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Numerical Methods for MIP

Applications in CVD Treatment

NCMIS
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Artificial heart pump, abdominal aortic aneurysm, artery stenosis and dissection, ...



Numerical Methods for MIP Models and formulations

Mathematical Model for FSI

NCMIS

A multiphysics problem which studies one or more solid structures (rigid or
flexible) interact with an internal or surrounding fluid flow!
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Coupling: Weak vs Strong

Formulation: Partitioned vs Monolithic

Coordinates: Eulerian vs Lagrangian or ALE

Interface: Body-fitted (tracking) vs Non-body-fitted (capturing)
Meshing: Conforming vs Non-conforming

Model: Macroscale vs Mesoscale vs Microscale

[Richter 2010; Hou, Wang, Layton 2012; Bazilevs, Takizawa, Tezduyar 2013; ...] 3



Numerical Methods for MIP Partitioned methods

Partitioned Methods

@ Algorithm:
e Predict and update interface position

NCMIS

e Regenerate mesh for the fluid domain

o Solve the fluid equation (S — F)

e Compute interface force and solve the solid equation (F — S)
© Advantages:

o Well-established methods and legacy code available for F and S

e Explicit information communication for interfacial conditions

o Available in almost all commercial software
© Challenges:

1= Stability: Difficult to achieve convergence, stability, and accuracy at once
e Added mass: Need to account for the added mass effect
e Accuracy: How to exchange interfacial conditions accurately

e Reusability: Coordinate the disciplinary code with minimal modification

( If partitioned methods do not work, how about monolithic methods? )




Numerical Methods for MIP Monolithic methods

Eulerian—Eulerian Methods

NCMIS

@ Algorithm:
o Formulate both fluid and solid in the Eulerian coordinate
o Most Eulerian methods are of interface-capturing type
o Some typical examples

Phase field method; Volume of fluid method; Level-set method;
Initial point set method

© Advantages:
e Very large deformation and topology changes can be handled
o Standard description of the flow problem in Eulerian coordinates
e No artificial domain mapping is used

© Challenges:
IF= Accuracy: loss of accuracy near the interface
e Overhead: capturing the moving interface is needed
e Efficiency: potentially more expensive (to achieve same accuracy)?



Numerical Methods for MIP Monolithic methods

ALE-Lagrangian Methods

@ Algorithm:
e Using interface-tracking type methods for the F/S interface

NCMIS

o Fluid mesh deforms according to the F/S interface movement
e Some examples

Arbitrary Lagrangian—Eulerian method; Deforming
spatial domain / stablized space-time method

© Advantages:
o Explicitly representation of moving interface

o Interface conditions can be easily embedded in variational form
o Widely used and tested in many engineering applications
© Challenges:
¥ Meshing: mesh smoothing/re-meshing is necessary from time to time
e Applicability: large deformation/displacement, nearly contact structures

o Efficiency: need efficient solvers for coupled nonlinear/linear systems



Numerical Methods for MIP Monolithic methods

Eulerian-Lagrangian Methods

@ Algorithm:
e Eulerian mesh for F (physical and fictitious) and Lagrangian mesh for S

NCMIS

e Solve the fluid equation with an artificial force or Lagrange multiplier
e Some typical examples

Immersed domain/boundary method; Immersed interface method;
Distributed Lagrange multiplier method; Direct forcing method;

Volume of fluid method; eXtended finite element method

© Advantages:

o Non-conforming meshes: fluid equation solved on whole domain
o Allow different coordinate systems for F/S, easier to implement
o Able to simulate large solid deformation and displacement

© Challenges:

1F" Accuracy: leakage, need to adjust F/S mesh sizes
o Stability: may need small time stepsizes

e Applicability: closed boundary, volume-free, incompressible structure



Arbitrary Lagrangian—Eulerian Method General FSI model

An FSI Model Problem {::2’
Incompressible viscous fluid + elastic solid:
psOpits —V - 65 =0 in Q,
prDwr —V.-op =0 in Qf
V.vy=0 in Qf
vfoxs = Olls, (0fng)oxrs=—Gsns oON I

