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《⼤数据分析中的优化算法选讲》课程⼤纲
课程简介

本课程聚焦于⼤数据分析中使⽤的优化算法，探讨近年来在机器学习、数据挖掘和统计计算中的新型优化
⽅法。课程采⽤讨论式教学，基于前沿论⽂进⾏分析、推导和实验验证，以培养学⽣的阅读、理解和批判
性思考能⼒。

课程⽬标

�. 了解⼤数据分析中的关键优化问题及挑战。
�. 学习⼏种主流和新兴的优化算法，并分析其理论基础和适⽤场景。
�. 通过论⽂阅读和讨论，提⾼学术研究能⼒。
�. 探索优化算法在⼤数据环境下的扩展与应⽤。

课程⼤纲

第⼀部分：优化基础与⼤数据挑战

�. 绪论

课程介绍与⼤纲概述
⼤数据分析中的优化问题
经典优化算法回顾（梯度下降、⽜顿法、凸优化）

�. ⼤规模优化的挑战

计算复杂性与存储限制
分布式与并⾏计算的必要性
⾮凸优化问题的难点
优化⽬标的设计

第⼆部分：前沿优化算法选讲

�. 随机优化⽅法

随机梯度下降（SGD）及其变体（Adam, RMSProp, AdaGrad）
⼤规模机器学习中的优化

�. 分布式与并⾏优化

分布式梯度下降（DGD）与联邦优化
多智能体优化与计算资源调度
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�. ⾮凸优化与全局收敛

逃离鞍点的优化⽅法（随机扰动、动量⽅法）
近期⾮凸优化理论突破

�. 强化学习与优化

强化学习中的优化⽅法
⾃适应优化策略与博弈论⽅法

�. 优化中的稀疏性与低秩结构

L1 罚项与稀疏学习
低秩矩阵优化（核范数正则化）

第三部分：论⽂研讨与前沿应⽤

�. 论⽂研讨 I

近五年顶级会议（NeurIPS, ICML, AAAI）论⽂选读
关键算法分析与实验复现讨论

�. 论⽂研讨 II

开源代码阅读与优化实践
讨论优化算法在不同任务中的适⽤性

��. 优化在⼯业应⽤中的案例研究

⾦融、医疗、推荐系统中的优化⽅法
⾯向超⼤规模数据的优化⽅案（Google, Meta, OpenAI等案例）

课程要求

阅读⾄少⼀篇前沿论⽂，并提交读书报告。
进⾏⼩组讨论，提出改进优化⽅法的设想。

相关⽂献
�. Revocable Deep Reinforcement Learning with Affinity Regularization for Outlier-Robust

Graph Matching

发表会议：ICLR 2023（国际学习表征会议）
链接：https://blog.csdn.net/weixin_42645636/article/details/135068534
摘要：该论⽂提出了⼀种基于深度强化学习的图匹配⽅法RGM。该⽅法采⽤顺序节点匹配⽅
案，⾃然适⽤于选择性内匹配策略来对抗离群点。此外，作者还设计了⼀个可撤销动作框
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架，以提⾼代理在复杂约束图匹配中的灵活性，并提出了⼀种⼆次近似技术来正则化亲和度
得分，以在存在离群点的情况下进⾏优化。

�. Optimizing Solution-Samplers for Combinatorial Problems:  The Landscape of Policy-

Gradient Methods

发表会议：NeurIPS 2023（神经信息处理系统⼤会）
链接：https://blog.csdn.net/weixin_42645636/article/details/135068534
摘要：本⽂介绍了⼀种新理论框架，⽤于分析深度神经⽹络和强化学习⽅法在解决组合问题
⽅⾯的有效性。作者提出了⼀些问题，例如是否存在具有⾜够表达能⼒、可处理性和良性优
化景观的⽣成模型。通过对这些问题的研究，作者得出了肯定的答案，并证明了该⽅法适⽤
于多种组合问题。同时，作者还引⼊了⼀种新颖的正则化过程，有助于解决梯度消失和避免
不良的静⽌点。

�. SurCo:  Learning Linear Surrogates For Combinatorial Nonlinear Optimization Problems

发表会议：ICML 2023（国际机器学习会议）
链接：https://blog.csdn.net/weixin_42645636/article/details/135068534
摘要：论⽂介绍了⼀种名为SurCo的⽅法，⽤于解决具有⾮线性成本函数和组合约束条件的实
际优化问题。作者提出了学习线性替代成本的SurCo，它可以⽤于现有的组合求解器中，以输
出原始⾮线性组合优化问题的良好解决⽅案。作者还提出了三种SurCo变体，并通过实验表
明，在现实世界的优化问题中，SurCo⽐最先进的⽅法和领域专家⽅法更快地找到了更好的解
决⽅案。

�. A Survey of Optimization Methods for Training DL Models:  Theoretical Perspective on

Convergence and Generalization

发表杂志：Transactions on Machine Learning Research

链接：https://openreview.net/forum?id=TDujguk7NG&utm_source=chatgpt.com

摘要：As data sets grow in size and complexity, it is becoming more difficult to pull useful

features from them using hand-crafted feature extractors. For this reason, deep learning

(DL) frameworks are now widely popular. DL frameworks process input data using multi-

layer networks. Importantly, DL approaches, as opposed to traditional machine learning

(ML) methods, automatically find high-quality representation of complex data useful for a

particular learning task. The Holy Grail of DL and one of the most mysterious challenges in

all of modern ML is to develop a fundamental understanding of DL optimization and

generalization. While numerous optimization techniques have been introduced in the

literature to navigate the exploration of the highly non-convex DL optimization landscape,

many survey papers reviewing them primarily focus on summarizing these methodologies,

often overlooking the critical theoretical analyses of these methods. In this paper, we

provide an extensive summary of the theoretical foundations of optimization methods in

DL, including presenting various methodologies, their convergence analyses, and

generalization abilities. This paper not only includes theoretical analysis of popular generic

gradient-based first-order and second-order methods, but it also covers the analysis of

the optimization techniques adapting to the properties of the DL loss landscape and

explicitly encouraging the discovery of well-generalizing optimal points. Additionally, we
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extend our discussion to distributed optimization methods that facilitate parallel

computations, including both centralized and decentralized approaches. We provide both

convex and non-convex analysis for the optimization algorithms considered in this survey

paper. Finally, this paper aims to serve as a comprehensive theoretical handbook on

optimization methods for DL, offering insights and understanding to both novice and

seasoned researchers in the field.

�. A comparison of optimization algorithms for deep learning

发表杂志：International Journal of Pattern Recognition and Artificial Intelligence, 2020,

34(13): 2052013.

链接：https://www.worldscientific.com/doi/abs/10.1142/S0218001420520138
摘要：In recent years, we have witnessed the rise of deep learning. Deep neural networks

have proved their success in many areas. However, the optimization of these networks has

become more difficult as neural networks going deeper and datasets becoming bigger.

Therefore, more advanced optimization algorithms have been proposed over the past

years. In this study, widely used optimization algorithms for deep learning are examined in

detail. To this end, these algorithms called adaptive gradient methods are implemented for

both supervised and unsupervised tasks. The behavior of the algorithms during training

and results on four image datasets, namely, MNIST, CIFAR-10, Kaggle Flowers and Labeled

Faces in the Wild are compared by pointing out their differences against basic optimization

algorithms.

�. DeepSeek-V3 Technical Report

链接：https://arxiv.org/abs/2412.19437
摘要：We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with

671B total parameters with 37B activated for each token. To achieve efficient inference

and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and

DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2.

Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and

sets a multi-token prediction training objective for stronger performance. We pre-train

DeepSeek-V3 on 14.8 trillion diverse and high-quality tokens, followed by Supervised Fine-

Tuning and Reinforcement Learning stages to fully harness its capabilities. Comprehensive

evaluations reveal that DeepSeek-V3 outperforms other open-source models and

achieves performance comparable to leading closed-source models. Despite its excellent

performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training. In

addition, its training process is remarkably stable. Throughout the entire training process,

we did not experience any irrecoverable loss spikes or perform any rollbacks.

A Survey of Optimization Methods for Training DL Models

�. Optimization Challenges in Deep Learning (DL): As deep learning models grow in complexity

and scale, optimization remains a central challenge, requiring methods that ensure fast
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convergence, generalization, and scalability.

�. Gradient-Based Methods:

First-order methods (SGD, SGD with momentum, Adam, etc.) are widely used due to

computational efficiency.

Second-order methods (Newtonʼs Method, Quasi-Newton Methods like BFGS and L-

BFGS) provide faster convergence per iteration but are computationally expensive.

Some recent approaches modify first-order methods with perturbations and stochastic

dynamics to escape saddle points more effectively.

�. Loss Landscape-Aware Methods:

These approaches focus on adapting optimization techniques to the properties of deep

learning loss landscapes.

Methods like Sharpness-Aware Minimization (SAM), Entropy-SGD, and Low-Pass Filter

SGD aim to find solutions that generalize better by locating flatter minima.

�. Distributed Optimization:

Both centralized (Downpour SGD, Elastic Averaging SGD) and decentralized (D-PSGD,

MATCHA) methods were discussed to improve scalability and efficiency across multiple

computing nodes.

Trade-offs between convergence speed and communication overhead were analyzed.

�. Theoretical Contributions:

The paper provides a rigorous theoretical foundation for optimization methods, including

convergence analysis and generalization error bounds.

Key assumptions like convexity, smoothness, variance bounds, and step-size choices are

discussed in relation to their practical implications.

