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Numerical Methods for MIP FSI applications

Applications in CVD Treatment

6 

人工心脏泵为刚性材料 

血管壁为各向异性超弹性材料 

血液为各项均质牛顿流体 

两方面研究： 

三种材料： 

如何优化人工心脏的流体结构？ 

如何优化人工心脏对主动脉的血
流动力学影响？ 

人工心脏-血液耦合 

主动脉—血液耦合 

人工心脏-主动脉耦合 

三种耦合： 

Artificial heart pump, abdominal aortic aneurysm, artery stenosis and dissection, ...
2



Numerical Methods for MIP Models and formulations

Mathematical Model for FSI

A multiphysics problem which studies one or more solid structures (rigid or
flexible) interact with an internal or surrounding fluid flow!

ρDtv −∇ · σ = 0 ? vs = vf ? σsn = σfn

Coupling: Weak vs Strong
Formulation: Partitioned vs Monolithic
Coordinates: Eulerian vs Lagrangian or ALE
Interface: Body-fitted (tracking) vs Non-body-fitted (capturing)
Meshing: Conforming vs Non-conforming
Model: Macroscale vs Mesoscale vs Microscale

[Richter 2010; Hou, Wang, Layton 2012; Bazilevs, Takizawa, Tezduyar 2013; ...] 3



Numerical Methods for MIP Partitioned methods

Partitioned Methods
1 Algorithm:

Predict and update interface position
Regenerate mesh for the fluid domain
Solve the fluid equation (S→ F)
Compute interface force and solve the solid equation (F→ S)

2 Advantages:
Well-established methods and legacy code available for F and S
Explicit information communication for interfacial conditions
Available in almost all commercial software

3 Challenges:
� Stability: Difficult to achieve convergence, stability, and accuracy at once

Added mass: Need to account for the added mass effect
Accuracy: How to exchange interfacial conditions accurately
Reusability: Coordinate the disciplinary code with minimal modification

If partitioned methods do not work, how about monolithic methods?
4



Numerical Methods for MIP Monolithic methods

Eulerian–Eulerian Methods
1 Algorithm:

Formulate both fluid and solid in the Eulerian coordinate
Most Eulerian methods are of interface-capturing type
Some typical examples

Phase field method; Volume of fluid method; Level-set method;
Initial point set method

2 Advantages:
Very large deformation and topology changes can be handled
Standard description of the flow problem in Eulerian coordinates
No artificial domain mapping is used

3 Challenges:
� Accuracy: loss of accuracy near the interface

Overhead: capturing the moving interface is needed
Efficiency: potentially more expensive (to achieve same accuracy)?

5



Numerical Methods for MIP Monolithic methods

ALE–Lagrangian Methods
1 Algorithm:

Using interface-tracking type methods for the F/S interface
Fluid mesh deforms according to the F/S interface movement
Some examples

Arbitrary Lagrangian–Eulerian method; Deforming
spatial domain / stablized space-time method

2 Advantages:
Explicitly representation of moving interface
Interface conditions can be easily embedded in variational form
Widely used and tested in many engineering applications

3 Challenges:
� Meshing: mesh smoothing/re-meshing is necessary from time to time

Applicability: large deformation/displacement, nearly contact structures
Efficiency: need efficient solvers for coupled nonlinear/linear systems
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Numerical Methods for MIP Monolithic methods

Eulerian–Lagrangian Methods
1 Algorithm:

Eulerian mesh for F (physical and fictitious) and Lagrangian mesh for S
Solve the fluid equation with an artificial force or Lagrange multiplier
Some typical examples

Immersed domain/boundary method; Immersed interface method;
Distributed Lagrange multiplier method; Direct forcing method;
Volume of fluid method; eXtended finite element method

2 Advantages:
Non-conforming meshes: fluid equation solved on whole domain
Allow different coordinate systems for F/S, easier to implement
Able to simulate large solid deformation and displacement

3 Challenges:
� Accuracy: leakage, need to adjust F/S mesh sizes

Stability: may need small time stepsizes
Applicability: closed boundary, volume-free, incompressible structure
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Arbitrary Lagrangian–Eulerian Method General FSI model

