhoff identity). As PSF describes the resolution of the imaging of a point
source, we call the conclusion of Theorem 3.1 the resolution analysis as it essentially describes
the sharpness of the image for imaging extended obstacles by the RTM algorithm.



Direct Imaging Method for Phaseless Electromagentic Scattering Data 9

4. Resolution analysis for the phaseless RTM algorithm. In this section we prove the fol-
lowing theorem which shows that our RTM algorithm for phaseless electromagnetic scattering
data is the same as the RTM algorithm using scattering data with full phase information.

Theorem 4.1. Let ε = (kRs)
−1. For any z ∈ Ω, we have

(4.1) |Iphaseless
RTM (z)− IRTM(z)| ≤ C(1 + ‖Ge‖)2| ln(kRs)|2R−1

s

for some constant C that may depend on kdD, k|z| but is independent of k,Rr, Rs.

The proof of this theorem depends on several lemmas that follow. We first observe that

Dε(xr, xs) = (|E(xr, xs) · p|2 − |Ei(xr, xs) · p|2)
βε(xr, xs)

g(xr, xs)

=
(
|Es · p|2 + (Es · p)(Ei · p) + (E

s · p)(Ei · p)
)
(xr, xs)

βε(xr, xs)

g(xr, xs)
.

This yields

Iphaseless
RTM (z) = −k2 Im

∫
Γr×Γs

g(z, xs)g(xr, z)|Es(xr, xs) · p|2
βε(xr, xs)

g(xr, xs)

−k2 Im

∫
Γr×Γs

g(z, xs)g(xr, z)(Es(xr, xs) · p)(Ei(xr, xs) · p)
βε(xr, xs)

g(xr, xs)

−k2 Im

∫
Γr×Γs

g(z, xs)g(xr, z)(E
s(xr, xs) · p)(Ei(xr, xs) · p)

βε(xr, xs)

g(xr, xs)

:= I + II + III.(4.2)

Lemma 4.1. We have |Es(xr, xs)| ≤ CdD(1 + ‖Ge‖)(RrRs)−1 uniformly for xr ∈ Γr, xs ∈
Γs, where the constant C depends on kdD but is independent of k.

Proof. By the integral representation formula, for any q ∈ S2,

Es(xr, xs) · q = G(G(xr, ·)q, Es(·, xs)).

Since ν × Es(x, xs) = −ν × (G(x, xs)p) on ΓD, the lemma follows easily from Lemma 3.3.

By Lemma 4.1 and Lemma 2.1 one obtains the following estimate for the first term in
(4.2).

Lemma 4.2. Let ε = (kRs)
−1. We have |I| ≤ C(1+‖Ge‖)2R−1

s | ln(kRs)|, where the constant
C depends on kdD but is independent of k.

Now we consider the other two terms in (4.2). Since βε(xr, xs) = (1−|J(xr, xs)·p|2)−1χΘε
,

by (2.2) we have

Ei(xr, xs) · p
βε(xr, xs)

g(xr, xs)
= χΘε

+ (A(xr, xs)p · p)βε(xr, xs).(4.3)
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This implies

II = −k2Im

∫
Γr×Γs

g(z, xs)g(xr, z)Es(xr, xs) · pds(xs)ds(xr)

−k2 Im

∫
Γr×Γs

g(z, xs)g(xr, z)Es(xr, xs) · p(χΘε
− 1)ds(xr)ds(xs)

−k2 Im

∫
Γr×Γs

g(z, xs)g(xr, z)Es(xr, xs) · p[(A(xr, xs)p · p)βε(xr, xs)]ds(xr)ds(xs)

:= II1 + II2 + II3.(4.4)

Similarly,

III = −k2 Im

∫
Γr×Γs

g(z, xs)g(xr, z)E
s(xr, xs) · p

g(xr, xs)

g(xr, xs)
ds(xr)ds(xs)

−k2 Im

∫
Γr×Γs

g(z, xs)g(xr, z)E
s(xr, xs) · p(χΘε

− 1)
g(xr, xs)

g(xr, xs)
ds(xr)ds(xs)

−k2 Im

∫
Γr×Γs

g(z, xs)g(xr, z)E
s(xr, xs) · p(A(xr, xs)p · p)βε(xr, xs)

g(xr, xs)

g(xr, xs)

:= III1 + III2 + III3.(4.5)

Lemma 4.3. Let ε = (kRs)
−1. We have |II2 + III2| ≤ C(1 + ‖Ge‖)R−1

s , where the constant
C depends on kdD but is independent of k.