�. Bridging Theory and Practice:

While theoretical guarantees provide insights into optimization performance, real-world

deep learning scenarios often deviate due to practical constraints.

The paper highlights open challenges in making theoretical insights more applicable to

large-scale deep learning problems.

Main Challenges in Optimizing Deep Learning Models

Deep learning (DL) optimization is notoriously difficult due to the highly non-convex and high-

dimensional loss landscapes involved. Neural network loss surfaces contain many saddle points and

local minima, making it hard to analyze or guarantee finding a global optimum (1). Theoretical

understanding of these landscapes remains limited – most analytical results rely on unrealistic

assumptions or apply only to simple (e.g. shallow) networks (2). On the other hand, empirical evidence

suggests that in very over-parameterized networks, many minima are nearly equivalent in training loss

https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=poorly,2015%3B%20Ha%02effele%20%26%20Vidal%2C%202015
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=poorly,2015%3B%20Ha%02effele%20%26%20Vidal%2C%202015
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and generalization performance (poor local minima become less problematic as model size grows) (3).

Key optimization goals in DL are thus to develop methods that converge efficiently on such complex

terrain, generalize well to new data, scale to large datasets and models, and remain

consistent/stable in highly parallel environments (4). Achieving all these simultaneously is challenging

and is considered a “holy grail”  for understanding DL optimization (5).

First-Order vs.  Second-Order Optimization Methods (Convergence Rates)

First-order methods – which use only gradient information – are the workhorses of DL training due to

their low per-iteration cost and ease of implementation (6). This category includes plain gradient

descent and stochastic gradient descent (SGD) and their variants (momentum methods,

AdaGrad/Adam, etc.). Theoretically, vanilla SGD achieves sublinear convergence in standard settings

(e.g. $O(1/K)$ in strongly convex problems and on the order of $1/\sqrt{K}$ in non-convex settings,

where $K$ is the number of iterations) (7) (8). Momentum-based gradient methods share a similar

worst-case convergence order as SGD in stochastic settings (9). Adaptive learning-rate methods like

Adam also have comparable sublinear rates (e.g. $O(\ln K/\sqrt{K})$) in theory (10). In practice,

however, first-order optimizers often converge faster than these bounds suggest, thanks to heuristics

like learning-rate schedules and data-dependent adaptation (11) (12). (Indeed, the survey notes that

theoretical rates do not fully explain the empirical speedups of adaptive methods (13).) First-order

methods remain popular because they are memory-efficient and straightforward to apply stochastically

on huge datasets (14), even if their theoretical convergence can be relatively slow per iteration.

Second-order methods exploit curvature information (the Hessian or Hessian approximations) to

accelerate convergence. In theory, they can converge in far fewer iterations – for instance, Newtonʼs

method enjoys quadratic convergence near an optimum (dramatically faster than the linear rate of

gradient descent under similar assumptions) (15). Quasi-Newton methods like BFGS attain superlinear

convergence while avoiding an exact Hessian computation (16). In particular, the full BFGS algorithm

reduces the per-iteration complexity from cubic to quadratic time, and its limited-memory variant (L-

BFGS) further brings it down to roughly linear per iteration by storing a compact approximation of the

Hessian (17) (18). The trade-off is that second-order methods have much higher computational and

memory costs per step. Computing or inverting a Hessian in a deep network is prohibitively expensive

(cubic time in the number of parameters) (19), which is why pure second-order methods are rarely

used for large-scale DL in practice. Instead, practitioners often stick to first-order methods or use very

limited curvature approximations, accepting a slower iteration speed in exchange for tractability. The

survey highlights this contrast: second-order methods converge in fewer iterations theoretically, but

their overhead makes them challenging to deploy in modern deep learning settings (20) (21).

Loss Landscape-Aware Optimization Strategies and Generalization

Not all minima of a neural network loss are equal – in particular, flat minima (where the loss landscape

around the solution is broad and flat) tend to generalize better than sharp minima (narrow, steep

basins) (22). To leverage this insight, researchers have developed optimization strategies that explicitly

account for the loss landscape geometry and encourage finding flatter solutions. These techniques

modify the training objective or process to favor regions of the parameter space that yield low loss and

