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Petroleum Reservoir Simulation 5

NCMIS

Upstream Oil Industry: Finding and developing hydrocarbon deposits

Finding nearly horizontal and major fault surfaces
Determining detailed stratigraphic layers, faults, pinch-outs, ...
Generating reservoir characterization geomodel (106 ~ 108 cells)
Describing reservoir heterogeneity at multiple scales
Upscaling reservoir grids and properties (10 ~ 106 cells)
Finding fluid properties: PVT, relative permeability, ...
Reservoir initialization

Dynamic flow simulation (production forecast & development planning)

History matching

© © 000 060CO0O0COO

Calibrating model parameters

“PRODUCTION WELLS ARE NOT
REGULATED BY THE UIC PROGRAM
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Multiscale in Nature 5

NCMIS

Geomodeling of subsurface flows mainly focus on the larger scales, driven
by the available measurement and by computation limitations

‘ @ Important for several situations, e.g.

Region |
anms | - Highly heterogenous reservoirs
- IOR / EOR processes

- Unconventional oil / gas reservoirs

Site
Scale
(100w 10k

15"~ CO2 sequestration

- Nuclear waste handling

@ Questions to consider:

Reservoir

e - Which heterogeneities matter most?
Sl - How many scales to model/upscale?
Pore Y <« A —a

- Which scales to focus on?

Scale
(10nn-Tocm)

Nano i dissolution
Seale K /1’1 '}‘ P \r¢ precipation
R toum s

Minera]Fuic Experiments and Thearetical Geochemisty

- How to best construct model grids?

Center for Petroleum & Geosystems Eng, UT Austin



Phase Behavior: Black Oil

Vapor Phase

Liguid Phase

Aqueous Phase

Modeling Aspects

Black oil fluid

Black oil model
NCMIS

The black oil model is based on simple
interpolation of PVT properties as a
function of pressure

Water is modeled explicitly together
with two hydrocarbon components, an
oil phase and a gas phase

At standard pressure and temperature,
hydrocarbon components are divided
into a gas component and an oil
component in a stock tank

No mass transfer occurs between the
water phase and the oil/gas phases

[Chen, Huan, Ma 2006]



Modeling Aspects Black oil model

Classical Black Oil Model

NCMIS

© Mass conservation (saturated & under-saturated):
D opase) = (o) v
2 (600055) = = - (poono) + Qo
2 (60450 + 0065,) = V- (py1tg + o) + Qo

© Darcy’s law and other constitutive equations:
kk,

J
Po_Pw:Pcowa Pg_Po:cho

u; = — (VP] - p]gVZ), j =0,g,w

So+ Sy + Sy =1

© Well constraints + B.C. + I.C.
PDE properties of the black oil model [Trangenstein, Bell 1986]



Modeling Aspects Black oil model

Well Models 5,

NCMIS

b
Peaceman s Well mOdel Gas Phase Liquid Phase

Q) = Wi (BY — By~ (2"~ 2) B
@ Suitable for vertical wells
@ 1D radial flow

@ Steady-state

Velocity Profile

@ Single-phase

@ Polygonal partition: Palagi’s well model (e
‘elocity
Simulating modern complex wells [7] seqment 1
@ Horizontal wells
segment 2
@ Complex wells Y L
Treatment of complex wells raas segment 3
@ Multi-segment well model [ pseg |
@ Drift-flux model Lsegme"“‘
@ Frictional resistance model perforation 3=~




Modeling Aspects Black oil model

Enhanced Oil Recovery 5

Peak oil theory, Hubbert 1956

w000 (x-axis: total liquids production; y-axis: avg Brent-equivalent breakeven price*, $/bbl)
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EOR techniques: recovery ratio 20%—40% = 30%—60%
v/ Gas injection: miscible flooding, commonly used
1=~ Thermal injection: steam, fire, ... = Energy equation, ...
1= Chemical injection: polymer, surfactant, microbial, ...

¥~ More complicated well models

[ Environment Impact: Produce brine with toxic and radioactive substances! ]
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Modeling Aspects General compositional model

Phase Behavior: Compositional

NCMIS

Vi @ In reservoirs containing light oil, the
. : hydrocarbon composition affects fluid
vee %0 @ properties a lot
L]

., . A
é.’ , $ .i @ A compositional model is based on a
L

thermodynamically-consistent model

Vapor Phase

@
. o
Liquid Phass .? ‘ i@ such as an equation of state (EOS)
a @
@ .. ® .. @ Each hydrocarbon component (arbitrary
A
°® °, number) is handled separately
&
o ® ¢ @ More unknowns than the black oil model:
Aqueous Phase o0 O . . . .
0o 0 &; is the molar density of phase j; x;; is
o0 .. the molar fraction of comp ¢ in phase j;

S— N, is the overall molar density of comp ¢
EOS compositional fluid

[Chen, Huan, Ma 2006]



Modeling Aspects General compositional model

General Compositional Model

9 p p
a<¢zzij€jsj) +VF = Sirij = Qi,

Jj=1 j=1
F,= (wijﬁjuj - SijV(ﬁjxij)>7

=1
kky

Hj

u; = ——=(VP; —;Vz),
P, — P; = Py,
E?; Sj=1,
Yty wii =1,

fi; = fits

=1
=1
j=1
i=2
j=1
=1

NCMIS

P M

Ny

Mey, ] =211y

[Collins, Nghiem, Li, Grabenstetter 1992; Qiao, Li, Johns, Xu 2014, 2015; ...]



Modeling Aspects More advanced models

Unconventional Oil/Gas 5,

NCMIS

Land surface

e = e

Coalbed methane

Conventional _d
Conventional >
ol

Sandstone

Tight sand-—».!
gas
=
Oi- or gas-rich s13%

Sources: U.S. Energy Information Administration and U.S. Geological Survey.

Unconventional oil/gas: not strictly defined (technologies and economy)
@ Examples: Tight oil/gas, shale oil/gas, heavy oil, oil sands, gas hydrate

1z~ Different models for different development conditions / technologies:
- Non-Darcy and non-Newtonian effects
- Multiscale fractures, adsorption/desorption
- Knudsen diffusion
- Fluid-structure interactions: fractures formation and propagation

[Garipov, Karimi-Fard, Tchelepi 2016]



Modeling Aspects More advanced models

Large-Scale Simulation

Challenges in petroleum reservoir simulation

@ Modeling and discretization
e Unconventional reservoirs and their modeling
e Multiscale, heterogeneous, and anisotropic
e Large number of grid cells with a lot of inactive cells
o Complicated production requirements and well models
@ Nonlinear and linear solvers
o Nonlinear algebraic equations for flash calculation
o Nonlinear coupling between pressure and non-pressure variables
e Large ill-conditioned linear system to solve
e Non-symmetric (sometimes indefinite) Jacobian systems for FIM

© Uncertainty and reliability

Why do we need lager computers for reservoir simulation?

NCMIS

@ Need to solve fine-scale problems (1M~ 1B grid cells)
@ Need to simulate a long period of time (40~60 years)

@ Have many problems to solve (10? ~ 103 repetitions)

10
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Upscaling and Multiscale Methods Multiscale modeling

Multiscale Geological Modeling

NCMIS

Multiscale geomodeling represents the flow and rock properties at several
scales within a petroleum reservoir

@ Combination of stratigraphy (study of rock layers and layering), sedimentology
(study of sedimentary rocks), and interpretation of measured data
- Seismic resolution: 10m, large region
- Well-log resolution: 1cm~10cm, only vicinity of wells
- Well core resolution: X-ray, CT-scan, electron microscopes, ...
- Geomodels are generally strongly under-determined!
@ Representative elementary volumes (REV): petrophyscial flow properties
(porosity and permeability) are constant on some intervals of scale
- 10m~50m in horizontal direction
- 10cm~10m in vertical direction
@ Estimating effective or equivalent flow and rock properties (¢, k, ...)
- using geological concepts and processes

- using analytical or numerical methods

11



Upscaling and Multiscale Methods Multiscale modeling

Upscaling Methods

NCMIS

@ Motivation: Creating simple models that produce flow scenarios in close
correspondence with those obtained by simulations directly on geomodels

@ Practice: Inducing increasing more detail into the geomodel (too large to
simulate), with only one upscaling step being explicitly performed

@ Performance: Difficult to design a robust upscaling that gives reliable results

Reservoir simulation grid

Geomodel

Figure: Heidrum field example. 1. pore-scale (50pm3) to lithofacies (0.05m x0.3mx0.3m);
2. lithofacies to geomodel (80m x 1kmx 3km) of a sector; 3. geomodel to reservoir simulation
model (200mx 3km x 5km). [Ringrose, Martinius, Alvestad 2008]