Proof. By Lemma 4.1 and Lemma 2.1 we know that

|II2 + III2| ≤ Ck2dD(1 + ‖Ge‖)(RrRs)−2

∫
Γr×Γs

(χΘε
− 1)ds(xr)ds(xs)

= Ck(1 + ‖Ge‖)|(S2 × S2)\Θ̄ε|.

This completes the proof by Lemma 4.3.
Lemma 4.4. Let ε = (kRs)

−1. We have |II3 + III3| ≤ C(1 + ‖Ge‖)R−1
s | ln(kRs)|2, where

the constant C depends on kdD but is independent of k.
Proof. By Lemma 4.1 and (2.10) in Lemma 2.1 we have

|II3 + III3| ≤ Ck2dD(1 + ‖Ge‖)(RrRs)−2

∫
Γr×Γs

|A(xr, xs)p · p|βε(xr, xs)ds(xr)ds(xs)

≤ C(1 + ‖Ge‖)R−1
s | ln ε|2.

This completes the proof.
Now we proceed to estimate the term III1. We need the following mixed reciprocity relation

of electromagnetic waves. Let Eipl(x, ds, q) = ds × q × dseikx·ds be the plane incident wave,

where ds, q ∈ S2. Denote the corresponding scattering field and far field pattern Espl(x, ds, q)

and E∞pl (x̂, ds, q). Let Eips(x, y, p) = G(x, y)p be the point source excitation at y in the
polarization p and denote the corresponding scattering field and far field pattern Esps(x, y, p)
and E∞ps (x̂, y, p). The following lemma is proved in [28, Theorem 2.3.4].
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Lemma 4.5. For scattering by a perfect conductor we have

E∞ps (x̂, y, p) · q =
1

4π
Espl(y,−x̂, q) · p,

for any x̂ ∈ S2, y ∈ R3\D̄ and p, q ∈ S2.

The following estimate for the far field pattern will be used in our analysis and will be
proved in the appendix of this paper.

Lemma 4.6. We have

|E∞pl (x̂s,−x̂r, p)|+ |∇T,x̂sE∞pl (x̂s,−x̂r, p)| ≤ CdD(1 + ‖Ge‖),

where the constant C depends on kdD but is independent of k. ∇T,x̂sE∞pl (x̂s,−x̂r, p) is the
tangential derivative of E∞pl (x̂s,−x̂r, p) in x̂s.

Lemma 4.7. Let h ∈ C1(S2) and define

v(x̂r) =

∫
S2

h(x̂s)e
−2ikRs|τx̂r−x̂s|dx̂s, ∀x̂r ∈ S2.

There exists a constant C > 0 independent of k,Rs, τ such that

|v(x̂r)| ≤ C(kRs)
−1(‖h‖L∞(S2) + ‖∇Th‖L∞(S2)), ∀x̂r ∈ S2.

Proof. Let Qr ∈ R3×3 be the orthogonal matrix such that Qrx̂r = (0, 0, 1)T , we have by
the coordinate transform ŷs = Qrx̂s that

v(x̂r) =

∫ 2π

0

∫ π

0
h(QT

r ŷs)e
−2ikRs

√
τ2+1−2τ cos θ sin θdθdφ,

where ŷs = Qrx̂s = (sin θ cosφ, sin θ sinφ, cos θ)T , θ ∈ [0, π], φ ∈ [0, 2π]. Denote the phase
function f(θ) =

√
τ2 + 1− 2τ cos θ. Since f ′(θ) = τ sin θ/f(θ), by integration by parts we

obtain

v(x̂r) = − 1

2ikRsτ

∫ 2π

0

[
h(Qrŷs)f(θ)e−2ikRsf(θ)

]θ=π
θ=0

dφ

+
1

2ikRsτ

∫ 2π

0

∫ π

0
e−2ikRsf(θ)

(
∂h(Qrŷs)

∂θ
f(θ) + h(Qrŷs)f

′(θ)

)
dθdφ.

The lemma now follows easily since∫ π

0
|f ′(θ)|dθ = τ

∫ π

0

sin θ√
τ2 + 1− 2τ cos θ

dθ ≤ πτ.

This completes the proof.

The following lemma gives the estimate for the term III1.

Lemma 4.8. We have |III1| ≤ C(1 + ‖Ge‖)R−1
s , where the constant C may depend on

kdD, k|z| but is independent of k, dD.
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Proof. We first observe that ||x− y| − (|x| − x̂ · y)| ≤ C|y|2/|x| for |x| > |y|. This yields,
for any z ∈ Ω,

(4.6) g(xr, z) =
eikRr

4πRr
e−ikx̂r·z + γ1(xr, z), g(z, xs) =

eikRs

4πRr
e−ikx̂s·z + γ1(z, xs),

where |γ1(xr, z)| ≤ C(|z|+ k|z|2)R−2
r , |γ1(z, xs)| ≤ C(|z|+ k|z|2)R−2

s . By definition we know
that Es(xr, xs) = Esps(xr, xs, p) and thus, by Lemma 3.1, we have

Es(xr, xs) · p =
eikRr

Rr
E∞ps (x̂r, xs, p) · p+ γ2(xr, xs),

where |γ2(xr, xs)| ≤ Cd2
D(1 + ‖Ge‖)R−1

s R−2
r . By using the mixed reciprocity relation in

Lemma 4.5 and Lemma 3.1 again, we then obtain

Es(xr, xs) · p =
eikRr

4πRr
Espl(xs,−x̂r, p) · p+ γ2(xr, xs)

=
eik(Rr+Rs)

4πRsRr
E∞pl (x̂s,−x̂r, p) · p+ γ2(xr, xs) + γ3(xr, xs),(4.7)

where |γ3(xr, xs)| ≤ Cd2
D(1 + ‖Ge‖)R−1

r R−2
s .

Inserting (4.6)-(4.7) into (4.5) we have

III1 = −k2 e
2ik(Rr+Rs)

64π3

∫
S2×S2

ψ(x̂r, x̂s)e
−2ikRs|τx̂r−x̂s|dx̂sdx̂r + γ4(z),

where |γ4(z)| ≤ C(1 + ‖Ge‖)R−1
s and

(4.8) ψ(x̂r, x̂s) = E∞pl (x̂s,−x̂r, p) · p e−ik(x̂s+x̂r)·z.

By Lemma 4.7 and then (4.8)

|III1| ≤ k2 max
x̂r∈S2

∣∣∣∣∫
S2

ψ(x̂r, x̂s)e
−2ik(x̂s+x̂r)·zdx̂s

∣∣∣∣
≤ Ck2(kRs)

−1 max
x̂r∈S2

(‖ψ(x̂r, ·)‖L∞(S2) + ‖∇T,x̂sψ(x̂r, ·)‖L∞(S2))

≤ Ck2(kRs)
−1 max

x̂r∈S2
(‖E∞pl (·,−x̂r, p)‖L∞(S2) + ‖∇T,x̂sE∞pl (·,−x̂r, p)‖L∞(S2)).

This completes the proof by using Lemma 4.6.

Now we are ready for the proof of the main theorem of this section.

Proof of Theorem 4.1. By (4.2), (4.4)-(4.5), Lemma 4.2-Lemma 4.4, and Lemma 4.8 we
are left to show that

(4.9) |II1 − IRTM(z)| ≤ C(1 + ‖Ge‖)R−1
s
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for some constant C that may depend on kdD, k|z| but is independent of k,Rr, Rs.
We follow the argument in [10] to give an outline of the proof for the sake of completeness.

By the integral representation formula, we have

Es(xr, xs) · p = G(G(·, xr)p,Es(·, xs)).