https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=of%20a%20large%20number%20of,later
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=existing%20optimization%20methods%20for%20training,2013%3B%20Kingma%20%26%20Ba%2C%202014
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=learning%20task,of%20DL%20optimization%20and%20generalization
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=performance%20of%20DL%20models,1970%3B%20Shanno%2C%201970%3B%20Liu
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=Remark,rate%20in%20the%20convex%20setting
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=match%20at%20L1458%20Remark,sublinear%20convergence%20rate%20in
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=convergence%20results%20of%20first%02order%20methods,SGD
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=Remark,For
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=convergence%20results%20of%20first%02order%20methods,SGD
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=based%20on%20the%20theoretical%20results,to%20the%20following%20key%20reasons
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=convergence%20results%20of%20first%02order%20methods,SGD
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=methods%20,Nocedal%2C%201989%3B%20Yuan%2C%201991
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=Compared%20with%20the%20first,the%20Hessain%20matrix%20reslts%20in
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shannon%20,proposed
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shannon%20,proposed
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=the%20memory%20storage%20and%20the,order%20methods
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=which%20is%20much%20faster%20that,order
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=which%20is%20much%20faster%20that,order
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=high,order
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=enough%20to%20x%20%E2%88%97%20flat,them%2C%20and%20thus%20generalizes%20very
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are robust to perturbations (indicative of flatness). Key categories of loss landscape-aware methods

include:

Regularization-based approaches – add explicit regularizers or penalties related to sharpness.

For example, methods have used measures like minimum description length, local entropy, or

“$\epsilon$-sharpness”  to penalize overly sharp minima (23). Sharpness-Aware Minimization

(SAM) is a recent instance that optimizes a worst-case loss in an $\epsilon$-radius

neighborhood around the weights, thereby steering the optimizer toward parameters with

uniformly low loss in their vicinity (i.e. flatter minima).

Surrogate loss smoothing – modify the loss function itself to smooth out rugged minima. One

approach is to evolve the objective via a diffusion process (24) (e.g. gradually convolving the

loss with a Gaussian kernel), which can filter out sharp spikes in the landscape and make

optimization trajectories less likely to get stuck in narrow minima. Entropy-SGD follows this idea

by augmenting the loss with an entropy term, effectively optimizing a locally averaged version of

the objective to find wider valleys.

Weight averaging strategies – average network weights over time or across training runs to

obtain flatter solutions (25). For instance, Stochastic Weight Averaging (SWA) averages model

parameters from different epochs towards the end of training, producing a solution roughly

located at the center of multiple SGD iterates. This tends to land in a broad basin of the loss

surface and often improves generalization.

Noise injection and smoothing – introduce randomness during training to explore flat regions.

Methods like SmoothOut inject noise into the model weights or gradients and average the results

from multiple noisy copies (26). This effectively smooths the loss landscape seen by the

optimizer, helping it escape sharp, narrow minima. Some of these techniques run multiple

perturbed models in parallel and aggregate their updates, which has been used in large-batch

distributed training to maintain generalization when individual batch runs might converge to

sharper minima (27).

The survey analyzes four representative methods – SAM, Entropy-SGD, Low-Pass Filter SGD, and

SmoothOut – from the above categories (28). A common theme is that by favoring flat regions of the

loss surface, these algorithms find solutions with better generalization performance (lower test error).

The paper provides theoretical insight into this improvement: for example, it shows that modifying SGD

with a loss-smoothing filter or noise can increase the algorithmʼs uniform stability, which directly

bounds the generalization gap (29). In fact, the theoretical analysis demonstrates that these

landscape-aware optimizers can achieve a provably smaller generalization error than standard SGD,

under reasonable assumptions (30) (31). In summary, incorporating loss geometry into the optimization

process tends to lead to flatter minima and hence models that perform better on unseen data (32).

This line of research bridges the gap between pure optimization and generalization, showing how

guiding the optimizer through particular regions of the landscape can yield more robust learned

models.

Distributed Optimization Methods:  Centralized vs.  Decentralized

https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=the%20recovery%20of%20flat%20optima,averaging%20strategies%20that%20average
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=Keskar%20et%20al.%2C%202017b%29%2C%20low,in%20the%20model%20weights%20and
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=objective%20function%20according%20to%20the,In
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=model%20weights%20across%20training%20epochs,In
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=averaging%20strategies%20that%20average%20model,paper%2C%20we%20choose%20four%20most
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=this%20paper%2C%20we%20choose%20four,optimization%20further%20continues%20to%20distributed
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=generalization%20error%20and%20both%20the,leads%20to%20superior%20generalization%20performance
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=generalization%20error%20and%20both%20the,leads%20to%20superior%20generalization%20performance
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=better%20optimal%20point%20with%20lower,smaller%20stability%20gap%2C%20otherwise%20lower
https://openreview.net/pdf/6ea08fd76a7187e019710a680961f905e98366c4.pdf#:~:text=grounded%20in%20the%20understanding%20of,provides%20valuable%20insights%20into%20the
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As datasets and models grow, it becomes infeasible to train a deep network on a single machine.

Distributed optimization methods tackle this by parallelizing training across multiple workers. The

survey distinguishes between centralized and decentralized strategies, each with its own design and

theoretical considerations.