Some notations:
e Flow map F(z,t) =2 J(&t):=|F|
e Linear elasticity model 64 ~ 2use(ts) + AsV - s I =: P,
e Material derivative Dw:=0w+v-Vo

e Newtonian fluid model oy :=2upe(vy) —pl

( Difficulties: Rotating structure, turbulence flow, complex fluid




Arbitrary Lagrangian—Eulerian Method General FSI model

Part I. Modeling Rotational Structure

NCMIS

St. Venant—Krichhoff material:

@ First Piola—Kirchhoff stress tensor If’s =6,=Jo F T
@ Second Piola—Kirchhoff stress tensor 5'3 =F *11—:’5 =JF g, F T
® Green—Lagrangian finite strain tensor E := £(FTF —I)
@ StVK constitutive law Sy = 2usE + Astr(E)I
Rotational elastic structure:

@ Given structure centroid in static X
@ Given or unknown rotator is assumed to be R
@ Divide the motion into two parts: deformation and rotation:
x— Xo = R(Z+ tq — Xo)
@ Structure displacement: @5 := x — & = Rig + (R — I)(Z — Xo)
@ Rotating StVK material:
Py = R(2use(tia) + As tr(e(ta))1)



Arbitrary Lagrangian—Eulerian Method General FSI model

Part II. Modeling Turbulence Flow &5

NCMIS

Momentum equation

v .
pf(a—tf+vf-va) =V-(os+or), V-vr=0, inQ

where the classical viscous stress and the Reynolds stress are defined as

ot := —pel + pe (Vg + (Vor) ")

Bl

2
OR = —gﬂfkf + e (Ve + (VUf)T) P o= pr

k—w turbulence model (Shear Stress Transport)

0
a(pfk}) + V- (prvek) =V - (et s VE) + Py — 87 prkw

0
E(wa) + V- (progw)

=V (foft. V) + d%Pk — Bprw? +2(1 — Fl)om%w Vw

10



Arbitrary Lagrangian—Eulerian Method General FSI model

SST k—w Turbulence Model Parameters

NCMIS

Blending function ¢ := Fyjo1 + (1 — Fy)og, where o1 and o2 are some parameters:
k 500 4 k 4
Fi ::tanh((min{max{ vk v K }, Iw2 5 ) ),
Brdiw dipw’ CDy,d?
1
CDy,, := max {prawrwc - Vw, 10*10} ,
w
where d is the distance from the nearest wall. We apply 5* = 0.09 and
a1 = 0.5532, £1 = 0.0750, o1 = 0.850, ow1 = 0.500,
a = 0.4403, B2 = 0.0828, o2 = 1.000, ow2 = 0.856.
Cl/4k1/2dc
In the near-wall region, we define the width of the viscous sublayer as: df{m =11.06,dt = =,

and C,, = 0.09. If the grid point closest to a wall is in the viscous sublayer (dT < dlfm), we define the
boundary behavior:

2400C3 % kv 61

5 I o n 710_15}7 Wyall = m,
% (o +26 — 21) o

kwall (= max

C =11, Cey = 1.9.

If the grid point nearest to a wall is in the inertial sublayer (dT > di ), we define By, = 8.366, x = 0.41

lim
vk

VP o = —0.416.
C’}/4nd+

C
Koanl := max {c,ﬁ“kavg (7’“ In(dt) + Bk) , 10*15} | Wwall 1=
11



Arbitrary Lagrangian—Eulerian Method ALE formulation of FSI

How to Handle Moving Domains? ALE {Cﬁ'
A widely used approach in engineering:
I Interface-tracking, mesh conforming, suitable for small deformation I
Given solid trajectory 27 on I, the moving grid can be described by A™ : Q = Qf
ALE mapping {A"(:E) =z on ?Q akiy)
A™(Z) = 23 (2,1) onT
We obtain an approximation of material derivatives as follows: For x = A(#,t"+1)
Dyv|pnir = (Dypv)" T = Bt’f‘kv(x,tnﬂ) + ((v = Oy 1 A) - V)u(z, t" ),

where

Oftl ey ey = o [ 1), 074 — u(A(#, 7)),

(O, A) (2, 1) ==

E Sl e

[A(;z, 7Y A%, tn)].

{ How to determine A"?  Solve —AA" =0 or LA"=0, in{y ]

12



Arbitrary Lagrangian—Eulerian Method ALE formulation of FSI

Development and Analysis of ALE &5

NCMIS

Development of ALE methods
@ FDM + ALE [Noh 1963; Hirt, Amsden, Cook 1974 ...]
@ FEM + ALE [Hughes, Liu, Zimmermann 1981; Donea, Giuliani, Halleux 1982; ...]
@ FVM + ALE [Farhat, Lesoninne, Maman 1994; Lesoinne, Farhat 1995; ...]

@ Many practical applications [Hu, Joseph, Crochet 1992; Hu, Patankar, Zhu 2001; Tallec,
Mouro 2001; Bazilevs, Takizawa, Tezduyar 2013; ...]

— Fluid problems on a moving domain
— Fluid—particle interactions
— Fluid-structure interactions

A priori error estimates of ALE/FEM
@ Geometric Conservation Law [Lesoinne, Farhat 1995; Formaggia, Nobile 1999]
@ Linear advection-diffusion problem [Gastaldi 2001]
@ Stokes equation: H*(Q)-error [Martin, Smarand, Takahashi 2009]
@ Fluid-structure interaction H' (2)-error [Lee and Xu 2016a, 2016b]

@ Stokes-parabolic problem H™*(2)-error and L?(Q)-error [Sun et al., in preparation]

13



Arbitrary Lagrangian—Eulerian Method ALE formulation of FSI

Monolithic ALE Formulation

NCMIS

Function spaces:

V. = {b e (H"(Q))?| 0 =vioA onT},

Ve = {vr € (H (%) |ve =vp on 00},

Wy = L),

Q = {AeH ()| A=0 ondQ NN, A=1is onl}.

Weak formulation: R .
Find (0g, ve, p, A) € L>=(0,T; Vs x Vi x W¢ x Qf) such that

(pfa;fAUf)w)Qf + (pf (Uf - ’U}) . vaﬂ//) + (O'f + OR, & )Qf
00, T -
o 9)y, + (0il+ [8)ime@), =0
(v vf, q )Qf = Oa
(VA, Vf)Qf =0,
V(ﬁevsawevﬁqewf’ge(@ﬂ

[Sun, Leng, Z. et al. 2018; Leng, Z., Sun, et al. 2019]



Arbitrary Lagrangian—Eulerian Method Artificial heart simulation

Simulating Artificial Heart &5

NCMIS
e BJUT-T LVAD
— Purple: Enclosure
— Red: Head
— Green: Tail

— Gray: Rotor

@ Design optimization

150.00 (D — Smaller still / backward flow zone
100.00 100.00

. 95.00 /\ — Reduce turbulence flow

4 90.00

0.00 85.00

0 0.1 0.2 0.3 0.4 0.5 06 0.7 0.8 00102030405060708 @ MajOI' diﬂiCultieS in Simulation

Fluid, solid, and coupling

High-speed rotation (= 7000rpm)

Turbulence flow

— Meshing (blood vessel wall)

Large problem size

15



Arbitrary Lagrangian—Eulerian Method Artificial heart simulation

Partitioning and Meshing 5

)

2
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G

5= NS,
i

Figure: Left: the artificial heart pump (head guide, rotor and tail guide); Right: the blood flow mesh in a
vascular lumen (the rotational part is separated from the stationary part by two discs).
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Figure: Interface meshes on 02,5 between the stationary fluid and the rotational fluid regions.
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Arbitrary Lagrangian—Eul

erian Method

Numerical Validation

Surtace Avrage 1 Monkor ()