[Renard, de Marsily 1997; Barker, Thibeau 1997; Ekran, Aaasen 2000; Pickup, et al. 2005]

12



g and Multiscale Methods

Comparison of Upscaled Models

NCMIS
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Effect of water injection. Left: 70K grid cells; Right: 1.1M grid cells.
[Wu, Xu, Z, et al. 2013]

13



Upscaling and Multiscale Methods Multiscale modeling

Case Study: Coarse and Fine Models 5

NCMIS
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[Li, Wu, Li, Z, et al. 2016]
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Water

Water

Eault Zones
Represent pervasively fractured volumes of rock, that
include preferentially enhanced aperture fractures and|

Fault
Zones are associated with seismically-resolvable faults

http://www.geoexpro.com/articles/2017/01/hiding-in-the-basement

15



Upscaling and Multiscale Methods Fractured reservoirs

Carbonate Fractured-Cavity Reservoirs

T —r -

NCMIS
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MATRIX FRACTURES

1]
C]

VUGS MATRIX FRACTURE

Fractures are the most abundant visible features in the upper crust

Fractures occur in preferential directions, determined by the direction of
regional stress

Naturally fractured reservoirs, induced fractures in tight / shale reservoirs

Multiscale: range of scale from micro cracks to mile long features

It is important to distinguish between open and healed fractures



Fractured reservoirs

Natural and Hydraulic Fractures

NCMIS
@ Dual continuum model: matrix-fractures, simple

DPDP [Warren, Root 1963; Blaskovich, et al. 1983]
Well developed, connected, without localized anisotropy
Regard fractures as part of the pore volume

No flow occurs between matrix blocks

@ Equivalent porous media model: generalization of DCMs
o Representative elementary volume

o Multiple INteraction Continua: [Wu, Pruess 1988]

@ Discrete fracture model (DFM): large-scale / isolated fractures

Representing fracture aperture / shape / direction explicitly
How multi-phase fluid flows inside the fracture network?
Flow-geomachanics coupling [Karimi-Fard, et al. 2004]
Unstructured grid / high computational cost = EDFM

F(12)  Fracture-2

@ Mixed discrete-continuum model:

o Based on discrete fracture network analysis
@ Modeling reservoirs with multiscale fractures
Fracture: o Transportation between discrete and continuum parts

17



Multiscale Methods for Pressure Equation

Upscaling and Multiscale Methods Multiscale numerical methods

NCMIS

Multiscale methods

Model physical phenomena on coarse grids while using small-scale features that
impact the coarse-grid solution in a systematic way

Incorporate subgrid information by utilising solutions of local flow problems to
build a set of equations on a coarser scale

Localized multiscale basis methods
@ MSFEM/MsSMFEM [Hou, Wu 1997; Chen, Hou 2002]

MsFVM [Jenny, Lee, Tchelepi 2003]

Heterogeneous multiscale method [E, Engquist 2003; E, Ming, Zhang 2005]
Petro-Galerkin MsFEM to reduce cell resonance error [Hou, Wu, Zhang 2004
MSsFEM using limited global info [Efendiev, Ginting, Hou, Ewing 2006]

MSFEM for high-contrast problems [Efendiev, Galvis, Wu 2011; Owhadi, Zhang 2011]
FE-MSsFEM using penalty method for the interface [Deng, Wu 2014]

Brief survey with numerical experiments [Aarnes, Kippe, Lie, Rustad 2007]

18



Upscaling and Multiscale Methods Multiscale numerical methods

Multiscale Finite Element Method

A model problem: Find p € H}(Q), such that
=V (a(2)Vp) = f,

where a(x) is a heterogenous field with possibly high-contrast coefficient

NCMIS

Multiscale finite element: Construct a nodal (local) finite element basis {¢/, ;} on
T € Ty, such that
-V - (a(x)Vp;;) =0 inT,
and appropriate boundary conditions (e.g. equal to standard FE basis functions) hold
on the element boundary O7.

Theorem (H ! -error estimate)
For the two-scale problem with a/(z/¢) (¢ < h), MSFEM satisfies that

lp = palls S Al fllo +h~ 122

@ The idea goes back to the generalized FEM [Babuska, Caloz, Osborn 1994]
@ If £ ~ h, the resonance effect [Hou, Wu, Cai 1999]

@ Oversampling methods [Hou, Wu 1997] 19



Upscaling and Multiscale Methods Multiscale numerical methods

Multiscale Hybrid Finite Element Method
A weak formulation: Findp € V = H'(T;),A € A = H~2(&,) such that

anlp, s ¢, 0]l = F(q,p), q€V,peA
with an[p, A; ¢, p] := (aVp,Va)7, + (An, ld])e, + (un, [pl)e, and Fq, p) := (f, @) 7,
Space decomposition: V = Vo @ W, with W = V N L3(T}) and V; is p.w. const
We can divide the weak formulation as the two following parts:
an[p, A; qo, 1] = F(qo, 1), Vqo € Vo, € A; (1)
an[p; A; 4w, 0] = F(qw,0), Vaw € W. @)
Static Condensation: In order to approximate (2), on each 7 € 7T}, we solve
anlp” + P A5 4w, 0] = (f,qw),  Vquw € W(r),
where p/ € W and p* € W
an[p?,0; ¢w, 0] = (VD' Vaw)r = (f,qw); Vqw € W(r);
an[p™, A @w, 0] = (aVp*, Vau)r + A -nr,qu)or =0,  Vqu € W(7).
Global problem: Find p € V{y and A € A such that the equation (1) holds.
[Harder, Paredes, Valentin 2013; Araya, et al. 2013; Devloo, Teng, Z 2017]

NCMIS

20
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Gridding Techniques Fractures and complex wells

Why Gridding Is Challenging 5

NCMIS

Different length scales:
@ Vertical grid size ~ 10cm—1m e Well radius ~ Icm
@ Horizontal grid size ~ 10m—100m e Well length ~ 100m
o Fractures ~ lcm—10m

Pictures from Saudi Aramco and Schlumberger

21



Gridding Techniques Fractures and complex wells

Grid Partitions for Reservoir Simulation P

NCMIS

@ Cartesian block-centered grids

CNOOC: SOCF (2009.12—2011.6)
Easy for implementation
Multiple-domain, local refinement
Difficult to simulate fault/dip

@ Corner-point grids

PetroChina: HiSim (2011.1—2015.12)
A type of hexahedral grid

o

e Logically still structured

o Difficult to compute flux accurately
© Unstructured grids (PEBI and beyond)
PennSim (2013.1—2016.12) = ExSim
e Voronoi, 2.5D
o Better description of faults and wells
e Incompatible with structured seismic data
o Challenges in discretizations and solvers

[Goldthorpe, et al. 1985; Heirich 1987; Heinemann 1989; SPE8 1993; Palagi 1994] 22



Gridding Techniques Delaunay triangulation and Voronoi diagram

Subdivision and Triangulation

NCMIS
Subdivision and (conforming) triangulation

@ Subdivision (partition) of : U;7; = Q and int7; Nint7; = O (if i # 7)

@ Triangulation: A subdivision in which no vertex lies in the interior of any edge

@ Find a triangulation 7 (IP) of a set of sites (points) P := {p1,...,pn}

@ An important problem in computational geometry with MANY applications
What is a “good” triangulation?