Centralized approaches:  These rely on a central parameter server (or coordinator) that

aggregates updates from multiple worker nodes. A classic example is Downpour SGD (from

Googleʼs DistBelief), where each worker computes gradients on a subset of data and

asynchronously sends updates to a central server which maintains the global model (33). This

setup achieves data-parallel speedups but can suffer from stale gradients (updates arriving late

while the model has already moved on) due to asynchrony (34). To improve on basic Downpour,

algorithms like Elastic Averaging SGD (EASGD) introduce a soft coupling between each worker ʼs

local model and the global model. In EASGD, workers do not immediately overwrite the global

parameters; instead, each worker ʼs parameters are allowed to deviate from the central model to

explore the landscape, while a periodic “elastic”  force pulls them toward the central average

(35). This encourages exploration of different minima by each worker and reduces the risk of all

workers converging to the same sharp basin. An extension called Leader SGD (LSGD) further

refines this idea by grouping workers and only periodically synchronizing with a “ leader,”  aligning

better with modern hardware architectures to reduce communication overhead (36). In general,

centralized schemes benefit from a single global view of the model (making it easier to enforce

consistency), but must address the communication bottleneck and potential single-point-of-

failure at the parameter server.

Decentralized approaches:  These methods eliminate the central server and instead have

workers communicate peer-to-peer according to some network topology (37). Each worker

keeps a copy of the model and periodically exchanges parameters or gradients with its

neighbors. A prototypical example is Decentralized Parallel SGD (D-PSGD) (38). In D-PSGD, after

computing a gradient step on its local data, each worker averages its updated parameters with

those of adjacent workers (as defined by a communication graph) (39). Over time, this neighbor-

to-neighbor averaging drives all workersʼ models toward consensus, effectively approximating

what a centralized averaging would do, but without any single coordinating node. The chief

advantage is that decentralized training removes the server bottleneck, allowing better scaling

when many workers are involved or network bandwidth is limited (40). However, analysis of

decentralized algorithms must account for the network connectivity (e.g. the spectral properties

of the graphʼs weight matrix) to ensure all workers converge to the same solution. The survey

notes that under standard assumptions (like all workers optimizing the same objective and a

connected communication graph), decentralized SGD can achieve convergence rates analogous

to standard SGD, with an extra factor depending on the networkʼs consensus speed (41) (42).

Decentralized methods are thus a promising avenue to scale up training, though they require

careful design of communication protocols and synchronization frequency to balance throughput

and convergence accuracy.

The paper provides a thorough summary of both approaches, outlining their respective advantages

and limitations. For centralized methods like Downpour and EASGD, it discusses the convergence
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guarantees (largely showing they can match the baseline SGD rate in both convex and non-convex

settings under certain conditions) (43) (44). For decentralized methods, it covers theoretical results

ensuring that, for example, D-PSGD converges to a near-optimal solution at a sublinear rate, with the

gap to the true optimum diminishing as communication rounds proceed (45). In essence, distributed

optimization allows deep learning training to be parallelized across compute nodes, and with the right

algorithmic adjustments, one can retain provable convergence properties close to those of single-

worker training. The survey highlights that practicality in this domain often lies in mitigating issues like

gradient staleness (for asynchronous centralized SGD) and ensuring network-induced delays donʼt

slow convergence (for decentralized SGD).

Theoretical Insights:  Convergence and Generalization Analysis

A major contribution of the survey is compiling and elucidating the theoretical guarantees for a wide

range of optimization methods in deep learning. This includes both convergence rates (how fast an

algorithm approaches a minimum or stationary point) and generalization error bounds (how well the

solution found minimizes the true risk versus the training risk). The paper presents known theoretical

results (often from prior literature) in a unified framework, covering convex cases for intuition and

extending to the non-convex scenarios relevant to deep networks. Below are some key theoretical

findings highlighted:

Convergence of first-order methods:  In convex optimization, gradient descent and SGD

variants have well-known convergence rates. For example, with a sufficiently small or decayed

step size, SGD attains a convergence rate on the order of $1/K$ in strongly convex settings (46).

In non-convex problems, one cannot guarantee convergence to a global minimum, but SGD is

proven to make the gradient norm small at an O(1/√K) rate (a sublinear convergence toward a

stationary point) (47). Momentum-based methods (e.g. heavy-ball or Nesterov momentum) and

adaptive optimizers (Adagrad, Adam) were shown to share essentially the same order of

convergence in theory (usually $O(1/\sqrt{K})$, sometimes with a logarithmic factor) (48).

Notably, the survey points out that while momentum and adaptive methods often converge faster

in practice, their theoretical asymptotic rates do not improve upon vanilla SGD in the worst case

(49) (50). (For instance, Adamʼs proven rate is $O(\ln K/\sqrt{K})$, which is only a small

adjustment to SGDʼs $O(1/\sqrt{K})$ (51).) On the other hand, the constants and conditions in

these analyses differ, so direct comparisons are difficult – but at a high level, all these first-order

methods achieve sublinear convergence in general non-convex problems. The survey also

tabulates these results and notes that increasing the momentum hyperparameter can actually

deteriorate some theoretical convergence bounds (52).

Convergence of second-order methods:  Classical theory shows that second-order algorithms

can converge much faster per iteration if the cost of each iteration is ignored. Newtonʼs method,

for instance, enjoys quadratic convergence (the error decreases geometrically squared at each

step) when applied to optimize a locally well-behaved objective (53). Quasi-Newton methods like

BFGS are proven to have superlinear convergence – meaning they improve faster than any linear

rate once close to optimum – under convex assumptions (54). The survey reiterates these points

and provides the convergence rate results for Newtonʼs method, BFGS, and L-BFGS. However, it
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also emphasizes that these results often assume convexity or local smoothness, and extending

them to general deep learning scenarios (which are non-convex) is non-trivial. In practice, one

typically doesnʼt see pure quadratic convergence in training deep nets because one never runs

full Newton steps globally; nonetheless, these methods can reach high-accuracy optima in fewer

iterations than first-order methods if they are feasible to run.

Loss landscape-aware methodsʼ  theory:  For the newer optimization strategies designed to

find flat minima (SAM, Entropy-SGD, LPF-SGD, SmoothOut, etc.), the survey offers theoretical

analysis mainly in terms of uniform stability and related generalization measures. A central

theoretical tool is algorithmic stability: if an optimization algorithmʼs output does not change

much when a single training example is modified, then the algorithm is said to be stable and one

can bound its generalization error (55). The paper shows that techniques which smooth or

regularize the loss landscape can increase the algorithmʼs stability. For example, adding noise (as

in SmoothOut or stochastic Langevin-based methods) effectively smooths the loss function and

can be shown to reduce the sensitivity of the final weights to any one data point (56).

Consequently, one can prove a smaller generalization gap for such methods compared to

standard SGD. In one analysis, the authors note that an SGD variant with a gradient low-pass

filter yields a smaller stability constant and thus a lower generalization error bound than plain

SGD (57). Similarly, SAMʼs update (which seeks parameters that minimize loss even under an

adversarial perturbation) can be seen as optimizing a uniformly worse-case loss, which intuitively

should lead to a solution that is stable against input perturbations and noise. While the survey

primarily summarizes known results, it provides a cohesive view that these landscape-aware

algorithms not only find minima with low training loss but also have provable generalization

advantages by virtue of the flatter, smoother loss basin they converge to (58).

Generalization error analysis:  Beyond stability, the survey touches on other theoretical

frameworks for generalization in the context of optimization. It references classical results (e.g.

those of Hardt et al. 2016) which give generalization guarantees for SGD under certain

conditions (59) (60). In particular, for convex loss functions, one can bound the generalization

error of SGD in terms of the number of passes and learning rate schedule (61). For non-convex

cases, the results are weaker but still indicate that, as the number of training samples grows, the

generalization error of SGD tends to decrease (62). The survey also compares algorithms:

interestingly, one finding is that adding heavy momentum (as in the stochastic heavy-ball

method) may hurt generalization compared to vanilla SGD – the analysis showed SGD (with no

momentum) had a smaller generalization bound than the momentum method under their studied

setup (63). This aligns with some empirical observations that adaptive or accelerated optimizers

can sometimes lead to worse test performance even if they optimize training loss faster. Overall,

the theoretical contributions of the paper lie in systematically presenting these convergence

proofs and generalization error bounds for the gamut of optimization methods, thereby serving

as a comprehensive reference. It bridges results from the optimization literature and

generalization theory to provide a clearer picture of why and how certain methods work for deep

learning (64) (65).

Practical Challenges in Applying Theoretical Results to Real-World DL
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While the paper provides a rich theoretical perspective, it also implicitly highlights the difficulties in

translating theory directly into practice for deep learning:

Mismatch between theory assumptions and reality:  Many convergence proofs require

assumptions like convexity, Lipschitz continuity of gradients, or IID data that are not strictly true

for modern deep nets (66). Deep learning landscapes are non-convex and complex, and data

can be non-identically distributed (especially in distributed or federated settings). This means

theoretical guarantees (e.g. global convergence or strong stability bounds) often do not directly

hold in the realistic training scenario or are derived under conditions that practitioners canʼt

verify. Thus, there is a gap between the idealized models used in theory and the behavior of

actual neural network training.