Thus by Lemma 3.2,

k

∫
Γr

g(xr, z)Es(xr, xs) · p dxr = G(ImG(·, z)p,Es(·, xs)) + G(Wr(·, z)p,Es(·, xs)),

where G(·, ·) is the gap functional defined in (3.8). Since ν × Es(x, xs) = −ν × G(x, xs)p on
ΓD, by Lemmas 3.2-3.3 we have

(4.10) |G(Wr(·, z)p,Es(·, xs))| ≤ CdD(1 + ‖Ge‖)(RrRs)−1.

Now by definition

II1 = −k2 Im

∫
Γr×Γs

g(z, xs)g(xr, z)Es(xr, xs) · pdxrdxs

= −G(ImG(·, z)p, V (z, ·))

−k Im

∫
Γs

g(z, xs)G(Wr(·, z)p,Es(·, xs))ds(xs),(4.11)

where V (z, x) = k
∫

Γs
g(z, xs)Es(x, xs)dxs. Taking the complex conjugate of the field V (z, x)

leads to

V (z, x) = k

∫
Γs

g(z, xs)E
s(x, xs)dxs,

which implies V (z, ·) can be viewed as the linear superposition of the scattering field Es(·, xs).
Thus

curl curlV (z, x)− k2V (z, x) = 0 in R3\D̄,

and on the boundary of the obstacle D, we have

ν × V (z, x) = ν × k
∫

Γs

g(z, xs)E
s(x, xs)dxs

= −ν × k
∫

Γs

g(z, xs)G(x, xs)pdxs

= −ν × ImG(x, z)p− ν ×Ws(x, z)p.

This implies V (x, z) = Ψ(x, z) + V1(z, x), where Ψ(x, z) is the solution of (3.9)-(3.11) and
V1(z, x) is the scattering solution of (3.3)-(3.4) with g(x) = −ν ×Ws(x, z)p. Thus we obtain

II1 = −ImG(ImG(·, z)p,Ψ(·, z))− ImG(ImG(·, z)p, V1(z, ·))

−k Im

∫
Γs

g(z, xs)G(Wr(·, z)p,Es(·, xs))ds(xs)(4.12)
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Since ν ×Ψ(x, z)p is real on ΓD by (3.10), we obtain by (3.7) that

− ImG(ImG(·, z)p,Ψ(·, z)) = Im

∫
ΓD

[
Ψ(x, z) · ν × curl Ψ(x, z)

]
ds

= k

∫
S2

|Ψ∞(x̂, z)|2dx̂.(4.13)

Since ImG(x, z)p and V1(z, x) satisfy Maxwell equation outside D, we obtain by integration
by parts that

G(ImG(·, z)p, V1(z, ·))

=

∫
ΓD

[
ImG(x, z)p · ν × curlV1(z, x)− ν × curl

(
ImG(x, z)p

)
· V1(z, x)

]
ds

=

∫
Γs

[
ImG(xs, z)p · ν × curlV1(z, xs)− ν × curl

(
ImG(x, z)p

)
· V1(z, xs)

]
ds(xs).

By the integral representation formula we know that V1(z, xs) = G(G(xs, ·)q, V1(z, ·)), which
implies by the fact that V1(z, x) is the scattering solution of (3.3)-(3.4) with g(x) = −ν ×
Ws(x, z)p and Lemma 3.3 that

|V1(z, xs)| ≤ CdD(1 + ‖Ge‖)R−2
s , |curlV1(z, xs)| ≤ C(1 + ‖Ge‖)R−2

s .

Thus

(4.14) |G(ImG(·, z)p, V1(z, ·))| ≤ C(1 + ‖Ge‖)R−1
s .

Finally by (4.10) it is easy to see that

(4.15)

∣∣∣∣k Im

∫
Γs

g(z, xs)G(Wr(·, z)p,Es(·, xs))ds(xs)
∣∣∣∣ ≤ C(1 + ‖Ge‖)R−1

s .

This completes the proof by (4.12)-(4.15). �
To conclude this section we remark that Theorem 4.1 can also be proved for the imaging

of impedance non-penetrable and penetrable obstacles with phaseless data by modifying the
argument in this section and the proof in [10, Theorem 3.1, Theorem 3.2]. We recall that
for the imaging of impedance non-penetrable obstacles with the phaseless data, the measured
phaseless total field |E(xr, xs)· p| = |Es(xr, xs)· p + Ei(xr, xs)· p|, where Es(xr, xs) is the
radiation solution of the Maxwell problem

curl curlEs − k2Es = 0 in R3\D̄,
ν × curlEs − ikη(x)(ν × Es × ν) = −(ν × curlEi − ikη(x)(ν × Ei × ν)) on ΓD,

r (curlEs × x̂− ikEs)→ 0 as r = |x| → ∞.

Here η(x) > 0 is the impedance function. For penetrable obstacles, the measured total field
|E(xr, xs)· p| = |Es(xr, xs)· p+Ei(xr, xs)· p|, where Es(xr, xs) is the radiation solution of the
following problem

curl curlEs − k2n(x)Es = k2(n(x)− 1)Ei in R3

with n(x) ∈ L∞(R2) being a positive function which is equal to 1 outside the scatterer D. We
leave the extension to the interested readers.
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Figure 2. Example 5.1. The first and second column are the imaging results when the polarization direction
p = e1 and p = e2, respectively. The last column is the imaging results of the summation of the first and second
column.

5. Numerical Examples. In this section, we show a variety of numerical experiments to
illustrate the effectiveness of the RTM algorithm with 2D and 3D phaseless electromagnetic
total field data in this paper. The boundaries of the obstacles used in our 2D numerical
experiments are parameterized as follows:

Circle: x1 = ρ cos(θ), x2 = ρ sin(θ), θ ∈ (0, 2π],

Kite: x1 = cos(θ) + 0.65 cos(2θ)− 0.65, x2 = 1.5 sin(θ), θ ∈ (0, 2π],

p-leaf: r(θ) = 1 + 0.2 cos(pθ), θ ∈ (0, 2π],

Rounded-square: x1 = cos3(θ) + cos(θ), x2 = sin3(θ) + sin(θ).

5.1. Numerical examples in 2D. We first show the efficiency of our imaging algorithm in
the setting of transverse electric (TE) case, that is, the electromagnetic waves are independent
of x3 direction. In this subsection all the vector fields are assumed to be two dimensional. Let
p = (p1, p2)T be the polarization direction and g(x, xs) = i

4H
(1)
0 (k|x−xs|) be the fundamental

solution of the two-dimensional Helmholtz equation with the source at xs ∈ R2. The incident
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Figure 3. Example 5.2. From left to right: imaging results for non-penetrable obstacles with the impedance
η = 0.1, η = 1, and a penetrable obstacle with the diffractive index n(x) = 0.5 by the summation of the imaging
function of two polarization directions p = e1 and p = e2.

electric field Ei(x, xs) = G(x, xs)p, where G(x, xs) = (I2 + ∇∇
k2 )g(x, xs) is the two-dimensional

dyadic Green function. To synthesize the scattering data we use the magnetic field integral
equation (MFIE) method proposed in [26] to obtain the equivalent surface currents then
produce the scattering electric field at the receivers. The MFIE integral equations on ΓD are
solved on the uniform mesh of the boundary with ten points per probe wavelength.

Example 5.1.We consider the imaging of single perfect conducting obstacles of three kinds
of shape: circle, rounded-square and 3-leaf. The incident wavenumber is k = 4π. The sources
and receivers are evenly distributed at the circle of radius Rs = 10 and Rr = 11, respectively.
The number of sources and receiver is equal: Ns = Nr = 256. The search domain is Ω =
[−4, 4]× [−4, 4] with the sampling grid 201× 201.

Figure 2 shows the imaging results for these three kinds of shape with single polarization
direction or two polarization directions. We can see that the obstacles can be well recovered
by our phaseless imaging function even with only one polarization direction.

Example 5.2.We consider the imaging of non-penetrable obstacles with impedance function
η = 0.1 and η = 1, and a penetrable obstacle with diffractive index n(x) = 0.5 by summing
the imaging results of two polarization directions. The parameters used in this example is the
same as those in Example 5.1.

Figure 3 shows the imaging results for non-penetrable with impedance boundary condition
and penetrable obstacle, which indicates clearly the effectiveness of our imaging algorithm for
different type of obstacles.

Example 5.3.We consider the stability of the imaging function with respect to additive Gaus-
sian random noises. We introduce the additive Gaussian noise as follows (see e.g. [9]):

|E(xr, xs)· p|noise = |E(xr, xs)· p+ νnoise|,

where E(xr, xs)· p is the phaseless synthesized total field data and νnoise is the Gaussian noise
with mean zero and standard deviation µ times the maximum of the data |E(xr, xs)· p|, i.e.
νnoise = µmax |E(xr, xs)· p|ε, and ε ∼ N (0, 1).

Figure 4 and Figure 5 show the imaging results using single frequency data added with
Gaussian noise level µ = 2%, 4%, 8%, 10% for incident wavenumber k = 4π and k = 6π,
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(a) (b)

(c) (d)

Figure 4. Example 5.3: The imaging results using single frequency data with additive Gaussian noise
µ = 2%, 4%, 8%, 10% from (a) to (d), respectively. The probe wavelength is λ = 0.5.

respectively. The imaging quality can be improved by using multi-frequency data as illus-
trated in Figure 6 in which we show the imaging results added with the noise level µ =
2%, 4%, 8%, 10% Gaussian noise by summing the imaging functions for six probed wavenum-
bers k = 4π, 4.4π, 4.8π, 5.2π, 5.6π, 6.0π.

5.2. Numerical examples in 3D. In this subsection, we apply our direct imaging method
to phaseless electromagnetic imaging problem in 3D. Here we consider the imaging of perfect
conducting objects. To obtain the synthetic data, we use the finite element package PHG
[27] to solve the 3D forward problem. The method of the perfectly matched layer (PML)
is used to truncate the computational domain [8]. The finite element mesh is generated by
using NETGEN [24]. The PML equation is discretized by using the lowest order Nedelec edge
element and the resulting linear system of equations is solved by the GMRES [29] method
preconditioned by an algebraic multigrid (AMG) solver [30].

Example 5.4.We consider imaging a perfectly conducting sphere and a calabash-like obsta-
cle. The imaging domain is Ω = (−2, 2)×(−2, 2)×(−2, 2) with the sampling mesh 80×80×80.
The incident wavenumber is k = 2π, Ns = Nr = 256, and Rr = Rs = 10.

The imaging results are showed in Figures 7, 8 and 9. We observe that the imaging
function proposed in this paper can reconstruct the shape of the obstacles quite well without
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(a) (b)

(c) (d)

Figure 5. Example 5.3: The imaging results using single frequency data with additive Gaussian noise
µ = 2%, 4%, 8%, 10% from (a) to (d), respectively. The probe wavelength is λ = 1/3.

the phase information.

6. Appendix. In the section we study the high frequency limit of the RTM imaging func-
tion and give the proofs of Lemma 3.1 and Lemma 4.6.

6.1. The RTM imaging function in high frequency limit. In this subsection we consider
the high frequency limit k � 1 of the RTM imaging function IRTM(z) in (1.4) when z ∈ ΓD.
For simplicity we assume the obstacle is smooth and strictly convex. For any ξ ∈ R3\D̄ far
away from the scatterer and q ∈ S2, let GD(x, ξ)q be be the Green function which satisfies

curl curl (GD(x, ξ)q)− k2GD(x, ξ) = δξ(x)q in R3\D̄,
ν ×GD(x, ξ)q = 0 on ΓD,

r (curl (GD(x, ξ)q)× x̂− ikGD(x, ξ)q)→ 0 as r = |x| → ∞.

The solution to the problem (3.9)-(3.11) can be expressed by using the integral representation
theorem that

(6.1) Ψ(z, ξ) · q =

∫
∂D

ν × (curlGD(x, ξ)q) ·Ψ(x, z)ds.
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(a) (b)

(c) (d)

Figure 6. Example 5.3: The imaging results using multi-frequency data with additive Gaussian noise µ =
2%, 4%, 8%, 10% from (a) to (d), respectively. The probe wavelengths are λ = 1/2, 1/2.2, 1/2.4, 1/2.6, 1/2.8, 1/3.

For x ∈ ΓD, from the proof of Lemma 3.1 we know that

G(x, ξ)q =
eik|ξ|

4π|ξ|
(ξ̂ × q × ξ̂)e−ikξ̂·x +O(k−1|ξ|−2),

which implies for ξ far away from the scatterer, G(x, ξ)q can be approximated by the plane

wave eik|ξ|

4π|ξ| (ξ̂ × q × ξ̂)e
−ikξ̂·x. Thus by the high frequency physical optics approximation [20,

Chapter 10, section 13], we have, for ξ far away from the scatterer,

curlGD(x, ξ)q ≈

 2 curl
[
eik|ξ|

4π|ξ| (ξ̂ × q × ξ̂)e
−ikξ̂·x

]
if x ∈ ∂D+

ξ̂
,

0 if x ∈ ∂D−
ξ̂
,

where ∂D+

ξ̂
= {x ∈ ΓD : ν(x) · ξ̂ > 0} and ∂D−

ξ̂
= {x ∈ ΓD : ν(x) · ξ̂ < 0} are respectively

the illuminated and shadow region of the incident plane wave eik|ξ|

4π|ξ| (ξ̂ × q × ξ̂)e
−ikξ̂·x. Thus,

by simple calculation,

curlGD(x, ξ)q ≈

{
2ik eik|ξ|

4π|ξ| q × ξ̂ if x ∈ ∂D+

ξ̂
,

0 if x ∈ ∂D−
ξ̂
,



20 Z. CHEN AND G. HUANG

Figure 7. The imaging of a perfect conducting sphere. From top to bottom: the imaging results for the
polarization direction p = e1, e2, e3, respectively. From left to right: the imaging results of the cross-section
x1 = 0, x2 = 0, x3 = 0, respectively.

which implies from (6.1) that

Ψ(z, ξ) · q ≈ ik

2π

eik|ξ|

|ξ|

∫
∂D+

ξ

(ν × q × ξ̂) ·Ψ(x, z)e−ikξ̂·xds.

Let t = (t1, t2) ∈ Tξ̂ ⊂ R2 be the parametrization of the boundary ∂D+

ξ̂
, then

Ψ(z, ξ) · q ≈ ik

2π

eik|ξ|

|ξ|

∫
Tξ̂

(ξ̂ × q) · (ν ×Ψ(x(t), z))e−ikξ̂·x(t)

∣∣∣∣ ∂x∂t1 × ∂x

∂t2

∣∣∣∣ dt.
Now we are going to use the principle of the stationary phase to above oscillatory integral.
Let φ(t1, t2) = −ξ̂ · x(t1, t2) be the phase function. Since D is strictly convex, there is only
one point x(ξ̂) = x(t(ξ̂)) ∈ ∂D+

ξ̂
such that ∇φ(t(ξ̂)) = 0 which satisfies ν(x(ξ̂)) = ξ̂. The

determinant of the Hessian matrix of the phase function at x(ξ̂) is

det∇2φ(t(ξ̂)) =
(
ξ̂· ∂

2x

∂t21

)(
ξ̂· ∂

2x

∂t22

)
−
(
ξ̂· ∂2x

∂t1∂t2

)2
= κ(x(ξ̂))

∣∣∣∣ ∂x∂t1 (t(ξ̂))× ∂x

∂t2
(t(ξ̂))

∣∣∣∣2 ,
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Figure 8. The imaging of a perfect conducting Calabash-like obstacle. From top to bottom: the imaging
results for the polarization direction p = e1, e2, e3, respectively. From left to right: the imaging results of the
cross-section x1 = 0, x2 = 0, x3 = 0, respectively.

where κ(x) is the Gaussian curvature and we have used the fact that ξ̂ = ν(x(ξ̂)). By the
theorem of stationary phase [17, Theorem 7.7.5], we obtain

Ψ(z, ξ̂) · q ≈ ik

2π

eik|ξ|

|ξ|
(ξ̂ × q) · (ν(x(ξ̂))×Ψ(x(ξ̂), z))e−ikξ̂·x(ξ̂)

(
k

2πi

)−1

κ(x(ξ̂))−1/2

=
eik|ξ|

|ξ|
q · (ξ̂ × ImG(x(ξ̂), z)p× ξ̂)e−ikξ̂·x(ξ̂)κ(x(ξ̂))−1/2,

where we have used (3.10) and ξ̂ = ν(x(ξ̂)) in the last equality. Hence, by (3.6) and Theorem
3.1 we have

(6.2) IRTM(z) ≈ k
∫
S2

|ξ̂ × ImG(x(ξ̂), z)p× ξ̂|2

κ(x(ξ̂))
dξ̂.