@ Need to give mathematical conditions on “good” and “bad”

@ Need to give algorithms to generate a good triangulation

23



Gridding Techniques Delaunay triangulation and Voronoi diagram

Angle Conditions and Approximation 5

NCMIS

@ Minimal angle condition: J iy > 0, o > upin, V7 € Tp, R — 0
- P»-FEM for Poisson ||u — un||1 < h2/ Sin min [Z14mal 1968; Zenisek 1969]
- Similar estimate for the fourth-order clamped plane problem
- Inscribed ball condition or || > Ch? [Ciarlet 1978; Lin, Lin 2003]

@ Maximal angle condition: Famax < 7, @r < Qmax, V7T € Tp, h —0
- Minimal angle cond. = maximal angle cond. = essential for convergence
[1,00 S hluf2,00 [Synge 1957]

- Sufficient for convergence of P;-FEM [Feng 1965; Babuska, Aziz 1976]

- Interpolation error ||u — Ipu

X, A = (_hv O)aAQ = (hv 0)7143 = (07h5)

1A3 u(x) = ai, lu—lw|f >k 52h)h° =1
A, A,

‘ o

Large interpolation error [Strang, Fix 1973]

@ Nonobtuse condition: o, < w/2, V7 €Ty,
- Obtuse triangles can destroy the discrete maximum principle f > 0 = up, >0

- Nonobtuse simplicial triangulations yields diagonally dominant stiffness matrices

24



Gridding Techniques Delaunay triangulation and Voronoi diagram

Angle Conditions and Stiffness Matrix

NCMIS

@ Eigenvalues of stiffness matrix on quasi-uniform meshes:
- At <AA) <hTT? = cond(A) ~ h7?
@ Element size and shape affect matrix conditioning:
- Smallest eigenvalue: Not strongly affected by element shape [Fried 1972]:
)\min A) ~ i
(4) ~ min ||
- Largest eigenvalue: Can be arbitrarily large by a single bad-shaped element:
max Ayax < Amax(A) < mmax Al ax
TETH TET)
where m is the maximum number of elements meeting at a single vertex

- If an angle of 7 approaches zero, Af,., goes to infinity

@ Small angles can ruin matrix conditioning:
- Small angles = ill-conditioned linear systems [Xu 1989; Shewchuk 2002]
- A mesh with only a small number of bad elements will typically impose only a few
large eigenvalues
- Krylov subspace iterative methods can work around a few bad eigenvalues; but
need to be careful if restarting is used

25



Gridding Techniques Delaunay triangulation and Voronoi diagram

Delaunay Triangulation

NCMIS’
Delaunay triangulation

@ Many possible partitions; but which one is better? How to check?

Delaunay triangulation: a triangulation 7 (IP) such that no point in PP is in-
side the circum-hypersphere of any simplex

T llegal

Properties of Delaunay triangulation
@ Maximize the minimal angles
@ The Delaunay triangulation contains at most O(n/%/21) simplexes

@ The union of all simplexes in the triangulation is the convex hull of the points

26



Gridding Techniques Delaunay triangulation and Voronoi diagram

Algorithms for Delaunay Triangulation

Empty circle (sphere) condition

Ay

— By

Ch

B o Dy

Lawson’s flip algorithm

As
Bs
Cs
D,

A7 + A3
B? + B2
C?+C3
D? + D3

= =

NCMIS

>0

@ Lawson flip algorithm terminates in finite steps

@ Provides a constructive proof for the existence of Delaunay triangulation

@ Sequential algorithms: [Su, Drysdale 1996]

- Incremental algorithms
- Divide-and-conquer algorithms
- Fortune’s sweepline algorithms

- Convex hull based algorithms: lift-and-project

27



Gridding Techniques Delaunay triangulation and Voronoi diagram

Voronoi Diagram

NCMIS

Voronoi Diagram
@ Voronoi cell (of py) = {z € R? : ||z — pi|| < ||z — p;ll, Vj # k}
@ An edge of Voronoi diagram is equidistant to the two nearest sites

@ Dual graph of the Delaunay triangulation

Generating Voronoi diagram
@ Bowyer-Watson algorithm via Delaunay triangulation: O(nlogn) to O(n?)
@ Fortune’s algorithm: O(nlogn)

@ Lloyd’s algorithm and k-means clustering

Dynamic demo of Voronoi diagram. https://bl.ocks.org/mbostock/4060366 28



Adaptive mesh
Adaptive Mesh Refinement 5

NCMIS
Red-green refinement, longest edge bisection, and newest vertex bisection
/// B _— //'/
— —
A KN N

3 ]

[Chen, Z 2010] 29



Gridding Techniques Adaptive mesh

Adaptive Mesh and Nonlinear Approximation 5

NCMIS

L'-error = 2.34e-2
1 INITIALIZATION

7 |SOLVE: compute discrete solution uhl

s |ESTIMATE: compute T, set Y2 :=3 T2 |

L"-error = 1.36e—2

REFINE/COARSEN

; ‘ ED———
0 1

Approximate f(x) = x'/2. Left: Solution and error; Right: Adaptive algorithm.

30
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Discretization Methods Time discretization

Fully Implicit Discretization

Set of equations and unknowns
@ FIM or SS discretization [Douglas, Peaceman, Rachford 1959]

@ Primary equations: n. mass conservation laws + volume balance:

V(P Ny, ..., Ny, ) = VP(P)

@ Secondary equations: phase equilibrium, density, relative permeability, ...

@ Primary unknowns: X = (P,Ny,...,N,.)T +— More variables!
@ Secondary unknowns: Y := (11, ... Tpongy s Sty S,
Discrete linear equations (no reaction term)

@ Update the primary unknowns (Backward Euler + FVM + Newton)

\IIO — J/pore _ Vﬂuid =0

N N | L _
v, = ZTtl—i_zs:F:}: —Q;hL =0, 2=1:n,
AT A1)

@ Jacobian matrix J 1= — =

= — + ——= <+— More expensive!
dX 0X 0Yo0X

NCMIS

31



Discretization Methods Time discretization

Simplified Oil-Water Two-Phase Model

NCMIS

In order to introduce IMPES/IMPEC, we give a simplified model

@ Mass conservation (assuming incompressibility):

2 (omes) = () s

2 (90050) =~V (o) + Qo

@ Darcy’s law and constitutive equations:

 ohve

j27eY
So+Sw=1

u, = (VPy — pagVz), a=o,w

P, — P, =0 (for simplicity)

@ Well constraints + B.C. + I.C.

32



Discretization Methods Time discretization

IMPES/IMPEC Discretization

Implicit pressure / explicit saturation (concentration)

NCMIS

@ Separate computation of pressure from that of saturation or concentration
[Sheldon, Zondek, Cardwell 1959; Stone, Garder 1961; Collins, et al. 1992]

@ Two-phase classical IMPES: Define the total velocity u = u, + u,, and then

Vouz Qv @
Pw Po
krw kro krw kTO
u=— [( + 22 )vp - ( perpo)sz]
Hw Ho Hw Ho

@ Obtaining an equation for pressure: —V - (a«VP) = Q

@ Updating saturation/concentration with explicit time-marching

Pros & Cons and Variants
@ The linear system to solve is SPD: solver-friendly
15" Not as stable as FIM = requires small time stepsize At

@ Other improvements: Smaller At for saturation update; used in Newton
iterations; adaptive scheme; ...

33
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Galerkin Method

Model problem and its weak form

p = 0, 00

NCMIS

= peV:alpq=(fq),YVqeV

where V := H}(Q) and
alp,q] = —/Q(V'Vp)qu _ /QVp-qux—/me'n)qu: (Vp, Vg)

Galerkin approximation: Choose a finite dimensional space Vy C V/, such that

pN € VN alpn,gn] = (fian), Yan € Vy
( Galerkin orthogonality:  al[p — pn,qn] =0, Van € Vn ]

Theorem (Quasi-optimality property)

If the bilinear form af-, -] is continuous and coercive, then we have

lp —pnls Sllp—anlli, Van €V




Sizzao szt
Finite Element Method

NCMIS

Piecewise linear finite element
Let Viy = span{t1, ..., ¥} be the space of continuous p.w. linear polynomials on a
quasi-uniform triangulation and p;, = Zjvzl Pja;. Then we have
Za¢]a¢z (faqzbz)a Z:L,N
j=1
K K I
(a) Local patch w. (b) Skeleton . (c) Basis function 1.
[ Error estimate:  [|p — pulls < infyevy [Ip — allx < Allpl2 ]

Forming a linear algebraic system
We then need to solve a linear equation for P = (P, ..., Py)T

- - . — T
AP = R, with Aij = a[’(/Jj, ’(/Jl] and R = ((f, ’lbl), Cey (f, wN))
[Hrennikoff 1941; Courant 1943; Feng 1965; Ciarlet 1978; ...] 35



Sizzao szt
Finite Volume Method 5

NCMIS

Model problem and its primitive form

{ p = 0, 90 Jo, F(p)dS = [ fdz, Vw CQ

where F'(p) := —Vp - n is the flux across the volume boundary dw. It is also called
the surface integral from.

Classical finite volume method
@ Partition the domain € into control volumes w; C §2
@ Choose an approximation space of p in each control volume

@ Approximate boundary flux F'(p) by an numerical flux F(py,)

1 1
— F(py)dS = fdz, Yw; CQ
|wil Jou, Jwil Jo,
On orthogonal grids:  F,(p) = Phlry = Phlray =: F.(pn)
|Cin - Coutl

Centered difference method on irregular grids [Heinrich 1987; LeVeque 2002] 36



Discretization Methods Space discretization

Cell-Centered and Vertex-Centered FVM
Mesh and dual mesh

NCMIS

(a) Mesh and dual mesh of cell-centered FVM (b) Mesh and dual mesh of vertex-centered FVM

Choices of control volume

SN P
NS AP

(a) Type A (b) Type B (c) Type C

@ Type A: ¢ = barycenter of 7, commonly used for equilateral triangles
@ Type B: ¢ = middle point of longest edge of 7, better for right triangles

@ Type C: ¢, = circumcenter of 7, for a Delaunay triangulation (its dual mesh is a Voronoi diagram)

Box methods [Bank, Rose 1987; Hackbusch 1989]
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Discretization Methods Space discretization

Control-Volume Finite Element Method

NCMIS

Petrov-Galerkin formulation
Let D be the dual mesh of 7. Define a piecewise constant space
Vp = {v € L*(Q) : v|,, = const, Vw; € D}.
Now we choose p € Viy and ¢ € Vp. In this case, we have the bilinear form
- > / Vp-n,)[q]dS
e€&(D)
Control-volume finite element method
( Find py, € Vi, such that a[pn, q] = (f,q), Vq¢€ Vp ]

Choose the standard basis functions for Vp: x;(x) =1, z € w;; xi(x) =0,z ¢ w;

AP =R, with A;; =a[y;,xi] = —/ Vi; -ndS and R, = | fda
Ow; Wi

Special case: If Ow N AT contains the middle points of edges, then A = A.

( Ervor estimate: [~ palls S h(lpll2 + 1) )
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Discretization Methods Space discretization

Mixed Finite Element Method N

Model problem and its mixed form

A
p =0, 00 p = 0, 00

Weak form of the mixed problem: Find (u,p) € H(div,Q) x L*(9) such that
Jou-vdr+ [(pV-vdx = 0, Vv e H(div, )
{ Jo V- -ugdz = [, fadx, Yqe L*(Q)

Mixed finite element and algebraic system

@ More variables and more difficult to analyze / to solve

@ Need to solve a saddle-point type algebraic system

(5 " )(5)-(%)
B P R
@ Hybridization and static condensation = Schur complement =—> reduce system size

[Brezzi 1973; Crouzeix, Raviart 1973; Falk, Osborn 1980; ...]



Sizzao szt
Discontinuous Galerkin Method

NCMIS
Complications of continuous Galerkin methods
@ Mesh generation: How to handle meshes with hanging nodes

@ Approximation functions: P* used on triangles and Q* used on quadrilaterals;
complicate to construct C'! conforming elements

Broken (discontinuous) Sobolev spaces
@ 7T}, is a shape-regular quasi-uniform (conforming or not) triangulation of {2
o H¥(Tp,) :={ve L*Q) : v|, € H¥(7), V7 € Th}

DG formulations:

Assume p € H?(Q) N HJ () and test the model equation with discontinuous g

> [o-Vade= 3 [ (Wpengeds = [ fads. vaemy(T)

TETH TETH
— 3 [Vo-Vado— 3 [n(Viads = [ fade. vae HY(T)
TETLYT e€&, V¢

[Reed, Hill 1973; Lesaint, Raviart 1974; ...] 40
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Interior Penalty DG Method

Problems with the previous weak form

NCMIS

@ No guarantee on the well-posedness = enforce continuity in a weaker sense
@ No symmetry in the weak formulation = symmetrization

Introduce interior penalty

® J7(p.q) =Yg, [.olplldldS, p,qe HY(Ty);  o=ah;!

1/2
o DG norm [|v]lng = (|U|H1(m + U7 (v, v))
Examples of IPDG methods
® ajlp.al =3 cr, [. VP Vadr — 3 e, [, ne-{Vp}aldS+ I (p,q)

® ajlp.d =2 e, [, VP - Vade =3 ce, [.(ne - {Vp}a] +ne - {Va}p]) dS + J7 (p, q)

@ ailp.gl =3 cq, [, VP Vadz =3 ce, [.(ne - {Vp}a] —ne - {Va}p]) dS + J7 (p, q)
@ IIPG, SIPG, NIPG [Dawson, Sun, Wheeler 2004; Wheeler 1978; Riviere, Wheeler, Girault 1999]

( Error estimate:  ||p — pnllpg < hlple ]
41




Discretization Methods Space discretization

Weak Galerkin Method
Problems with the DG methods

@ Complicate finite element formulations

NCMIS

@ More unknowns than the continuous Galerkin methods
Weak Galerkin approximation
@ Use discontinuous approximation functions:
Wy, = {v = {vo, v} : volr € Pj(T), vple € Pi(e€), vplon = O}
@ Keep the simple weak form as the continuous Galerkin methods:
Find p;, € W, st. (Vwpn, Vuwan) + 0(pn,qn) = (f,v), Van, € Wy

@ Define weak gradient V,,v € [P,(7)]%:

(Vpv, W) :=—(v9,V - W), +/8 ww-ndS, VYw e [P.(r)]?
® For example, (P;(7), Pi(e), [P (7)]%) = (Pi(7), Po(e), [Po(7)]%)

[Wang, Ye 2013]
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Weak Galerkin Finite Element Method

WG finite element formulation
Define a bilinear form

(07
aw[Phy G = (Vwbh, Vwan) + —(Ph,0 — Ph,bs Qh0 — Qhob)or
h
T T

Find p, = {pn.0, b} € W}, such that
aw[pthh} = (quh)a VQh € Wh
Theorem (Error Estimate)

The WG solution pj, € (P1(7), Po(e), [Po(7)]%) satisfies that
MQnp — pull + 11Qnp — prllo S B2 |pll2

NCMIS

Implementation of WG finite element method: Static condensation

@ Local problem: Fix pp, ;, and solve for pp, o such that

awlpn,an] = (f,an),  Yan = {aqn,0,0} € Wy
@ Global problem: Solve py, ; such that

awlpn,an) = (fan), Van ={0,qnp} € W
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Iterative Solvers Direct solvers

Linear Algebraic Solvers 5

NCMIS

A fundamental problem in scientific computing:
I Given a sparse matrix A € RV*N and f € R, solve Au = f! I

In many applications, it takes most of the simulation time!
@ General purpose direct solvers: Gaussian Elimination, ...
e Robust, exact, multiple right-hand sides, ...

e Black Box = Many packages available: PARDISO, MUMPS,
SPOOLES, SuiteSparse (CHOLMOD/UMFPACK), SuperLU, WSMP,
H2Lib, ...

e Memory: Require explicit matrices, need more RAM for decomposition

o Computation: General O(N?), banded O(N?), nested dissection
O(N*-3) [George 1973; Duff, Erisman, Reid 1986; Demmel 1997]

@ 7H-matrix, data-sparsity, low-rank approximation: [Hackbush 1999;
Chandrasekharan, Gu, Lyons 2005; Xia, Chandrasekharan, Gu, Li 2009, 2010;
Ho, Greengard 2012; Schmitz, Ying 2012; ...]

@ Specialized methods: FFT, ...
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Iterative Solvers Iterative solvers

Iterative Solution Methods

NCMIS‘
Pros:

@ Optimal cost is possibly: O(N|log N|?) operations

@ Adjustable accuracy with good initial guess in practice

@ Matrix-free operations can be used

@ Singular or nearly singular problems
Cons:

@ Problem-dependence: require different methods for different problems
@ Robustness: (arguably) biggest disadvantage in practice
@ Optimality: optimal algorithm or fastest algorithm?

e Implementation: difficult if not impossible to make efficient software
Goals:

I convergence, robustness, optimality, efficiency, scalability, reliability I

45



Iterative Solvers Iterative solvers

Convergence of Krylov Subspace Methods

NCMIS

@ Conjugate gradient method for Au = f
Ju = |4 R4 -1)" Amax(A)
_— 4 m>1), k(Ad):=—">=
HU—UOHA - \/K,(A) +1 ( o ) ( ) Amin(A)

@ Convergence rate by effective condition number [Axelsson 2003 ]

lu—w™la _ o Veer(A) — 1 m_mo(
Jlu—ullla — Ve (A) + 1

o decomposition: (A) = opaa(A) U oer(A) with mg entries in ovaa(A)

m > my)

o effective condition number kef(A) := max oes/ min oeg

o constant C' := maXac o () [Leon,a) ’1 - %
o C < 1if o are isolated large eigenvalues; C < |x(A) — 1|™ in general

¥~ Preconditioning:
o Incomplete factorizations: ILUk, ILUt, ILUtp, ...

o Domain decomposition methods: RAS, FETI, BDDC, ...
o Multilevel preconditioners: AMG, GAMG, GMG, ...