Computational feasibility vs.  theoretical optimality:  Methods that are theoretically fast (like

second-order Newton-type algorithms) or provably find flatter minima (like certain regularized

objectives) can be computationally impractical at scale. For example, Newtonʼs method requires

inverting a Hessian matrix, an $O(n^3)$ operation in the number of parameters, which is

intractable for modern networks (67). Even storing a full Hessian or its approximation (BFGS) is

memory-intensive (68). As a result, practitioners rarely use pure second-order methods despite

their superior convergence properties. Instead, they rely on simpler first-order methods,

accepting slower theoretical convergence for the sake of efficiency and scalability. This indicates

a challenge: the algorithms that theory tells us are optimal often cannot be deployed on real

problems without modifications. Similarly, some “ loss landscape-aware”  techniques require

heavy computation (e.g. SAM requires two forward-backward passes per step), which can be a

barrier despite their generalization benefits.

Empirical methods outpacing theory:  In some cases, techniques that work remarkably well in

practice lack a satisfying theoretical explanation or guarantee. The survey points out the example

of Hessian-free optimization – an approach that uses iterative methods to approximate second-

order steps without explicit Hessian construction – which has enabled training of certain deep

networks (notably by Martens et al.) but remains largely empirically justified. There are no strong

theoretical convergence guarantees for these Hessian-free methods. Researchers often

deploy such methods based on intuition and empirical results, with theory catching up only later

if at all. This reflects a broader reality that practical innovation in DL optimization can get ahead

of what current theory can explain, leaving a gap in our formal understanding.

Discrepancies in observed vs.  predicted performance:  Theoretical bounds on convergence

or generalization are often worst-case and may not capture the typical behavior of an algorithm

on real data. For instance, according to theory, adaptive optimizers like Adam have essentially

the same asymptotic order of convergence as SGD (69), yet empirically they often reach a good

solution much faster in wall-clock time or require fewer epochs on complex problems (70). This

suggests that our theoretical analysis is missing some facets of why these methods work well

(e.g. how they adapt to the data geometry in practice). Likewise, generalization bounds for deep

learning (when obtained) are frequently too loose to be practical – they might guarantee, say,

that the test error is within 5%  of training error only when the number of samples is

astronomically large, whereas in reality deep networks already achieve low test error with far
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fewer samples. The survey acknowledges, for example, that even though we can bound

generalization error via stability, it “might not fully capture”  the differences between optimizers in

practice (71). In short, the theory often doesnʼt tightly reflect the empirics, making it hard for

practitioners to rely solely on theoretical guidance.

Hyperparameter tuning and other practical nuances:  Real-world training involves many

hyperparameters (learning rate schedules, batch size, momentum coefficients, etc.) that

theoretical analyses usually fix or assume optimally set. In practice, finding the right settings is

an art informed by experimentation. The survey notes that adaptive methods are more robust to

learning rate choice than SGD (72), which is an important practical advantage not obvious from

theory. Moreover, issues like numerical stability, hardware-specific optimizations, and parallel

synchronization all influence training outcomes but are abstracted away in most theoretical

models. Bridging this gap requires additional theoretical work or guidelines that take these

factors into account.

In summary, while significant progress has been made in understanding DL optimization theoretically,

applying these insights to improve real-world training remains non-trivial. The paper serves as a

“theoretical handbook”  (73), consolidating what is known about convergence and generalization for

various optimization methods. However, it also underlines that developing a fundamental

understanding of deep learning training is still an ongoing challenge (74). Bridging the divide between

theory and practice will require refining theoretical models to better reflect practical conditions, and

conversely, continuing to derive new theory that can explain and predict the empirical successes of

modern optimization techniques. The hope is that such efforts will eventually yield optimization

methods that are not only provably efficient and generalizable, but also practically effective for training

the next generation of deep neural networks (75) (76).

Most widely used optimization methods for DL

1.  Stochastic Gradient Descent (SGD)

💡  SGD updates parameters using a noisy estimate of the gradient, computed on small batches rather

than the entire dataset.

Advantages:

✔ Efficient for large-scale datasets – Avoids computing full gradients over the entire dataset, making

it feasible for deep learning.

✔ Converges to good minima – Empirically, SGD often finds flatter minima, which generalize better to

unseen data.

✔ Memory-efficient – Requires storing only gradients and model parameters, making it feasible for

large models.

Disadvantages:
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✘ Slow convergence – SGD exhibits high variance in updates, leading to slow progress.

✘ Sensitive to learning rate – Improper learning rate settings can cause divergence or slow

convergence.

✘ Difficult to escape saddle points – Vanilla SGD struggles in loss landscapes with many saddle

points, slowing down optimization.

2.  SGD with Momentum

💡  Momentum-based SGD accumulates a moving average of past gradients to accelerate convergence

and reduce oscillations.

Advantages:

✔ Faster convergence than vanilla SGD – Helps accelerate updates in the right direction.

✔ Dampens oscillations – Reduces the zig-zag movement of SGD, especially in ravines of the loss

landscape.

✔ Improves stability – Works well for training deep networks with complex loss surfaces.

Disadvantages:

✘ May overshoot – Large momentum values can cause divergence, requiring careful tuning.

✘ Less adaptive to sudden changes – If the loss landscape shifts, the accumulated momentum can

delay adaptation.

