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Modeling Aspects Background

Petroleum Reservoir Simulation

Upstream Oil Industry: Finding and developing hydrocarbon deposits

1 Finding nearly horizontal and major fault surfaces

2 Determining detailed stratigraphic layers, faults, pinch-outs, ...

3 Generating reservoir characterization geomodel (106 ∼ 108 cells)

4 Describing reservoir heterogeneity at multiple scales

5 Upscaling reservoir grids and properties (104 ∼ 106 cells)

6 Finding fluid properties: PVT, relative permeability, ...

7 Reservoir initialization

8 Dynamic flow simulation (production forecast & development planning)

9 History matching

10 Calibrating model parameters
1



Modeling Aspects Background

Multiscale in Nature

Geomodeling of subsurface flows mainly focus on the larger scales, driven
by the available measurement and by computation limitations

Important for several situations, e.g.
- Highly heterogenous reservoirs

- IOR / EOR processes

- Unconventional oil / gas reservoirs

� - CO2 sequestration

- Nuclear waste handling

Questions to consider:
- Which heterogeneities matter most?

- How many scales to model/upscale?

- Which scales to focus on?

- How to best construct model grids?

Center for Petroleum & Geosystems Eng, UT Austin 2



Modeling Aspects Black oil model

Phase Behavior: Black Oil

Black oil fluid

The black oil model is based on simple
interpolation of PVT properties as a
function of pressure

Water is modeled explicitly together
with two hydrocarbon components, an
oil phase and a gas phase

At standard pressure and temperature,
hydrocarbon components are divided
into a gas component and an oil
component in a stock tank

No mass transfer occurs between the
water phase and the oil/gas phases

[Chen, Huan, Ma 2006] 3



Modeling Aspects Black oil model

Classical Black Oil Model
1 Mass conservation (saturated & under-saturated):
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2 Darcy’s law and other constitutive equations:

uj = −kkrj
µj

(∇Pj − ρjg∇z), j = o, g, w

Po − Pw = Pcow, Pg − Po = Pcgo

So + Sg + Sw = 1

3 Well constraints + B.C. + I.C.
PDE properties of the black oil model [Trangenstein, Bell 1986] 4



Modeling Aspects Black oil model

Well Models
Peaceman’s well model

Q
(w)
j = WI(w)

j

(
P

(w)
bh − Pj − ρjg(z

(w)
bh − z)

)
Suitable for vertical wells
1D radial flow
Steady-state
Single-phase
Polygonal partition: Palagi’s well model

Simulating modern complex wells
Horizontal wells
Complex wells

Treatment of complex wells
Multi-segment well model
Drift-flux model
Frictional resistance model

5



Modeling Aspects Black oil model

Enhanced Oil Recovery
Peak oil theory, Hubbert 1956

EOR techniques: recovery ratio 20%–40% =⇒ 30%–60%
! Gas injection: miscible flooding, commonly used

� Thermal injection: steam, fire, ... =⇒ Energy equation, ...

� Chemical injection: polymer, surfactant, microbial, ...

� More complicated well models

Environment Impact: Produce brine with toxic and radioactive substances!

6



Modeling Aspects General compositional model

Phase Behavior: Compositional

EOS compositional fluid

In reservoirs containing light oil, the
hydrocarbon composition affects fluid
properties a lot

A compositional model is based on a
thermodynamically-consistent model
such as an equation of state (EOS)

Each hydrocarbon component (arbitrary
number) is handled separately

More unknowns than the black oil model:
ξj is the molar density of phase j; xij is
the molar fraction of comp i in phase j;
Ni is the overall molar density of comp i

[Chen, Huan, Ma 2006] 7



Modeling Aspects General compositional model

General Compositional Model

∂

∂t

(
φ

np∑
j=1

xijξjSj

)
+∇ · Fi −

np∑
j=1

Sjrij = Qi, i = 1 : nc

Fi =

np∑
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uj = −kkrj
µj

(∇Pj − γj∇z), j = 1 : np

P1 − Pj = Pc1j , j = 2 : np∑np
j=1 Sj = 1,∑nc
i=1 xij = 1, j = 1 : np

fij = fi1, i = 1 : nc, j = 2 : np

[Collins, Nghiem, Li, Grabenstetter 1992; Qiao, Li, Johns, Xu 2014, 2015; ...]
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Modeling Aspects More advanced models

Unconventional Oil/Gas

Unconventional oil/gas: not strictly defined (technologies and economy)

� Examples: Tight oil/gas, shale oil/gas, heavy oil, oil sands, gas hydrate

� Different models for different development conditions / technologies:
- Non-Darcy and non-Newtonian effects
- Multiscale fractures, adsorption/desorption
- Knudsen diffusion
- Fluid-structure interactions: fractures formation and propagation

[Garipov, Karimi-Fard, Tchelepi 2016]
9



Modeling Aspects More advanced models

Large-Scale Simulation
Challenges in petroleum reservoir simulation

1 Modeling and discretization
Unconventional reservoirs and their modeling
Multiscale, heterogeneous, and anisotropic
Large number of grid cells with a lot of inactive cells
Complicated production requirements and well models

2 Nonlinear and linear solvers
Nonlinear algebraic equations for flash calculation
Nonlinear coupling between pressure and non-pressure variables
Large ill-conditioned linear system to solve
Non-symmetric (sometimes indefinite) Jacobian systems for FIM

3 Uncertainty and reliability
Why do we need lager computers for reservoir simulation?

Need to solve fine-scale problems (1M∼1B grid cells)
Need to simulate a long period of time (40∼60 years)
Have many problems to solve (102 ∼ 103 repetitions)

10
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Upscaling and Multiscale Methods Multiscale modeling

Multiscale Geological Modeling

Multiscale geomodeling represents the flow and rock properties at several
scales within a petroleum reservoir

Combination of stratigraphy (study of rock layers and layering), sedimentology
(study of sedimentary rocks), and interpretation of measured data

- Seismic resolution: 10m, large region
- Well-log resolution: 1cm∼10cm, only vicinity of wells
- Well core resolution: X-ray, CT-scan, electron microscopes, ...
- Geomodels are generally strongly under-determined!

Representative elementary volumes (REV): petrophyscial flow properties
(porosity and permeability) are constant on some intervals of scale

- 10m∼50m in horizontal direction
- 10cm∼10m in vertical direction

Estimating effective or equivalent flow and rock properties (φ, k, ...)
- using geological concepts and processes
- using analytical or numerical methods

11



Upscaling and Multiscale Methods Multiscale modeling

Upscaling Methods
Motivation: Creating simple models that produce flow scenarios in close
correspondence with those obtained by simulations directly on geomodels
Practice: Inducing increasing more detail into the geomodel (too large to
simulate), with only one upscaling step being explicitly performed
Performance: Difficult to design a robust upscaling that gives reliable results

Figure: Heidrum field example. 1. pore-scale (50µm3) to lithofacies (0.05m×0.3m×0.3m);
2. lithofacies to geomodel (80m×1km×3km) of a sector; 3. geomodel to reservoir simulation
model (200m×3km×5km). [Ringrose, Martinius, Alvestad 2008]

[Renard, de Marsily 1997; Barker, Thibeau 1997; Ekran, Aaasen 2000; Pickup, et al. 2005]
12



Upscaling and Multiscale Methods Multiscale modeling

Comparison of Upscaled Models

Effect of water injection. Left: 70K grid cells; Right: 1.1M grid cells.

[Wu, Xu, Z, et al. 2013] 13



Upscaling and Multiscale Methods Multiscale modeling

Case Study: Coarse and Fine Models
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[Li, Wu, Li, Z, et al. 2016] 14



Upscaling and Multiscale Methods Fractured reservoirs

Challenges in Fractured Reservoirs

http://www.geoexpro.com/articles/2017/01/hiding-in-the-basement 15



Upscaling and Multiscale Methods Fractured reservoirs

Carbonate Fractured-Cavity Reservoirs

Fractures are the most abundant visible features in the upper crust
Fractures occur in preferential directions, determined by the direction of
regional stress
Naturally fractured reservoirs, induced fractures in tight / shale reservoirs
Multiscale: range of scale from micro cracks to mile long features
It is important to distinguish between open and healed fractures

16



Upscaling and Multiscale Methods Fractured reservoirs

Natural and Hydraulic Fractures
1 Dual continuum model: matrix-fractures, simple

DPDP [Warren, Root 1963; Blaskovich, et al. 1983]
Well developed, connected, without localized anisotropy
Regard fractures as part of the pore volume
No flow occurs between matrix blocks

2 Equivalent porous media model: generalization of DCMs

Representative elementary volume
Multiple INteraction Continua: [Wu, Pruess 1988]

3 Discrete fracture model (DFM): large-scale / isolated fractures

Representing fracture aperture / shape / direction explicitly
How multi-phase fluid flows inside the fracture network?
Flow-geomachanics coupling [Karimi-Fard, et al. 2004]
Unstructured grid / high computational cost =⇒ EDFM

4 Mixed discrete-continuum model:

Based on discrete fracture network analysis
Modeling reservoirs with multiscale fractures
Transportation between discrete and continuum parts

17



Upscaling and Multiscale Methods Multiscale numerical methods

Multiscale Methods for Pressure Equation
Multiscale methods

Model physical phenomena on coarse grids while using small-scale features that
impact the coarse-grid solution in a systematic way
Incorporate subgrid information by utilising solutions of local flow problems to
build a set of equations on a coarser scale

Localized multiscale basis methods
MsFEM/MsMFEM [Hou, Wu 1997; Chen, Hou 2002]

MsFVM [Jenny, Lee, Tchelepi 2003]

Heterogeneous multiscale method [E, Engquist 2003; E, Ming, Zhang 2005]

Petro-Galerkin MsFEM to reduce cell resonance error [Hou, Wu, Zhang 2004]

MsFEM using limited global info [Efendiev, Ginting, Hou, Ewing 2006]

MsFEM for high-contrast problems [Efendiev, Galvis, Wu 2011; Owhadi, Zhang 2011]

FE-MsFEM using penalty method for the interface [Deng, Wu 2014]

Brief survey with numerical experiments [Aarnes, Kippe, Lie, Rustad 2007]

· · · · · ·
18



Upscaling and Multiscale Methods Multiscale numerical methods

Multiscale Finite Element Method
A model problem: Find p ∈ H1

0 (Ω), such that

−∇ · (α(x)∇p) = f,

where α(x) is a heterogenous field with possibly high-contrast coefficient
Multiscale finite element: Construct a nodal (local) finite element basis {ψτ,i} on
τ ∈ Th such that

−∇ · (α(x)∇ψτ,i) = 0 in τ,
and appropriate boundary conditions (e.g. equal to standard FE basis functions) hold
on the element boundary ∂τ .

Theorem (H1-error estimate)
For the two-scale problem with α(x/ε) (ε < h), MsFEM satisfies that

‖p− ph‖1 . h‖f‖0 + h−1/2ε1/2

The idea goes back to the generalized FEM [Babuška, Caloz, Osborn 1994]
If ε ∼ h, the resonance effect [Hou, Wu, Cai 1999]
Oversampling methods [Hou, Wu 1997]

19



Upscaling and Multiscale Methods Multiscale numerical methods

Multiscale Hybrid Finite Element Method
A weak formulation: Find p ∈ V = H1(Th), λ ∈ Λ = H−

1
2 (Eh) such that

ah[p, λ; q, µ] = F (q, µ), q ∈ V, µ ∈ Λ

with ah[p, λ; q, µ] := (α∇p,∇q)Th + (λn, [q])Eh + (µn, [p])Eh and F (q, µ) := (f, q)Th .

Space decomposition: V = V0 ⊕W , with W = V ∩ L2
0(Th) and V0 is p.w. const

We can divide the weak formulation as the two following parts:
ah[p, λ; q0, µ] = F (q0, µ), ∀ q0 ∈ V0, µ ∈ Λ; (1)
ah[p, λ; qw, 0] = F (qw, 0), ∀ qw ∈W. (2)

Static Condensation: In order to approximate (2), on each τ ∈ Th, we solve

ah[pf + pλ, λ; qw, 0] = (f, qw), ∀ qw ∈W (τ),

where pf ∈W and pλ ∈W
ah[pf , 0; qw, 0] = (α∇pf ,∇qw)τ = (f, qw), ∀ qw ∈W (τ);

ah[pλ, λ; qw, 0] = (α∇pλ,∇qw)τ + (λn · nτ , qw)∂τ = 0, ∀ qw ∈W (τ).

Global problem: Find p ∈ V0 and λ ∈ Λ such that the equation (1) holds.
[Harder, Paredes, Valentin 2013; Araya, et al. 2013; Devloo, Teng, Z 2017]

20
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Gridding Techniques Fractures and complex wells

Why Gridding Is Challenging

Different length scales:
Vertical grid size ∼ 10cm–1m
Horizontal grid size ∼ 10m–100m
Fractures ∼ 1cm–10m

Well radius ∼ 1cm
Well length ∼ 100m

Pictures from Saudi Aramco and Schlumberger
21



Gridding Techniques Fractures and complex wells

Grid Partitions for Reservoir Simulation
eventually feeds reservoir simulators, lead-
ing to better reservoir development and
management decisions.5

The simulator itself computes fluid flow
throughout the reservoir. The principles
underlying simulation are simple. First, the
fundamental fluid-flow equations are
expressed in partial differential form for
each fluid phase present. These partial dif-
ferential equations are obtained from the
conventional equations describing reservoir
fluid behavior, such as the continuity equa-
tion, the equation of flow and the equation
of state. The continuity equation expresses
the conservation of mass. For most reser-
voirs, the equation of flow is Darcy’s law.
For high rates of flow, such as in gas reser-
voirs, Darcy’s law equations are modified to
include turbulence terms. The equation of
state describes the pressure-volume or pres-
sure-density relationship of the various flu-
ids present. For each phase, the three equa-
tions are then combined into a single partial
differential equation. Next, these partial dif-
ferential equations are written in finite-dif-
ference form, in which the reservoir volume
is treated as a numbered collection of
blocks and the reservoir production period
is divided into a number of time steps.
Mathematically speaking, the problem is
discretized in both space and time.

Examples of simulators that solve this
problem under a variety of conditions are
found in the ECLIPSE family of simulators.
These simulators fall into two main cate-
gories. In the first category are three-phase
black-oil simulators, for reservoirs compris-
ing water, gas and oil. The gas may move
into or out of solution with the oil. The sec-
ond category contains compositional and
thermal simulators, for reservoirs requiring
more detailed description of fluid composi-
tion. A compositional description could
encompass the amounts and properties of
hexanes, pentanes, butanes, benzenes,
asphaltenes and other hydrocarbon compo-
nents, and might be used when the fluid
composition changes during the life of the
reservoir. A thermal simulator would be
advised if changes in temperature—either
with location or with time—modified the
fluid composition of the reservoir. Such a
description could come into play in the case
of steam injection, or water injection into a
deep, hot reservoir.

18 Oilfield Review

Local Grid Refinement
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1 Cartesian block-centered grids
CNOOC: SOCF (2009.122011.6)
Easy for implementation
Multiple-domain, local refinement
Difficult to simulate fault/dip

2 Corner-point grids
PetroChina: HiSim (2011.12015.12)
A type of hexahedral grid
Logically still structured
Difficult to compute flux accurately

3 Unstructured grids (PEBI and beyond)
PennSim (2013.12016.12) =⇒ ExSim
Voronoi, 2.5D
Better description of faults and wells
Incompatible with structured seismic data
Challenges in discretizations and solvers

[Goldthorpe, et al. 1985; Heirich 1987; Heinemann 1989; SPE8 1993; Palagi 1994] 22



Gridding Techniques Delaunay triangulation and Voronoi diagram

Subdivision and Triangulation
Subdivision and (conforming) triangulation

Subdivision (partition) of Ω: ∪iτi = Ω and int τi ∩ int τj = Ø (if i 6= j)
Triangulation: A subdivision in which no vertex lies in the interior of any edge
Find a triangulation T (P) of a set of sites (points) P := {p1, . . . , pn}
An important problem in computational geometry with MANY applications

What is a “good” triangulation?

Need to give mathematical conditions on “good” and “bad”
Need to give algorithms to generate a good triangulation

Introduction
Triangulations

Delaunay Triangulations
Applications

Triangulation

But which triangulation?

Computational Geometry Lecture 12: Delaunay Triangulations

23



Gridding Techniques Delaunay triangulation and Voronoi diagram

Angle Conditions and Approximation

Minimal angle condition: ∃αmin > 0, ατ ≥ αmin, ∀ τ ∈ Th, h→ 0

- P2-FEM for Poisson ‖u− uh‖1 . h2/ sinαmin [Zlámal 1968; Zenisek 1969]
- Similar estimate for the fourth-order clamped plane problem
- Inscribed ball condition or |τ | ≥ Chd [Ciarlet 1978; Lin, Lin 2003]

Maximal angle condition: ∃αmax < π, ατ ≤ αmax, ∀ τ ∈ Th, h→ 0

- Minimal angle cond. ⇒ maximal angle cond. ⇒ essential for convergence
- Interpolation error ‖u− Ihu‖1,∞ . h|u|2,∞ [Synge 1957]
- Sufficient for convergence of P1-FEM [Feng 1965; Babuška, Aziz 1976]

A1 = (−h, 0), A2 = (h, 0), A3 = (0, h5)

u(x) = x2
1, ‖u− Ihu‖21 ≥ h−6 · 1

2
(2h)h5 = 1

Large interpolation error [Strang, Fix 1973]

Nonobtuse condition: ατ ≤ π/2, ∀ τ ∈ Th
- Obtuse triangles can destroy the discrete maximum principle f ≥ 0⇒ uh ≥ 0

- Nonobtuse simplicial triangulations yields diagonally dominant stiffness matrices

24



Gridding Techniques Delaunay triangulation and Voronoi diagram

Angle Conditions and Stiffness Matrix
Eigenvalues of stiffness matrix on quasi-uniform meshes:

- hd . λ(A) . hd−2 =⇒ cond(A) ∼ h−2

Element size and shape affect matrix conditioning:
- Smallest eigenvalue: Not strongly affected by element shape [Fried 1972]:

λmin(A) ∼ min
τ∈Th

|τ |

- Largest eigenvalue: Can be arbitrarily large by a single bad-shaped element:

max
τ∈Th

λτmax ≤ λmax(A) ≤ mmax
τ∈Th

λτmax

where m is the maximum number of elements meeting at a single vertex
- If an angle of τ approaches zero, λτmax goes to infinity

Small angles can ruin matrix conditioning:
- Small angles =⇒ ill-conditioned linear systems [Xu 1989; Shewchuk 2002]
- A mesh with only a small number of bad elements will typically impose only a few

large eigenvalues
- Krylov subspace iterative methods can work around a few bad eigenvalues; but

need to be careful if restarting is used

25



Gridding Techniques Delaunay triangulation and Voronoi diagram

Delaunay Triangulation
Delaunay triangulation

Many possible partitions; but which one is better? How to check?

Delaunay triangulation: a triangulation T (P) such that no point in P is in-
side the circum-hypersphere of any simplex

Introduction
Triangulations

Delaunay Triangulations
Applications

Thales Theorem

Theorem: Let C be a circle, ` a line
intersecting C in points a and b, and
p,q,r,s points lying on the same side
of `. Suppose that p,q lie on C, r lies
inside C, and s lies outside C. Then

]arb > ]apb = ]aqb > ]asb,

where ]abc denotes the smaller
angle defined by three points a,b,c.