An FSI Model Problem
Incompressible viscous fluid + elastic solid:

ρ̂s∂ttûs −∇ · σ̂s = 0 in Ω̂s

ρfDtvf −∇ · σf = 0 in Ωf

∇ · vf = 0 in Ωf

vf ◦ xs = ∂tûs, (σf nf ) ◦ xs = −σ̂s ns on Γ̂

Some notations:
• Flow map F (x̂, t) := ∂x

∂x̂ J(x̂, t) := |F |
• Linear elasticity model σ̂s ≈ 2µsε(ûs) + λs∇ · ûs I =: P̃s

• Material derivative Dtv := ∂tv + v · ∇v
• Newtonian fluid model σf := 2µfε(vf )− p I

Difficulties: Rotating structure, turbulence flow, complex fluid

8



Arbitrary Lagrangian–Eulerian Method General FSI model

Part I. Modeling Rotational Structure
St. Venant–Krichhoff material:

First Piola–Kirchhoff stress tensor P̂s = σ̂s = JσsF
−T

Second Piola–Kirchhoff stress tensor Ŝs := F−1P̂s = JF−1σsF
−T

Green–Lagrangian finite strain tensor E := 1
2 (FTF − I)

StVK constitutive law Ŝs = 2µsE + λs tr(E)I

Rotational elastic structure:
Given structure centroid in static X0

Given or unknown rotator is assumed to be R

Divide the motion into two parts: deformation and rotation:

x−X0 = R(x̂+ ûd −X0)

Structure displacement: ûs := x− x̂ = Rûd + (R− I)(x̂−X0)

Rotating StVK material:

P̂s = R
(
2µsε(ûd) + λs tr(ε(ûd))I

)
9



Arbitrary Lagrangian–Eulerian Method General FSI model

Part II. Modeling Turbulence Flow
Momentum equation

ρf

(∂vf

∂t
+ vf · ∇vf

)
= ∇ · (σf + σR), ∇ · vf = 0, in Ωf

where the classical viscous stress and the Reynolds stress are defined as

σf := −pfI + µf

(
∇vf + (∇vf)

T )
σR := −2

3
ρfkI + µt

(
∇vf + (∇vf)

T )
µt := ρf

k

ω

k–ω turbulence model (Shear Stress Transport)

∂

∂t
(ρfk) +∇ · (ρfvfk) = ∇ · (µeff,k∇k) + Pk − β∗ρfkω

∂

∂t
(ρfω) +∇ · (ρfvfω)

= ∇ · (µeff,ω∇ω) + α̃
ω

k
Pk − β̃ρfω

2 + 2(1− F1)σω2
ρf

ω
∇k · ∇ω

10



Arbitrary Lagrangian–Eulerian Method General FSI model

SST k–ω Turbulence Model Parameters
Blending function σ̃ := F1σ1 + (1− F1)σ2, where σ1 and σ2 are some parameters:

F1 := tanh
((

min
{

max
{ √

k

β?d⊥ω
,

500µf

d 2
⊥ρfω

}
,

4σω2k

CDkωd
2
⊥

})4)
,

CDkω := max

{
2ρfσω2

1

ω
∇k · ∇ω, 10−10

}
,

where d⊥ is the distance from the nearest wall. We apply β? = 0.09 and

α1 = 0.5532, β1 = 0.0750, σk1 = 0.850, σω1 = 0.500,

α2 = 0.4403, β2 = 0.0828, σk2 = 1.000, σω2 = 0.856.

In the near-wall region, we define the width of the viscous sublayer as: d+
lim = 11.06, d+ =

C
1/4
µ k

1/2
avg dC
ν

,
and Cµ = 0.09. If the grid point closest to a wall is in the viscous sublayer (d+ < d+

lim), we define the
boundary behavior:

kwall := max
{ 2400C

1/2
µ kavg

C2
ε2

(
1

(d++C)2
+ 2 d

+

C3 − 1
C2

) , 10−15
}
, ωwall =

6µ

β1ρf(d+)2
, C = 11, Cε2 = 1.9.

