
Manuscript submitted to doi:10.3934/xx.xx.xx.xx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

AN ANISOTROPIC PERFECTLY MATCHED LAYER METHOD

FOR HELMHOLTZ SCATTERING PROBLEMS WITH

DISCONTINUOUS WAVE NUMBER

ZHIMING CHEN, CHAO LIANG, AND XUESHUANG XIANG

Zhiming Chen

LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing
Academy of Mathematics and Systems Science

Chinese Academy of Sciences, Beijing 100190, China

Chao Liang

LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing
Academy of Mathematics and Systems Science

Chinese Academy of Sciences, Beijing 100190, China

Xueshuang Xiang

LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing

Academy of Mathematics and Systems Science
Chinese Academy of Sciences, Beijing 100190, China

Abstract. The anisotropic perfectly matched layer (PML) defines a continu-
ous vector field outside a rectangle domain and performs the complex coordi-
nate stretching along the direction of the vector field. In this paper we propose
a new way of constructing the vector field which allows us to prove the expo-
nential decay of the stretched Green function without the constraint on the
thickness of the PML layer. We report numerical experiments to illustrate the
competitive behavior of the proposed PML method.

1. Introduction. We propose and study an anisotropic perfectly matched layer
(PML) method for solving Helmholtz scattering problems with discontinuous wave
number

∆u+ k2(x)u = f in Ω = R
2 \ D̄, (1.1)

u = g on ΓD, (1.2)

√
r

(

∂u

∂r
− iku

)

→ 0 as r = |x| → ∞, (1.3)

where D ⊂ R2 is a bounded domain with Lipschitz boundary ΓD, f ∈ (H1(Ω))′ has
the support inside B(R0) = {x ∈ R2 : |x| ≤ R0} with (H1(Ω))′ being the dual space
of H1(Ω), and g ∈ H1/2(ΓD). We assume the wave number k(x) is positive in R2

and piecewise constant outside B(R0) with the interface where the wave number
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jumps being a straight line extending to infinity. We remark that the results in
this paper can be extended to the other boundary conditions such as Neumann or
impedance boundary conditions on ΓD.

Since the pioneering work of Bérénger [1] which proposed a PML technique for
solving the Maxwell equations, various constructions of PML absorbing layers have
been proposed and studied in the literatures (cf. e.g. Turkel and Yefet [20], Teixeira
and Chew [18] for the reviews). Of particular importance to the development and
the analysis of the PML method is the technique of complex coordinate stretching
by Chew and Weedon [10]. Under the assumption that the exterior solution is
composed of outgoing waves only, the basic idea of the PML technique is to surround
the computational domain by a fictitious layer of finite thickness with specially
designed model medium that absorbs all the waves that propagate from inside the
computational domain.

The convergence of the PML method has drawn considerable attention in the
literature. Lassas and Somersalo [15, 14] and Hohage et al [12] studied the acoustic
scattering problems for circular and smooth PML layers. The anisotropic PML
method in which the PML layer is placed outside a rectangle or cuboid domain is
of considerable interest as opposed to the circular PML method because it provides
greater flexibility and efficiency to solve problems involving anisotropic scatterers.
The convergence of the uniaxial PML method has been considered recently in Chen
and Wu [5], Kim and Pasciak [13], Bramble and Pasciak [2], and Chen and Zheng [7]
for the acoustic scattering problems. It is proved in [14, 15, 12, 5, 13, 7, 2] that the
PML solution convergences exponentially to the solution of the original scattering
problem as the thickness of the PML tends to infinity.

In the practical applications of the PML methods, the adaptive PML method
has been proposed and studied in Chen and Wu [3] for the grating problem, Chen
and Liu [4] for the acoustic scattering problem, Chen and Chen [6], and Chen, Cui
and Zhang [8] for Maxwell scattering problems. The main idea of the adaptive PML
method is to use the posteriori error estimate to determine the PML parameters and
to use the adaptive finite element methods to solve the PML equations. The adap-
tive PML method provides a complete numerical strategy to solve the scattering
problems in the framework of finite element which produces automatically a coarse
mesh size away from the fixed domain and thus makes the total computational costs
insensitive to the thickness the absorbing PML layers.

The purpose of this paper is to propose a new construction of anisotropic PML
methods and use the adaptive PML method to solve the problem (1.1)-(1.3) with
discontinuous wave numbers. We will extend the idea in [8] for electromagnetic
scattering problems. The main idea in [8] is to define a continuous vector field
outside the computational domain and perform the complex coordinate stretching
along the direction of the vector field. The construction of the PML method by
performing the complex coordinate stretching along a continuous vector field is dif-
ferent from the uniaxial PML method and seems to be more suitable for scattering
problems with discontinuous wave numbers, see e.g. Oskooi et al [17]. The con-
vergence of the anisotropic PML method in [8] is proved for a special construction
of the vector field outside the cuboid domain which requires the thickness of the
PML layer satisfying a uniform lower bound. This constraint is removed in the
new construction of the vector field in this paper which is especially desirable for
elongated PML layers. We also refer to Zschiedrich et al [21] and Trenev [19] for
related ideas in designing anisotropic PML method. We will extend the anisotropic
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PML method developed in this paper to solve elastic wave scattering problems for
which the standard uniaxial PML method has difficulties [16].