` C

p

q

r

s

a

b

Computational Geometry Lecture 12: Delaunay Triangulations

Introduction
Triangulations

Delaunay Triangulations
Applications

Characterisation of Illegal Edges

How do we determine if an edge is illegal?

Lemma: The edge pipj is illegal if
and only if pl lies in the interior of
the circle C. pi

pj

pk

pl

illegal

Computational Geometry Lecture 12: Delaunay Triangulations

Properties of Delaunay triangulation
Maximize the minimal angles
The Delaunay triangulation contains at most O(ndd/2e) simplexes
The union of all simplexes in the triangulation is the convex hull of the points

26



Gridding Techniques Delaunay triangulation and Voronoi diagram

Algorithms for Delaunay Triangulation
Empty circle (sphere) condition

⇐⇒

∣∣∣∣∣∣∣∣
A1 A2 A2

1 +A2
2 1

B1 B2 B2
1 +B2

2 1
C1 C2 C2

1 + C2
2 1

D1 D2 D2
1 +D2

2 1

∣∣∣∣∣∣∣∣ > 0

Lawson’s flip algorithm

Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles.
Sort the 3m angles: a1 6 a2 6 · · · 6 a3m. Ta := {a1, a2, . . . , a3m}.
Edge e = (pi , pj) is illegal , min16i66 ai < min16i66 a 0

i .

pl

pk

pj

pi

pl

pk

pj

pi

a a0

T 0 obtained from T by flipping illegal e, then T 0
a >lex Ta.

Flips yield triangulation without illegal edges.
The algorithm terminates (angles decrease), but is O(n2).

Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles.
Sort the 3m angles: a1 6 a2 6 · · · 6 a3m. Ta := {a1, a2, . . . , a3m}.
Edge e = (pi , pj) is illegal , min16i66 ai < min16i66 a 0

i .

pl

pk

pj

pi

pl

pk

pj

pi

a a0

T 0 obtained from T by flipping illegal e, then T 0
a >lex Ta.

Flips yield triangulation without illegal edges.
The algorithm terminates (angles decrease), but is O(n2).

Insertion by flips

�1

�2

�3

pr

�2

�3

pi

pj

�5

�4

�3

pi pk

�7

�4

�6

Lawson flip algorithm terminates in finite steps
Provides a constructive proof for the existence of Delaunay triangulation
Sequential algorithms: [Su, Drysdale 1996]

- Incremental algorithms
- Divide-and-conquer algorithms
- Fortune’s sweepline algorithms
- Convex hull based algorithms: lift-and-project 27



Gridding Techniques Delaunay triangulation and Voronoi diagram

Voronoi Diagram
Voronoi Diagram

Voronoi cell (of pk) = {x ∈ Rd : ‖x− pk‖ ≤ ‖x− pj‖, ∀ j 6= k}
An edge of Voronoi diagram is equidistant to the two nearest sites
Dual graph of the Delaunay triangulation

Example and definition

Sites: P := {p1, . . . , pn} ⇢ R2

Main Delaunay property: empty sphere Delaunay Triangulation: dual of Voronoi diagram

Generating Voronoi diagram
Bowyer-Watson algorithm via Delaunay triangulation: O(n log n) to O(n2)

Fortune’s algorithm: O(n log n)

Lloyd’s algorithm and k-means clustering

Dynamic demo of Voronoi diagram. https://bl.ocks.org/mbostock/4060366 28



Gridding Techniques Adaptive mesh

Adaptive Mesh Refinement
Red-green refinement, longest edge bisection, and newest vertex bisection
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Solution to the Poisson equation Mesh after 15 iterations
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Solution to the Poisson equation Mesh after 15 iterations

[Chen, Z 2010] 29
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Adaptive Mesh and Nonlinear Approximation

0 1
0

1
L1−error = 2.34e−2

0 1
0

1
L1−error = 1.36e−2

INITIALIZATION

SOLVE: compute discrete solution uh

ESTIMATE: compute Υτ , set Υ2 :=
∑

τ∈T Υ2
τ

Υ < tol

MARK

REFINE/COARSEN

End

No

Yes

Figure 7.1: Flowchart of adaptive algorithm for static problems

114

Approximate f(x) = x1/2. Left: Solution and error; Right: Adaptive algorithm.
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Discretization Methods Time discretization

Fully Implicit Discretization
Set of equations and unknowns

FIM or SS discretization [Douglas, Peaceman, Rachford 1959]
Primary equations: nc mass conservation laws + volume balance:

V fluid(P,N1, . . . , Nnc) = V pore(P )

Secondary equations: phase equilibrium, density, relative permeability, ...
Primary unknowns: ~X := (P,N1, . . . , Nnc)

T ←−More variables!

Secondary unknowns: ~Y := (x11, . . . , xncnp , S1, . . . , Snp)T

Discrete linear equations (no reaction term)
Update the primary unknowns (Backward Euler + FVM + Newton)

Ψ0 := V pore − V fluid = 0

Ψi :=
Nn+1
i −Nn

i

∆t
+
∑
s

Fn+1
i,s −Qn+1

i = 0, i = 1 : nc

Jacobian matrix J :=
d~Ψ

d ~X
=
∂~Ψ

∂ ~X
+
∂~Ψ

∂~Y

∂~Y

∂ ~X
←−More expensive!

31



Discretization Methods Time discretization

Simplified Oil-Water Two-Phase Model

In order to introduce IMPES/IMPEC, we give a simplified model

1 Mass conservation (assuming incompressibility):

∂

∂t

(
φρwSw

)
= −∇ ·

(
ρwuw

)
+QW

∂

∂t

(
φρoSo

)
= −∇ ·

(
ρouo

)
+QO

2 Darcy’s law and constitutive equations:

uα = −kkrα
µα

(∇Pα − ραg∇z), α = o, w

So + Sw = 1

Po − Pw = 0 (for simplicity)

3 Well constraints + B.C. + I.C.
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Figure 3.1. Typical capillary pressure curve.

wetting phase saturation Sw and the direction of saturation change (drainage or imbibition).
The phenomenon of dependence of the curve on the history of saturation is called hysteresis.
While it is possible to develop a model that takes into account the hysteresis resulting from
the saturation history (Mualem, 1976; Bedrikovetsky et al., 1996), inmost cases the direction
of flow can be predicted, and only a set of capillary pressures are needed. Various curves
describing a drainage or imbibition cycle can be found in Brooks and Corey (1964), van
Genuchten (1980), and Corey (1986).

The value pcb that is necessary to start displacement is termed a threshold pressure
(Bear, 1972). The saturation value at which the wetting phase can no longer be displaced by
applying a pressure gradient is referred to as irreducible saturation. The capillary pressure
curve has an asymptote at whose value the pressure gradient remains continuous in both
phases. This can be observed by considering vertical gravity equilibrium. When the value
of the irreducible saturation of the nonwetting phase is approached, an analogous situation
occurs at the other end of the curve during the imbibition process (Calhoun et al., 1949;
Morrow, 1970).

In the discussion so far, the capillary pressure has been assumed to depend only on the
saturation of the wetting phase and its history. In general, however, it also depends on the
surface tension σ , porosity φ, permeability k, and the contact angle θ with the rock surface
of the wetting phase, which, in turn, depend on the temperature and fluid compositions
(Poston et al., 1970; Bear-Bachmat, 1991):

J (Sw) = pc

σ cos θ

√
k

φ
,

which is the J -function. If the contact angle is ignored, this function becomes

J = pc

σ

√
k

φ
.

Using the J -function, typical curves forpc can be obtained from experiments. This function
is also the basis for some theoretical methods of measuring permeability k (Ashford, 1969).

For three-phase flow, two capillary pressures are needed:

pcow = po − pw, pcgo = pg − po. (3.2)
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Figure 3.5. Relative permeability curves in a three-phase system.

the relative permeabilities for the wetting and nonwetting phases in a three-phase system
are functions of their respective saturations as they are in a two-phase system (Corey et al.,
1956; Snell, 1962):

krw = krw(Sw), krg = krg(Sg). (3.4)

The relative permeability for the intermediate wetting phase is a function of the two inde-
pendent saturations:

kro = kro(Sw, Sg). (3.5)

The functional form in (3.5) is rarely known. In practice, the estimation of three-phase
relative permeabilities is based on two sets of two-phase data: the relative permeability in
an intermediate and wetting system,

krow = krow(Sw), (3.6)

and that in an intermediate and nonwetting system,

krog = krog(Sg). (3.7)

The underlying concept is that for the wetting phase, both the intermediate and nonwet-
ting phases act like a single nonwetting phase, while for the nonwetting phase, both the
intermediate and wetting phases behave as a single wetting phase. Figure 3.5 illustrates
typical relative permeability curves for a water, oil, and gas system in an isotropic porous
medium. The point where krow = 0 indicates the maximum water saturation rather than
the critical oil saturation since the oil saturation can be further reduced by increasing the
gas saturation. It has been experimentally observed, however, that a nonzero residual (or
minimal) oil saturation Sor exists when oil is displaced simultaneously by water and gas.
The earlier remark on hysteresis of the relative permeability for the nonwetting phase also
applies to the three-phase system.