46



Obtaining Information from Physics ]

[ Complex Physical Problems
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Iterative Solvers Preconditioners

Preconditioned Krylov Methods in Hilbert Space

NCMmIS
© What about more general problems with A : X — X’ D X?
e Need an SPD operator B : X’ — X to make KSM’s to work
o If Ais SPD, then (-,-) 4 := (A-,-) defines an inner-product and
(BAz,y)a = (ABAz,y) = (Ay, BAz) = (Az, BAy) = (z, BAy) 4
o BAis SPD in terms of (A-,-) or (B71.+)
e Convergence estimate of CG holds true with x(BA)
© Find a natural (canonical) preconditioner for continuous problem
e Bilinear form a : X x X — R is symmetric and bounded, and it satisfies
the inf-sup condition inf,ex sup,¢x m >y>0
o For f € X',1et B: X’ — X be a Riesz operator (Bf,y)x = (f,y)
e Then BA : X — X is symmetric in (-, -)x and x(BA) < C, /7!

BAuz,
- HBAH < SUPgex % = SUPgex |“1|£ZCH;]| < Ca

Z1y=1 - ||BAzHX _ a(z,y]
- [(BA)™ |7 = infse Tl = faex SUPyex oo = 7

[Mardal, Winther 2011]
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Iterative Solvers Preconditioners

Construction of Preconditioners

NCMiIs
@ What does a “natural” preconditioner look like?

o A:Hy(Q) — H1(Q), (Au,v) == afu,v] = [,(a -Vudz

o Kernel a(x) € R¥ 4 satisfies v|¢|? < ¢Ta(x) € < Ca\§|2
Define B = (—A)~': H7Y(Q) —» H}(Q) = k(BA) <C,/y<
Stokes problem: a[(u,p), (v,q)] == (Vu, Vo) + (p,V - v) + (¢, V - u)
A [H(@)])" % L3(9) — [H ()] x L3(9)

= B =diag[(—A)~!,...,(~A)~", I|] = Block Trig Precond, ...

© Solve a discrete problem = Employ a stable discretization
. o alz,yl
o Stable discretization, i.e., inf ¢ x, SUp,cx, m >y >0
o Condition number can be bounded x(BpAr) < C, /7
@ Construct a cheap spectral-equivalent preconditioner
e Discretization, grid generation/adaptation, parallelization, ...

o Example: need components like (—A)~! when solving Stokes, Darcy, ...
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Iterative Solvers Multigrid methods

Multilevel Iterative Methods

Examples of multilevel algorithms

@ Quick Sort, FFT, FMM, GMG, AMG, H-Matrix, H2-Matrix, ...
% Vs
ﬂ Coarse Grid X{
Coarse
Key gradients for multilevel iterative methods

@ Construct multilevel hierarchy in an efficient way

Multigrid V-cycle

Fine Grid Fine

|

UOTIOLIISNY

Prolongation
_—

@ Find effective (and cheap) smoothers for each level

@ Find good coarser level solvers (nested iterations)

NCMIS
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Multigrid Method
Performance comparison: GMG vs AMG

Solution Method | FMG  GMG-PCG | CA-PCG  UA-PCG
Number of Iterations — 5 6 12
Wall Time (sec) 0.143 0.251 1.57 (0.87) 1.50 (0.26)

NCMIS

Table: Solving 2D Poisson’s equation using multigrid methods (Five-point stencil,

FASP 1.8.3, DOF = 1M, TOL = 10~%, Macbook Pro 13’, gcc-4.9.3, -02)

Methods based on PDE and/or discretization information
@ Using connectivity information from coefficient matrix (AMG)
@ Using an extended matrix (Jacobi = BPX, GS = MG V-cycle)
@& Using an auxiliary grid or discretization
1z~ Using coarsening based on the finest grid

1= Block preconditioners for coupled PDEs

( Must plan ahead of time: meshing, linearization, discretization, ...
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Iterative Solvers Subspace corrections and beyond

Method of Subspace Corrections

NCMlg
Divide and conquer
@ Space decomposition: V = Y""" | V;

@ Subspace correction: e; ~ A; ' P;(f — Au)
u—u+ Z e; (Parallel subspace corrections, Jacobi)
i=1

u—ute,t=1:n (Successive subspace corrections, GS)

Some examples and generalizations
@ BPX preconditioner [Bramble, Pasciak, Xu 1990]
@ SIAM Review [Xu 1992]
@ Fictitious domain method [Nepomnyaschikh 1992]
@ Auxiliary space method [Xu 1996]
@ Nonlinear equations [Tai, Xu 2002]
@ H(div), H(curl) solvers [Hiptmair, Xu 2007]
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Decoupling and Preconditioning Linear solvers for reservoir simulation

Linear Solution Methods for FIM

Solve the Jacobian system:

NCMIS

Ju=r
@ Decoupling Step:
Ju=r
where }
J:=DJ and 7:= Dr
© Solution Step: Solve the preprocessed linear equation by a Krylov space
method (e.g. GMRES or BiCGstab) with a multi-stage preconditioner
Difficulties in solving the Jacobian system:
@ Fully-coupled, large, non-symmetric, ill-conditioned
@ Usually takes more than 80% of the computing time

( Now we consider linear algebraic solvers for the FIM discretization! ]

53



Decoupling and Preconditioning Preconditioning methods

Multistage Preconditioners for FIM

Define subspaces:
V=Vp+Vn

A two-stage preconditioner: Given ug, Bug := ug, where
ul = ug + Hpj;}gnf:;(f — jUQ)

Uy = Uy + HNJJQ}VHE(f - jul)

NCMIS

Form subspaces according to physical properties
Choose appropriate solvers for each subspace
Example: CPR-type preconditioners [Wallis 1983]

A decoupling stage is necessary before the solution stage
Decouple different unknowns (P and V) effectively

Obtain a reasonable pressure equation Jpp

How to choose the decoupling (D) and preconditioning (B)?

[Hu, Xu, Z 2013]
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Decoupling and Preconditioning Decoupling methods

Decoupling Strategies for FIM

NCMIS

Formal (semi-discrete) Jacobian matrix
-V}gore _ Vguid _Vvlﬂuid . _V'r?md
1 0 1
J = — .
At :
i 0 1
i 0 0 .. 0
=V (T1Vo) =V - (B1po) =V -(B1uio) ... —V-(Bin.0)
+ . . . .
[V (T2, V0) = V- (Bucp0) =V (Brc10) .. =V (Bucnco)
Decoupling methods [Lacroix, Vassilevski, Wheeler 2001; ...]
. Jep  Jpn
J=DJ=|. - as a pre-processor
Jnp  JINN

@ Cheap to apply and give an easy-to-solve pressure equation
@ Make J pnN (sometimes J ~ p as well) not dominant

1z~ Limiting behavior: [ — B J reduces to 0 as At — 0, which is invalid for J 35



Decoupling and Preconditioning Decoupling methods

Analytic Decoupling Methods: Basic Idea

Decoupling at the PDE level:

ap 0 0
0 1 ... 0
- 1
JANL:E
0 0 1

—V - (TVo) + 1 (Vo) = 1€, ViV - (Bipo)

— 3 ViV - (Bi10)
—V - (T1Vo) = V - (B1po) —V - (B110)
+ .

=V (T, Vo) =V - (Bn.po) —V + (Bne10)

where ap, 1, Bik, B: p are knowns.
@ We know the underlying equations we are solving

@ A multigrid friendly system can be formed

@ Becomes diagonally dominant as At goes to 0

NCMIS

=3 ViV - (Bineo)
=V - (B1ng0)

=V (Encnco)
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Decoupling and Preconditioning Decoupling methods

Analytic Decoupling Methods: Matrix Form

Decoupling in matrix form:
Consider the decomposition J = A 4 F'. Let

A= = [APP APN} and DANL .= [I X]

At |[Axp Ann 0 I
such that
i pore v -fluid
paig = LA O ey LY O
At |Ayp Ann At 0 I

General comments and advantages
1= Note that our A is in a very special form
@ Closely related to the IMPES discretization (eliminate N-terms)
@ Black oil model = True-IMPES decoupling method [Coats 1999]
@ Giving “good” pressure equations that work well with multigrid
@ Wehave I — BJ — 0as At — 0

NCMIS
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Decoupling and Preconditioning Decoupling methods

Algebraic Decoupling Methods

NCMIS

@ Alternate Block Factorization [Bank, Chan, Coughran, Smith 1989; Klie 1997]:

pasr . [diag(Jpp)  diag(Jpy)
’ diag(JNp) diag(JNN)

1z Eigenvalues clustered around 1, but the pressure equations difficult to solve

Imagainary
]

5 2

5 2 ] 0s 1 2
Real 0%

3 T 3 “o [ 1
Reed it Acal

(a) JA2F (b) At (c) T (@) A+
@ There are several algebraic decoupling methods (Householder, Quasi-IMPES,
CPR, ...) that are equivalent to ABF up to a scaling
@ Wehave I — BJ — 0 as At — 0, which does not hold for J

@ More stable and take less iterations if the pressure is approximated well

[Qiao, Wu, Xu, Z 2017] 58



Decoupling and Preconditioning Decoupling methods

Numerical Validation: Relation b/w D/B P

NCMIS

( Pressure equations from ABF are difficult for AMG = Different solvers ]

Comparison of two preconditioners
1z~ Method-I: Use one AMG V-cycle as a pressure solver
15" Method-II: Use AMG preconditioned GMRES as a pressure solver
Wall time by Method-I / Method-1I

No Model DAYS GRID
1 Black-oil 500 9026 Reference Ratio = 1 MAX Ratio = 5
2 Black-oil 900 900026
3 Black-oil 15096 241474
4 Black-oil 15096 241471
5 Black-oil 15616 466913
6 Black-oil 10653 143786
7 Black-oil 9100 46825
8 Black-oil 11868 46574
9| Two-phase 5233 45156

10| Two-phase 4408 208842

11| Two-phase 21427 89339

12| Two-phase 2000| 1094422

13| Two-phase 2000| 10944220

14| Two-phase 19753 89048

15| Two-phase 708 51623

16| Two-phase 1825 104013

[Li, Wu, Z, et al. 2017; Li 2017, Thesis] 59



Decoupling and Preconditioning Decoupling methods

Convergence and Robustness c:?;
Properties Ecl100 HiSim

No Name - - - - 5 :
Model # Total Cells |# Active Cells | Peroid (day) | Newton | Time (min) [ Newton | Time (min)
1 |SPEIQ-2 Two-phase 1122000 1094422 2000 e e 295 41.82
2 |SPE9-9k Black-oil 9000 9000 900 339 0.12 269 0.20
3 |SPEl CO2 flooding 300 300 3656 536 0.04 445 0.08
4 |SPE2 Three-phase coning 150 150 900 209 0.01 538 0.14
5 |SPE103 Black-oil 1122000 1094422 2000 — — 1462 354.12
6 |SPE6 Dual porosity 100 100 7300 306 0.01 322 0.02
7 |DPSP Dual porosity 60984 40294 360 545 2.64 116 0.81
8 |SPE7 Horizontal wells 488 488 1500 120 0.01 75 0.02
9 | Voliatle Extended black-oil 2100 2100 0.694 67 0.03
10 |Zaoyuan Field test (black-oil) 417480 143786 10653 3302 105.49 5204 66.20
11 [Jidong Field test (black-oil) 335664 154598 10587 1091 139.69 161 441
12 |Chengbei Field test (black-oil) 1646500 585123 2191 1971 155.57 420 2847
13 |Dagqingl Field test (black-oil) 1453248 466913 15616 e e 5227 338.00
14  |Daging2 Field test (black-oil) 847895 241474 15096 8562 92.46 3072 88.05
15 |SPE10-10M |Two-phase (large-scale ) 11220000 10944220 2000 —_— —_— 592 962.12
16 |[SPE9-9M Black-oil (large-scale) 9000000 9000000 900 — — 2460 10932.81

Tested by the Research Institute of Petroleum Exploration and Develop-
ment, PetroChina (2015): Dell E5-2690 v2 CPU @3.0GHz, 200GB DDR3,
Windows 7/VS2010/Intel Fortran Compiler 2015, HiSim 2.0, ECL 2012

60



Decoupling and Preconditioning

Decoupling Strategies, Revisited

A semi-analytical decoupling

@ Can we combine advantages of analytical and algebraic decouplings?

- Cheap to compute; do no spoil outer iterations
- Obtain an easy-to-solve pressure equation
- Keep the asymptotic behavior I — BJ — 0 as At — 0

@ A semi-analytical decoupling method: [Qiao, Wu, Xu, Z 2017]

NCMIS

s lD;zsaL Dé’ﬂ
DY DAY
Test Problem Matrix1 Matrix2
Decoupling method ABF ANL SEM | ABF ANL SEM
Number of iterations 3 3 3 7 7 7
Total AMG iterations 5 6 6 97 27 32
Average AMG iterations 1.67 2 2 13.86 3.86 4.57
Test Problem Matrix3 Matrix4
Decoupling method ABF ANL SEM | ABF ANL SEM
Number of iterations 7 8 6 6 6 4
Total AMG iterations 111 32 25 73 25 18
Average AMG iterations 15.86 4 417 | 1217 4.16 4.5
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Numerical Comparison of Decoupling Methods

Decoupling and Preconditioning

A semi-analytical decoupling

5

NCMIS
8 1.8
—ABF ——ABF
7 —-=-Analytical 1.6 —-— Analytical
— — Semi-analytical — — Semi-analytical
6 1.4
—5 TLZ
= =
I I
= 2. 08
= =
-3 s
2 0.4
1 0.2 .
% 500 - 2000 }‘_1’ 5?)0 2000 % 500 1000 1500 2000
Distance (ft) Distance (ft)
First iteration Second iteration
Numerical comparison for the SPE10 benchmark
. Nonlinear Linear AMG [ Linear Solver )
Method Time Steps Iterations Iterations Iterations Time (s)
ABF 60 352 25605 37235 7756
Analytical 57 332 2209 16212 3149
Semi-analytical 56 320 1338 13813 \ 2464 )

[Qiao, Wu, Xu, Z 2017]

62



§7.

63

64

65

66

67

68

69

70

Simulation Software

Solution Algorithm Flow Chart

Main solver project

Introduction to PennSim
. . . @ Repositories
Numerical Validation: SPE 1
{3 Settings
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Multilevel Solver Software
° Turn off new nav

FASP Software Project
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Simulation Software Simulator project

Solution Algorithm Flow Chart

NCMIS

Require Local and easy

communication to parallel
Sl (il e i | Construct Jacobian || Update secondary i
secondary unknowns T matrix ] - T S '
(x, s) and time stepsize k ! | ! :
i Solve Jacobian i : Updat: primary :
: system J6x =1 Coo unknown !

| ystem o x=x+06x

Finish the current time
step, update stepsize k,
and then continue

Calculate residual r

( Need a scalable parallel linear algebraic solver to make it work! ]

[Guan, Qiao, Zhang, Z, et al. 2015]
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Introduction to PennSim

Reservoir

NCMIS

Reservoir data and calculations Geometric information and discretization

Well data and calculations Fluids and rock data and calculations

Reservoir

PennSim Linear solver parameters,

preconditioners and iterative
methods.

Rock/fluids interaction functions

Time step control, accuracy Flow information and calculation

Numerical control, iteration control
controller etc.

EOS

Connections

7’
I Mixture k:— -I Black oil |

Y .
Spereton

Components

Relative permeability

Leverett J-function | Perforation

N
Wettability

Transmissibility |

| Flow Units

[Qiao 2016, Thesis] 64
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Numerical Validation: SPE 1

NCMIS

A 5000
4500
gas 1) 4000 ——PennSim
2 3500 o ECL300
&
. 300
1 : d
3 3 2500
v T £
2000
1500
10005 1000 2000 3000 - 4000
Time (days)
Figure: SPE 1 reservoir Figure: Production well pressure

o Three dimensional, three phase, gas injection
o IMPEC: 3815 time steps, 4.0 seconds
o FIM: 75 time steps, 0.76 seconds

( Now we consider linear algebraic solvers for the FIM discretization! ]
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Simulation Software Simulator project

Numerical Validation: Field Test éfas'
NCMI
Well 1 Well2
-~ 35
3 g: ° 5 30
¥ . 5 \}
230 | =25
= . &
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[} ]
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g S .
B 5 £ 3 5
g 0 @& & 0 saessrrsssssscases
0 500 1000 1500 0 500 1000 1500
Time (day) Time (day)
® PennSim @ ECL100 ® PennSim  ® ECL100

@ Real data from an European field (60K corner-point grid)
@ Qualitatively matches the results of commercial software
o Simulate five-year period (PennSim~:3hr, ECL.100~6hr)
@ Cost only half of the CPU time compared with ECL100
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Multilevel Solver Software

NCMIS

@ How to handle a complicated PDE (system)?
o Provide blockwise iterative methods and general preconditioners

o Use mapping properties to construct a good preconditioner
e Reduction: precond PDE systems = precond model problems

o Use an auxiliary problem for preconditioning

© How to choose a discretization?
e Using a uniformly stable discretization is important

e Using a solver-friendly discretization

© How to handle discretizations on unstructured mesh?
o To improve efficiency of the SETUP phase of multilevel methods

e Use sparsity pattern or entries of coefficient matrices

e Use an auxiliary structured (or semi-structured) grid

( Need to plan ahead of time! ]
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Simulation Sofi

FASP Software Project

Fluid Structure
Interaction

2

NCMIS

Petroleum Smoothed

2

SRS me o

L 2 L 4 -

FASP Basic Solvers/Preconditioners

Standard Preconditioning Methods
GMG, AMG, ILU, Schwarz, ...