Pressure drop

Validations and Applications

55

NCMIS
Laminar Model RAS Model ‘
('Y = 5000) (Y =5000)
RAS Model
M I : ('Y = 6000)
€500- | SN \
\ U ‘H . W
Mu ‘W U WM
6000 | ‘h - ‘ A |
“\‘ ‘\H\M‘,,, W
H‘ l‘ w 1y
I \‘
30000 ‘Commerical CFD package —— 19000 ‘Commerical CFD je
o V] e o
26000 17000
2o e
o
22000 3
S 000
20000 3
£ 13000
18000 o
om
om
o
o 0w
om wr
o oy
b = o o M = e e =
- s )

L: Convergence for rotation speed = 7000rpm; R: Comparison with commercial software.
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Arbitrary Lagrangian—Eulerian Method Validations and Applications

Shape Optimization and Animal Tests

NCMIS

When applied to solve the artificial heart problem on the LSSC-IV cluster (LSEC, AMSS), the

whole simulation costs about 2 hours (using 128 processing cores).

18



. sl (nies pustien
An Alternative Approach: DLM/FD

Difficulties when applying body-fitted methods: meshing for evolving domain

NCMIS

@ Moving, drafting, kissing, topological changes, ...
@ Mesh generation (rotation + boundary layers) and re-meshing
@ Example: Fluid—particle interactions [Glowinski, Pan, Hesla, Joseph 1999]
Fictitious domain methods / Domain-embedding methods
@ Extend a problem on a geometrically complex (time-dependent) domain to a
larger (but simpler) domain
— Simple geometry = simple (or even regular) mesh = fast solvers
1z~ Moving domain = fixed domain = no re-meshing needed
@ Need to find a way to enforce boundary conditions on the original domain
— As a constraint using a boundary-supported Lagrange multiplier
=" As a constraint using a distributed Lagrange multiplier
— Using least-square method

@ Many examples: [Hyman 1952; Saulev 1963; Buzbee, et al. 1971; Glowinski, et al.
1994, 1995, 1999; Bofti, Gastaldi 2017; Lundberg, Sun, Wang 2019; ...]
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Stokes Interface Problem

p10tv1 — V- (11 V1) + Vp1 = fi, Q

Vv =0, Q

p20:v2 — V - (2Vv2) + Vpa = fo, Q7

Vv =0, (oh

v — w2 =0, I

(11 Vur — pil)ny — (u2Ve — p2I)ng = g, I

v =0, O\
vy =0, O\,

Q I, 9 I, 9

X

o o o oo o oo
58885358533

X

X X X X

X X

o~ o~ o~ o~ o~ o~ o~ —~

DD
oNn O

NCMIS
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DLM Fictitious Domain Method Fictitious domain method

DLM Fictitious Domain Method

Introduce a fictitious problem

520102 — V - (Vi) + Viz = fa, Q7 x (0,7
Vs =0, Q7 x (0,7

Ty = va, Ty x (0,7

02 =0, O\ x (0,T]

Ba(-,0) = v3(-), 2%

DLM/FD formulation: Find a solution (¥, vz, p, A) in

NCMIS

(H* N L>®)(0,T;V) x (H* N L*®)(0,T;Va(-)) x L*(0,T;Q) x L*(0,T;V2(-)), s.t.

(v : ’a7 q)Q = 07
((02 - ﬁ2)354®2,¢2)92 + ((p2 — p2) (va — w) - Vv%tb)g%

(g2, D2 — v2)vyt) =0,
Vw S V7 1/’2 € V2(')7 q € Q7 ¢2 S VQ()

+(([L2 — /’:LQ)VUQ,VQ//Q)Q? - (>\7 wZ)VQ(t) = (f2 - f27¢2)9§ + (gsz)Ftv

21



DLM Fictitious Domain Method Fictitious domain method

Problem Setting and Assumptions

Steady-state Stokes interface case

-V (/LZ VUZ) + Vpi = fi; Q; X (O,T
V-v; =0, Qx(0,T
(u1Vor —pil)ng — (Ve —pal)ng =g, Ty x (0,T]

We have [Shibata, Shimizu 2003; Abels, Liu 2018]: If 'y is smooth enough, then

vl (@) + Z (||UHH2(Q;) + ||P||H1<Q§>> S fllzz) + \|9||H§(F[>

7
Assumptions

@ On regularity: I, is Lipschitz, v(t) € H*(Q} U QF) with 3 < o <2

@ On the immersed domain: max {[|wl|; w02, |Oswl|1 00,02 } < C
@ On the numerical method: p2 > fig and py > po

Function spaces
d

Vi= (HY(Q)Y, Wi=L2(Q), Va(t):= (HH (D))"

()‘7 U)Vg(t) = ()‘7 ’U)Q? + (VAa VU)Q%

NCMIS

22



DLM Fictitious Domain Method Fictitious domain method

Convergence of DLM/FD

NCMIS’
Theorem (Stability)

Let (03", V3, , P> Ay) € Vi X V5, X Wp x V5%, . Then we have
M 3
157 0.0+ 08 o0+ (k S (I3 + ||v;’fh2||%y2(tm>)>
m=0

M
S l8llo.c + 108 na o+ S (1™ oo + 157 llo.02, + g™ llo.v )

m=0

Theorem (Error Estimate)

Let (03", V37, Ph s Ahy) € Vi X V3l X Wy x V3%, . Then we have

2

M
7™ =57 o+ 108" =5, oz + (k > (1™ = SR + lles* = o5, ||\%2<tm>)>
m=0

<h 4 hsT 4k

v

Finite element space used is P?-P2?-P'-P? [Lundberg, Sun, Wang, Z., 2019].
23



DLM Fictitious Domain Method

Numerical Experiments

Fictitious domain method

h he  |lv—wnlli  [[v—=wonllo [P —pullo
1/10 1/40 5.8308e-3  2.3015e-4  6.9973e-3
1/16 1/64 5.2881e-3 1.8555e-4 4.5674e-3
1/24 1/96 3.6631e-3  9.5663e-5 1.9919¢-3
1728 1/112  2.9270e-3  7.6531e-5 2.5130e-3

0.67 1.07 0.99

NCMIS

Table: Spatial convergence (rough case: pi/u1 = 10%, p2/p1 = 103, k = 1/128)

ko llv=wnlls llp = pallo

1/64  8.4674e-3  3.1714e-2

1128 43102¢-3  1.6299-2

1/256  2.1778¢-3  8.3803e-3
0.99 0.96

Table: Temporal convergence (smooth case: p2/pu1 = 2, p2/p1 =2, h =1/32, ho = 1/128)

Finite element space used is P?-P2?-P'-P? [Lundberg, Sun, Wang, Z., 2019].

24



Summay

NCMIS

Pros and cons
@ ALE methods are mature in many engineering applications
@ ALE methods rely on good linear solvers, meshing, etc
@ Standard ALE methods not good for problems with large displacement or deformation
@ FD methods can take advantages of fixed meshes; can be applied in many cases
@ Constraints are enforced via Lagrange multipliers on two meshes in the fictitious domain

Extended ALE method: [Basting, Quaini, Canié, Glowinski 2017]
@ Keep mesh connectivity while maintain body-fitted with moving structures
@ Employ a constrained optimization approach to enforce mesh aligning with structures
@ Provably optimal mesh quality and non-degenerate (especially for large displacement)

Standard ALE Standard ALE Standard ALE

Extended ALE Extended ALE Extended ALE

(a) t =0s (b) t=5s (c) t =15s

( How to solve FSI problems with large deformation / displacement? ]

25



Contact me: zhangcs@lsec.cc.ac.cn, http://Isec.cc.ac.cn/"zhangcs
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