The simplest procedure to determine kro is

kro = krowkrog. (3.8)

Other models were suggested by Stone (1970; 1973), Corey (1986), and Delshad and Pope
(1989). As an example, we describe two of Stone’s models, model I and model II.
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Discretization Methods Time discretization

IMPES/IMPEC Discretization
Implicit pressure / explicit saturation (concentration)

Separate computation of pressure from that of saturation or concentration
[Sheldon, Zondek, Cardwell 1959; Stone, Garder 1961; Collins, et al. 1992]

Two-phase classical IMPES: Define the total velocity u = uo + uw and then

∇ · u =
Qw
ρw

+
Qo
ρo

u = −k
[(krw

µw
+
kro
µo

)
∇P −

(krw
µw

ρw +
kro
µo

ρo

)
g∇z

]
Obtaining an equation for pressure: −∇ · (α∇P ) = Q

Updating saturation/concentration with explicit time-marching

Pros & Cons and Variants
The linear system to solve is SPD: solver-friendly

� Not as stable as FIM =⇒ requires small time stepsize ∆t

Other improvements: Smaller ∆t for saturation update; used in Newton
iterations; adaptive scheme; ...
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Discretization Methods Space discretization

Galerkin Method
Model problem and its weak form{

−∇ · ∇p = f, Ω

p = 0, ∂Ω
=⇒ p ∈ V : a[p, q] = (f, q), ∀ q ∈ V

where V := H1
0 (Ω) and

a[p, q] := −
∫

Ω

(∇ · ∇p)q dx =

∫
Ω

∇p · ∇q dx−
∫
∂Ω

(∇p · n) q dS = (∇p,∇q)

Galerkin approximation: Choose a finite dimensional space VN ⊂ V , such that

pN ∈ VN : a[pN , qN ] = (f, qN ), ∀ qN ∈ VN
Galerkin orthogonality: a[p− pN , qN ] = 0, ∀ qN ∈ VN

Theorem (Quasi-optimality property)

If the bilinear form a[·, ·] is continuous and coercive, then we have

‖p− pN‖1 . ‖p− qN‖1, ∀ qN ∈ VN
34



Discretization Methods Space discretization

Finite Element Method
Piecewise linear finite element
Let VN = span{ψ1, . . . , ψN} be the space of continuous p.w. linear polynomials on a
quasi-uniform triangulation and ph =

∑N
j=1 Pjψj . Then we have

N∑
j=1

a[ψj , ψi]Pj = (f, ψi), i = 1, . . . , N

would obtain a nonzero upper bound due to nonzero values of λ in the contact

region. A good practical upper bound should be “localized” in the sense that only

the value of the residual in the noncontact region contributes to the error bound.

6.3.1 Discrete Contact and Noncontact Sets

Before we can define the discrete Lagrange multiplier λh which gives a “local-

ized” upper bound, we first need to define discrete sets that mimic the contact set

C := {u = χ} and noncontact set N := {u > χ}.

Let T be a triangulation of the polygonal domain Ω and S be the set of all

sides or faces of triangles or tetrahedrons in T . Denote by ωz the support of the

piecewise linear nodal basis functions {ψz}z∈Ph
; see Figure 6.1. Let γz ⊂ S be the

skeleton of ωz, namely the set of all interior sides of ωz which contain z; for d = 1, γz

reduces to the node z itself. Similarly, we denote ωS be the set of triangles sharing

z

(a) Local patch ωz

z

(b) Skeleton γz (c) Basis function ψz

Figure 6.1: Local Patch

the side S ∈ S and ωτ be the the union of elements surrounding τ ∈ T :

ωτ := ∪{τ ′ ∈ T | τ ′ ∩ τ %= ∅}.

We split Ph into three disjoint sets

Ph = Nh ∪ Ch ∪ Fh

with the noncontact nodes Nh, full-contact nodes Ch, and free boundary nodes Fh

70

Error estimate: ‖p− ph‖1 . infq∈VN ‖p− q‖1 . h‖p‖2

Forming a linear algebraic system
We then need to solve a linear equation for ~P = (P1, . . . , PN )T

A~P = ~R, with Aij = a[ψj , ψi] and ~R =
(
(f, ψ1), . . . , (f, ψN )

)T
[Hrennikoff 1941; Courant 1943; Feng 1965; Ciarlet 1978; ...] 35



Discretization Methods Space discretization

Finite Volume Method
Model problem and its primitive form{

−∇ · ∇p = f, Ω
p = 0, ∂Ω

=⇒
∫
∂ω
F (p) dS =

∫
ω
f dx, ∀ω ⊂ Ω

where F (p) := −∇p · n is the flux across the volume boundary ∂ω. It is also called
the surface integral from.
Classical finite volume method

Partition the domain Ω into control volumes ωi ⊂ Ω

Choose an approximation space of p in each control volume
Approximate boundary flux F (p) by an numerical flux F̃ (ph)

1

|ωi|

∫
∂ωi

F̃ (ph) dS =
1

|ωi|

∫
ωi

f dx, ∀ωi ⊂ Ω

On orthogonal grids: Fe(p) ≈ ph|τin − ph|τout

|cin − cout| =: F̃e(ph)

Centered difference method on irregular grids [Heinrich 1987; LeVeque 2002] 36



Discretization Methods Space discretization

Cell-Centered and Vertex-Centered FVM
Mesh and dual mesh

2 LONG CHEN

2. CELL-CENTERED FINITE VOLUME METHOD

Let T be a triangular or Cartesian grid of ⌦. We choose the finite dimensional space
V = {v 2 L2(⌦) : v|⌧ is constant for all ⌧ 2 T }. Then dim V = NT , the number of
elements of T . We also choose B = T . See Figure 2(a). To complete the discretization,
we need to assign the boundary flux of each element.

This can be done in a finite difference fashion. For example, for an interior side e (an
edge in 2-D and a face in 3-D) shared by two elements ⌧1 and ⌧2, we can define

(4) rhuh · ne :=
uh|⌧2 � uh|⌧1

c⌧2 � c⌧1
,

where the normal vector ne is the outward unit normal vector of e in ⌧1, i.e. pointing
from ⌧1 to ⌧2 and c⌧i

2 ⌧i, i = 1, 2 are points in each element such that the line segment
connecting c⌧2 and c⌧1 is orthogonal to the side e. By the symmetry, for rectangles or
cubes c⌧ is the mass center of ⌧ . For simplex, c⌧ should be the circumcenters which
imposes restriction on the triangulation. The error analysis can be carried out in the finite
difference fashion by considering the truncation error and stability of the resulting system.
Theory and computation along this approach is summarized in the book [9].

Another approach to discretize the boundary flux is through mixed finite element meth-
ods. The gradient operator is understood as r : L2 ! H�1. Optimal error estimate can
be easily obtained by using that of mixed finite element methods [14].

Since the control volume is the element (also called cell) of the mesh and the unknown
is associated to each element/cell, it is often called cell-centered finite volume methods and
the difference scheme (4) is also known as cell centered finite difference methods.

FINITE VOLUME METHODS: FOUNDATION AND ANALYSIS 7

2. Finite volume (FV) methods for nonlinear conservation laws
In the finite volume method, the computational domain, Ω ⊂ Rd, is first tessellated into a
collection of non overlapping control volumes that completely cover the domain. Notationally,
let T denote a tessellation of the domain Ω with control volumes T ∈ T such that ∪T∈T T = Ω.
Let hT denote a length scale associated with each control volume T , e.g. hT ≡ diam(T). For
two distinct control volumes Ti and Tj in T , the intersection is either an oriented edge (2-D)
or face (3-D) eij with oriented normal νij or else a set of measure at most d−2. In each control
volume, an integral conservation law statement is then imposed.

Definition 2.1 (Integral conservation law) An integral conservation law asserts that the
rate of change of the total amount of a substance with density u in a fixed control volume T is
equal to the total flux of the substance through the boundary ∂T

d

dt

∫

T
u dx +

∫

∂T
f(u) · dν = 0 . (15)

This integral conservation law statement is readily obtained upon spatial integration of the
divergence equation (1a) in the region T and application of the divergence theorem. The
choice of control volume tessellation is flexible in the finite volume method. For example, Fig.

control volume

storage location

a. Cell-centered b. Vertex-centered

Figure 1. Control volume variants used in the finite volume method:
(a) cell-centered and (b) vertex-centered control volume tessellation.

1 depicts a 2-D triangle complex and two typical control volume tessellations (among many
others) used in the finite volume method. In the cell-centered finite volume method shown in
Fig. 1a, the triangles themselves serve as control volumes with solution unknowns (degrees of
freedom) stored on a per triangle basis. In the vertex-centered finite volume method shown in
Fig. 1b, control volumes are formed as a geometric dual to the triangle complex and solution
unknowns stored on a per triangulation vertex basis.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.

c⃝ 2004 John Wiley & Sons, Ltd.

(a) Mesh and dual mesh of cell-centered FVM
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(b) Mesh and dual mesh of vertex-centered FVM

FIGURE 1. Mesh and dual mesh of two FVMs. The unknowns are asso-
ciated to black nodes.

3. VERTEX-CENTERED FINITE VOLUME METHOD

We now discuss another popular choice of V and B. To simplify the notation, we con-
sider two dimensional triangular grids and homogenous Dirichlet boundary condition. We
refer to [16] for the general treatment in high dimensional simplicial grid and [15] for
rectangle grids.

Let ⌦ ⇢ R2 be a polygon and let T be a triangular grid of ⌦. Denoted by VT be the
linear finite element spaces of H1

0 (⌦) based on T :

VT = {v 2 H1
0 (⌦) : v|⌧ 2 P1(⌧), 8 ⌧ 2 T },

where P1(⌧) is the linear polynomial space on ⌧ . We shall choose V = VT . The dimension
N is the number of interior vertices of T .

Choices of control volume

FINITE VOLUME METHODS 3

The control volume will be given by another mesh B̄ = {bi, i = 1, · · · , M} satisfying

⌦̄ = [M
i=1bi, and

�
bi \

�
bj= ?, i 6= j,

and to reflect to the Dirichlet boundary condition, we set

B = {bi 2 B̄, bi ⇢
�
⌦}.

The element bi of B is not necessary to be polygons. But for practical reasons, bi are
chosen as polygons such that the boundary integral is easy to evaluate.

Given a triangulation T , one construction of B̄ is given as follows: for each triangle
⌧ 2 T , select a point c⌧ 2 ⌧ . The point c⌧ can coincides with middle points of edges,
but not the vertices of triangles (to avoid the degeneracy of the control volume). In each
triangle, we connect c⌧ to three middle points on the boundary edges. This will divide
each triangle in T into three regions. For each vertex xi of T , we collect all regions
containing this vertex and define it as bi. In Figure 2 we only draw the control volume
for interior vertices since the Dirichlet boundary condition is build into the space VT and
the unknown is only associated to interior vertices. Obviously for Neumann boundary
condition, we should use B̄.

There are three common choices of c⌧ :

• Type A: c⌧ is the barycenter of ⌧ .
• Type B: c⌧ is the middle point of the longest edge.
• Type C: c⌧ is the circumcenter of ⌧ .

Type A is preferable for triangulations composed by equilateral triangles. In this case ⌧
will be divided into three parts with equal area. This symmetric property is important to
get optimal rate of convergence in L2 norm. Type B is better for right triangles, and can
be easily obtained by the longest edge bisection method. Type C is suitable for Delaunay
triangulations. The edges of the control volumes will be orthogonal to the intersected edges
of triangles, and if the grid T is a Delaunay triangulation, B will be a Voronoi diagram.

1

(a) Type A

1

(b) Type B (c) Type C

FIGURE 2. Three types of grids and dual grids. The gray areas are the
control volumes of interior nodes. Type A: The point c⌧ is the barycenter
of ⌧ . Type B: The points c⌧ is the middle point of the longest edge. Type
C: The point c⌧ is the circumcenter of ⌧ .

Since we associate control volumes and unknowns to vertices, it s called vertex-centered
finite volume methods. It is also known as box method [1, 10] (since the control volume
is called box in these work), finite volume element methods [3, 2, 11] (to emphasis the
approximation of u is from finite element space), and generalized finite difference methods
[13, 12]. High order finite volume methods can be found in [5, 12].

Type A: cτ = barycenter of τ , commonly used for equilateral triangles

Type B: cτ = middle point of longest edge of τ , better for right triangles

Type C: cτ = circumcenter of τ , for a Delaunay triangulation (its dual mesh is a Voronoi diagram)

Box methods [Bank, Rose 1987; Hackbusch 1989] 37



Discretization Methods Space discretization

Control-Volume Finite Element Method
Petrov-Galerkin formulation
Let D be the dual mesh of T . Define a piecewise constant space

VD := {v ∈ L2(Ω) : v|ωi = const, ∀ωi ∈ D}.
Now we choose p ∈ VN and q ∈ VD. In this case, we have the bilinear form

ā[p, q] := −
∑

e∈E(D)

∫
e

(∇p · ne) [q] dS

Control-volume finite element method

Find ph ∈ VN , such that ā[ph, q] = (f, q), ∀ q ∈ VD

Choose the standard basis functions for VD: χi(x) = 1, x ∈ ωi; χi(x) = 0, x /∈ ωi

Ā ~P = ~R, with Āij = ā[ψj , χi] = −
∫
∂ωi

∇ψj · n dS and Ri =

∫
ωi

f dx

Special case: If ∂ω ∩ ∂τ contains the middle points of edges, then Ā = A.

Error estimate: ‖p− ph‖1 . h(‖p‖2 + ‖f‖0)
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Discretization Methods Space discretization

Mixed Finite Element Method
Model problem and its mixed form{

−∇ · ∇p = f, Ω

p = 0, ∂Ω
=⇒

 u−∇p = 0, Ω
∇ · u = f, Ω

p = 0, ∂Ω

Weak form of the mixed problem: Find (u, p) ∈ H(div,Ω)× L2(Ω) such that{ ∫
Ω
u · v dx+

∫
Ω
p∇ · v dx = 0, ∀v ∈ H(div,Ω)∫

Ω
∇ · u q dx =

∫
Ω
fq dx, ∀ q ∈ L2(Ω)

Mixed finite element and algebraic system
More variables and more difficult to analyze / to solve

Need to solve a saddle-point type algebraic system(
A BT

B

)(
~U
~P

)
=

(
~0
~R

)
Hybridization and static condensation =⇒ Schur complement =⇒ reduce system size

[Brezzi 1973; Crouzeix, Raviart 1973; Falk, Osborn 1980; ...] 39



Discretization Methods Space discretization

Discontinuous Galerkin Method
Complications of continuous Galerkin methods

Mesh generation: How to handle meshes with hanging nodes
Approximation functions: P k used on triangles and Qk used on quadrilaterals;
complicate to construct C1 conforming elements

Broken (discontinuous) Sobolev spaces
Th is a shape-regular quasi-uniform (conforming or not) triangulation of Ω

Hk(Th) := {v ∈ L2(Ω) : v|τ ∈ Hk(τ), ∀ τ ∈ Th}
DG formulations:
Assume p ∈ H2(Ω) ∩H1

0 (Ω) and test the model equation with discontinuous q∑
τ∈Th

∫
τ

∇p · ∇q dx−
∑
τ∈Th

∫
∂τ

(∇p · ne)q dS =

∫
Ω

fq dx, ∀ q ∈ H1
0 (Th)

=⇒
∑
τ∈Th

∫
τ

∇p · ∇q dx−
∑
e∈Eh

∫
e

ne · {∇p}[q] dS =

∫
Ω

fq dx, ∀ q ∈ H1
0 (Th)

[Reed, Hill 1973; Lesaint, Raviart 1974; ...]
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Discretization Methods Space discretization

Interior Penalty DG Method
Problems with the previous weak form

No guarantee on the well-posedness =⇒ enforce continuity in a weaker sense

No symmetry in the weak formulation =⇒ symmetrization

Introduce interior penalty

Jσh (p, q) :=
∑
e∈Eh

∫
e
σ[p][q] dS, p, q ∈ H1(Th); σ = αh−1

e

DG norm |||v|||DG :=
(
|v|H1(Th) + Jσh (v, v)

)1/2

Examples of IPDG methods
aih[p, q] :=

∑
τ∈Th

∫
τ ∇p · ∇q dx−

∑
e∈Eh

∫
e ne · {∇p}[q] dS + Jσh (p, q)

ash[p, q] :=
∑
τ∈Th

∫
τ ∇p · ∇q dx−

∑
e∈Eh

∫
e(ne · {∇p}[q] + ne · {∇q}[p]) dS + Jσh (p, q)

anh [p, q] :=
∑
τ∈Th

∫
τ ∇p · ∇q dx−

∑
e∈Eh

∫
e(ne · {∇p}[q]− ne · {∇q}[p]) dS + Jσh (p, q)

IIPG, SIPG, NIPG [Dawson, Sun, Wheeler 2004; Wheeler 1978; Rivière, Wheeler, Girault 1999]

Error estimate: |||p− ph|||DG . h|p|2
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Discretization Methods Space discretization

Weak Galerkin Method
Problems with the DG methods

Complicate finite element formulations
More unknowns than the continuous Galerkin methods

Weak Galerkin approximation
Use discontinuous approximation functions:

Wh :=
{
v = {v0, vb} : v0|τ ∈ Pj(τ), vb|e ∈ Pl(e), vb|∂Ω = 0

}
Keep the simple weak form as the continuous Galerkin methods:

Find ph ∈Wh s.t. (∇wph,∇wqh) + σ(ph, qh) = (f, v), ∀ qh ∈Wh

Define weak gradient ∇wv ∈ [Pr(τ)]d:

(∇wv,w)τ := −(v0,∇ ·w)τ +

∫
∂τ

vbw · n dS, ∀w ∈ [Pr(τ)]d

For example,
(
Pj(τ), Pl(e), [Pr(τ)]d

)
=
(
P1(τ), P0(e), [P0(τ)]d

)
[Wang, Ye 2013]
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Discretization Methods Space discretization

Weak Galerkin Finite Element Method
WG finite element formulation
Define a bilinear form

aw[ph, qh] := (∇wph,∇wqh) +
∑
τ

α

hτ
(ph,0 − ph,b, qh,0 − qh,b)∂τ

Find ph = {ph,0, ph,b} ∈Wh such that

aw[ph, qh] = (f, qh), ∀ qh ∈Wh

Theorem (Error Estimate)

The WG solution ph ∈
(
P1(τ), P0(e), [P0(τ)]d

)
satisfies that

h|||Qhp− ph|||+ ‖Qhp− ph‖0 . h2‖p‖2

Implementation of WG finite element method: Static condensation
1 Local problem: Fix ph,b and solve for ph,0 such that

aw[ph, qh] = (f, qh), ∀ qh = {qh,0, 0} ∈Wh

2 Global problem: Solve ph,b such that

aw[ph, qh] = (f, qh), ∀ qh = {0, qh,b} ∈Wh 43
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Iterative Solvers Direct solvers

Linear Algebraic Solvers
A fundamental problem in scientific computing:

Given a sparse matrix A ∈ RN×N and f ∈ RN , solve Au = f !

In many applications, it takes most of the simulation time!
General purpose direct solvers: Gaussian Elimination, ...