L 4

Standard Iterative Methods
CG, MINRES, BiCGstab, GMRES, GCR, GCG, ...

v v

Basic Sparse Linear Algebra Modules q
Serial, OpenMP, MPI, CUDA 10, Conversion

Supported by NSF DMS-0915153 and NSFC 9113001 1. http://fasp.sf.net 68
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Preliminary Tests: AMG (Sequential)

NCMIS

Test Device: Intel Core i5 2.6GHz, 8GB RAM, gcc 4.9.2 -02
Benchmark: FASP 1.7.0, hypre 2.10.0b, AGMG 3.2.0 (default parameters)

Problem | DOF | RS-V-CG | UA-NA-CG | hypre | AGMG
2D5pt | IM 1.79 1.43 1.96 | 1.73
2D 5pt | 4M 8.71 6.04 8.45 | 6.61
2D 9%t | IM 1.82 2.07 225 | 2.24
2D 9pt | 4M 7.63 39 8.88 | 9.42
3D7pt | M 1.05 0.37 1.83 | 043
3D7pt | 2M | 10.86 3.28 19.04 | 3.71
3D27pt | M 2.09 0.94 326 | 1.79
3D27pt | 2M 20.0 8.53 34.54 | 20.29

Table: Computing time (seconds) of the AMG-preconditioned conjugate gradient
method. We solve the 2D/3D Poisson equation with one processing core. Stopping
criteria: relative residual is less than 1076.
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Simulation Software Numerical experiments

Preliminary Tests: AMG (OpenMP)
Test Device: Intel Xeon X5675 3.07GHz (6 cores), 24GB RAM, gcc 4.4.6

—02 | DOF | NT=1 | NT=2 | NT=4 | NT=8 | NT=12
2D5pt | IM | 2.12s | x1.43 | x1.74 | x1.90 | x1.89
2D5pt | 4M | 9.51s | x1.47 | x1.80 | x2.00 | x2.00
3D7pt | 2M | 9.86s | x1.50 | x1.89 | x2.15 | x2.20
3D7pt | 16M | 90.66s | x1.50 | x1.90 | x2.20 | x2.29

—O0 | DOF | NT=1 | NT=2 | NT=4 | NT=8 | NT=12
2D5Spt | IM | 636s | x1.54 | x2.15 | x2.60 | x2.62
2D 5Spt | 4M | 27.14s | x1.56 | x2.22 | x2.70 | x2.70
3D7pt | 2M | 31.00s | x1.59 | x2.25 | x2.87 | x3.07
3D7pt | 16M | 274.3s | x1.64 | x2.35 | x3.01 | x3.28

25

NCMIS

Table: Computing time (seconds) of the classical AMG method. We solve the 2D/3D
Poisson equation with OpenMP. Stopping criteria: relative residual is less than 1076.
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Obtain Good Parallel Performance

NCMIS’
Keys to Good Parallel Performance

I extent of parallelism, granularity of partition, locality of computation I

The Amdahl’s Law
@ The parallel speedup is limited by the time needed for sequential portions

_ time(1)  time(1) < time(1)
~ time(p) Seq+Par/p — Seq

speedup(p)

@ If 20% of the execution time is sequential, then the max speedup is 5!

A HPC Paradox (G. Wittum)
@ Assumption that algorithm complexity is Ey = O(N9), ¢ > 1
@ We want to buy a computer o >> 1 times larger (faster) than the old one
@ We wish to solve problems of size « times larger than the original
@ The new computer then needs computing time proportional to
By = 0(a!N?) = oEy = o’ 'aEy > ok

Weak scalability — E; = aFy = ¢ = 1 (optimal algorithm)
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Parallel Implementation Make good use of HPC

The Moore’s Law {Cﬁ
It transistors were people

=~

0rs in a microprocessor were represented by people,
eline gives an idea of the pace of Moore's Law.

e
2,300 134,000 32 Million 1.3 Billion
Average music hall capacity Large stadium capacity Population of Tokyo Papulation of China
1970 1980 1990 2000 2011
Intel 4004 Intel 286 Pentium III Core i7 Extreme Edition

Now imagine that those 1.3 billion people could fit onstage in the original music hall. That's the scale of Moore’s Law.

Challenges to Keep Up With the Moore’s Law:
@ Instruction-level parallelism (ILP) wall: availability of enough parallel
instructions for a multi-core chip
@ Power wall: the chip’s overall temperature and power consumption

Dynamic Power = K - (Capacitive Load) - (Voltage)? - (Frequency)
@ Memory wall: bandwidth/latency of the channel b/w CPU and RAM
[Waldrop 2016, Nature] 7



Parallel Implementation Where HPC is heading

Communication-Avoiding Algorithms 25:2' '
10000
1000
é 100

ﬁ mnow (45nm)

10 m2018 (11nm in this case)

1
o‘(& @é&k “6& 063\\:\0@‘“«‘00&0 «,4’@&

John Shalf

Floating-point time < 1/Memory bandwidth < Memory latency

59% 23% 5%
Floating-point time < 1/ Network bandwidth < Network latency
59% 26% 15%

@ Avoid communication (data movement) to save time = Redesign algorithms
@ Linear algebra, LAPACK/ScalLAPACK, ... J. Demmel and collaborators
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Parallel Implementation Where HPC is heading

Whatever Has Been Done Can Be Outdone

Performance

10 EFlopis

1 EFlopls

100 PFlopls

10 PFlopls

1 PFlopls

100 TFlopls

10 TFlopls

1 TFlopls

100 GFloprs 4%

10 GFlopls

100 MFlopls

NCMIS

r

1 GFlopls 4%

Obstacles to scalable simulation

Model complexity

Extreme concurrency
Multiple levels of parallelism
Complex memory hierarchies

More costly data movement

Hardware failures and soft error

1995 2000 2005 2010 2015 2020

Lists

® sum A #1 = #500

Optimization: Improve cooling, find hot spots, reduce power leakage

Less transistors = lower frequency = more processing cores

Scalable, power-aware, resilient parallel algorithms and software
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allel Implementation

Numerical tests

Strong Scaling Tests Using OpenMP

5

NCMIS
FASP preconditioner
Ist 2nd 3nd 4nd
N #It Time Speedup #It Time Speedup #It Time Speedup #It Time Speedup
1 32 31.34 — 34 32.79 — 34 32.77 — 32 31.49 —
2 32 17.72 1.77 34 18.48 1.77 34 18.46 1.78 32 17.68 1.78
4 32 13.44 2.33 34 13.19 2.49 34 13.14 2.49 32 12.60 2.50
8 33 11.02 2.84 34 11.20 2.93 34 11.18 2.93 32 10.80 291
CPR preconditioner
Ist 2nd 3nd 4nd
Nt #It Time Speedup #It Time Speedup #It Time Speedup #It Time Speedup
1 45 39.01 — 45 38.90 — 43 37.36 — 42 36.56 —
2 45 21.95 1.78 45 21.90 1.78 43 21.00 1.78 42 20.67 1.77
4 45 15.42 2.53 45 15.44 2.52 44 15.19 2.46 42 14.56 2.51
8 45 13.12 2.97 45 13.09 2.97 44 12.86 2.90 42 12.35 2.96
12 45 13.19 2.96 45 13.18 2.95 43 12.66 2.95 42 11.93 3.07
Block triangular preconditioner
Ist 2nd 3nd 4nd
Nt #It Time Speedup #It Time Speedup #It Time Speedup #It Time Speedup
1 49 41.69 — 49 41.48 — 48 40.96 — 44 37.75 —
2 49 23.42 1.78 48 2293 1.81 48 22.87 1.79 44 21.25 1.78
4 49 16.67 2.50 49 16.62 2.50 48 16.30 2.51 44 15.37 2.46
8 49 14.30 291 48 13.94 2.98 48 13.91 2.95 44 12.92 2.92
12 48 14.00 2.98 48 13.99 2.97 47 13.58 3.02 44 12.99 2.91