The layout of the paper is as follows. In section 2 we introduce our new anisotropic
PML method for (1.1)-(1.3) using the example of constant wave number. In sec-
tion 3 we consider the guideline in constructing PML complex coordinate stretching
transform in order to show the convergence of the PML method. In section 4 we
introduce the finite element method for solving the PML problem. In section 5
we report two numerical examples with discontinuous wave number to show the
competitive behavior of our new adaptive anisotropic PML method.

2. The anisotropic PML method. In this section we introduce the new anisotropic
PML method for Helmholtz scattering problems. Let D be contained in the interior
of the rectangle B1 = {x ∈ R2 : |x1| < L1/2, |x2| < L2/2} and Ω1 = B1 \ D̄. Let
Γ1 = ∂B1 and n1 be the unit outer normal to Γ1. The derivation of the PML
equation depends crucially on the idea of complex coordinates stretching transform
x̃ = F (x) outside B1 (see e.g. Chew and Weedon [10]), where F : R2\B̄1 → C2 is a
complex valued function. We set in this following F (x) = x in B1.

Once the transform is constructed, for the solution u of the scattering problem
(1.1)-(1.3), we let ũ(x) = u(x̃). It is clear that ũ satisfies

∆̃ũ+ k(x)2ũ = 0 inR2 \ B̄1, (2.4)

where ∆̃ = ∂2

∂x̃2
1
+ ∂2

∂x̃2
2
is the Laplace operator with respect to the stretched coordi-

nates. The desired PML equation can be obtained by the chain rule

∇ · (A(x)∇ũ) + J(x)k(x)2ũ = f(x) inR2 \ B̄1, (2.5)

where A(x) = J(x)DF−1(x)DF−T (x), J(x) = det(DF (x)), and DF (x) is the
Jacobi matrix. The equation (2.5) should be understood in the weak sense.

Let B2 = {x ∈ R2 : |x1| < L1/2 + d1, |x2| < L2/2 + d2} be the rectangle which
contains B1. The PML solution û in Ω2 = B2 \ D̄ is defined as the solution of the
following system

∇ ·(A(x)∇û) + J(x)k(x)2û = f(x) inΩ2, (2.6)

û = g onΓD, û = 0 onΓ2. (2.7)

The convergence of the PML solution û to the solution u of the original scattering
problem depends on the properties of the transform F (x) to be studied in the next
section.

Now we introduce a new construction of the anisotropic PML complex coordinate
stretching transform x̃ = F (x) when the wave number k(x) is a constant k > 0.
This construction can be easily extended to the general case of piecewise constant
wave numbers as shown in section 5. Let θ = arctan(d1/d2). Let the domain
ΩPML = B2 \ B̄1 be divided into four trapezoids U±

i , i = 1, 2, where

U±
1 = {x ∈ R

2 :
L1

2
≤ ±x1 ≤ d1 +

L1

2
, |x2| ≤

L2

2
+
(

|x1| −
L1

2

)

tan θ},

U±
2 = {x ∈ R

2 :
L2

2
≤ ±x2 ≤ d2 +

L2

2
, |x1| ≤

L1

2
+
(

|x2| −
L2

2

)

cot θ}.

In each domain U±
i , i = 1, 2, we write the Cartesian coordinate x = (x1, x2) in a

new coordinate (r, s) so that the PML coordinate stretching is performed only in
one direction outside B1. We will only describe the construction in U+

1 and U+
2 .

The other domains can be considered similarly.
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Figure 2.1. Setting of the scattering problem with the PML layer.

For x ∈ U+
1 , we define r ∈ (0,

√

d21 + d22), s ∈ [−1, 1] such that

x1 =
L1

2
+ r cos θ, (2.8)

x2 =

{

sgn(x2)
L2

2 + r sin θ · s L2/2 ≤ |x2| ≤ L2/2 + d2,

x2 |x2| ≤ L2/2.
(2.9)

We know that r = r(x) = x1−L1/2
cos θ which is the distance between A and A′ =

(x1,
L2

2 + d2

d1
(x1 − L1

2 )) on the segment AA1 (see Fig. 2.1).

For x ∈ U+
2 , we define r ∈ (0,

√

d21 + d22), s ∈ [−1, 1] such that

x1 =

{

sgn(x1)
L1

2 + r cos θ · s L1/2 ≤ |x1| ≤ L1/2 + d1,

x1 |x1| ≤ L1/2,
(2.10)

x2 =
L2

2
+ r sin θ. (2.11)

We know that r = r(x) = x2−L2/2
sin θ which is the distance between A and A′ =

(L1

2 + d1

d2
(x2 − L2

2 ), x2) on the segment AA1 (see Fig. 2.1). Obviously r(x) is
continuous in ΩPML.

Now we define the complex coordinate stretching. For t > 0, let

α(t) = η(t) + iσ(t), η(t) = 1 + ζσ(t),

be the model medium property, where ζ ≥ 0 is a constant and σ(t) > 0 for t > 0
and σ(0) = 0. Denote r̃(x) as the complex stretching of r(x)

r̃(x) :=

∫ r(x)

0

α(t) dt = r(x) + (ζ + i)

∫ r(x)

0

σ(t) dt

and define the complex coordinates (x̃1, x̃2) for x ∈ U+
1 as

x̃1 =
L1

2
+ r̃(x) cos θ,

x̃2 =

{

sgn(x2)
L2

2 + r̃(x) sin θ · s L2/2 ≤ |x2| ≤ L2/2 + d2,

x2 |x2| ≤ L2/2.
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By using (2.8)-(2.9) we know that, for x ∈ U+
1 ,

x̃1 =
L1

2
+ β(r(x))(x1 −

L1

2
), (2.12)

x̃2 =

{

sgn(x2)
L2

2 + β(r(x))(x2 − sgn(x2)
L2

2 ) L2/2 ≤ |x2| ≤ L2/2 + d2,

x2 |x2| ≤ L2/2,
(2.13)

where β(r(x)) = η̂(r(x))+ iσ̂(r(x)), η̂(r(x)) = 1+ζσ̂(r(x)), and σ̂(t) = 1
t

∫ t

0 σ(s) ds.
(2.12)-(2.13) defines the desired complex coordinate stretching transform F (x) in
U+
1 .
To conclude this section, for the sake of later reference, we write down the explicit

formula for the matrix A in the domain U+
1 . The formulas in other domains are

similar. For x ∈ U+
1 , it is easy to check that when |x2| > L2/2,

DF =

(

α 0
(α − β) tan θ · s β

)

, A =

(

β
α −α−β

α tan θ · s
−α−β

α tan θ · s (α−β)2

αβ tan2 θ · s2 + α
β

)

,

and when |x2| ≤ L2/2,

DF =

(

α 0
0 1

)

, A =

(

α−1 0
0 α

)

.

Here α = α(r(x)) and β = β(r(x)).

3. The complex coordinates stretching transform. In this section we consider
the guideline in constructing the PML complex coordinate stretching transform
x̃ = F (x) in order to obtain the convergence of the PML method by extending the
analysis in [8] for Maxwell scattering problems with constant wave number. In this
section we assume the wave number k(x) is constant k. The results can also be
extended to the case of layered medium using the method developed in [7] where
the uniaxial PML method is studied.

3.1. Ellipticity of A(x). The first important property is the ellipticity of the PML
coefficient matrix A. We start with the following lemma which can be proved by
the same method as in [8, Lemma 7].

Lemma 3.1. Let C =
(

cij
)

∈ R
2×2 be a symmetric matrix such that c11 + c22 > 0

and c11c22 − c212 ≥ 0. Then the eigenvalues of C is bounded below by
c11c22−c212
c11+c22

.

We need the following assumption on the medium property

(H1) ζ ≥ max
i,j=1,2

di
dj

and σ = σ̂ = σ0 for t ≥ r0 > 0, where σ0 is a constant.

Lemma 3.2. Let (H1) be satisfied. Then

Re(A(x)ξ · ξ̄) ≥ 1

(1 + ζ2)(1 + |α|)|α|2|β|2 ξ · ξ̄.

Proof. We only prove the lemma for x ∈ U+
1 . The other cases are similar. By the

formula at the end of last section, write A(x) = (aij(x)), we know that for any

x ∈ U+
1 ,

Re(A(x)ξ · ξ̄) =
2
∑

i,j=1

Re(aij(x))ξi ξ̄j ≥
[

min
j=1,2

λj(x)
]

(ξ · ξ̄),
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where λj(x), j = 1, 2, are the eigenvalues of the symmetric matrix ReA(x).
Lemma 3.2 is obvious for |x2| ≤ L2/2. For |x2| ≥ L2/2, it is easy to check that

Re
(α− β)2

αβ
=

(σ − σ̂)2

|α|2|β|2
[

(ζ2 − 1)(ηη̂ − σσ̂) + 2ζ(ση̂ + σ̂η)
]

≥ 0,

where we have used the fact that ζ ≥ 1 by (H1). Thus

Re (a11) + Re (a22) = Re
β

α
+Re

α

β
+Re

(α− β)2

αβ
tan2 θ · s2 > 0.

On the other hand, since Re (α−β)2

αβ = Re β
α +Re α

β − 2 and Re α−β
α = 1−Re β

α , we

have

Re(a11)Re(a22)− Re(a12)
2 = Re

β

α
· Re α

β
+

(

Re
β

α
· Re α

β
− 1

)

tan2 θ · s2

=
1

|α|2|β|2
[

(ηη̂ + σσ̂)2 − (σ̂η − ση̂)2 tan2 θ · s2
]

.

Since (σ̂η − ση̂)2 = (σ − σ̂)2 ≤ σ2 and ηη̂ + σσ̂ ≥ 1 + ζσ, we know that

Re(a11)Re(a22)− Re(a12)
2 ≥ 1

|α|2|β|2
[

(1 + ζσ)2 − d22
d21
σ2

]

≥ 1

|α|2|β|2 ,

where we have used s2 ∈ [0, 1] and (H1). This completes the proof by using Lemma
3.2 and the fact that Re (a11)+Re (a22) ≤ (1+|α|)(1+d22/d21) ≤ (1+|α|)(1+ζ2).
3.2. Exponential decay of the stretched Green function. It is clear that any
solution of the exterior Dirichlet problem (1.1)-(1.3) satisfies

u(x) = −ΨSL(
∂u

∂n1
)(x) + ΨDL(u)(x) inΩ \ B̄1,

where ΨSL(λ)(x), ΨDL(ξ)(x) are, respectively, the single and double layer potentials

ΨSL(λ)(x) =

∫

Γ1

G(x, y)λ(y) ds(y), ∀λ ∈ H−1/2(Γ1),

ΨDL(ξ)(x) =

∫

Γ1

∂G(x, y)

∂n1
ξ(y) ds(y), ∀ξ ∈ H−1/2(Γ1).

Here G(x, y) = i

4H
(1)
0 (k|x− y|) is the fundamental solution of the Helmholtz equa-

tion (1.1)-(1.2) satisfying the Sommerefeld radiation condition (1.3).
For any z ∈ C, z1/2 is taken as the analytic branch of

√
z such that Re (z1/2) > 0

for any z ∈ C\(−∞, 0]. Denote ρ(x̃, y) = [(x̃1 − y1)
2 + (x̃2 − y2)

2]1/2 the complex

stretched distance. Let G̃(x, y) = G(x̃, y) = i

4H
(1)
0 (kρ(x̃, y)) be the stretched Green

function. Then we know that

ũ = −Ψ̃SL(
∂u

∂n1
)(x) + Ψ̃DL(u)(x) forx ∈ R

2 \ B̄1, (3.14)

where Ψ̃SL(λ)(x), Ψ̃DL(ξ)(x) are the modified single and double layer potentials

Ψ̃SL(λ)(x) =

∫

Γ1

G̃(x, y)λ(y) ds(y), ∀λ ∈ H−1/2(Γ1),

Ψ̃DL(ξ)(x) =

∫

Γ1

∂G̃(x, y)

∂n1
ξ(y) ds(y), ∀ξ ∈ H−1/2(Γ1).

The following lemma proved in [4, Lemma 2.2] indicates that the first Hankel
function decays exponentially away from the upper half complex plane.
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Lemma 3.3. For any ν ∈ R, z ∈ C++ = {z ∈ C : Re (z) ≥ 0, Im (z) ≥ 0}, and
Θ ∈ R such that 0 < Θ ≤ |z|, we have

|H(1)
ν (z)| ≤ e

−Im (z)
(

1− Θ2

|z|2

)1/2

|H(1)
ν (Θ)|.

From Lemma 3.3 and (3.14) we know that to ensure the exponential decay of

the stretched Green solution G̃(x, y), we need a uniform lower bound of Im ρ(x̃, y)
which tends to infinity when the thickness of the PML layer or the PML medium
property tends to infinity. We first recall the following lemma from [5].

Lemma 3.4. For any z1 = a1 + ib1, z2 = a2 + ib2 with a1, b1, a2, b2 ∈ R such that
a1b1 + a2b2 > 0, we have

Im(z21 + z22)
1/2 ≥ a1b1 + a2b2

√

a21 + a22
.

Lemma 3.5. Let zj = x̃j − yj, j = 1, 2. For any x ∈ Γ2, y ∈ B̄1, we have

Imρ(x̃, y) ≥ σ0min(d21, d
2
2)

√

(L1 + d1)2 + (L2 + d2)2
= γ0.

Proof. We only prove the case when x ∈ Γ2 ∩ Ū+
1 in which case x1 = L1/2 + d1. If

|x2| ≥ L2/2, we have from (2.12)-(2.13) that

z1 = x̃1 − y1 = x1 − y1 + ζσ0

(

x1 −
L1

2

)

+ iσ0

(

x1 −
L1

2

)

,

z2 = x̃2 − y2 = x2 − y2 + ζσ0

(

x2 − sgn(x2)
L2

2

)

+ iσ0

(

x2 − sgn(x2)
L2

2

)

.