Robust, exact, multiple right-hand sides, ...
Black Box =⇒Many packages available: PARDISO, MUMPS,
SPOOLES, SuiteSparse (CHOLMOD/UMFPACK), SuperLU, WSMP,
H2Lib, ...
Memory: Require explicit matrices, need more RAM for decomposition
Computation: General O(N3), banded O(N2), nested dissection
O(N1.5) [George 1973; Duff, Erisman, Reid 1986; Demmel 1997]

H-matrix, data-sparsity, low-rank approximation: [Hackbush 1999;
Chandrasekharan, Gu, Lyons 2005; Xia, Chandrasekharan, Gu, Li 2009, 2010;
Ho, Greengard 2012; Schmitz, Ying 2012; ...]
Specialized methods: FFT, ...
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Iterative Solvers Iterative solvers

Iterative Solution Methods
Pros:

Optimal cost is possibly: O(N | logN |σ) operations

Adjustable accuracy with good initial guess in practice

Matrix-free operations can be used

Singular or nearly singular problems
Cons:

Problem-dependence: require different methods for different problems

Robustness: (arguably) biggest disadvantage in practice

Optimality: optimal algorithm or fastest algorithm?

Implementation: difficult if not impossible to make efficient software
Goals:

convergence, robustness, optimality, efficiency, scalability, reliability
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Iterative Solvers Iterative solvers

Convergence of Krylov Subspace Methods
1 Conjugate gradient method for Au = f

‖u− um‖A
‖u− u0‖A

≤ 2

(√
κ(A)− 1√
κ(A) + 1

)m
(m ≥ 1), κ(A) :=

λmax(A)

λmin(A)

2 Convergence rate by effective condition number [Axelsson 2003]

‖u− um‖A
‖u− u0‖A

≤ 2C

(√
κeff(A)− 1√
κeff(A) + 1

)m−m0

(m ≥ m0)

decomposition: σ(A) = σbad(A) ∪ σeff(A) with m0 entries in σbad(A)

effective condition number κeff(A) := maxσeff/minσeff

constant C := maxλ∈σeff(A)

∏
µ∈σbad(A)

∣∣∣1− λ
µ

∣∣∣
C < 1 if σbad are isolated large eigenvalues; C ≤

∣∣κ(A)− 1
∣∣m0 in general

� Preconditioning:
Incomplete factorizations: ILUk, ILUt, ILUtp, ...
Domain decomposition methods: RAS, FETI, BDDC, ...
Multilevel preconditioners: AMG, GAMG, GMG, ... 46



Iterative Solvers Preconditioners

Simulation and Preconditioning

47



Iterative Solvers Preconditioners

Preconditioned Krylov Methods in Hilbert Space
1 What about more general problems with A : X → X ′ ⊃ X?

Need an SPD operator B : X ′ → X to make KSM’s to work
If A is SPD, then 〈·, ·〉A := 〈A·, ·〉 defines an inner-product and

〈BAx, y〉A = 〈ABAx, y〉 = 〈Ay,BAx〉 = 〈Ax,BAy〉 = 〈x,BAy〉A
BA is SPD in terms of 〈A·, ·〉 or 〈B−1·, ·〉
Convergence estimate of CG holds true with κ(BA)

2 Find a natural (canonical) preconditioner for continuous problem
Bilinear form a : X ×X → R is symmetric and bounded, and it satisfies
the inf-sup condition infx∈X supy∈X

a[x,y]
‖x‖X‖y‖X ≥ γ > 0

For f ∈ X ′, let B : X ′ → X be a Riesz operator (Bf, y)X = 〈f, y〉
Then BA : X → X is symmetric in (·, ·)X and κ(BA) ≤ Ca/γ!

- ‖BA‖ ≤ supx∈X
(BAx,x)X
‖x‖2

X
= supx∈X

|a[x,x]|
‖x‖2

X
≤ Ca

- ‖(BA)−1‖−1 = infx∈X
‖BAx‖X
‖x‖X

= infx∈X supy∈X
a[x,y]

‖x‖X‖y‖X
≥ γ

[Mardal, Winther 2011]
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Iterative Solvers Preconditioners

Construction of Preconditioners
1 What does a “natural” preconditioner look like?

A : H1
0 (Ω)→ H−1(Ω), 〈Au, v〉 := a[u, v] =

∫
Ω

(α(x)∇u) · ∇v dx
Kernel α(x) ∈ Rd×d satisfies γ|ξ|2 ≤ ξTα(x) ξ ≤ Ca|ξ|2

Define B = (−∆)−1 : H−1(Ω)→ H1
0 (Ω) =⇒ κ(BA) ≤ Ca/γ <∞

Stokes problem: a
[
(u, p), (v, q)

]
:= 〈∇u,∇v〉+ 〈p,∇ · v〉+ 〈q,∇ · u〉

A :
[
H1

0 (Ω)
]d × L2

0(Ω)→
[
H−1(Ω)

]d × L2
0(Ω)

=⇒ B = diag
[
(−∆)−1, . . . , (−∆)−1, I

]
=⇒ Block Trig Precond, ...

2 Solve a discrete problem =⇒ Employ a stable discretization
Stable discretization, i.e., infx∈Xh supy∈Xh

a[x,y]
‖x‖X‖y‖X ≥ γ1 > 0

Condition number can be bounded κ(BhAh) ≤ Ca/γ1

3 Construct a cheap spectral-equivalent preconditioner
Discretization, grid generation/adaptation, parallelization, ...
Example: need components like (−∆)−1 when solving Stokes, Darcy, ...
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Iterative Solvers Multigrid methods

Multilevel Iterative Methods
Examples of multilevel algorithms

Quick Sort, FFT, FMM, GMG, AMG, H-Matrix, H2-Matrix, ...

Multigrid V-cycle

✻

P
ro

lo
n
ga

ti
on

❄

R
estriction

Coarse Grid

Fine Grid
Fine

Coarse

Relaxation

Exact solving

Restriction

Prolongation

Key gradients for multilevel iterative methods

� Construct multilevel hierarchy in an efficient way

� Find effective (and cheap) smoothers for each level

� Find good coarser level solvers (nested iterations)
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Iterative Solvers Multigrid methods

Multigrid Method
Performance comparison: GMG vs AMG

Solution Method FMG GMG-PCG CA-PCG UA-PCG
Number of Iterations  5 6 12
Wall Time (sec) 0.143 0.251 1.57 (0.87) 1.50 (0.26)

Table: Solving 2D Poisson’s equation using multigrid methods (Five-point stencil,
FASP 1.8.3, DOF = 1M, TOL = 10−6, Macbook Pro 13’, gcc-4.9.3, -O2)

Methods based on PDE and/or discretization information

� Using connectivity information from coefficient matrix (AMG)

� Using an extended matrix (Jacobi = BPX, GS = MG V-cycle)

� Using an auxiliary grid or discretization

� Using coarsening based on the finest grid

� Block preconditioners for coupled PDEs

Must plan ahead of time: meshing, linearization, discretization, ...

51



Iterative Solvers Subspace corrections and beyond

Method of Subspace Corrections
Divide and conquer

Space decomposition: V =
∑n
i=1 Vi

Subspace correction: ei ≈ A−1
i Pi(f −Au)

u← u+

n∑
i=1

ei (Parallel subspace corrections, Jacobi)

u← u+ ei, i = 1 : n (Successive subspace corrections, GS)

Some examples and generalizations

BPX preconditioner [Bramble, Pasciak, Xu 1990]

SIAM Review [Xu 1992]

Fictitious domain method [Nepomnyaschikh 1992]

Auxiliary space method [Xu 1996]

Nonlinear equations [Tai, Xu 2002]

H(div), H(curl) solvers [Hiptmair, Xu 2007]
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Decoupling and Preconditioning Linear solvers for reservoir simulation

Linear Solution Methods for FIM
Solve the Jacobian system:

J u = r

1 Decoupling Step:

J̃ u = r̃

where
J̃ := DJ and r̃ := Dr

2 Solution Step: Solve the preprocessed linear equation by a Krylov space
method (e.g. GMRES or BiCGstab) with a multi-stage preconditioner

Difficulties in solving the Jacobian system:
Fully-coupled, large, non-symmetric, ill-conditioned
Usually takes more than 80% of the computing time

Now we consider linear algebraic solvers for the FIM discretization!
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Decoupling and Preconditioning Preconditioning methods

Multistage Preconditioners for FIM
Define subspaces:

V = VP + VN

A two-stage preconditioner: Given u0, Bu0 := u2, where

u1 = u0 + ΠP J̃
−1
PPΠ∗P (r̃ − J̃u0)

u2 = u1 + ΠN J̃
−1
NNΠ∗N (r̃ − J̃u1)

Form subspaces according to physical properties
Choose appropriate solvers for each subspace
Example: CPR-type preconditioners [Wallis 1983]

A decoupling stage is necessary before the solution stage
Decouple different unknowns (P and N ) effectively
Obtain a reasonable pressure equation J̃PP
How to choose the decoupling (D) and preconditioning (B)?

[Hu, Xu, Z 2013] 54



Decoupling and Preconditioning Decoupling methods

Decoupling Strategies for FIM
Formal (semi-discrete) Jacobian matrix

J =
1

∆t


V pore
P − V fluid

P −V fluid
1 . . . −V fluid

nc

0 1
...

. . .
0 1



+


0 0 . . . 0

−∇ · (T1∇◦)−∇ · (~β1P ◦) −∇ · (~β11◦) . . . −∇ · (~β1nc◦)
...

...
. . .

...
−∇ · (Tnc∇◦)−∇ · (~βncP ◦) −∇ · (~βnc1◦) . . . −∇ · (~βncnc◦)


Decoupling methods [Lacroix, Vassilevski, Wheeler 2001; ...]