Multicore performance of FASP, CPR, and BTP preconditioners for SPE10 three-phase problems

[Feng, Shu, Xu, Z 2014a]
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Parallel Implementation Numerical tests

GMG Tests Using CUDA

CPU: AMD 2.8GHz 8-core (using a single core), gcc 4.4.6 -O2
GPU: NVIDIA GTX480 480 cores 1.5GB RAM ($485), nvce 4.1 —-02

DOF | FFTW | FMG(1,2) | CUFFT | FMG(1,2)
IM | 0.260 0.108 0.0110 0.0088
4M | 2.020 0.452 0.0408 0.0257
16M | 6.650 1.830 0.1364 0.0917

NCMIS

Table: Kernel time (seconds) in 2D case
Some observations
@ 15x ~ 18x speed-up compared with single-thread CPU version (2/3D)
@ Speedup of GMG is not as good as FFT (almost 50x)
@ GMG on GPU: 15GFlops, only 10% of peak performance
@ Bottleneck: Visiting coarse level spaces

@ Solution: BPX + Redundant Basis Formulation

[Feng, Shu, Xu, Z 2014b] 76



Parallel Implementation Numerical tests

SpMV Tests Using CUDA 55

NCMIS
@ Based on heterogenous architecture, we developed a parallel solver for the
black-oil model

@ Numerical results show reasonable speedup for “easy-to-parallel” parts:
Minimizing amount of time for code-tuning

HYB mBHYB SolvePhase mLinearSolver
2000 - 18.80 ;
18.00 - 17.63 65 54 63
16.00 - 6 5.5
51 51 52
1400 13 1285 1341 1330 |
S12.00 | o
B10.00 - 341
g s 29 20 3 L. g
2 8.00 - 03 : 23
[7) o 18 m
6.00 | PR :
400 -
1 4
2.00 |
0.00 - 0

Case2 Case3 Case4 Case5 Case6 Case7 Case8

Case2 Case3 Case4 Case5 Case6 Case7 Case8

Speedup of SpMV Speedup of linear solver

[Li, Wu, Xu, Z 2015]
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Parallel Implementation

Numerical tests

Strong Scaling Tests on Tianhe-2

25

NCMIS

Problem Size # Nodes | # Processes | Efficiency | Total time (s)| Solver time(s) | # Newton | # Linear
40 960 888 583.205 76 614
. 60 1440 94% 631 425.531 76 631
SAEHEID || e 80 1920 89% 497 341.551 76 688
100 2400 68% 520 367.979 87 958
80 1920 1294 899.789 81 884
100 2400 118% 878 609.921 82 818
SPEl-refine | 150M cells 120 2880 108% 802 566.173 84 860
160 3840 95% 678 472.916 92 907
200 4800 84% 614 438.111 100 1085
32 768 1953 1079.351 133 277
SPES-refine 90M cells 128 3072 86% 567 307.249 148 525
256 6144 64% 381 241.309 148 525

SPE1 and SPE9 benchmark problems first refined and then tilted. Tested
on the Tianhe-2 cluster, Guangzhou: 2nd in the Top500 list (2017), 3.12M
cores (32K CPUs), 1.408PB RAM, Rmax 33.86PFlops, Rpeak 54.90PFlops,
Peak Power 17.8MW/hr.

[Guan, Qiao, Zhang, Z, et al. 2015]
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Parallel Implementation Numerical tests

Weak Scaling Tests on Tianhe-2 {Cﬁ
#CPU Cores 24 | 48 | 96 | 192 | 384 | 768 | 1536
# Grid Block 3M 6M 12M | 24M | 48M | 96M | 192M

# Linear Iterations 723 724 726 727 723 725 715
Total CPU Time (s) || 2741 | 2838 | 2846 | 2907 | 2711 | 2881 | 3026

Weak Scalability Test
3200
= 3000
©
&
£ 2000 ?J-:é?é
2600
E
= 2400
S
2200
2000 . ‘ .
24 48 96 192 384 768 1536
Number of CPU cores

[Guan, Qiao, Zhang, Z, et al. 2015] 79
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Summary Future work

Models of Interest

O 9L
+OCSQ0x
= ACCH
3 )OO0

Immiscible displacement, water flooding

Injection well

Production well

v/ Two-phase flow model: WO, OG

fOSO0%
;:_:GaSO () O+
SO))OCY

Miscible displacement, gas flooding

)

Injection well

Production well

v/ Black oil model (three-phase flow) / volatile oil model

1¥= Compositional model

- Non-isothermal flow: energy conservation

- Chemical flooding: polymer, foam, surfactant, alkaline, ...

- Fractured reservoirs: DPDP, MINC, DFM,

& Flow-Geomechanic coupling (Biot)
@& Multiscale modeling?
- Carbonate fractured-cavity reservoirs
- Darcy-NS coupling (Brinkman)

... (multiscale)

NCMIS
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Summary Future work

Ongoing Work I

@ Design robust, optimal, and resilient solvers

o Improve robustness [Qiao 2016; Li 2017]
- Different reservoir models
- Different mesh types
- Different discretizations
- Why the semi-analytic decoupling works?
e Improve resilience [Cui, Xu, Zhang 2017]
- Less overhead when no error occurs
- Convergence rate does not deteriorate when error occurs

@ Enhance scalability of MPI, OpenMP, and CUDA versions
o Improve scalability of the CUDA version [Feng 2014; Li 2017]
- SpMV
- Block ILU
- Algebraic multigrid
e Improve scalability of the MPI version [Guan, et al. 2015]
- Improve scalability of linear solvers
- Hierarchical parallelization

NCMIS
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Summary Future work

Ongoing Work Il

@ Handle natural and hydraulic fractured reservoirs

o (Embedded) discrete fracture model

- Aperture distribution
- Flow and geomechanic coupling, Biot model

o Weak Galerkin method, virtual element method

- Structured / unstructured polyhedral grids
- Local mesh refinement

@ Improve model parameters (input data)

e Remove noise from input data

- Garbage in garbage out (lack of data / imprecise data)
- Deep Learning

o Quantify uncertainty
- Global and local quantities (e.g. production rate v.s. well location)
- History matching

e Data-physics

NCMIS

82



Quantifying Uncertainty

NCMIS

Uncertainty v.s. Error

@ Lack of knowledge? Types: aleatoric (statistical) and epistemic (systematic)

@ Sources of uncertainty: model, measurements, initial/boundary conditions

@ “All models are wrong, but some are useful” [George Box] = V&V

@ Where does uncertainty make a big difference (compared with error)?
Uncertainty quantification: SITAM/ASA-joint conference on UQ 2012

@ Predict model responses with quantified and reduced uncertainties
- Identification and characterization
1=~ - Forward propagation (UP): Surrogate model, MC, GP, PCE, gPCE, KLE, ...
- Inverse propagation
- Sensitivity analysis

@ Difficulties when applied in petroleum reservoir simulation
- Curse of dimensionality
- Identifiability issue: Combinations of uncertainties yield the same prediction

- “... an uncertain input parameter will lead not only to an uncertain solution but to
an uncertain error ...” [Trucano 2004 ]
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Forward Uncertainty Propagation

NCMIS

Model problem and uncertainty propagation

( y=F(r) = Y =F(X), where X is a random variable ]

@ Polynomial Chaos Expansion: represent a random variable of interest as a
polynomial expansion of another random variable £ with distribution p

@ {1;} are the orthogonal polynomials w.r.t. (-,-),
- Wehaveypo =1land E(¢;) =0,5=1,2,...
- Variance of v; is (5, ;), and covariance (v;,v;), = 0if i # j

- A few possible choices, for example:
Uniform [—1, 1] = Legendre; Gamma [0, co) = Laguerre; Normal = Hermite

Non-intrusive UP with PCE
@ Suppose X = Z;.":O zj;(§) and Y ~ Z;”:O y;v;(€)

. m Yo mivi(8)), Yk
° ijo y;(8) Z}'(ijo xjwj(g)) — Yk = (F( (wka;Zk;P) : )p

@ Need to compute the integral: [, F(3_7" o ;4;(£))vx (€)p(§) d€
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