If the grid point nearest to a wall is in the inertial sublayer (d+ > d+
lim), we define Bk = 8.366, κ = 0.41

kwall := max

{
C

1/2
µ kavg

(
Ck

κ
ln(d+) +Bk

)
, 10−15

}
, ωwall :=

√
k

C
1/4
µ κd+

, Ck = −0.416.
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Arbitrary Lagrangian–Eulerian Method ALE formulation of FSI

How to Handle Moving Domains? ALE
A widely used approach in engineering:

Interface-tracking, mesh conforming, suitable for small deformation

Given solid trajectory xns on Γ̂, the moving grid can be described by An : Ω̂f 7→ Ωf

ALE mapping

{
An(x̂) = x̂ on ∂Ω̂f ∩ ∂Ω̂

An(x̂) = xns (x̂, t) on Γ̂

We obtain an approximation of material derivatives as follows: For x = A(x̂, tn+1)

Dtv|tn+1 ≈ (Dt,kv)n+1 := ∂At,kv(x, tn+1) +
(
(v − ∂t,kA) · ∇

)
v(x, tn+1),

where

∂At,kv|(A(x̂,tn+1),tn+1) :=
1

k

[
v(A(x̂, tn+1), tn+1)− v(A(x̂, tn), tn)

]
,

(∂t,kA)(x̂, t) :=
1

k

[
A(x̂, tn+1)−A(x̂, tn)

]
.

How to determine An? Solve −∆An = 0 or LAn = 0, in Ω̂f

12



Arbitrary Lagrangian–Eulerian Method ALE formulation of FSI

Development and Analysis of ALE
Development of ALE methods

FDM + ALE [Noh 1963; Hirt, Amsden, Cook 1974; ...]

FEM + ALE [Hughes, Liu, Zimmermann 1981; Donea, Giuliani, Halleux 1982; ...]

FVM + ALE [Farhat, Lesoninne, Maman 1994; Lesoinne, Farhat 1995; ...]

Many practical applications [Hu, Joseph, Crochet 1992; Hu, Patankar, Zhu 2001; Tallec,
Mouro 2001; Bazilevs, Takizawa, Tezduyar 2013; ...]

– Fluid problems on a moving domain
– Fluid–particle interactions
– Fluid–structure interactions
– · · · · · ·

A priori error estimates of ALE/FEM
Geometric Conservation Law [Lesoinne, Farhat 1995; Formaggia, Nobile 1999]

Linear advection-diffusion problem [Gastaldi 2001]

Stokes equation: H1(Ω)-error [Martín, Smarand, Takahashi 2009]

Fluid-structure interaction H1(Ω)-error [Lee and Xu 2016a, 2016b]

Stokes-parabolic problem H1(Ω)-error and L2(Ω)-error [Sun et al., in preparation]
13



Arbitrary Lagrangian–Eulerian Method ALE formulation of FSI

Monolithic ALE Formulation
Function spaces:

V̂s :=
{
v̂s ∈ (H1(Ω̂s))

d | v̂s = vf ◦ A on Γ̂
}
,

Vf :=
{
vf ∈ (H1(Ωf))

d | vf = vB on ∂Ω
}
,

Wf := L2(Ωf),

Q̂f :=
{
A ∈ (H1(Ω̂f))

d | A = 0 on ∂Ω̂f ∩ ∂Ω̂, A = ûs on Γ̂
}
.

Weak formulation:
Find (v̂s, vf , p,A) ∈ L∞(0, T ; V̂s × Vf ×Wf × Q̂f) such that

(
ρf∂
A
t vf , ψ

)
Ωf

+
(
ρf (vf − w) · ∇vf , ψ

)
Ωf

+
(
σf + σR, ε(ψ)

)
Ωf

+
(
ρs
∂v̂s

∂t
, φ
)

Ω̂s

+
(
σ̂s

(
û0

s +

∫ t

0

v̂s

(
τ
)
dτ
)
, ε (φ)

)
Ω̂s

= 0,

(∇ · vf , q)Ωf
= 0,

(∇A,∇ξ)Ω̂f
= 0,

∀φ ∈ V̂s, ψ ∈ Vf , q ∈Wf , ξ ∈ Q̂f .

[Sun, Leng, Z. et al. 2018; Leng, Z., Sun, et al. 2019] 14



Arbitrary Lagrangian–Eulerian Method Artificial heart simulation

Simulating Artificial Heart

10 

结构网格: 

流体网格: 

单元类型：四面体单元 
单元数量(结构): 2,773,925 
                 (流体): 5,168,473 
计算方法：转子冻结方法 
计算平台：Numeca/Fine Open 

静止区 旋转区 静止区 

BJUT-II LVAD
– Purple: Enclosure
– Red: Head
– Green: Tail
– Gray: Rotor

Design optimization
– Smaller still / backward flow zone
– Reduce turbulence flow

Major difficulties in simulation
– Fluid, solid, and coupling
– High-speed rotation (≈ 7000rpm)
– Turbulence flow
– Meshing (blood vessel wall)
– Large problem size

15



Arbitrary Lagrangian–Eulerian Method Artificial heart simulation

Partitioning and Meshing

Figure: Left: the artificial heart pump (head guide, rotor and tail guide); Right: the blood flow mesh in a
vascular lumen (the rotational part is separated from the stationary part by two discs).

Figure: Interface meshes on ∂Ωrs between the stationary fluid and the rotational fluid regions.
16



Arbitrary Lagrangian–Eulerian Method Validations and Applications

Numerical Validation

L: Convergence for rotation speed = 7000rpm; R: Comparison with commercial software. 17



Arbitrary Lagrangian–Eulerian Method Validations and Applications

Shape Optimization and Animal Tests

11
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When applied to solve the artificial heart problem on the LSSC-IV cluster (LSEC, AMSS), the
whole simulation costs about 2 hours (using 128 processing cores).

18



DLM Fictitious Domain Method A Stokes interface problem

An Alternative Approach: DLM/FD
Difficulties when applying body-fitted methods: meshing for evolving domain

Moving, drafting, kissing, topological changes, ...
Mesh generation (rotation + boundary layers) and re-meshing
Example: Fluid–particle interactions [Glowinski, Pan, Hesla, Joseph 1999]

Fictitious domain methods / Domain-embedding methods
Extend a problem on a geometrically complex (time-dependent) domain to a
larger (but simpler) domain

– Simple geometry =⇒ simple (or even regular) mesh =⇒ fast solvers

� Moving domain =⇒ fixed domain =⇒ no re-meshing needed

Need to find a way to enforce boundary conditions on the original domain
– As a constraint using a boundary-supported Lagrange multiplier

� As a constraint using a distributed Lagrange multiplier
– Using least-square method

Many examples: [Hyman 1952; Saulev 1963; Buzbee, et al. 1971; Glowinski, et al.
1994, 1995, 1999; Boffi, Gastaldi 2017; Lundberg, Sun, Wang 2019; ...]
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DLM Fictitious Domain Method A Stokes interface problem

Stokes Interface Problem

ρ1∂tv1 −∇ · (µ1∇v1) +∇p1 = f1, Ω1
t × (0, T ]

∇ · v1 = 0, Ω1
t × (0, T ]

ρ2∂tv2 −∇ · (µ2∇v2) +∇p2 = f2, Ω2
t × (0, T ]

∇ · v2 = 0, Ω2
t × (0, T ]

v1 − v2 = 0, Γt × (0, T ]

(µ1∇v1 − p1I)n1 − (µ2∇v2 − p2I)n2 = g, Γt × (0, T ]

v1 = 0, ∂Ω1
t\Γt × (0, T ]

v2 = 0, ∂Ω2
t\Γt × (0, T ]

v1(·, 0) = v0
1(·), Ω1

0

v2(·, 0) = v0
2(·), Ω2

0

36 Copyright c� 2019 Tech Science Press CMES, vol.119, no.1, pp.35-62, 2019

Figure 1: Two schematic domain decompositions divided by the interface �t

jump coefficients can be defined as follows:

⇢1
@u1

@t
�r · (�1ru1) + rp1 = f1, in ⌦1

t ⇥ (0, T ], (1)

r · u1 = 0, in ⌦1
t ⇥ (0, T ], (2)

⇢2
@u2

@t
�r · (�2ru2) + rp2 = f2, in ⌦2

t ⇥ (0, T ], (3)

r · u2 = 0, in ⌦2
t ⇥ (0, T ], (4)

u1 = u2, on �t ⇥ (0, T ], (5)
(�1ru1 � p1I)n1 + (�2ru2 � p2I)n2 = ⌧ , on �t ⇥ (0, T ], (6)
u1 = 0, on @⌦1

t \�t ⇥ (0, T ], (7)
u2 = 0, on @⌦2

t \�t ⇥ (0, T ], (8)
u1(x, 0) = u0

1, in ⌦1
0, (9)

u2(x, 0) = u0
2, in ⌦2

0, (10)

where the solution pair, (u, p) that is defined in ⌦ ⇥ [0, T ], satisfies u|⌦1
t

= u1, u|⌦2
t

=

u2, p|⌦1
t

= p1, p|⌦2
t

= p2 which are associated with the source term f 2 L2(0, T ;

(L2(⌦))d) such that f |⌦i
t

= fi 2 L2(0, T ; (L2(⌦i
t))

d), (i = 1, 2). The jump coeffi-
cients � 2 L2(0, T ; L1(⌦)) and ⇢ 2 L1(0, T ; L1(⌦)) satisfy �|⌦i

t
= �i 2 L2(0, T ;

W 1,1(⌦i
t)), ⇢|⌦i

t
= ⇢i 2 L1(0, T ; L1(⌦i

t)), (i = 1, 2), and �1 6= �2, ⇢1 6= ⇢2. Due to
the incompressibility properties (2) and (4), we know both ⇢1 and ⇢2 are constant.
It is well known that for the elliptic interface problem [Nicaise (1993); Bramble and King
(1996); Boffi, Gastaldi and Ruggeri (2014); Auricchio, Boffi, Gastaldi et al. (2015)] and for
the stationary Stokes interface problem [Shibataa and Shimizu (2003); Hansbo, Larson and
Zahedi (2014); Olshanskii and Reusken (2006)] with jump coefficients across the interface
�t, the global regularity of solutions over the entire domain ⌦ are generally reduced from
(H2(⌦))d down to (H1(⌦))d, and the local regularity of solutions may be also deteriorated
from (H2(⌦i))

d down to (H�(⌦i))
d (3/2 < �  2) in each subdomain ⌦i (i = 1, 2)

[Nicaise (1993)] due to a non-smooth interface �t which may be only Lipschitz continuous
and on which the nonzero jump flux ⌧ may be only defined in L1(0, T ; (H��3/2(�t))

d).

20



DLM Fictitious Domain Method Fictitious domain method

DLM Fictitious Domain Method
Introduce a fictitious problem

ρ̃2∂tṽ2 −∇ · (µ̃2∇ṽ2) +∇p̃2 = f̃2, Ω2
t × (0, T ]

∇ · ṽ2 = 0, Ω2
t × (0, T ]

ṽ2 = v2, Γt × (0, T ]

ṽ2 = 0, ∂Ω2
t\Γt × (0, T ]

ṽ2(·, 0) = v0
2(·), Ω2

0

DLM/FD formulation: Find a solution (ṽ, v2, p̃, λ) in
(H1 ∩ L∞)(0, T ;V)× (H1 ∩ L∞)(0, T ;V2(·))× L2(0, T ;Q)× L2(0, T ;V2(·)), s.t.