J̃ = DJ =

[
J̃PP J̃PN

J̃NP J̃NN

]
as a pre-processor

Cheap to apply and give an easy-to-solve pressure equation
Make J̃PN (sometimes J̃NP as well) not dominant

� Limiting behavior: I −BJ̃ reduces to 0 as ∆t→ 0, which is invalid for J 55



Decoupling and Preconditioning Decoupling methods

Analytic Decoupling Methods: Basic Idea

Decoupling at the PDE level:

J̃ANL =
1

∆t


αP 0 . . . 0

0 1 . . . 0

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . 1



+



−∇ · (T̃∇◦) + ~β1 · (∇◦)−
∑nc
i=1 Vti∇ · (~βiP ◦) −

∑
i Vti∇ · (~βi1◦) . . . −

∑
i Vti∇ · (~βinc◦)

−∇ · (T1∇◦)−∇ · (~β1P ◦) −∇ · (~β11◦) . . . −∇ · (~β1nc◦)

.

.

.
.
.
.

. . .
.
.
.

−∇ · (Tnc∇◦)−∇ · (~βncP ◦) −∇ · (~βnc1◦) . . . −∇ · (~βncnc◦)



where αP , ~β1, ~βik, ~βiP are knowns.

We know the underlying equations we are solving

A multigrid friendly system can be formed

Becomes diagonally dominant as ∆t goes to 0
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Decoupling and Preconditioning Decoupling methods

Analytic Decoupling Methods: Matrix Form
Decoupling in matrix form:

Consider the decomposition J = A+ F . Let

A :=
1

∆t

[
APP APN
ANP ANN

]
and DANL :=

[
I X
0 I

]
such that

DANLA =
1

∆t

[
ÃPP 0

ANP ANN

]
=⇒ J̃ = DANLJ =

1

∆t

[
V pore
P − V fluid

P 0

0 I

]
+ · · ·

General comments and advantages

� Note that our A is in a very special form

Closely related to the IMPES discretization (eliminate N -terms)

Black oil model =⇒ True-IMPES decoupling method [Coats 1999]

Giving “good” pressure equations that work well with multigrid

We have I −BJ̃ → 0 as ∆t→ 0
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Decoupling and Preconditioning Decoupling methods

Algebraic Decoupling Methods
Alternate Block Factorization [Bank, Chan, Coughran, Smith 1989; Klie 1997]:

DABF :=

[
diag(JPP ) diag(JPN )
diag(JNP ) diag(JNN )

]−1

� Eigenvalues clustered around 1, but the pressure equations difficult to solve

There are several algebraic decoupling methods (Householder, Quasi-IMPES,
CPR, ...) that are equivalent to ABF up to a scaling
We have I −BJ̃ → 0 as ∆t→ 0, which does not hold for J
More stable and take less iterations if the pressure is approximated well

[Qiao, Wu, Xu, Z 2017] 58



Decoupling and Preconditioning Decoupling methods

Numerical Validation: Relation b/w D/B

Pressure equations from ABF are difficult for AMG =⇒ Different solvers

Comparison of two preconditioners

� Method-I: Use one AMG V-cycle as a pressure solver

� Method-II: Use AMG preconditioned GMRES as a pressure solver

Wall time by Method-I / Method-II

[Li, Wu, Z, et al. 2017; Li 2017, Thesis] 59



Decoupling and Preconditioning Decoupling methods

Convergence and Robustness

Tested by the Research Institute of Petroleum Exploration and Develop-
ment, PetroChina (2015): Dell E5-2690 v2 CPU@3.0GHz, 200GB DDR3,
Windows 7/VS2010/Intel Fortran Compiler 2015, HiSim 2.0, ECL 2012
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Decoupling and Preconditioning A semi-analytical decoupling

Decoupling Strategies, Revisited
Can we combine advantages of analytical and algebraic decouplings?

- Cheap to compute; do no spoil outer iterations
- Obtain an easy-to-solve pressure equation
- Keep the asymptotic behavior I −BJ̃ → 0 as ∆t→ 0

A semi-analytical decoupling method: [Qiao, Wu, Xu, Z 2017]

DSEM :=

[
DANL
PP DANL

PN

DABF
NP DABF

NN

]
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Decoupling and Preconditioning A semi-analytical decoupling

Numerical Comparison of Decoupling Methods
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[Qiao, Wu, Xu, Z 2017] 62
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Simulation Software Simulator project

Solution Algorithm Flow Chart

Need a scalable parallel linear algebraic solver to make it work!

[Guan, Qiao, Zhang, Z, et al. 2015]
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Simulation Software Simulator project

Introduction to PennSim

Changhe	Qiao,	PennSim	 21	[Qiao 2016, Thesis] 64



Simulation Software Simulator project

Numerical Validation: SPE 1

Figure: SPE 1 reservoir
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Figure: Production well pressure

Three dimensional, three phase, gas injection
IMPEC: 3815 time steps, 4.0 seconds
FIM: 75 time steps, 0.76 seconds

Now we consider linear algebraic solvers for the FIM discretization!
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Simulation Software Simulator project

Numerical Validation: Field Test

Real data from an European field (60K corner-point grid)
Qualitatively matches the results of commercial software
Simulate five-year period (PennSim≈3hr, ECL100≈6hr)
Cost only half of the CPU time compared with ECL100
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Simulation Software Designing multilevel preconditioners

Multilevel Solver Software
1 How to handle a complicated PDE (system)?

Provide blockwise iterative methods and general preconditioners
Use mapping properties to construct a good preconditioner
Reduction: precond PDE systems =⇒ precond model problems
Use an auxiliary problem for preconditioning

2 How to choose a discretization?
Using a uniformly stable discretization is important
Using a solver-friendly discretization

3 How to handle discretizations on unstructured mesh?
To improve efficiency of the SETUP phase of multilevel methods
Use sparsity pattern or entries of coefficient matrices
Use an auxiliary structured (or semi-structured) grid

Need to plan ahead of time!
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Simulation Software Software structure

FASP Software Project

!

fasp4blkoil! fasp4ns!

Petroleum!
Reservoir!
Simulation!

Fluid!Structure!
Interaction!

Smoothed!
Particle!

Hydradynamics!

fasp4SPH!

Standard!Iterative!Methods!
CG,!MINRES,!BiCGstab,!GMRES,!GCR,!GCG,!…!

Basic!Sparse!Linear!Algebra!Modules!
Serial,!OpenMP,!MPI,!CUDA!

Standard!Preconditioning!Methods!
GMG,!AMG,!ILU,!Schwarz,!…!!

IO,!Conversion!

fasp4elastic!

Supported by NSF DMS-0915153 and NSFC 91130011. http://fasp.sf.net 68



Simulation Software Numerical experiments

Preliminary Tests: AMG (Sequential)
Test Device: Intel Core i5 2.6GHz, 8GB RAM, gcc 4.9.2 -O2
Benchmark: FASP 1.7.0, hypre 2.10.0b, AGMG 3.2.0 (default parameters)

Problem DOF RS-V-CG UA-NA-CG hypre AGMG
2D 5pt 1M 1.79 1.43 1.96 1.73
2D 5pt 4M 8.71 6.04 8.45 6.61
2D 9pt 1M 1.82 2.07 2.25 2.24
2D 9pt 4M 7.63 8.39 8.88 9.42
3D 7pt 1

4M 1.05 0.37 1.83 0.43
3D 7pt 2M 10.86 3.28 19.04 3.71
3D 27pt 1

4M 2.09 0.94 3.26 1.79
3D 27pt 2M 20.0 8.53 34.54 20.29

Table: Computing time (seconds) of the AMG-preconditioned conjugate gradient
method. We solve the 2D/3D Poisson equation with one processing core. Stopping
criteria: relative residual is less than 10−6.
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Simulation Software Numerical experiments

Preliminary Tests: AMG (OpenMP)
Test Device: Intel Xeon X5675 3.07GHz (6 cores), 24GB RAM, gcc 4.4.6

–O2 DOF NT=1 NT=2 NT=4 NT=8 NT=12
2D 5pt 1M 2.12s ×1.43 ×1.74 ×1.90 ×1.89

2D 5pt 4M 9.51s ×1.47 ×1.80 ×2.00 ×2.00

3D 7pt 2M 9.86s ×1.50 ×1.89 ×2.15 ×2.20

3D 7pt 16M 90.66s ×1.50 ×1.90 ×2.20 ×2.29

–O0 DOF NT=1 NT=2 NT=4 NT=8 NT=12
2D 5pt 1M 6.36s ×1.54 ×2.15 ×2.60 ×2.62

2D 5pt 4M 27.14s ×1.56 ×2.22 ×2.70 ×2.70

3D 7pt 2M 31.00s ×1.59 ×2.25 ×2.87 ×3.07

3D 7pt 16M 274.3s ×1.64 ×2.35 ×3.01 ×3.28

Table: Computing time (seconds) of the classical AMG method. We solve the 2D/3D
Poisson equation with OpenMP. Stopping criteria: relative residual is less than 10−6.
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Parallel Implementation Make good use of HPC

Obtain Good Parallel Performance
Keys to Good Parallel Performance

extent of parallelism, granularity of partition, locality of computation

The Amdahl’s Law
The parallel speedup is limited by the time needed for sequential portions

speedup(p) =
time(1)

time(p)
=

time(1)

Seq + Par/p
≤ time(1)

Seq
If 20% of the execution time is sequential, then the max speedup is 5!