It is easy to know that for y ∈ B̄1,

(x1 − y1)

(

x1 −
L1

2

)

> 0, (x2 − y2)

(

x2 − sgn(x2)
L2

2

)

≥ 0.

Thus by Lemma 3.4 we have

Imρ(x̃, y) ≥ σ0|x1 − y1||x1 − L1

2 |+ ζσ2
0 |x1 − L1

2 |2
(1 + ζσ0)|x− y| (3.15)

≥ σ0d
2
1

√

(L1 + d1)2 + (L2 + d2)2
.

The case when |x2| ≤ L2/2 is simpler since x̃2 = x2. This completes the proof.

We remark that in this lemma we do not require the thickness of the PML layer
d1, d2 should have a uniform lower bound as required in [8, Lemma 3]. This is the
main advantage of our new complex stretching formulation in this paper.

Based on Lemma 3.1 and Lemma 3.5, the convergence of PML solution û to the
solution of (1.1)-(1.3) can be proved by the method in [8]. Here we omit the details.

4. Finite element approximation. In this section we introduce the finite ele-
ment approximations (2.6)-(2.7). Let b : H1(Ω2)×H1(Ω2) → C be the sesquilinear
form given by

b(ϕ, ψ) =

∫

Ω2

(A(x)∇ϕ · ∇ψ̄ − J(x)k(x)2ϕψ̄) dx. (4.16)
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The weak formulation of (2.6)-(2.7) is: Given g ∈ H1/2(ΓD), find û ∈ H1(Ω2) such
that u = g on ΓD, u = 0 on Γ2, and

b(û, ψ) = 0, ∀ψ ∈ H1
0 (Ω2). (4.17)

Let Γh
D be a piecewise linear approximation of the boundary ΓD and Ωh

2 be the
domain bounded by Γ2 and Γh

D. Let Mh be a regular triangulation of the domain
Ωh

2 such that the wave number k(x) is constant on each element K ∈ Mh. Let

Vh ⊂ H1(Ωh
2 ) be the conforming linear finite element space over Ωh

2 and
◦
V h =

{vh ∈ Vh : vh = 0 on Γh
D ∪ Γ2}. The finite element approximation to the PML

problem (2.6)-(2.7) reads as follows: Find uh ∈ Vh such that uh = gh on Γh
D, uh = 0

on Γ2, and

b(uh, ψh) = 0, ∀ψh ∈
◦
V h. (4.18)

Here gh is some piecewise linear approximation of g.
We will use adaptive finite element method based on a posteriori error estimate to

solve the discrete problem (4.18). We now introduce the a posteriori error estimator
used in our numerical experiments in the next section. For any K ∈ Mh, we denote
hK its diameter. Let Bh denote the set of all sides that do not lie on Γh

D and Γ2.
For any e ∈ Bh, he stands for its length. For any K ∈ Mh, we define the residual

Rh := ∇ · (A∇uh
∣

∣

K
) + Jk(x)2uh

∣

∣

K
. (4.19)

For any interior side e ∈ Bh which is common side of K1 and K2 ∈ Mh, we define
the jump residual across e:

Je := (A∇uh
∣

∣

K1
−A∇uh

∣

∣

K2
) · νe, (4.20)

using the convention that the unit normal νe to e points from K2 to K1. For any
K ∈ Mh, the local error estimator ηK is then defined as

ηK =
(

||hKRh||2L2(K) +
1

2

∑

e⊂∂K

he||Je||2L2(e)

)1/2

. (4.21)

5. Implementation and numerical examples. In this section we report two nu-
merical examples to illustrate the performance of the new anisotropic PML method
in this paper. The computations are carried out in MATLAB on Dell Precision
T5500 with Intel(R) Xeon(R)CPU 2.67GHz. The PML parameters are determined
as follows. First we choose L1, L2 such that D ⊂ B1. We choose the thickness of
the PML layer d1, d2 > 0. We take ζ = maxi,j=1,2 di/dj in η = 1 + ζσ and choose
the medium property σ(t) = (tσ̂(t))′ with

σ̂(t) = σ0

(

∫ t

0

s2(r0 − s)2 ds
)(

∫ r0

0

s2(r0 − s)2 ds
)−1

, ∀t ∈ (0, r0).

Let kmin = min{k(x) : x ∈ R
2}. The constant σ0 is so chosen that the exponentially

decaying factor

ω = e−γ0kmin = e
− σ0min(d21,d22)√

(L1+d1)2+(L2+d2)2
kmin ≤ 10−8, (5.22)

which makes the PML error negligible compared with the finite element discretiza-
tion error.

Once the PML region and the medium property are fixed, we use the standard
finite element adaptive strategy to modify the mesh according to the posteriori error
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estimate with the local error estimator ηK in (4.21). We define the global posteriori
error estimate

E =
(

∑

K∈Mh

η2K

)1/2

.

Now we introduce the adaptive anisotropic PML algorithm used in this paper.

Algorithm 5.1. Given tolerance TOL>0 and the initial mesh M0. Set Mh = M0.
(1) Solve the discrete problem (4.18) on M0.
(2) Compute the local error estimator ηK on each K ∈ M0 and the global a
posteriori error estimate E .
(4) While E > TOL do

• Refine elements in M̂h ⊂ Mh, where M̂h is the minimum subset of Mh such
that

(

∑

K∈M̂h

ηK

)1/2

≥ 1

2
E .

• Solve the discrete problem (4.18) on Mh.
• Computer the local error estimators ηK on each K ∈ Mh and the global a
posteriori error estimate E .
end while

Example 5.1. We consider the Helmholtz problem (1.1)-(1.3) in a two layered
medium where k(x) is defined by

k(x) =

{

k1 if x2 ≥ x1,

k2 if x2 < x1.
(5.23)

We note that in this example the interface where the wave number is discontinuous
does not align with the coordinate axises. The fundamental solution of Helmholtz
equation with this wave number can be constructed by using the method in [7]
to which we refer for further details. First we introduce some notation. Let h
be a bounded analytical function in C \ ((−∞,−k1] ∪ [k1,∞)), k1 ≤ k2. For any
a ∈ R, b > 0, we denote

I(h; a, b) =
i

2π

∫

SIP

h(ξ)

µ1 + µ2
eiξa+iµ1b dξ, (5.24)

where SIP is the Sommerfeld integral path ([9], [7]). By [7, Lemma 2.1], I(h; a, b)
can be computed by the following identity

I(h; a, b) =
i

2π

∫ ∞

1

1√
t2 − 1

[( µ1

µ1 + µ2
h
)

(ξ) +
( µ1

µ1 + µ2
h
)

(ξ̄)
]

eik1ρt dt, (5.25)

where ρ =
√
a2 + b2, ξ = k1|a|t

ρ +ik1b
√
t2−1
ρ , and µj = (k2j −ξ2)1/2, j = 1, 2. Suppose

the dirac source δy(x) is located at y ∈ {x ∈ R2 : x2 ≥ x1}, then the fundamental
solution function G(x, y) is

G(x, y) =

{

Φ(k1, x̄, ȳ)− Φ(k1, x̄, ȳ
′) + I(1; x̄1 − ȳ1, x̄2 + ȳ2) if x2 − x1 ≥ 0,

I(ei(µ1−µ2)x̄2 ; x̄1 − ȳ1,−x̄2 + ȳ2) if x2 − x1 < 0,

where x̄ = (
√
2
2 (x1 + x2),

√
2
2 (x2 − x1)) and ȳ′ = (ȳ1,−ȳ2) is the image of ȳ. Here

Φ(k, x, y) = i

4H
(1)
0 (k|x− y|) and H(1)

0 (z) is the first Hankel function of order zero.
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Figure 5.2. The domain setting and the direction of the vector
field along which the PML complex coordinate stretching is per-
formed in Example 1.

Based on the fundamental function G(x, y), we can construct an analytic solution
of the problem (1.1)-(1.3) with the scatterer D = (−1, 1) × (−1, 1). Suppose y =
(−0.5, 0.5). We set the source f = 0 and boundary condition g = G(x, y) in (1.1)-
(1.3). Then the exact solution of (1.1)-(1.3) is G(x, y) as we defined above. We
take L1 = L2 = 6 , the thickness of PML layer d1 = d2 = 1, and the wave numbers
k1 = 3π, k2 = 5π. Figure 5.2 shows the setting of domain and the direction of the
vector field along which the PML coordinate stretching is performed. We choose
the PML parameters σ0 = 11.86 and r0 = 0.5 to ensure (5.22).

It is clear that the direction of the vector field is continuous across the dis-
continuous interface. We use the complex coordinate stretching transform in sec-
tion 2 to define the anisotropic PML problem. Figure 5.3 shows the log Nk-
log ||u − uk||H1(Ω1) and log Nk-log Ek curves, where Nk is the number of nodes
of the mesh Mk and uk is the finite element solution over the mesh Mk. It indi-
cates clearly that the meshes and the associated numerical complexity are quasi-

optimal: ||u−uk||H1(Ω1) ≈ CN
−1/2
k and Ek ≈ CN

−1/2
k are valid asymptotically. As

a comparison, we also show the log Nk-log ||u−uk||H1(Ω1) and log Nk-log Ek curves
by using adaptive uniaxial PML method. We observe that two methods perform
comparably.