(
ρ̃∂tṽ, ψ

)
Ω

+
(
µ̃∇ṽ,∇ψ

)
Ω
−
(
p̃,∇ · ψ

)
Ω

+ (λ, ψ)V2(·) = (f̃ , ψ)Ω,

(∇ · ũ, q)Ω = 0,(
(ρ2 − ρ̃2)∂At v2, ψ2

)
Ω2
t

+
(
(ρ2 − ρ̃2) (v2 − w) · ∇v2, ψ

)
Ω2
t

+
(
(µ2 − µ̃2)∇v2,∇ψ2

)
Ω2
t
− (λ, ψ2)V2(t) = (f2 − f̃2, ψ2)Ω2

t
+ (g, ψ2)Γt ,

(φ2, ṽ2 − v2)V2(t) = 0,

∀ψ ∈ V, ψ2 ∈ V2(·), q ∈ Q, φ2 ∈ V2(·).
21



DLM Fictitious Domain Method Fictitious domain method

Problem Setting and Assumptions
Steady-state Stokes interface case

−∇ · (µi∇vi) +∇pi = fi, Ωit × (0, T ]

∇ · vi = 0, Ωit × (0, T ]

(µ1∇v1 − p1I)n1 − (µ2∇v2 − p2I)n2 = g, Γt × (0, T ]

We have [Shibata, Shimizu 2003; Abels, Liu 2018]: If Γt is smooth enough, then

‖v‖H1(Ω) +
∑
i

(
‖v‖H2(Ωit)

+ ‖p‖H1(Ωit)

)
. ‖f‖L2(Ω) + ‖g‖

H
1
2 (Γt)

Assumptions
On regularity: Γt is Lipschitz, v(t) ∈ Hα(Ω1

t ∪ Ω2
t ) with 3

2 < α ≤ 2

On the immersed domain: max
{
‖w‖1,∞,Ω2

t
, ‖∂tw‖1,∞,Ω2

t

}
≤ C

On the numerical method: µ2 > µ̃2 and ρ2 > ρ̃2

Function spaces

V :=
(
H1

0 (Ω)
)d
, W := L2(Ω), V2(t) :=

(
H1

0 (Ω2
t )
)d

(λ, v)V2(t) := (λ, v)Ω2
t

+ (∇λ,∇v)Ω2
t 22
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Convergence of DLM/FD

Theorem (Stability)
Let (ṽmh , v

m
2,h2

, pmh , λ
m
h2

) ∈ Vh × Vm2,h2
×Wh × Vm2,h2

. Then we have

‖ṽmh ‖0,Ω + ‖vm2,h2
‖0,Ω2

tm
+

(
k

M∑
m=0

(
‖ṽmh ‖2V + ‖vm2,h2

‖2V2(tm)

)) 1
2

. ‖ṽ0
h‖0,Ω + ‖v0

2,h2
‖0,Ω2

0
+ k

M∑
m=0

(
‖f̃m‖0,Ω + ‖fm2 ‖0,Ω2

m
+ ‖gm‖0,Γm

)

Theorem (Error Estimate)
Let (ṽmh , v

m
2,h2

, pmh , λ
m
h2

) ∈ Vh × Vm2,h2
×Wh × Vm2,h2

. Then we have

‖ṽm−ṽmh ‖0,Ω+‖vm2 −vm2,h2
‖0,Ω2

tm
+

(
k

M∑
m=0

(
‖ṽm − ṽmh ‖2V + ‖vm2 − vm2,h2

‖2V2(tm)

)) 1
2

. hα−1 + hα−1
2 + k

Finite element space used is P 2-P 2-P 1-P 2 [Lundberg, Sun, Wang, Z., 2019].
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Numerical Experiments

h h2 ‖v − vh‖1 ‖v − vh‖0 ‖p− ph‖0
1/10 1/40 5.8308e-3 2.3015e-4 6.9973e-3
1/16 1/64 5.2881e-3 1.8555e-4 4.5674e-3
1/24 1/96 3.6631e-3 9.5663e-5 1.9919e-3
1/28 1/112 2.9270e-3 7.6531e-5 2.5130e-3

0.67 1.07 0.99
Table: Spatial convergence (rough case: µ2/µ1 = 104, ρ2/ρ1 = 103, k = 1/128)

k ‖v − vh‖1 ‖p− ph‖0
1/64 8.4674e-3 3.1714e-2
1/128 4.3102e-3 1.6299e-2
1/256 2.1778e-3 8.3803e-3

0.99 0.96
Table: Temporal convergence (smooth case: µ2/µ1 = 2, ρ2/ρ1 = 2, h = 1/32, h2 = 1/128)

Finite element space used is P 2-P 2-P 1-P 2 [Lundberg, Sun, Wang, Z., 2019]. 24



Summary

Summay
Pros and cons

ALE methods are mature in many engineering applications
ALE methods rely on good linear solvers, meshing, etc
Standard ALE methods not good for problems with large displacement or deformation
FD methods can take advantages of fixed meshes; can be applied in many cases
Constraints are enforced via Lagrange multipliers on two meshes in the fictitious domain

Extended ALE method: [Basting, Quaini, Čanić, Glowinski 2017]
Keep mesh connectivity while maintain body-fitted with moving structures
Employ a constrained optimization approach to enforce mesh aligning with structures
Provably optimal mesh quality and non-degenerate (especially for large displacement)S. Basting et al. / Journal of Computational Physics 331 (2017) 312–336 329

Fig. 7. Beam position and mesh deformation for the periodic beam transported through a channel at (a) t = 0 s, (b) t = 5 s, (c) t = 15 s, (d) t = 25 s, 
(e) t = 50 s, (f) t = 100 s. When available, the solution computed by the standard ALE method is above the solution computed by the Extended ALE 
method.

Fig. 8. (a) Maximum x-coordinate of the beam position over time (in s) computed by the standard and Extended ALE methods and (b) close-up view around 
the time when the standard ALE method breaks down (t = 18 .45 s).

velocity returns to zero, the viscous forces lead to a deceleration of the beam, which stops and eventually returns to its 
original circular shape, as visible at around t = 100 s. See Fig. 7(f).

Fig. 7 shows the beam position and mesh deformation computed at different times by the standard ALE method (top 
panel in subfloat, if present) and the Extended ALE method (bottom panel). The standard ALE is able to follow the defor-
mation and transport of the beam until about t ≈ 18 .45 s, when mesh distortion becomes too severe. For this reason, the 
position of the beam in the top panels in Figs. 7(d), (e), and (f), corresponding to times t = 25, 50, and 100 s, is not updated. 
As long as the two simulations run, we observe very good agreement in the beam position and deformation computed by 
the standard and Extended ALE methods. See Fig. 7(a), (b), and (c). A more detailed comparison between the two methods 
is shown in Fig. 8 . There, a comparison between the maximum x-coordinate of the beam position computed by the two 
methods is given in Fig. 8 (a), showing excellent agreement. Fig. 8 (b) shows a close-up view of Fig. 8 (a) around the time 
when the standard ALE method breaks down. Notice that until t ≈ 18 .45 s the curves given by the two methods are almost 
superimposed. With the Extended ALE Method we are able to carry out the simulation all the way until t = 100 s when the 
fluid velocity and beam motion are almost zero, and the shape of the beam has returned to almost circular.

Fig. 7 shows that the mesh obtained with the standard ALE method gets severely distorted, while the quality of the 
mesh computed by our Extended ALE method remains high throughout the entire time interval. As a further proof of the 
different quality of the meshes given by the standard and extended ALE methods, we report in Fig. 9 the maximum angle 
of the mesh elements over time. We see that the maximum angle in the mesh given by the standard ALE method increases 
up to nearly 170 degrees, right before the simulation crashes. On the other hand, the maximum angle for the mesh given 
by the Extended ALE method never exceeds 132 degrees.

6.5. An immersed beam

This test is aimed at assessing the performance of the DN algorithm, without and with Aitken’s acceleration method, 
and the performance of RN algorithm. We consider the immersed beam model (IB), which is more challenging than the 

How to solve FSI problems with large deformation / displacement?
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