3.  Nesterov Accelerated Gradient (NAG)

💡  An improvement over momentum-based SGD that computes the gradient at a "look-ahead"

position to improve optimization speed.

Advantages:

✔ More responsive than standard momentum – Corrects the update direction before taking a full

step.

✔ Improves convergence speed – Especially useful in convex and near-convex problems.

✔ Can generalize better – Helps avoid sharp minima, similar to momentum-based approaches.

Disadvantages:

✘ More computational overhead – Requires computing an additional gradient evaluation.

✘ Still requires tuning hyperparameters – Momentum and learning rate must be carefully adjusted.

4.  AdaGrad (Adaptive Gradient Algorithm)

💡  Adjusts the learning rate individually for each parameter based on past gradient magnitudes.
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Advantages:

✔ Good for sparse data – In NLP or recommender systems, it adapts well to infrequent updates.

✔ No need for manual learning rate tuning – Learning rates decrease automatically over time.

Disadvantages:

✘ Aggressive learning rate decay – As training progresses, learning rates shrink too much, leading to

early stagnation.

✘ Not ideal for deep learning – Works well in convex settings but struggles with large deep networks.

5.  RMSprop (Root Mean Square Propagation)

💡  A modification of AdaGrad that prevents the learning rate from shrinking too quickly by using an

exponential moving average of past gradients.

Advantages:

✔ Works well in non-stationary settings – Adapts to changes in gradient magnitudes.

✔ Prevents learning rate decay issues – Unlike AdaGrad, it maintains a reasonable learning rate.

✔ Suitable for recurrent networks (RNNs,  LSTMs) – Performs well in training deep and sequential

models.

Disadvantages:

✘ Hyperparameter tuning required – The decay rate must be chosen carefully for best results.

✘ Can still get stuck in sharp minima – Does not explicitly encourage flat minima for better

generalization.

6.  Adam (Adaptive Moment Estimation)

💡  Combines ideas from momentum-based SGD and RMSprop, maintaining separate learning rates for

each parameter and incorporating adaptive updates.

Advantages:

✔ Fast convergence – Generally converges faster than vanilla SGD.

✔ Resilient to poor hyperparameter choices – Works well with minimal tuning.

✔ Effective for deep networks – Used widely in CV (Convolutional Neural Networks) and NLP

(Transformer models).

Disadvantages:
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✘ May lead to poor generalization – Often finds sharp minima, which can result in worse test

accuracy.

✘ Not always stable in very large-scale training – Sometimes, Adam struggles with very large

datasets or architectures.

7.  AdamW (Decoupled Weight Decay in Adam)

💡  A modification of Adam that improves regularization by decoupling weight decay from the gradient

update.

Advantages:

✔ Better generalization than Adam – Reduces the tendency of Adam to overfit.

✔ Improved stability – Helps maintain good convergence properties without harming performance.

Disadvantages:

✘ Still computationally expensive – Requires additional parameter tracking like Adam.

✘ Requires tuning weight decay – Must balance decay and learning rate effectively.

8.  L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno)

💡  A quasi-Newton optimization method that approximates the Hessian matrix using past gradients.

Advantages:

✔ Very fast convergence – Superlinear convergence in some cases.

✔ Useful for smaller networks or convex problems – Works well in settings with well-behaved loss

surfaces.

Disadvantages:

✘ High memory requirements – Stores past gradients, making it less feasible for deep learning.

✘ Not suitable for online or stochastic updates – Best for batch optimization rather than mini-batch

training.

Which Optimizer to Choose?

Optimizer Best for Strengths Weaknesses

SGD General deep learning
Simple, memory-

efficient

Slow convergence, sensitive to

learning rate
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Optimizer Best for Strengths Weaknesses

SGD with

Momentum

Large-scale deep

learning

Reduces oscillations,

faster than SGD
May overshoot, hard to tune

NAG
Similar to Momentum

but more refined
Faster, more stable Higher computational cost

AdaGrad Sparse data, NLP Good for rare updates Learning rate shrinks too fast

RMSprop RNNs, LSTMs Adaptive learning rate Requires tuning decay factor

Adam
General-purpose deep

learning

Fast convergence,

widely used

Can overfit, struggles with

large-scale optimization

AdamW Large-scale models
Better generalization

than Adam
Still computationally expensive

L-BFGS
Small networks,

convex problems

Superlinear

convergence

High memory usage, not suited

for mini-batch training

Final Thoughts

For large-scale deep learning (CNNs, NLP models), Adam or SGD with momentum are the

go-to choices.

For small-scale or convex problems, L-BFGS or SGD works well.

For recurrent models (RNNs,  LSTMs), RMSprop or Adam are often used.

For better generalization, SGD (possibly with momentum) is still considered superior to

adaptive methods like Adam.


