
薛巍 (Wei XUE)

清华大学计算机科学与技术系

xuewei@tsinghua.edu.cn

Introduction to Performance 

Analysis and Modeling
(Viewpoint from Computer Engineering)



 About me

薛 巍 (Wei XUE)

Employer 清华计算机系高性能计算研究所

Phone 13910010177

Email xuewei@tsinghua.edu.cn

Research Interests

High Performance Computing, 

Scientific Computing,

HPC+AI



 Outline

1. Motivation

2. Performance Analysis of Parallel Programs

3. Performance Modeling of Parallel Programs



• Parallel computing is general purpose technology now

 Motivation

Question: how well do we use parallel computing systems and how can we do better? 



• Processors become more 

and more complicated

 Motivation



 Motivation

More about Node architecture: https://queue.acm.org/detail.cfm?id=2513149&ref=qnh

More about PCIE: https://arstechnica.com/features/2004/07/pcie/

https://queue.acm.org/detail.cfm?id=2513149&ref=qnh
https://arstechnica.com/features/2004/07/pcie/


 Motivation

Torus DragonflyFat Tree

bisection BW

latency

scalability

cost

Communications Latencies 

of 30-40us

Communications Latencies

of 3-4us

GPU

CPU

GPU

CPU

GPU

CPU

CPU

GPU

GPU

CPU

GPU

CPU

GPU

CPU

CPU

GPU

DPU



 Challenge of Performance Engineering

~4x

dgemm("N", "N", 50, 50, 50, 1.0, A, 50, B, 50, 1.0, C, 50);

>2x

From Torsten Heofler, 2019



 Motivation

There’s plenty of room at the Top: What will drive computer performance after Moore’s law?
Science, 2020.6



 Outline

1. Motivation

2. Performance Analysis of Parallel Programs

3. Performance Modeling of Parallel Programs



 Questions for Performance

• How can we tell if a program 
is performing well? Or isn’t? 
What is “good”?

• If performance is not “good,” 
can we identify the causes?

• What can we do for 
optimizations? (Not for Today)



 Is Your Code Performing Well?

• No single answer, but

– Does it scale well?

– Is MPI time <20% of total run time?

– Is I/O time <10% of total run time?

– Is it load balanced?

– If GPU code, does GPU+Processor perform better than 2 Processors?

• “Theoretical” CPU performance vs. “Real World” 

performance in a highly parallel environment

– Cache-based x86 processors: >10% of theoretical is pretty good

– GPUs, Xeon Phi: >few% in today’s real full HPC applications pretty 

good? 

– Time-to-solution vs. sustained flops



Topic 1: Principles of Parallel Computing



01/29/2019

Network

Network

Parallel Machines and Programming

Proc

Mem

Proc

Mem

Proc

Mem

Proc

Proc

Mem

Proc

Mem

Proc

Mem

Network

Proc Proc

Proc Proc Proc

Mem

Network

Proc

+/x/- +/x/- +/x/-

Mem

Network

• These are the natural “abstract” machine models

Shared Memory Distributed Memory Single Instruction 

Multiple Data (SIMD)

Processors execute own 

instruction stream

Processors execute own 

instruction stream

One instruction stream (all 

run same instruction)

Communicate by 

reading/writing memory

Communicate by sending 

messages

Communicate through 

memory

Cost of a read/write is 

constant

Message time depends on 

size, but not location

Assume unbounded # of 

arithmetic units



01/29/2019

Abstraction of Parallel Programs

启动进程(线程)，载入
程序执行

读入初始数据

实施计算

输出数据

结束计算，销毁进程
（线程）

启动多进程(线程)，载入程序执行

任务划分

多进程（线程）初始数据载入

分进程（线程）计算

多进程（线程）通信与同步

多进程数据输出

结束计算，销毁多进程（线程）



• All of these machines and implementations rely on 

dividing up work into parts that are:

• Mostly independent (little synchronization)

• About same size (load balanced)

• Have good locality (little communication)

Writing (fast) parallel programs is not easy

- All about performance 
（speed, efficiency, scale …）

- Hardware and software co-design

Principles of Parallel Computing



Principles of Parallel Computing (details)

• Finding enough parallelism  (Amdahl’s Law)

• Locality – moving data costs more than arithmetic

• Load balance – don’t want 1K processors to wait for one slow 

one

• Coordination and synchronization – sharing data safely 

• Granularity – how big should each parallel task be

• Performance modeling/debugging/tuning



“Automatic” Parallelism in Modern Machines

• Bit level parallelism

• within floating point operations, etc.

• Instruction level parallelism (ILP)

• multiple instructions execute per clock cycle

• Memory system parallelism

• overlap of memory operations with computation

• OS parallelism

• multiple jobs run in parallel on commodity SMPs

Limits to all of these -- for very high performance, need 

user to identify, schedule and coordinate parallel tasks



Finding Enough Parallelism

• Suppose only part of an application seems parallel

• Amdahl’s law

• let s be the fraction of work done sequentially, so                                

(1-s) is fraction parallelizable

• P = number of processors

Speedup(P) = Time(1)/Time(P)

<= 1/(s + (1-s)/P) 

<= 1/s

• Even if the parallel part speeds up perfectly performance 
is limited by the sequential part



Locality and Parallelism

• Large memories are slow, fast memories are small

• Storage hierarchies are large and fast on average

• Parallel processors, collectively, have large, fast cache

• NUMA architecture

• Algorithm should do most work on local data

Proc
Cache

L2 Cache

L3 Cache

Memory

Conventional 

Storage 

Hierarchy
Proc

Cache

L2 Cache

L3 Cache

Memory

Proc
Cache

L2 Cache

L3 Cache

Memory

p
o

te
n

tia
l

in
te

rc
o

n
n

e
c
ts



Processor-DRAM Gap (latency)

µProc

60%/yr.

DRAM

7%/yr.
1

10

100

1000

1
9
8
0

1
9
8
1

1
9
8
3

1
9
8
4

1
9
8
5

1
9
8
6

1
9
8
7

1
9
8
8

1
9
8
9

1
9
9
0

1
9
9
1

1
9
9
2

1
9
9
3

1
9
9
4

1
9
9
5

1
9
9
6

1
9
9
7

1
9
9
8

1
9
9
9

2
0
0
0

DRAM

CPU
1
9
8
2

Processor-Memory

Performance Gap:

(grows 50% / year)

P
e
rf

o
rm

a
n

c
e

Time

“Moore’s Law”

Goal: find algorithms that minimize communication, not 

necessarily arithmetic



Load Imbalance

• Load imbalance is the time that some processors in the system 

are idle due to

• insufficient parallelism (during that phase)

• unequal size tasks

• Examples of the latter

• adapting to “interesting parts of a domain”

• tree-structured computations 

• fundamentally unstructured problems 

• Algorithm needs to balance load

• Sometimes can determine work load, divide up evenly, before starting

• “Static Load Balancing”

• Sometimes work load changes dynamically, need to rebalance 

dynamically

• “Dynamic Load Balancing”



Overhead of Parallelism

• Given enough parallel work, this is the biggest barrier 

to get desired performance

• Parallelism overheads include:

• cost of starting threads or processes

• cost of communicating shared data

• cost of synchronization

• extra (redundant) computation



Overhead of Parallelism

A list of numbers every programmer should know (Jeff Dean, google)

https://gist.github.com/2843375


Lock overhead



Redundant computation

Proc0 Proc1

Proc2 Proc3 Solving Area

HALO Area

D
ata A

rea



Granularity

• Each of these overhead mentioned can be in the range of 

milliseconds   (=millions of flops) on some systems

• