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Introduction to petroleum reservoir simulation Background

Enhanced Oil Recovery and Simulation

China outer-dependency for crude oil is 72.3% (data: end of year 2018)!

Peak oil theory, Hubbert 1956

EOR techniques: improve recovery factor 20%–40% =⇒ 30%–60%
Achieve miscibility and reduce residual oil saturation e.g. gas injection

� Chemical injection: polymer, surfactant, microbial, ... =⇒ Compositional models

� Unconventional oil/gas: fractures, vugs, ... =⇒ Fracture models

Thermal injection: steam, fire, ... =⇒ Energy equation

Reduce wall cost required; improve accuracy/realism; decision making under uncertainty!
1



Introduction to petroleum reservoir simulation Background

Multiscale and Heterogenous Problem

Traditionally, geomodeling of subsurface flows mainly focus on the larger
scales, driven by the available measurement and by computation limitations

Typical scales: field, single-well, lab, ...

Sometimes important to zoom in, e.g.
- Highly heterogenous reservoirs
- IOR / EOR processes
- Unconventional oil / gas reservoirs

� - Fluid-rock interactions
- CO2 sequestration

Questions:
- Which scales to focus on?
- What scales to model/upscale?
- Which heterogeneities matter most?

Center for Petroleum & Geosystems Eng, UT Austin
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Introduction to petroleum reservoir simulation Background

Models of Interest

Immiscible displacement, water flooding Miscible displacement, gas flooding

! Two-phase flow model: WO, OG

! Black oil model (three-phase flow) / volatile oil model

! General isothermal compositional model

! Chemical flooding: polymer, foam, surfactant, alkaline, ...

! Multiscale fracture models
– Hybrid models: DPDP, DFM, ...
– Single-domain Darcy-Stokes coupling
– Carbonate fractured-cavity reservoirs

� Flow-geomechanic coupling (Biot)

� Non-isothermal flow: energy conservation
3



Introduction to petroleum reservoir simulation Black oil model

Oil-Water Two-Phase Model

In order to introduce IMPES/IMPEC, we give a simplified model

1 Mass conservation (assuming incompressibility):

∂

∂t

(
φρwSw

)
= −∇ ·

(
ρwuw

)
+QW

∂

∂t

(
φρoSo

)
= −∇ ·

(
ρouo

)
+QO

2 Darcy’s law and constitutive equations:

uα = −kkrα
µα

(∇Pα − ραg∇z), α = o, w

So + Sw = 1

Po − Pw = 0 (for simplicity)

3 Well constraints + B.C. + I.C.
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Figure 3.1. Typical capillary pressure curve.

wetting phase saturation Sw and the direction of saturation change (drainage or imbibition).
The phenomenon of dependence of the curve on the history of saturation is called hysteresis.
While it is possible to develop a model that takes into account the hysteresis resulting from
the saturation history (Mualem, 1976; Bedrikovetsky et al., 1996), inmost cases the direction
of flow can be predicted, and only a set of capillary pressures are needed. Various curves
describing a drainage or imbibition cycle can be found in Brooks and Corey (1964), van
Genuchten (1980), and Corey (1986).

The value pcb that is necessary to start displacement is termed a threshold pressure
(Bear, 1972). The saturation value at which the wetting phase can no longer be displaced by
applying a pressure gradient is referred to as irreducible saturation. The capillary pressure
curve has an asymptote at whose value the pressure gradient remains continuous in both
phases. This can be observed by considering vertical gravity equilibrium. When the value
of the irreducible saturation of the nonwetting phase is approached, an analogous situation
occurs at the other end of the curve during the imbibition process (Calhoun et al., 1949;
Morrow, 1970).

In the discussion so far, the capillary pressure has been assumed to depend only on the
saturation of the wetting phase and its history. In general, however, it also depends on the
surface tension σ , porosity φ, permeability k, and the contact angle θ with the rock surface
of the wetting phase, which, in turn, depend on the temperature and fluid compositions
(Poston et al., 1970; Bear-Bachmat, 1991):

J (Sw) = pc

σ cos θ

√
k

φ
,

which is the J -function. If the contact angle is ignored, this function becomes

J = pc

σ

√
k

φ
.

Using the J -function, typical curves forpc can be obtained from experiments. This function
is also the basis for some theoretical methods of measuring permeability k (Ashford, 1969).

For three-phase flow, two capillary pressures are needed:

pcow = po − pw, pcgo = pg − po. (3.2)
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Figure 3.5. Relative permeability curves in a three-phase system.

the relative permeabilities for the wetting and nonwetting phases in a three-phase system
are functions of their respective saturations as they are in a two-phase system (Corey et al.,
1956; Snell, 1962):

krw = krw(Sw), krg = krg(Sg). (3.4)

The relative permeability for the intermediate wetting phase is a function of the two inde-
pendent saturations:

kro = kro(Sw, Sg). (3.5)

The functional form in (3.5) is rarely known. In practice, the estimation of three-phase
relative permeabilities is based on two sets of two-phase data: the relative permeability in
an intermediate and wetting system,

krow = krow(Sw), (3.6)

and that in an intermediate and nonwetting system,

krog = krog(Sg). (3.7)

The underlying concept is that for the wetting phase, both the intermediate and nonwet-
ting phases act like a single nonwetting phase, while for the nonwetting phase, both the
intermediate and wetting phases behave as a single wetting phase. Figure 3.5 illustrates
typical relative permeability curves for a water, oil, and gas system in an isotropic porous
medium. The point where krow = 0 indicates the maximum water saturation rather than
the critical oil saturation since the oil saturation can be further reduced by increasing the
gas saturation. It has been experimentally observed, however, that a nonzero residual (or
minimal) oil saturation Sor exists when oil is displaced simultaneously by water and gas.
The earlier remark on hysteresis of the relative permeability for the nonwetting phase also
applies to the three-phase system.

The simplest procedure to determine kro is

kro = krowkrog. (3.8)

Other models were suggested by Stone (1970; 1973), Corey (1986), and Delshad and Pope
(1989). As an example, we describe two of Stone’s models, model I and model II.
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Introduction to petroleum reservoir simulation Black oil model

Phase Behavior: Black Oil

Black oil model

The black oil model is based on
simple interpolation of PVT
properties as a function of pressure

Water is modeled explicitly together
with two hydrocarbon components,
an oil phase and a gas phase

At standard pressure and temperature,
hydrocarbon components are divided
into a gas component and an oil
component in a stock tank

No mass transfer occurs between the
water phase and the oil/gas phases

[Chen, Huan, Ma 2006] 5



Introduction to petroleum reservoir simulation Black oil model

Classical Black Oil Model
1 Mass conservation (saturated & under-saturated):

∂

∂t

(
φρwSw

)
= −∇ ·

(
ρwuw

)
+QW

∂

∂t

(
φρoOSo

)
= −∇ ·

(
ρoOuo

)
+QO

∂

∂t

(
φρgSg + φρoGSo

)
= −∇ ·

(
ρgug + ρoGuo

)
+QG

2 Darcy’s law and other constitutive equations:

uj = −κκrj
µj

(∇Pj − ρjg∇z), j = o, g, w

Po − Pw = Pcow, Pg − Po = Pcgo

So + Sg + Sw = 1

3 Well constraints + B.C. + I.C.
PDE properties of the black oil model [Trangenstein, Bell 1986]

6



Introduction to petroleum reservoir simulation Compositional model

Phase Behavior: Compositional

EOS compositional fluid

In reservoirs containing light oil, the
hydrocarbon composition affects fluid
properties a lot

A compositional model is based on a
thermodynamically-consistent model
such as an equation of state (EOS)

Each hydrocarbon component is
handled separately

More unknowns than the black oil
model: ξj is the molar density of
phase j; xij is the molar fraction of
comp i in phase j; Ni is the overall
molar density of comp i

[Chen, Huan, Ma 2006]
7



Introduction to petroleum reservoir simulation Compositional model

General Compositional Model

∂

∂t

(
φ

np∑
j=1

xijξjSj

)
+∇ · Fi −

np∑
j=1

Sjrij = Qi, i = 1 : nc

Fi =

np∑
j=1

(
xijξjuj − SjDj∇(ξjxij)

)
, i = 1 : nc

uj = −κκrj
µj

(∇Pj − γj∇z), j = 1 : np

P1 − Pj = Pc1j , j = 2 : np∑np
j=1 Sj = 1,∑nc
i=1 xij = 1, j = 1 : np

fij = fi1, i = 1 : nc, j = 2 : np

[Collins, Nghiem, Li, Grabenstetter 1992; Qiao, Li, Johns, Xu 2014, 2015; ...]
8



Introduction to petroleum reservoir simulation Compositional model

Equations of State

How to find distribution of chemical components among phases?

Peng–Robinson EOS: [Peng, Robinson 1976]

pj :=
RT

Vj − bj
− aj
Vj(Vj + bj) + bj(Vj − bj)

, j = o, g

where T is temperature, Vj is molar volume of phase j, and R is ideal gas constant
Change of variables:

Aj :=
ajpj
R2 T 2

, Bj :=
bjpj
RT

, Zj :=
pjVj
RT

Z3
j − (1−Bj)Z2

j + (Aj − 2Bj − 3B2
j )Zj − (AjBj −B2

j −B3
j ) = 0

Fugacity:

fij := pjxijϕij(Zj), i = 1, . . . , nc, j = o, g (ϕij : fugacity coefficient)

Van der Waals / Redlich–Kwong / Redlich–Kwong–Soave EOS:

pj :=
RT

Vj − bj
− aj
Vj(Vj + bj)

, j = o, g
9
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Modelling fractured petroleum reservoirs Background

Fractured Oil/Gas Reservoirs
World Energy Outlook, International Energy Agency, 2006

3

Proved oil reserves§

Oil in carbonates‡

TTEECCHHNNOOLL OOGGYY OOPPPPOORRTTUUNNIITTIIEESS

Techniques that were initially developed to
characterize sandstone reservoirs  are being
applied to carbonate reservoirs , yet we k now
that these types of reservoirs  have different
requirements . The is sues  of address ing 
all of the uncertainties  and variables  in
carbonates present great opportunities  to
develop tailored technology.

Schlumberger is  committed to unders tanding
and address ing the specific challenges and
technical ris k s  carbonates present. We are at
the forefront of technology development into
the challenges of carbonate reservoirs , and
our continuous investment in R&D has led to 
a number of product and service introductions
that are helping our cus tomers  optimize and
improve the characterization, the production
and the management of carbonate reservoirs .

Wo rld Distribu tio n  o f Carbo n ate Reserves

– Fractures are the most abundant visible features in the upper crustMore than
60% of oil and 40% of gas reserves are held in carbonates (fractured)

� Chemically active compared with sandstones

� Heterogeneity (porosity and wettability) at all scales (pores, grains, textures)

� Multiscale: range of scale from micro cracks to mile long features
10



Modelling fractured petroleum reservoirs Background

Challenges in Fractured Reservoir Simulation

http://www.geoexpro.com/articles/2017/01/hiding-in-the-basement 11



Modelling fractured petroleum reservoirs Fracture modeling

Modeling Natural and Hydraulic Fractures

Direct simulation is not always feasible nor necessary!

1 Dual continuum (matrix-fracture) model:

Regard fractures as part of the pore volume
DPDP [Warren, Root 1963; Blaskovich et al. 1983]
Well developed, connected, without localized anisotropy

2 Equivalent porous media model: generalization of DCM

Representative elementary volume
Multiple INteraction Continua (MINC): [Wu, Pruess 1988]

3 Discrete fracture model (DFM): large-scale / isolated fractures

Representing fracture aperture / shape / direction explicitly
Unstructured grid / high computational cost
Flow-geomachanics coupling [Karimi-Fard et al. 2004]
Complex multi-phase flows inside the fracture network?

4 Embedded discrete fracture model (EDFM) [Li, Lee 2008]

No single model is good for every cases!
12



Modelling fractured petroleum reservoirs Darcy–Darcy coupling

Darcy–Darcy Model for Fractured Reservoir
Fine-resolution direct simulation 

ui = −κi∇pi, Ωi, i = 1, 2, f,

∇ · ui = fi, Ωi, i = 1, 2, f,

u1 · n = uf · n, γi, i = 1, 2,

pi = pf , γi, i = 1, 2,

pi = p
D
, Γi, i = 1, 2, f.

Some comments on fracture modeling
Fractures usually have higher permeability than the surrounding medium

– Fluid tend to flow into the fracture other than along the fracture
– Darcy velocity is not identical on the two sides of the fracture

But the opposite situation could happen at some cases
Accurate approximation of flow in complex fractures of variable aperture
Requires large number of cells in partition and hence very costly
May replace the Darcy’s law for the flow in fractures by the NS equation

13



Modelling fractured petroleum reservoirs Darcy-Stokes coupling

Darcy–Stokes/NS Model for Fractured Reservoir

Sometimes aperture of fracture might not be small and can’t be neglected!

Why considering Stokes/NS? (e.g. vuggy carbonate reservoir)
Seepage of water in sand (from lake into ground, from sea to sand beach, ...)
Averaging incompressible flow through porous medium =⇒ Darcy (small to medium
pore size, homogeneous in all directions)
For thicker fractures and cavities/caves, a different flow model is needed

Beavers–Joseph–Saffman interface condition: slip velocity proportional to shear stress

u = −κ∇pP , ΩP ,

−µ∆u +∇pF = f , ΩF ,

∇ · u = g, Ω,

uF · n = uP · n, Γ,

pF − 2µ(∇uF n) · n = pP , Γ,

uF · t = −2βµ (∇uF n) · t, Γ,

u · n = 0, ∂Ω.

[Beavers, Joseph 1967; Saffman 1971; Jager, Mikelic 2000; Layton et al. 2003] 14



Modelling fractured petroleum reservoirs Continuum models

Continuum Models
Dual Permeability Dual Porosity (DPDP) model

=⇒
Using upscaling to obtain effective transmissibility between fractures/matrix
Effective when fractures are fully developed and do not change in time
Legacy code can be easily adapted for DP or DPDP (via NNC)

Difficult to apply on (natural/hydraulic) fractures of multiple length-scales

Naturally fractured reservoirs =⇒ Induced fractures in shale reservoirs

[Barenblatt, Zheltov, Kochina 1960; Warren, Root 1963] 15



Modelling fractured petroleum reservoirs Discrete fracture model

Discrete Fracture Model



ui = −κi∇pi, Ωi, i = 1, 2

∇ · ui = fi, Ωi, i = 1, 2

uf = −κf,τd∇τpf , γ,

∇τ · uf = ff + (u1 · n1 + u2 · n2)|γ , γ,

−ξu1 · n1 + αfp1 = αfpf − (1− ξ)u2 · n2, γ,

−ξu2 · n2 + αfp2 = αfpf − (1− ξ)u1 · n1, γ,

+ B.C.

where αf = 2κf,n/d and ξ = 1
2 ,

3
4 , 1 can be chosen for different types of fractures.

[Martin, Jaffré, Roberts 2005; Alboin, Jaffré, Roberts, Serres 1999] 16



Modelling fractured petroleum reservoirs Discrete fracture model

Gridding for DFM Is Challenging

Different length scales:

Vertical grid size ∼ 10cm–1m

Horizontal grid size ∼ 10m–100m

Lots of large fractures near wells

Well radius ∼ 1cm

Well length ∼ 100m

Fractures ∼ 1cm–10m

Pictures from Saudi Aramco and Schlumberger 17



Modelling fractured petroleum reservoirs Embedded discrete fracture model

Embedded Discrete Fracture Model

EDFM v.s. fine-grid direct simulation [Moinfar 2013, PhD Thesis]

Three types of NNCs needed: M–M, Fi–Fi, Fi–Fj
How to obtain transmissbility between discrete and continuum parts accurately?
dual continuum approach is employed to describe the dense small-scale fractures and
DFM or EDFM is used to model the large-scale fractures [Li, Lee 2008] 18



Modelling fractured petroleum reservoirs Non-Newtonian flow behavior

Permeability Thickening of Wormlike Micellar Fluid
Chemical injection (polymer, gel, surfactant, ...) are widely applied in EOR
Shear rate will greatly affect gelation process =⇒ How to quantify it?

A three-species model for wormlike micellar fluid: [Dai, Lee, Z.]

Ṡ = pc1(γ̇)L− pc3(γ̇)Sp + βc4(γ̇)G

L̇ = −c1(γ̇)L− qc2(γ̇)Lq + c3(γ̇)Sp + αc4(γ̇)G

Ġ = c2(γ̇)Lq − c4(γ̇)G

where S, L, and G are quantities of spherical, cylindrical, and gel micelles.

19
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Multiscale hybrid-mixed method for DFM Multiscale methods

Multiscale Methods
Main ideas of multiscale methods

Model physical phenomena on coarse grids while using small-scale features that
impact the coarse-grid solution in a systematic way
Incorporate subgrid information by utilising solutions of local flow problems to
build a set of equations on a coarser scale

Localized multiscale basis methods
MsFEM/MsMFEM [Hou, Wu 1997; Chen, Hou 2002]

MsFVM [Jenny, Lee, Tchelepi 2003]

Heterogeneous multiscale method [E, Engquist 2003; E, Ming, Zhang 2005]

Petro-Galerkin MsFEM to reduce cell resonance error [Hou, Wu, Zhang 2004]

MsFEM using limited global info [Efendiev, Ginting, Hou, Ewing 2006]

MsFEM for high-contrast problems [Efendiev, Galvis, Wu 2011; Owhadi, Zhang 2011]

FE-MsFEM using penalty method for the interface [Deng, Wu 2014]

Survey with numerical experiments [Aarnes, Kippe, Lie, Rustad 2007]

· · · · · ·
20



Multiscale hybrid-mixed method for DFM Multiscale hybrid-mixed methods

Multiscale Hybrid-Mixed Methods
Basic ideas of MHM methods

1 Approximate the dual variable on the macro element boundaries and then solve
the conservation law (for flux and pressure) at the interior of each macro element

2 MHM approximation contains two (or more) scaling operators:
Downscaling: The fine-scale behavior of solution is captured by solving local flow
equations at the interior of the macro elements
Upscaling: The fine-scale properties are transferred to a small global problem
associated with the fluxes

A two-scale pictorial demo of MHM

21



Multiscale hybrid-mixed method for DFM Multiscale hybrid-mixed methods

Numerical Analysis of MHM

– Well-posedness and best approximation property hold
– Locally mass conservative (on marco or micro elements)
– Can be implemented by regular FE basis or static condensation

Error analysis of MHM-H1 [Araya, Harder, Paredes, Valentin 2013]

MHM for advective-reactive equation [Harder, Paredes, Valentin 2015]

Robustness of MHM-H1 [Paredes, Valentin, Versieux 2016]

MHM for linear elasticity equation [Harder, Madureira, Valentin 2016]

MHM for Stokes and Brinkman [Araya, Harder, Poza, Valentin 2017]

MHM-H(div) for DFM [Devloo, Teng, Z. 2019]

MHM-H(div) for Darcy [Duran, Devloo, Gomes, Valentin 2019]

MHM-H1 for DFM [Chen, Devloo, Z.]

· · · · · ·
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Multiscale hybrid-mixed method for DFM Multiscale hybrid-mixed methods

MHM-H1(Ω) Formulation
Weak formulation: Find p ∈ V = H1(Th), λ ∈ Λ = H−

1
2 (Eh) such that

ah[p, λ; q, µ] = F (q, µ), q ∈ V, µ ∈ Λ

with ah[p, λ; q, µ] := (α∇p,∇q)Th + (λn, [q])Eh + (µn, [p])Eh and F (q, µ) := (f, q)Th .

Space decomposition: V = V0 ⊕W , with W = V ∩ L2
0(Th) and V0 is p.w. const.

We can divide the weak formulation as the following two parts:
ah[p, λ; q0, µ] = F (q0, µ), ∀ q0 ∈ V0, µ ∈ Λ; (1)
ah[p, λ; qw, 0] = F (qw, 0), ∀ qw ∈W. (2)

Static condensation: Using (2), on each macro element τ ∈ Th, we solve

ah[pf + pλ, λ; qw, 0] = (f, qw), ∀ qw ∈W (τ),

where pf ∈W and pλ ∈W
(α∇pf ,∇qw)τ = (f, qw), ∀ qw ∈W (τ);

(α∇pλ,∇qw)τ = −(λn · nτ , qw)∂τ , ∀ qw ∈W (τ).

Global problem: Find p ∈ V0 and λ ∈ Λ such that the equation (1) holds.
[Harder, Paredes, Valentin 2013; Araya, Harder, Paredes, Valentin 2013] 23



Multiscale hybrid-mixed method for DFM MHM method for Darcy

MHM-H(div,Ω) Formulation
Mixed formulation of Darcy’s law: Find (u, p) ∈ H0(div,Ω)× L2(Ω) such that∫

Ω

κ−1u · v dx+

∫
Ω

p∇ · v dx = 0,∫
Ω

∇ · u q dx =

∫
Ω

fq dx,

for any (v, q) ∈ H0(div,Ω)× L2(Ω).
Main steps of MHM-H(div) [Duran, Devloo, Gomes, Valentin 2019]

(1) Decompose u = σ + λ, where σ is the inner flux diminishing on the macro element
boundaries and λ is the outer flux between macro elements

(2) Write the system on each macro element as a function of inner flux, pressure, outer flux,
and average pressure

(3) Obtain a global system by applying static condensation

24



Multiscale hybrid-mixed method for DFM MHM method for DFM

Volumetric and Fracture Flows in DFM∫
T2

κ−1
2,mu2 · v2 −

∫
T2

p2∇ · v2 +

∫
T1

p1 Σ(v2 · n) = 0

−
∫
T2

∇ · u2 q2 =

∫
T2

f q2∫
T1

Σ(u2 · n) q1 = 0 ⇐=

T2 T2 T1 T1

F1

T1 T1F0T2 T2 T1 T1

F1

T1 T1F0

∫
F1

κ−1
1,fu1 · v1 −

∫
F1

p1∇ · v1 +

∫
F0

p0 Σ(v1 · n) = 0

−
∫
F1

∇ · u1 q1 = 0 ⇐=∫
F0

Σ(u1 · n) q0 = 0

Assume no resistivity (large permeability, small aperture): 1
αf
≈ 0 =⇒ p1|γ1 = p2|γ2 = pf

25



Multiscale hybrid-mixed method for DFM MHM method for DFM

Multiscale Hybrid-Mixed Method for DFM

Two-dimension, no resistivity (p1|γ1 = p2|γ2 = pf ), homogenous B.C.∫
T2

κ−1
2,mu2 · v2 −

∫
T2

p2∇ · v2 +

∫
F1

p1 Σ(v2 · n) = 0

−
∫
T2

∇ · u2 q2 =

∫
T2

f q2∫
T1

κ−1
1,fu1 · v1 −

∫
T1

p1∇ · v1 +

∫
F0

p0 Σ(v1 · n) = 0

−
∫
T1

∇ · u1 q1 +

∫
T1

Σ(u2 · n) q1 = 0∫
T0

Σ(u1 · n) q0 = 0

– Two dimensional fluxes u2 and corresponding test functions v2

– One dimensional fluxes u1 and corresponding test functions v1

– Two dimensional pressures p2 and corresponding test functions q2
– One dimensional pressures p1 and corresponding test functions q1
– Zero dimensional pressures p0 and corresponding test functions q0

26



Multiscale hybrid-mixed method for DFM MHM method for DFM

Generalization to 3D DFM
3D volumetric flow + 2D fracture flow + 1D flow through fracture interactions∫

T3

κ−1
3,mu3 · v3 −

∫
T3

p3∇ · v3 +

∫
F2

p2 Σ(v3 · n) = 0

−
∫
T3

∇ · u3 q3 =

∫
T3

f q3∫
T2

κ−1
2,fu2 · v2 −

∫
T2

pf,2∇ · v2 +

∫
F1

p1 Σ(v2 · n) = 0

−
∫
T2

∇ · u2 qf,2 +

∫
T2

Σ(u3 · n) qf,2 = 0∫
T1

κ−1
1,fu1 · v1 −

∫
T1

pf,1∇ · v1 +

∫
F0

p0 Σ(v1 · n) = 0

−
∫
T1

∇ · u1 qf,1 +

∫
T1

Σ(u2 · n) qf,1 = 0∫
T0

Σ(u1 · n) q0 = 0

Verification benchmarks for single-phase flow in 3D fractured porous media
3D benchmark problems [Berre, Boon, Flemisch, et al. 2018] 27