Figure 5.4 shows the adaptive mesh. We observe that the mesh in the domain
with larger wave number is more refined. This is reasonable since it needs more
DOFs to resolve the wave in the domain with larger wave number. We also show
the real part of numerical and exact solutions in Figure 5.5 from two different
observation directions.

Example 5.2. In this example, we show that our new PML method can be used
to solve the scattering problems with several discontinuous interfaces. The wave
number k(x) is defined by

k(x) =











k1 if x ∈ D1,

k2 if x ∈ D2,

k3 if x ∈ D3,

(5.26)

where D1 = {x ∈ R2 : −x1 − 2 ≤ x2 ≤ 0.6(x1 + 2)}, D2 = {x ∈ R2 : x2 ≤ 0, x2 ≤
−x1 − 2}, and D3 = {x ∈ R2 : x2 > 0, x2 ≥ 0.6(x1 + 2)}. We take k1 = 4π,
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Figure 5.3. (a) The quasi-optimality of the adaptive mesh refine-
ments of the error ||u − uk||H1(Ω1) for Example 1; (b) The quasi-
optimality of the adaptive mesh refinements of the a posteriori error
estimate for Example 1.

Figure 5.4. The adaptive mesh with 16,509 nodes for the
anisotropic PML method (left) and the adaptive mesh with 20,314
nodes for the uniaxial PML method (right) of Example 1. The
condition number of the finite element stiffness matrix on the cor-
responding mesh is 5.6770e+04 for the anisotropic PML method
and 1.1306e+06 for the uniaxial PML method.

k2 = 8π, k3 = 2π. We also choose L1 = L2 = 6 and the thickness of PML layer
d1 = d2 = 1. Figure 5.6 shows the setting of domain and the direction of the vector
field along which the PML coordinate stretching is performed. We choose the PML
parameters σ0 = 17.81 and r0 = 0.5 to ensure (5.22).
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(a) (b)

(c) (d)

Figure 5.5. Solutions of Example 1. (a) The numerical solution
observed from the direction [-1,-1,2]; (b) The numerical solution
observed from the direction [0,0,1]; (c) The exact solution observed
from the direction [-1,-1,2]; (d) The exact solution observed from
the direction [0,0,1].
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D3 k3D3    k3
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sourcesource
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Figure 5.6. The domain setting and the direction of the vector
field along which the PML complex coordinate stretching is per-
formed in Example 2.

Now we describe the PML complex coordinate stretching transform x̃ = F (x)
used in this example. Let A0 = (3,−3), A1 = (4,−4), B0 = (1,−3), B1 = (2,−4),
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and B2 = (1,−4) (see Fig. 5.6). The transform F (x) is the same as the transform
for the constant wave number in section 2 when x ∈ ΩPML \ Ω̄A0A1B2B0 , where
ΩA0A1B2B0 denotes the quadrilateral with vertices A0, A1, B2, B0. To define the
transform in ΩA0A1B2B0 , we first notice that the distance between A0, B0 and the
distance between A1, B1 satisfy dA0B0 = dA1B1 = 2. For x ∈ ΩA0A1B2B0 , we define

r ∈ (0,
√

d21 + d22), s ∈ (0, 1) such that

x1 =

{

(L1

2 − s · dA0B0) + r cos θ if x ∈ ΩA0A1B1B0 ,

(L1

2 − dA0B0) + r cos θ · s if x ∈ ΩB0B1B2 ,

x2 = −L2

2
− r sin θ.

Here ΩA0A1B1B0 is the quadrilateral with vertices A0, A1, B1, B0 and ΩB0B1B2 is the
triangle with vertices B0, B1, B2. Then the complex coordinate stretching function
is

x̃1 =

{

(L1

2 − s · dA0B0) + β(r(x))
[

x1 − (L1

2 − s · dA0B0)
]

if x ∈ ΩA0A1B1B0 ,

(L1

2 − dA0B0) + β(r(x))
[

x1 − (L1

2 − dA0B0)
]

if x ∈ ΩB0B1B2 ,

x̃2 = −L2

2
+ β(r(x))(x2 +

L2

2
),

where r(x) = −L2/2+x2

sin θ .
Let the source f be a Gaussian point source at (r1, r2) = (1, 0)

f(x) = e−(
4k1
π )2((x1−r1)

2+(x2−r2)
2).

Figure 5.7 shows the adaptive mesh. We observe that the mesh in the domain with
small wave number is coarser. Figure 5.8 shows the real part of numerical solution
from two different observation directions. Figure 5.9 shows the log Nk-log Ek curve,
where Nk is the number of nodes of the mesh Mk and Ek is the associated a
posteriori error estimate. It indicates clearly that the meshes and the associated

numerical complexity are quasi-optimal: Ek ≈ CN
−1/2
k is valid asymptotically.
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[1] J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Com-
put. Phys., 114 (1994), 185-200.