Since ImG(x(ξ̂), z)p = (I + ∇x∇x
k2 ) sin(k|x(ξ̂)−z|)

4π|x(ξ̂)−z|
, the main contribution in above integral is for

ξ̂ ∈ S2 such that |x(ξ̂) − z| ≤ λ/2, where λ = 2π/k is the wavelength. This implies IRTM(z)
is inversely proportional to the curvature of the surface ΓD around z ∈ ΓD.
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Figure 9. 3D view of the imaging results by summing the imaging functions with p = e1, e2, e3. Left column
shows the true obstacles and the right column shows the imaging results.

6.2. Proof of Lemma 3.1. We give a sketch of the proof to confirm the bound for γ(x).
It is easy to check that for any q ∈ S2,

G(x, y)q =
eik|x|

4π|x|
e−ikx̂·y(1− x̂x̂T )q +R1(x, y), ∀x ∈ R3\D̄, |x| � 1, y ∈ ΓD,

curl (G(x, y)q) =
ikeik|x|

4π|x|
e−ikx̂·yx̂× q +R2(x, y), ∀x ∈ R3\D̄, |x| � 1, y ∈ ΓD,

where |R1(x, y)| + k−1|∇yR1(x, y)| ≤ Ck−1|x|−2, |R2(x, y)| + k−1|∇yR2(x, y)| ≤ C|x|−2 for
some constant C depending on kdD but independent of k, dD. Inserting these two asymptotic
formulae to the integral representation for the scattering solution U one obtains

(6.3) γ(x) =

∫
ΓD

(R1(x, y) · ν × curlU(y)− ν ×R2(x, y) · U(y)) ds(y).
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Now by using (3.1) and the definition of the norm of H−1/2(div; ΓD) we have∣∣∣∣∫
ΓD

R1(x, y) · ν × curlU(y)ds(y)

∣∣∣∣
≤ CdD‖R1(x, ·)‖H1/2(ΓD) · k‖Ge‖‖ν × U‖H−1/2(div;ΓD)

≤ Cd3/2
D ‖Ge‖|x|

−2‖‖g‖H−1/2(div;ΓD).

Similarly ∣∣∣∣∫
ΓD

ν ×R2(x, y) · U(y)ds(y)

∣∣∣∣ ≤ Cd3/2
D |x|

−2‖‖g‖H−1/2(div;ΓD).

This completes the proof. �

6.3. Proof of Lemma 4.6. By the definition the far field pattern in (3.5) we have

E∞pl (x̂s,−x̂r, p)

=
1

4π
x̂s ×

∫
ΓD

[
ν × curlEspl(x,−x̂r, p)× x̂s + ikν × Espl(x,−x̂r, p)

]
e−ikx̂s·xds(x).

Since ν×Espl(x,−x̂r, p) = −ν× [(x̂r× p× x̂r)e−ikx̂r·x] on ΓD, by (3.2), there exists a constant
C independent of k, dD such that

‖ ν × curlEspl(x,−x̂r, p) ‖H−1/2(div;ΓD) ≤ k‖Ge‖‖ ν × E
s
pl(x,−x̂r, p) ‖H−1/2(div;ΓD)

≤ k‖Ge‖ · Cd1/2
D (1 + kdD).

Thus for any q ∈ S2,

|E∞pl (x̂s,−x̂r, p) · q|
≤ dD‖ ν × curlEspl(·,−x̂r, p) ‖H−1/2(div;ΓD)‖x̂s × x̂s × qe

−ikx̂r·x‖H1/2(ΓD)

+k|ΓD|‖ν × Espl(·,−x̂r, p)‖L∞(ΓD)

≤ Ck‖Ge‖d2
D(1 + kdD)2 + Ckd2

D,

where the constant C is independent of k, dD. This proves the first estimate of the lemma.
The second estimate in the lemma can be proved similarly. �
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