Multiscale hybrid-mixed method for DFM Implementation of MHM

Implementation of MHDFM

28
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Benchmark problems and numerical results 2D numerical tests

Orthogonal Fracture Configurations

[Devloo, Teng, Z. 2019]
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Benchmark problems and numerical results 2D numerical tests

Unorthogonal Fracture Configurations

[Devloo, Teng, Z. 2019]
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Benchmark problems and numerical results 2D numerical tests

Comparisons with Direct Simulation

Case MHDFM DFM Fine-Scale Difference
1 1.2843 1.2876 1.2892 2.56E-3
2 1.6081 1.6122  2.54E-3
3 1.2661 1.2724  4.95E-3
4 1.3940 1.4070  9.24E-3

Table: Comparison of numerical flow rate by different methods
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Benchmark problems and numerical results 3D numerical tests

3D Benchmark 1
One fracture with thickness of 0.01m, simulation time is 109s

32



Benchmark problems and numerical results 3D numerical tests

3D Benchmark 1

33



Benchmark problems and numerical results 3D numerical tests

3D Benchmark 2
Nine fractures with high and low conductivity cases, simulation time is 0.25s

34



Benchmark problems and numerical results 3D numerical tests

3D Benchmark 2

35



Benchmark problems and numerical results 3D numerical tests

3D Benchmark 3

Eight fractures with barely touching fractures and small features, simulation time is 1s
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Benchmark problems and numerical results 3D numerical tests

3D Benchmark 3

37



Benchmark problems and numerical results 3D numerical tests

3D Benchmark 4

52 fractures with 106 intersections, simulation time is 50s

[Devloo, Durán, et al.]
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Solution methods for field-scale simulation Large-scale simulation

Steps of Petroleum Reservoir Simulation

Upstream Oil Industry: Finding and developing hydrocarbon deposits

1 Finding nearly horizontal and major fault surfaces

2 Determining detailed stratigraphic layers, faults, pinch-outs, ...

3 Generating reservoir characterization geomodel (106 ∼ 108 cells)

4 Describing reservoir heterogeneity at multiple scales

5 Upscaling reservoir grids and properties (104 ∼ 106 cells)

6 Finding fluid properties: PVT, relative permeability, ...

7 Reservoir initialization

8 Dynamic flow simulation

9 History matching

10 Calibrating model parameters, production forecast, & development planning

39



Solution methods for field-scale simulation Large-scale simulation

Large-Scale Reservoir Simulation
Challenges in large petroleum reservoir simulation

1 Modeling and discretization
Unconventional reservoirs and their modeling
Multiscale, heterogeneous, and anisotropic
Large number of grid cells with a lot of inactive cells
Complicated production requirements and well models

2 Nonlinear and linear solvers
Nonlinear algebraic equations for flash calculation
Nonlinear coupling between pressure and non-pressure variables
Large ill-conditioned linear system to solve
Non-symmetric (sometimes indefinite) Jacobian systems for FIM

3 Uncertainty and reliability

Why do we need lager computers for reservoir simulation?

Need to solve fine-scale problems (1M∼1B grid cells)
Need to simulate a long period of time (40∼60 years)
Have many problems to solve (102 ∼ 103 repetitions)

40



Solution methods for field-scale simulation Large-scale simulation

Case Study: Limitations of Upscaled Models

Effect of water injection. Left: 70K grid cells; Right: 1.1M grid cells.

[Wu, Xu, Z., et al. 2013] 41



Solution methods for field-scale simulation Large-scale simulation

Case Study: Coarse and Fine Models
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Solution methods for field-scale simulation Discretization methods

IMPES/IMPEC Discretization
Implicit pressure / explicit saturation (concentration)

Separate computation of pressure from that of saturation / concentration
[Sheldon, Zondek, Cardwell 1959; Stone, Garder 1961; Collins, et al. 1992]

Two-phase classical IMPES: Define the total velocity u = uo + uw and then

∇ · u =
Qw
ρw

+
Qo
ρo

u = −κ
[(κrw

µw
+
κro
µo

)
∇P −

(κrw
µw

ρw +
κro
µo

ρo

)
g∇z

]
Obtaining an equation for pressure: −∇ · (α∇P ) = Q

Updating saturation/concentration with explicit time-marching

Pros & Cons and Variants
The discrete linear system to solve is SPD: solver-friendly

� Not very stable =⇒ requires small time stepsize (high flow velocity problems)
Some modifications: Smaller ∆t for saturation update; used in Newton
iterations (Iterative IMPES); adaptive scheme; ...
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Solution methods for field-scale simulation Discretization methods

Fully Implicit Discretization
Set of equations and unknowns

FIM or SS discretization [Douglas, Peaceman, Rachford 1959]
Primary equations: nc mass conservation laws + volume balance:

V fluid(P,N1, . . . , Nnc) = V pore(P )

Secondary equations: phase equilibrium, density, relative permeability, ...
Primary unknowns: ~X := (P,N1, . . . , Nnc)

T ←− One more variable!

Secondary unknowns: ~Y := (x11, . . . , xncnp , S1, . . . , Snp)T

Discrete linear equations (no reaction term)
Update the primary unknowns (Backward Euler + FVM + Newton)

Ψ0 := V pore − V fluid = 0

Ψi :=
Nn+1
i −Nn

i

∆t
+
∑
s

Fn+1
i,s −Qn+1

i = 0, i = 1 : nc

Jacobian matrix J :=
d~Ψ

d ~X
=
∂~Ψ

∂ ~X
+
∂~Ψ

∂~Y

∂~Y

∂ ~X
←−More expensive!
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Solution methods for field-scale simulation Discretization methods

Quick Review of Other Discretization Methods
1 Sequential Solution Method [MacDonald, Coats 1970]

Solve each equation separately and sequentially

Saturation functions use the saturations from the previous Newton iteration

Linear systems are decoupled in a straightforward way

2 Iterative IMPES Method [Young, Stephenson 1983]
Apply the IMPES technique inside the Newton iteration

The pressure unknown is obtained implicitly, which the other two explicitly

Linear systems to solved are just the pressure equations

3 Streamline-Based Method [Datta-Gupta, King 1995]
Exploit incompressibility and decouple the pressure and saturation calculations

Follow the streamline direction and reduce saturation calculation to 1D

Allow very large time stepsize for incompressible fluids

Difficult to apply to compressible fluids [Cheng, Osako, Datta-Gupta, King 2006]

[Chen, Huan, Ma 2006]
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Solution methods for field-scale simulation Linear solution methods

Simulation and Preconditioning
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Decoupling, preconditioning, and iterative solvers Linear iterative solvers

Linear Solution Methods for FIM

Now we consider linear algebraic solvers for the FIM discretization!

Solving the Jacobian system:
J u = r

1 Decoupling Step: Weaken the coupling between different physical variables

J̃ u = r̃

where, in the decoupled Jacobian system, we have

J̃ := DJ and r̃ := Dr

2 Solution Step: Solving the preprocessed linear equation by a Krylov space
method (e.g. GMRES or BiCGstab) with an efficient preconditioner

Difficulties in solving the Jacobian system:
Fully-coupled, large, non-symmetric, ill-conditioned
Usually takes more than 80% of the computing time
Requires a robust iterative method and solver
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Decoupling, preconditioning, and iterative solvers Preconditioning methods

Multistage Preconditioners for FIM
Define subspaces:

V = VP + VN

A two-stage preconditioner: Given u0, Bu0 := u2, where

u1 = u0 + ΠP J̃
−1
PPΠ∗P (r̃ − J̃u0)

u2 = u1 + ΠN J̃
−1
NNΠ∗N (r̃ − J̃u1)

Form subspaces according to physical properties
Choose appropriate solvers for each subspace
Example: CPR-type preconditioners [Wallis 1983]

A decoupling stage is necessary before the solution stage
Decouple different unknowns (P and N ) effectively
Obtain a reasonable pressure equation J̃PP
How to choose the decoupling (D) and preconditioning (B)?

[Hu, Xu, Z. 2013] 48



Decoupling, preconditioning, and iterative solvers Preconditioning methods

Convergence and Robustness

Tested by the Research Institute of Petroleum Exploration and Develop-
ment, PetroChina (2015): Dell E5-2690 v2 CPU@3.0GHz, 200GB DDR3,
Windows 7/VS2010/Intel Fortran Compiler 2015, HiSim 2.0, ECL 2012

49



Decoupling, preconditioning, and iterative solvers Decoupling methods

Decoupling Strategies for FIM
Formal (semi-discrete) Jacobian matrix

J =
1

∆t


V pore
P − V fluid

P −V fluid
1 . . . −V fluid

nc

0 1
...

. . .
0 1

 ←− A

+


0 0 . . . 0

−∇ · (T1∇◦)−∇ · (~β1P ◦) −∇ · (~β11◦) . . . −∇ · (~β1nc◦)
...

...
. . .

...
−∇ · (Tnc∇◦)−∇ · (~βncP ◦) −∇ · (~βnc1◦) . . . −∇ · (~βncnc◦)

 ←− F

Decoupling methods [Lacroix, Vassilevski, Wheeler, 2001; ...]

J̃ = DJ =

[
J̃PP J̃PN

J̃NP J̃NN

]
Cheap to apply and give an easy-to-solve pressure equation
Make J̃PN (sometimes J̃NP as well) not dominant

� Limiting behavior: I −BJ̃ reduces to 0 as ∆t→ 0, which is invalid for J 50



Decoupling, preconditioning, and iterative solvers Decoupling methods

Analytic Decoupling Methods: Basic Idea

Decoupling at the PDE level:

J̃ANL =
1

∆t


αP 0 . . . 0

0 1 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 1



+



−∇ · (T̃∇◦) + ~β1 · (∇◦)−
∑nc
i=1 Vti∇ · (~βiP ◦) −

∑
i Vti∇ · (~βi1◦) . . . −

∑
i Vti∇ · (~βinc◦)

−∇ · (T1∇◦)−∇ · (~β1P ◦) −∇ · (~β11◦) . . . −∇ · (~β1nc◦)

.

.

.
.
.
.

. . .
.
.
.

−∇ · (Tnc∇◦)−∇ · (~βncP ◦) −∇ · (~βnc1◦) . . . −∇ · (~βncnc◦)



where αP , ~β1, ~βik, ~βiP are knowns.

We know the underlying equations we are solving

A multigrid-type solver friendly system can be formed

Becomes diagonally dominant as ∆t goes to 0
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Decoupling, preconditioning, and iterative solvers Decoupling methods

Analytic Decoupling Methods: Matrix Form
Decoupling in matrix form:

Consider the decomposition J = A+ F . Let

A :=
1

∆t

[
APP APN
ANP ANN

]
and DANL :=

[
I X
0 I

]
such that

DANLA =
1

∆t

[
ÃPP 0

ANP ANN

]
=⇒ J̃ = DANLJ =

1

∆t

[
V pore
P − V fluid

P 0

0 I

]
+ · · ·

General comments and advantages

� The coefficient matrix A is in a very special form

Closely related to the IMPES discretization (eliminate N -terms)

Black oil model =⇒ True-IMPES decoupling method [Coats 1999]

Giving “good” pressure equations that work well with multigrid

We have I −BJ̃ → 0 as ∆t→ 0
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Decoupling, preconditioning, and iterative solvers Decoupling methods

Algebraic Decoupling Methods
Alternate Block Factorization [Bank-Chan-Coughran-Smith 1989; Klie 1997]:

DABF :=

[
diag(JPP ) diag(JPN )
diag(JNP ) diag(JNN )

]−1

� Eigenvalues clustered around 1, but the pressure equations difficult to solve

There are several algebraic decoupling methods (Householder, Quasi-IMPES,
CPR, ...) that are equiv. to ABF up to a scaling
More stable and take less iterations if the pressure is approximated well

[Qiao, Wu, Xu, Z. 2017]
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Decoupling, preconditioning, and iterative solvers Decoupling methods

Numerical Validation: Relation b/w D/B

Pressure equations from ABF are difficult for AMG =⇒ Different solvers

Comparison of two preconditioners

� Method-I: Use one AMG V-cycle as a pressure solver

� Method-II: Use AMG preconditioned GMRES as a pressure solver

Speedup of Method-I / Method-II (wall time)

[Li, Wu, Z., et al. 2017] 54



Decoupling, preconditioning, and iterative solvers A semi-analytical decoupling

Decoupling Strategies, Revisited
How to take advantages of both strategies?

Combine analytical and algebraic decouplings?
- Relatively cheap to compute
- Obtain an easy-to-solve pressure equation
- Improve (at least maintain) performance of outer iterations
- Keep the asymptotic behavior I −BJ̃ → 0 as ∆t→ 0

A semi-analytical decoupling method: [Qiao, Wu, Xu, Z. 2017]

DSEM :=

[
DANL
PP DANL

PN

DABF
NP DABF

NN

]
Some numerical results

680 C. Qiao et al. / Journal of Computational Physics 336 (2017) 664–681

Table 8
Simulator performance for SPE1-1000. Simulation period 3650 days.

Method Time steps Effective nonlinear 
iterations

Linear iterations Linear time (s)

ABF 671 2475 24836 8243
Quasi-IMPES 615 2459 68018 18987
True-IMPES 616 2419 30917 10507
Analytical 652 2408 32071 18421
Semi-analytical 631 2421 24771 8978

Table 9
Simulator performance for SPE10. Simulation period 2000 days.

Method Time steps Nonlinear iterations Linear iterations AMG iterations Linear solver time (s)

ABF 60 352 2505 37235 7756
Analytical 57 332 2209 16212 3149
Semi-analytical 56 320 1338 13813 2464

ABF method is more than twice that of the AMG iteration used by the analytical and semi-analytical methods. The linear 
solver with semi-analytical method is over three times faster than the linear solver with the ABF decoupling method.

The numerical results indicate that the pressure matrices produced by algebraic decoupling methods like ABF is usually 
more difficult to solve for algebraic multigrid solvers; see more numerical evidences in [24]. The speed of linear solution 
can be improved by using the proposed semi-analytical decoupling strategies, which give a decoupled pressure equation 
at the semi-discrete level. Test results also show that the semi-analytical decoupling method often outperforms algebraic 
decoupling methods in terms of number of AMG iterations needed and total simulation time.
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Development of petroleum reservoir simulator Software project

Solution Algorithm Flow Chart

Need a scalable parallel linear algebraic solver to make it work!

[Guan, Qiao, Zhang, et al. 2015] 56



Development of petroleum reservoir simulator Software project

Software Structure of PennSim

Changhe	Qiao,	PennSim	 21	Range: Developer⇒ Team⇒ Local⇒Widespread⇒ General public

[Qiao 2016, PhD Thesis]
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Development of petroleum reservoir simulator Software project

FASP Software Project

!

fasp4blkoil! fasp4ns!

Petroleum!
Reservoir!
Simulation!

Fluid!Structure!
Interaction!

Smoothed!
Particle!

Hydradynamics!

fasp4SPH!

Standard!Iterative!Methods!
CG,!MINRES,!BiCGstab,!GMRES,!GCR,!GCG,!…!

Basic!Sparse!Linear!Algebra!Modules!
Serial,!OpenMP,!MPI,!CUDA!

Standard!Preconditioning!Methods!
GMG,!AMG,!ILU,!Schwarz,!…!!

IO,!Conversion!

fasp4elastic!