[2] J.H. Bramble and J.E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scat-

tering problems in R2 and R3, J. Appl. Comput. Math., to appear.
[3] Z. Chen and H. Wu, An adaptive finite element method with perfectly matched absorbing layers

for the wave scattering by periodic structures SIAM J. Nummer. Anal., 41 (2003), 799-826.

[4] Z. Chen and X. Liu, An adaptive perfectly matched layer technique for time-harmonic scatter-

ing problems, SIAM J. Numer. Anal., 41 (2003), 799-826.
[5] Z. Chen and X.M. Wu, An adaptive uniaxial perfectly matched layer technique for time-

Harmonic Scattering Problems, Numerical Mathematics: Theory, Methods and Applications,
1 (2008), 113-137.

[6] J. Chen and Z. Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic

electromagnetic scattering problems, Math. Comp., 77 (2008), 673-698.
[7] Z. Chen and W. Zheng, Convergence of the uniaxial perfectly matched layer method for time-

harmonic scattering problems in two-layered media, SIAM J. Numer. Anal., 48 (2010), 2158-2185.
[8] Z. Chen, T. Cui, L. Zhang, An adaptive anisotropic perfectly matched layer method for 3D

time harmonic electromagnetic scattering problems, Numer. Math., to appear.
[9] W.C. Chew, Waves and Fields in Inhomogeneous Media, Springer, New York, 1990.
[10] W.C. Chew and W. Weedon, A 3D perfectly matched medium from modified Maxwell’s equa-

tions with stretched coordinates, Microwave Opt. Tech. Lett., 7 (1994), 599-604.



14 CHEN, LIANG, AND XIANG

Figure 5.7. The adaptive mesh with 16,137 nodes of Example 2.

(a) (b)

Figure 5.8. Solutions of Example 2. (a) The numerical solution
observed from the direction [-1,-1,2]; (b) The numerical solution
observed from the direction [0,0,1].

[11] F. Collino and P.B. Monk, The perfectly matched layer in curvilinear coordinates, SIAM J.
Sci. Comput., 19 (1998), 2061-2090.

[12] T. Hohage, F. Schmidt, and L. Zschiedrich, Solving time-harmonic scattering problems based

on the pole condition. II: Convergence of the PML method, SIAM J. Math. Anal., 35 (2003),
547-560.

[13] S. Kim and J.E. Pasciak, Analysis of a Cartisian PML approximation to acoustic scattering

problems in R2, J. Math. Anal. Appl., 370 (2010), 168-186.
[14] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equa-

tions, Computing, 60 (1998), 229-241.
[15] M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geometry,
Proc. Roy. Soc. Eding., 131 (2001), 1183-1207.



AN ANISOTROPIC PERFECTLY MATCHED LAYER METHOD 15

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

Number of vertices N
k

 

 

a posteriori error estimate
a line with slope −1/2

Figure 5.9. The quasi-optimality of the adaptive mesh refine-
ments of the a posteriori error estimate for Example 2.

[16] K.C. Meza-Fajardo and A.S. Papageorgiou, A nonconventional, split-field, perfectly matched

layer for wave propagation in isotropic and anisotropic elastic media: stability analysis, Bulletin
Seismological Soc. Am., 98 (2008), 1811-1836.

[17] A.F. Oskooi, L. Zhang, Y. Avniel, and S.G. Johnson, The failure of perfectly matched layers,

and towards their redemption by adiabatic absorbers, Optical Express, 16 (2008), 11376-11392.
[18] F.L. Teixeira and W.C. Chew, Advances in the theory of perfectly matched layers, In: ”Fast
and Efficient Algorithms in Computational Electromagnetics” (eds W.C. Chew et al), Artech
House, (2001), 283-346.

[19] D.V. Trenev, Spatial Scaling for the Numerical Approximation of Problems on Unbounded

Domains, PhD Thesis, Texas A& M University, 2009.
[20] E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Nu-
mer. Math., 27 (1998), 533-557.

[21] L. Zschiedrich, R. Klose, A. Schödle, and F. Schmidt, A new finite element realization of the

perfectly matched layer method for Helmholtz scattering problems on polygonal domains in two

dimensions, J. Comput. Appl. Math., 188 (2006), 12-32.

E-mail address: zmchen@lsec.cc.ac.cn

E-mail address: liangchao@lsec.cc.ac.cn

E-mail address: xiangxs@lsec.cc.ac.cn

mailto:zmchen@lsec.cc.ac.cn
mailto:liangchao@lsec.cc.ac.cn
mailto:xiangxs@lsec.cc.ac.cn

	1. Introduction
	2. The anisotropic PML method
	3. The complex coordinates stretching transform
	3.1. Ellipticity of A(x)
	3.2. Exponential decay of the stretched Green function

	4. Finite element approximation
	5. Implementation and numerical examples
	REFERENCES