A HPC Paradox (G. Wittum)
Assumption that algorithm complexity is E0 = O(Nq), q ≥ 1
We want to buy a computer α� 1 times larger (faster) than the old one
We wish to solve problems of size α times larger than the original
The new computer then needs computing time proportional to

E1 = O(αqNq) = αqE0 = αq−1αE0 ≥ αE0

Weak scalability =⇒ E1 = αE0 =⇒ q = 1 (optimal algorithm)
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Parallel Implementation Make good use of HPC

The Moore’s Law

Challenges to Keep Up With the Moore’s Law:
Instruction-level parallelism (ILP) wall: availability of enough parallel
instructions for a multi-core chip
Power wall: the chip’s overall temperature and power consumption

Dynamic Power = K · (Capacitive Load) · (Voltage)2 · (Frequency)

Memory wall: bandwidth/latency of the channel b/w CPU and RAM

[Waldrop 2016, Nature] 72



Parallel Implementation Where HPC is heading

Communication-Avoiding Algorithms

John Shalf

Floating-point time � 1 / Memory bandwidth � Memory latency
59% 23% 5%

Floating-point time � 1 / Network bandwidth � Network latency
59% 26% 15%

Avoid communication (data movement) to save time =⇒ Redesign algorithms

Linear algebra, LAPACK/ScaLAPACK, ... J. Demmel and collaborators
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Parallel Implementation Where HPC is heading

Whatever Has Been Done Can Be Outdone

Obstacles to scalable simulation
Model complexity
Extreme concurrency
Multiple levels of parallelism
Complex memory hierarchies
More costly data movement
Hardware failures and soft error

Optimization: Improve cooling, find hot spots, reduce power leakage

Less transistors =⇒ lower frequency =⇒ more processing cores

Scalable, power-aware, resilient parallel algorithms and software
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Parallel Implementation Numerical tests

Strong Scaling Tests Using OpenMP
FASP preconditioner

1st 2nd 3nd 4nd
NT #It Time Speedup #It Time Speedup #It Time Speedup #It Time Speedup

1 32 31.34  34 32.79  34 32.77  32 31.49 
2 32 17.72 1.77 34 18.48 1.77 34 18.46 1.78 32 17.68 1.78
4 32 13.44 2.33 34 13.19 2.49 34 13.14 2.49 32 12.60 2.50
8 33 11.02 2.84 34 11.20 2.93 34 11.18 2.93 32 10.80 2.91

CPR preconditioner
1st 2nd 3nd 4nd

NT #It Time Speedup #It Time Speedup #It Time Speedup #It Time Speedup
1 45 39.01  45 38.90  43 37.36  42 36.56 
2 45 21.95 1.78 45 21.90 1.78 43 21.00 1.78 42 20.67 1.77
4 45 15.42 2.53 45 15.44 2.52 44 15.19 2.46 42 14.56 2.51
8 45 13.12 2.97 45 13.09 2.97 44 12.86 2.90 42 12.35 2.96
12 45 13.19 2.96 45 13.18 2.95 43 12.66 2.95 42 11.93 3.07

Block triangular preconditioner
1st 2nd 3nd 4nd

NT #It Time Speedup #It Time Speedup #It Time Speedup #It Time Speedup
1 49 41.69  49 41.48  48 40.96  44 37.75 
2 49 23.42 1.78 48 22.93 1.81 48 22.87 1.79 44 21.25 1.78
4 49 16.67 2.50 49 16.62 2.50 48 16.30 2.51 44 15.37 2.46
8 49 14.30 2.91 48 13.94 2.98 48 13.91 2.95 44 12.92 2.92
12 48 14.00 2.98 48 13.99 2.97 47 13.58 3.02 44 12.99 2.91

Multicore performance of FASP, CPR, and BTP preconditioners for SPE10 three-phase problems

[Feng, Shu, Xu, Z 2014a]
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Parallel Implementation Numerical tests

GMG Tests Using CUDA
CPU: AMD 2.8GHz 8-core (using a single core), gcc 4.4.6 –O2
GPU: NVIDIA GTX480 480 cores 1.5GB RAM ($485), nvcc 4.1 –O2

DOF FFTW FMG(1,2) CUFFT FMG(1,2)
1M 0.260 0.108 0.0110 0.0088
4M 2.020 0.452 0.0408 0.0257
16M 6.650 1.830 0.1364 0.0917

Table: Kernel time (seconds) in 2D case

Some observations
15× ∼ 18× speed-up compared with single-thread CPU version (2/3D)
Speedup of GMG is not as good as FFT (almost 50×)
GMG on GPU: 15GFlops, only 10% of peak performance
Bottleneck: Visiting coarse level spaces
Solution: BPX + Redundant Basis Formulation

[Feng, Shu, Xu, Z 2014b] 76



Parallel Implementation Numerical tests

SpMV Tests Using CUDA
Based on heterogenous architecture, we developed a parallel solver for the
black-oil model
Numerical results show reasonable speedup for “easy-to-parallel” parts:
Minimizing amount of time for code-tuning

5. 油藏数值模拟在CPU-GPU异构体系上的加速比  

三、取得的主要成果 

针对异构众核体系结构的特点(CPU善于处理逻辑性强的算法，GPU善于

处理并行度高的算法)，研发稳定高效的油藏求解器。 

¾ 结合雅克比矩阵及GPU卡的内存访问特点，设计了一种高效的稀疏存储结构。 

¾ 基于异构体系特点及TrueIMPES解耦，设计了稳定且并行度高的预条件子。 

Speedup of SpMV 
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Parallel Implementation Numerical tests

Strong Scaling Tests on Tianhe-2

SPE1 and SPE9 benchmark problems first refined and then tilted. Tested
on the Tianhe-2 cluster, Guangzhou: 2nd in the Top500 list (2017), 3.12M
cores (32K CPUs), 1.408PB RAM, Rmax 33.86PFlops, Rpeak 54.90PFlops,
Peak Power 17.8MW/hr.

[Guan, Qiao, Zhang, Z, et al. 2015]
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Parallel Implementation Numerical tests

Weak Scaling Tests on Tianhe-2

# CPU Cores 24 48 96 192 384 768 1536
# Grid Block 3M 6M 12M 24M 48M 96M 192M
# Linear Iterations 723 724 726 727 723 725 715
Total CPU Time (s) 2741 2838 2846 2907 2711 2881 3026

[Guan, Qiao, Zhang, Z, et al. 2015]
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Summary Future work

Models of Interest

Immiscible displacement, water flooding Miscible displacement, gas flooding

! Two-phase flow model: WO, OG

! Black oil model (three-phase flow) / volatile oil model

� Compositional model
- Non-isothermal flow: energy conservation
- Chemical flooding: polymer, foam, surfactant, alkaline, ...
- Fractured reservoirs: DPDP, MINC, DFM, ... (multiscale)

� Flow-Geomechanic coupling (Biot)

� Multiscale modeling?
- Carbonate fractured-cavity reservoirs
- Darcy-NS coupling (Brinkman) 80



Summary Future work

Ongoing Work I
1 Design robust, optimal, and resilient solvers

Improve robustness [Qiao 2016; Li 2017]
- Different reservoir models
- Different mesh types
- Different discretizations
- Why the semi-analytic decoupling works?

Improve resilience [Cui, Xu, Zhang 2017]
- Less overhead when no error occurs
- Convergence rate does not deteriorate when error occurs

2 Enhance scalability of MPI, OpenMP, and CUDA versions
Improve scalability of the CUDA version [Feng 2014; Li 2017]

- SpMV
- Block ILU
- Algebraic multigrid

Improve scalability of the MPI version [Guan, et al. 2015]
- Improve scalability of linear solvers
- Hierarchical parallelization
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Summary Future work

Ongoing Work II

3 Handle natural and hydraulic fractured reservoirs
(Embedded) discrete fracture model

- Aperture distribution
- Flow and geomechanic coupling, Biot model

Weak Galerkin method, virtual element method
- Structured / unstructured polyhedral grids
- Local mesh refinement

4 Improve model parameters (input data)
Remove noise from input data

- Garbage in garbage out (lack of data / imprecise data)
- Deep Learning

Quantify uncertainty
- Global and local quantities (e.g. production rate v.s. well location)
- History matching

Data-physics
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Summary Reliability and uncertainty

Quantifying Uncertainty
Uncertainty v.s. Error

Lack of knowledge? Types: aleatoric (statistical) and epistemic (systematic)
Sources of uncertainty: model, measurements, initial/boundary conditions
“All models are wrong, but some are useful” [George Box] =⇒ V&V
Where does uncertainty make a big difference (compared with error)?

Uncertainty quantification: SIAM/ASA-joint conference on UQ 2012
Predict model responses with quantified and reduced uncertainties

- Identification and characterization
� - Forward propagation (UP): Surrogate model, MC, GP, PCE, gPCE, KLE, ...

- Inverse propagation
- Sensitivity analysis

Difficulties when applied in petroleum reservoir simulation
- Curse of dimensionality
- Identifiability issue: Combinations of uncertainties yield the same prediction
- “... an uncertain input parameter will lead not only to an uncertain solution but to

an uncertain error ...” [Trucano 2004]
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Summary Reliability and uncertainty

Forward Uncertainty Propagation
Model problem and uncertainty propagation

y = F(x) =⇒ Y = F(X), where X is a random variable

Polynomial Chaos Expansion: represent a random variable of interest as a
polynomial expansion of another random variable ξ with distribution ρ
{ψj} are the orthogonal polynomials w.r.t. (·, ·)ρ

- We have ψ0 = 1 and E(ψj) = 0, j = 1, 2, . . .

- Variance of ψj is (ψj , ψj)ρ and covariance (ψi, ψj)ρ = 0 if i 6= j

- A few possible choices, for example:
Uniform [−1, 1]⇒ Legendre; Gamma [0,∞)⇒ Laguerre; Normal⇒ Hermite

Non-intrusive UP with PCE
Suppose X ≈∑m

j=0 xjψj(ξ) and Y ≈∑m
j=0 yjψj(ξ)∑m

j=0 yjψj(ξ) = F
(∑m

j=0 xjψj(ξ)
)

=⇒ yk =

(
F
(∑m

j=0 xjψj(ξ)
)
, ψk

)
ρ

(ψk, ψk)ρ

Need to compute the integral:
∫

Ω
F(
∑m
j=0 xjψj(ξ))ψk(ξ)ρ(ξ) dξ
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