Supported by NSF DMS-0915153 and NSFC 91130011. http://www.multigrid.org/fasp 58



Development of petroleum reservoir simulator Some numerical experiments

Numerical Validation: SPE 1

Figure: SPE 1 benchmark
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Figure: Producer pressure

Three dimensional, three-phase, gas injection
Adaptive time stepping strategies are applied for both IMPES and FIM
IMPEC: 3815 time steps, 4.0 seconds
FIM: 75 time steps, 0.76 seconds

FIM discretization is much more stable, but requires a good solver!
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Development of petroleum reservoir simulator Some numerical experiments

Numerical Validation: Field Test

Real data from an European field (60K corner-point grid)
Qualitatively matches the results of commercial software
Simulate five-year period (PennSim≈3hr, ECL100≈6hr)
Cost only half of the CPU time compared with ECL100
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Development of petroleum reservoir simulator Performance tests

Field Test: Polymer Flooding
Tested by CNOOC 2011

Polymer flooding

Number of grids: 157× 53× 57

Several geological faults

37 wells (peak)

7 years of water flooding

3 years of polymer flooding

Simulator # Newton Iter. Total CPU time CPU time/Newton
ECL100 1562 81.0 (min) 3.11 (sec)
SOCF 1653 40.0 (min) 1.45 (sec)

Table: Tested by CNOOC, using FASP as its solver.
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Development of petroleum reservoir simulator Performance tests

Benchmark Test: SPE10

A benchmark for upscaling

Two phase (water and oil)

Number of grids: 1.1 M

One injector, four producers

Total simulation time: 2000 days

Simulator ECL100 tNavigator MURS HiSim HiSim (P100)
Wall Time 100+ hr 18 hr 29 hr 40 min 6 min

Tested by PetroChina 2012
SLB claimed: ECL300 8-node cluster 2.8GHz CPU, 5 hr
Average wall-time for each Jacobian system is 6s on one CPU core
Modify SPE10 to three-phase black-oil: HiSim+FASP takes 4 hr
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Development of petroleum reservoir simulator Parallel scalability tests

Strong Scaling Tests on Tianhe-2

SPE1 and SPE9 benchmark problems first refined and then tilted. Tested
on the Tianhe-2 cluster, Guangzhou: 1st in the Top500 list (June 2015),
3.12M cores (2 Xeon CPU’s + 3 Xeon Phi’s), Rmax 33.86PFlops, Rpeak
54.90PFlops, 1.408PB RAM, Peak Power 17.8MW. Upgraded version:
Tianhe-2A, 4th in the Top500 list (Nov 2018).

[Guan, Qiao, Zhang, et al. 2015]
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Development of petroleum reservoir simulator Parallel scalability tests

Weak Scaling Tests on Tianhe-2
# CPU Cores 24 48 96 192 384 768 1536
# Grid Block 3M 6M 12M 24M 48M 96M 192M
# Linear Iterations 723 724 726 727 723 725 715
Total CPU Time (s) 2741 2838 2846 2907 2711 2881 3026

[Guan, Qiao, Zhang, et al. 2015] 64
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Fluid-rock interaction in carbonate formation Fluid-rock interaction

Fluid-Rock Interaction
Fluid and rock in carbonate formations

Carbonate rocks undergo various chemical reactions with the injecting fluids
This leads to evolution of fracture network =⇒ Bad predictions if ignored

– Water flooding / polymer flooding
– Geological CO2 sequestration (GCS)
– Matrix acidizing in carbonate formations

Main goals
Simulating dynamic behavior of fracture evolution in carbonate reservoirs
Coupling multiphase flow, chemical reactions, and geo-mechanical responses

So far, we have done:
1. Black oil and compositional model simulator (parallel), dual continuum model
2. An efficient linear solver/preconditioner based on FASP
3. Fluid-rock (chemical) interaction based a single-domain approach

Missing: Geo-mechanical response, energy equation, and coupling
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Fluid-rock interaction in carbonate formation Geo-mechanical interaction

Geo-Mechanical Interaction
Conventional approach: simple models{

φ = φ0

(
1 + c

P
(p− p0)

)
poro compressibility

ρ = ρ0

(
1 + c

F
(p− p0)

)
fluid compressibility

Why consider more complicated models: geo-mechanics / poroelasticity?

Many applications require an understanding of the porous flow of fluids
as well as rock stresses & displacements. Geo-mechanics can significantly
influence reservoir engineers’ predictions! [Settari, Mourits 1998]

Biot poroelasticity [Biot 1941]: stress-dependent flow simulation
∂

∂t

( p
M

+ bεv

)
− κ

µ
∇2p = Qf , mass conservation

Ks∆u+
(
Kd +

Ks

3

)
∇(∇ · u) = b∇p, force balance

M is the Biot modulus, b is the Biot stress coefficient, Ks is the rock shear modulus,
Kd is the drained bulk modulus, and the volumetric strain εv :=

∑
i εii.

Remark: If assume no matrix deformation, then φ0(cP + cF ) ∂
∂t
p− κ

µ
∇2p = Qf . 66
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Darcy–Stokes–Brinkman Model
A single model with strongly discontinuous coefficients

−∇ · (µ(x)∇u) + κ−1 u +∇p = f , Ω,

∇ · u = g, Ω,

u = 0, ∂Ω.

Single domain approach for both matrix and fractures [Brinkman 1947]

Matrix domain: Small viscosity and transmissibility =⇒ Darcy
Fracture domain: Large viscosity and transmissibility =⇒ Stokes
Straightforward internal interface conditions (compared with Darcy–NS)
Meshing is much easier, especially for evolving internal interfaces

Problems with the single-domain model

How to give appropriate and accurate coefficients?
Standard H(div)-conforming FEM not uniformly stable [Xie, Xu, Xue 2008]

Linear solution becomes more difficult after discretization
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Reactive-Transport Model
Chemical reactions and transport in carbonate reservoirs

Processes of solute transport and chemical reactions [Steefel, Lasaga 1994]

Mineral–water reactions: cannot reach an equilibrium state locally
Aqueous reactions: rapid and local =⇒ formulated via the mass action law

A reactive-transport model for mineral-water interaction [Yuan, Ning, Qin 2016]

∂

∂t

(
φC total

i

)
+∇ ·

(
uC total

i − µ∇C total
i

)
= Rmin

i , i = 1, . . . , nc

nc is the number of primary components
C total
i is the total concentration of the primary component i

Rmin
i is the sum of all mineral-water reactions of the primary component i

Rmin
i are nonlinear w.r.t. the molar concentrations of primary species

During mineral dissolution / precipitation, mineral volume also changes!
Rmin
i are also coupled with rock volume changes

When pore volume changes, rock pemeabiltity also changes

[Reed 1982; Langmuir 1997; Lasaga 1998; Steefel 2009; Bundschuh, Ziberbrand 2012; ...] 68
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Modeling Rock Property
Rock volume change

φ := 1−
nm∑
m=1

φm and
dφm
dt

= Vmrm

φ is the rock porosity and there are nm minerals
φm is the volume fraction of an individual mineral m
Vm is the molar volume of an individual mineral m
rm is the rate of precipitation/dissolution of mineral m per unit volume

Rock permeability change
The Kozeny–Carman model ignoring changes in grain size is written

K := K0

(1− φ0

1− φ
)2( φ

φ0

)3

,

where K0 and φ0 are initial absolute permeability and porosity
Many possible models to empirically predict absolute rock permeability

[Mavis, Wilsey 1936; Berg 1972; Ehrenberg et al. 2006; ...]
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Solving the Coupled Model
A decoupled numerical algorithm [Yuan, Wei, Z., Qin 2019]

Implicit time-stepping and decoupled Newton iteration
MAC for the Brinkman equation
FDM for the reactive-transport equation
FASP solvers for the discrete linear systems
In both Cartesian and cylindrical coordinates

This decoupled algorithm is only a proof-of-concept for the coupled model!
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Numerical Validation

Pressure at the inlet during acid injection [Tardy, Lecerf, Christanti 2007] 71



Fluid-rock interaction in carbonate formation Preliminary numerical experiments

Effect of Porosity Heterogeneity

Porosity profile of fractured rock of the dominant wormhole 72



Fluid-rock interaction in carbonate formation Preliminary numerical experiments

Evolution of Rock Porosity

Porosity profiles at different injection time: (a) initial time, (b) 14.4 minutes,
(c) 28.8 minutes, (d) 47.4 minutes (water breakthrough time)
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Quantifying Uncertainty
Uncertainty v.s. Error

Lack of knowledge? Types: aleatoric (statistical) and epistemic (systematic)
Sources of uncertainty: model, measurements, initial/boundary conditions
“All models are wrong, but some are useful” [George Box 1976] =⇒ V&V
Where does uncertainty make a big difference (compared with error)?

Uncertainty quantification: SIAM/ASA-joint conference on UQ 2012
Predict model responses with quantified and reduced uncertainties

– Identification and characterization
� – Forward propagation (UP): MC, Surrogate model, ...

– Inverse propagation
– Sensitivity analysis

Difficulties when applied in petroleum reservoir simulation
– In practice: curse of dimensionality
– Identifiability: Combinations of uncertainties might yield same prediction
– “... an uncertain input parameter will lead not only to an uncertain solution but to

an uncertain error ...” [Trucano 2004] 74
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Forward UQ: Uncertainty Propagation
Model problem and uncertainty propagation using PCE

y = F(x) =⇒ Y = F(X), where X is a random variable

Polynomial Chaos Expansion: represent the random variable of interest as a
polynomial expansion of another random variable ξ with distribution ρ

{ψj} are the orthogonal polynomials w.r.t. (·, ·)ρ
– We have ψ0 = 1 and E(ψj) = 0, j = 1, 2, . . .

– Variance of ψj is (ψj , ψj)ρ and covariance (ψi, ψj)ρ = 0 if i 6= j

– A few possible choices, for example:
Uniform [−1, 1]⇒ Legendre; Gamma [0,∞)⇒ Laguerre; Normal⇒ Hermite

Non-intrusive UP with PCE
Suppose X ≈∑m

j=0 xjψj(ξ) and Y ≈∑m
j=0 yjψj(ξ)∑m

j=0 yjψj(ξ) = F
(∑m

j=0 xjψj(ξ)
)

=⇒ yk =

(
F
(∑m

j=0 xjψj(ξ)
)
, ψk

)
ρ

(ψk, ψk)ρ

Need to compute the integral:
∫

Ω
F(
∑m
j=0 xjψj(ξ))ψk(ξ)ρ(ξ) dξ
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Sources of Uncertainty in Simulation

What we know about subsurface rock and fluid in formation is very limited

Heterogeneity and Multiscale Behavior
Accurate information is very limited and localized

Difficult to obtain accurate information of reservoir formation

Lab experiments and simulation are in rather small scale

Field-scale simulation have nothing to use other than lab-scale results

Physical Complexity
Initial and boundary conditions

Different constitutive laws can be tried for different cases

Multiple constitutive laws might be needed even in one case
– Porous media flow models: Darcy, nonlinear Darcy, ...
– Free flow models for large fractures, vugs, ...

Competing Objectives: economics, human, risk, environment, ...

Decision variables: volumes, rate and time of extraction, fluid movement
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History Matching in Reservoir Simulation

HM is a process that integrates a static model with dynamic data to obtain
a more accurate model for predicting reservoir performance

2D test (mesh size 100× 12) [Tavassoli, Carter, King 2004]
– Three parameters: low perm [0, 50], high perm [100, 200], fault throw [0, 60]

– Three years of HM (using 160K random sampling) and one year for prediction
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History Matching Methods

Q: How to improve the performance (in terms of accuracy and cost) of HM?

Manual matching (MHM) [Kabir, Landa 2003]

MHM (trial and error) is subjective and labor-intensive
Driven by experience of the engineers and, more importantly, the budget

Automatic matching (AHM)

A nonlinear regression problem  Many attempts to “solve” the problem
– Gradient-based optimization
– Genetic method
– Optimal control
– Stochastic modeling
– Sensitivity analysis
– Gradual deformation method

However it is still difficult for 3D multiphase flow problems due to its highly
nonlinear nature and large computational requirements
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Surrogate Models
How to improve AHM performance?

Using flow-based upscaling (coarsening) for flow simulation
– Employ a coarse model for flow simulation [Durlofsky, et al. 1996; ...]
– Adaptive local coarsening and dynamic fluid representation [Kabir, et al. 2003]

Using surrogate models:
– Radial basis functions [Park, Sandberg 1991; ...]
– Polynomial chaos expansions [Xiu, Karniadakis 2002, 2003; ...]
– Gaussian processes [Bilionis, Zabaras 2012, JCP; Bilionis, et al. 2013; ...]
– Relevance vector machines [Bilionis, Zabaras 2012, SISC]

Model order reduction: Large number of input stochastic dimension
Using low-rank approximation of covariance

– Karhunen-Loève expansion (KLE) [Spanos, Ghanem 1989; ...]
– Principle component analysis (PCA) [Word, Esbensen, Geladi 1987; ...]

Using automatic relevance determination [Neal 1998; ...]
Using sensitivity analysis [Saltelli, et al. 2000; ...]
Using active subspace method [Constantine, Gleich 2014; ...]
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Surrogate Models with Deep Learning
Problems with existing methods

Work for linear problems, mostly
Unsupervised learning, mostly

Construction of a surrogate model

F̂(X) := g(h(X) ),

where h is the projection function (encoder) and g is the link function (decoder)

DeepUQ (2D Poisson-like equation, 32× 32 input parameters, 2000 training, 2000 testing)
[Tripathy, Bilionis 2018] 80
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So... Problem Solved?

Not even close ... History matching is an ill-posed inverse problem

The real problem is really complicated!

– Time-dependent problem
– Training set might not be representative
– Hard evidence (observation) is limited (small data)
– Requires a large set of training data

Some questions to consider:

– How to combine with expert experiences?
– How to zoom in (fine resolution) to the interested area?
– How to effectively combine observation and simulation data?
– How to adjust model when production procedure changes?
– How to solve the training problem more “accurately”?
– How to solve the training problem more efficiently?
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Grid Partitions for Reservoir Simulation
eventually feeds reservoir simulators, lead-
ing to better reservoir development and
management decisions.5

The simulator itself computes fluid flow
throughout the reservoir. The principles
underlying simulation are simple. First, the
fundamental fluid-flow equations are
expressed in partial differential form for
each fluid phase present. These partial dif-
ferential equations are obtained from the
conventional equations describing reservoir
fluid behavior, such as the continuity equa-
tion, the equation of flow and the equation
of state. The continuity equation expresses
the conservation of mass. For most reser-
voirs, the equation of flow is Darcy’s law.
For high rates of flow, such as in gas reser-
voirs, Darcy’s law equations are modified to
include turbulence terms. The equation of
state describes the pressure-volume or pres-
sure-density relationship of the various flu-
ids present. For each phase, the three equa-
tions are then combined into a single partial
differential equation. Next, these partial dif-
ferential equations are written in finite-dif-
ference form, in which the reservoir volume
is treated as a numbered collection of
blocks and the reservoir production period
is divided into a number of time steps.
Mathematically speaking, the problem is
discretized in both space and time.

Examples of simulators that solve this
problem under a variety of conditions are
found in the ECLIPSE family of simulators.
These simulators fall into two main cate-
gories. In the first category are three-phase
black-oil simulators, for reservoirs compris-
ing water, gas and oil. The gas may move
into or out of solution with the oil. The sec-
ond category contains compositional and
thermal simulators, for reservoirs requiring
more detailed description of fluid composi-
tion. A compositional description could
encompass the amounts and properties of
hexanes, pentanes, butanes, benzenes,
asphaltenes and other hydrocarbon compo-
nents, and might be used when the fluid
composition changes during the life of the
reservoir. A thermal simulator would be
advised if changes in temperature—either
with location or with time—modified the
fluid composition of the reservoir. Such a
description could come into play in the case
of steam injection, or water injection into a
deep, hot reservoir.

18 Oilfield Review

Local Grid Refinement
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eventually feeds reservoir simulators, lead-
ing to better reservoir development and
management decisions.5

The simulator itself computes fluid flow
throughout the reservoir. The principles
underlying simulation are simple. First, the
fundamental fluid-flow equations are
expressed in partial differential form for
each fluid phase present. These partial dif-
ferential equations are obtained from the
conventional equations describing reservoir
fluid behavior, such as the continuity equa-
tion, the equation of flow and the equation
of state. The continuity equation expresses
the conservation of mass. For most reser-
voirs, the equation of flow is Darcy’s law.
For high rates of flow, such as in gas reser-
voirs, Darcy’s law equations are modified to
include turbulence terms. The equation of
state describes the pressure-volume or pres-
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ids present. For each phase, the three equa-
tions are then combined into a single partial
differential equation. Next, these partial dif-
ferential equations are written in finite-dif-
ference form, in which the reservoir volume
is treated as a numbered collection of
blocks and the reservoir production period
is divided into a number of time steps.
Mathematically speaking, the problem is
discretized in both space and time.

Examples of simulators that solve this
problem under a variety of conditions are
found in the ECLIPSE family of simulators.
These simulators fall into two main cate-
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black-oil simulators, for reservoirs compris-
ing water, gas and oil. The gas may move
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description could come into play in the case
of steam injection, or water injection into a
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1 Cartesian block-centered grids
CNOOC: SOCF (2009.122011.6)
Easy for implementation
Multiple-domain, local refinement
Difficult to simulate fault/dip

2 Corner-point grids
PetroChina: HiSim (2011.12015.12)
A type of hexahedral grid
Logically still structured
Difficult to compute flux accurately

3 Unstructured grids (PEBI and beyond)
PennSim (2013.12016.12) =⇒ ExSim
Voronoi, 2.5D
Better description of faults and wells
Incompatible with structured seismic data
Challenges in discretizations and solvers

[Goldthorpe et al. 1985; Heirich 1987; Heinemann 1989; SPE8 1993; Palagi 1994]
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Subdivision and Triangulation
Subdivision and (conforming) triangulation

Subdivision (partition) of Ω: ∪iτi = Ω and int τi ∩ int τj = Ø (if i 6= j)
Triangulation: A subdivision in which no vertex lies in the interior of any edge
Find a triangulation T (P) of a set of sites (points) P := {p1, . . . , pn}
An important problem in computational geometry with MANY applications

What is a “good” triangulation?
Need to give mathematical conditions on “good” and “bad”
Need to give algorithms to generate a good triangulation

Introduction
Triangulations

Delaunay Triangulations
Applications

Triangulation

But which triangulation?

Computational Geometry Lecture 12: Delaunay Triangulations
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Angle Conditions and Approximation
Minimal angle condition: ∃αmin > 0, ατ ≥ αmin, ∀ τ ∈ Th, h→ 0

- P2-FEM for Poisson ‖u− uh‖1 . h2/ sinαmin [Zlámal 1968; Zenisek 1969]
- Similar estimate for the fourth-order clamped plane problem
- Inscribed ball condition or |τ | ≥ Chd [Ciarlet 1978; Lin, Lin 2003]

Maximal angle condition: ∃αmax < π, ατ ≤ αmax, ∀ τ ∈ Th, h→ 0

- Minimal angle cond. ⇒ maximal angle cond. ⇒ essential for convergence
- Interpolation error ‖u− Ihu‖1,∞ . h|u|2,∞ [Synge 1957]
- Sufficient for convergence of P1-FEM [Feng 1965; Babuška, Aziz 1976]

A1 = (−h, 0), A2 = (h, 0), A3 = (0, h5)

u(x) = x2
1, ‖u− Ihu‖21 ≥ h−6 · 1

2
(2h)h5 = 1

Large interpolation error [Strang, Fix 1973]

Nonobtuse condition: ατ ≤ π/2, ∀ τ ∈ Th
- Obtuse triangles can destroy the discrete maximum principle f ≥ 0⇒ uh ≥ 0

- Nonobtuse simplicial triangulations yields diagonally dominant stiffness matrices
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Angle Conditions and Stiffness Matrix
Eigenvalues of stiffness matrix on quasi-uniform meshes:

- hd . λ(A) . hd−2 =⇒ cond(A) ∼ h−2

Element size and shape affect matrix conditioning:
- Smallest eigenvalue: Not strongly affected by element shape [Fried 1972]:

λmin(A) ∼ min
τ∈Th

|τ |

- Largest eigenvalue: Can be arbitrarily large by a single bad-shaped element:

max
τ∈Th

λτmax ≤ λmax(A) ≤ mmax
τ∈Th

λτmax

where m is the maximum number of elements meeting at a single vertex
- If an angle of τ approaches zero, λτmax goes to infinity

Small angles can ruin matrix conditioning:
- Small angles =⇒ ill-conditioned linear systems [Xu 1989; Shewchuk 2002]
- A mesh with only a small number of bad elements will typically impose only a few

large eigenvalues
- Krylov subspace iterative methods can work around a few bad eigenvalues; but

need to be careful if restarting is used
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Delaunay Triangulation
Delaunay triangulation

Many possible partitions; but which one is better? How to check?

Delaunay triangulation: a triangulation T (P) such that no point in P is in-
side the circum-hypersphere of any simplex

Introduction
Triangulations

Delaunay Triangulations
Applications

Thales Theorem

Theorem: Let C be a circle, ` a line
intersecting C in points a and b, and
p,q,r,s points lying on the same side
of `. Suppose that p,q lie on C, r lies
inside C, and s lies outside C. Then

]arb > ]apb = ]aqb > ]asb,

where ]abc denotes the smaller
angle defined by three points a,b,c.

` C

p

q

r

s

a

b

Computational Geometry Lecture 12: Delaunay Triangulations

Introduction
Triangulations

Delaunay Triangulations
Applications

Characterisation of Illegal Edges

How do we determine if an edge is illegal?

Lemma: The edge pipj is illegal if
and only if pl lies in the interior of
the circle C. pi

pj

pk

pl

illegal

Computational Geometry Lecture 12: Delaunay Triangulations

Properties of Delaunay triangulation
Maximize the minimal angles
The Delaunay triangulation contains at most O(ndd/2e) simplexes
The union of all simplexes in the triangulation is the convex hull of the points
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Algorithms for Delaunay Triangulation
Empty circle (sphere) condition

⇐⇒

∣∣∣∣∣∣∣∣
A1 A2 A2

1 +A2
2 1

B1 B2 B2
1 +B2

2 1
C1 C2 C2

1 + C2
2 1

D1 D2 D2
1 +D2

2 1

∣∣∣∣∣∣∣∣ > 0

Lawson’s flip algorithm

Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles.
Sort the 3m angles: a1 6 a2 6 · · · 6 a3m. Ta := {a1, a2, . . . , a3m}.
Edge e = (pi , pj) is illegal , min16i66 ai < min16i66 a 0

i .

pl

pk

pj

pi

pl

pk

pj

pi

a a0

T 0 obtained from T by flipping illegal e, then T 0
a >lex Ta.

Flips yield triangulation without illegal edges.
The algorithm terminates (angles decrease), but is O(n2).

Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles.
Sort the 3m angles: a1 6 a2 6 · · · 6 a3m. Ta := {a1, a2, . . . , a3m}.
Edge e = (pi , pj) is illegal , min16i66 ai < min16i66 a 0

i .

pl

pk

pj

pi

pl

pk

pj

pi

a a0

T 0 obtained from T by flipping illegal e, then T 0
a >lex Ta.

Flips yield triangulation without illegal edges.
The algorithm terminates (angles decrease), but is O(n2).

Insertion by flips

�1

�2

�3

pr

�2

�3

pi

pj

�5

�4

�3

pi pk

�7

�4

�6

Lawson flip algorithm terminates in finite steps
Provides a constructive proof for the existence of Delaunay triangulation
Sequential algorithms: [Su, Drysdale 1996]

- Incremental algorithms
- Divide-and-conquer algorithms
- Fortune’s sweepline algorithms
- Convex hull based algorithms: lift-and-project
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Voronoi Diagram
Voronoi Diagram

Voronoi cell (of pk) = {x ∈ Rd : ‖x− pk‖ ≤ ‖x− pj‖, ∀ j 6= k}
An edge of Voronoi diagram is equidistant to the two nearest sites
Dual graph of the Delaunay triangulation

Example and definition

Sites: P := {p1, . . . , pn} ⇢ R2

Main Delaunay property: empty sphere Delaunay Triangulation: dual of Voronoi diagram

Generating Voronoi diagram
Bowyer-Watson algorithm via Delaunay triangulation: O(n log n) to O(n2)

Fortune’s algorithm: O(n log n)

Lloyd’s algorithm and k-means clustering

Dynamic demo of Voronoi diagram. https://bl.ocks.org/mbostock/4060366
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Adaptive Mesh Refinement
Red-green refinement, longest edge bisection, and newest vertex bisection
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[Chen, Z. 2010]
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Adaptive Mesh and Nonlinear Approximation

0 1
0

1
L1−error = 2.34e−2

0 1
0

1
L1−error = 1.36e−2

INITIALIZATION

SOLVE: compute discrete solution uh

ESTIMATE: compute Υτ , set Υ2 :=
∑

τ∈T Υ2
τ

Υ < tol

MARK

REFINE/COARSEN

End

No

Yes

Figure 7.1: Flowchart of adaptive algorithm for static problems

114

Approximate f(x) = x1/2. Left: Solution and error; Right: Adaptive algorithm.
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Future Work

3D pre-processing code for MHM =⇒ 3D simulation

Multiscale modeling, method, and analysis for DFM

Energy-stable, mass-conservative, and positivity-preserving schemes

Multiphase flow in porous media with fractures and vugs

Geo-mechanical coupling with fluid simulation

Non-Newtonian fluid in discrete fracture networks

Large-scale carbonate oil reservoir simulation in parallel

Improve model using data =⇒ Better simulation of hydraulic fractures
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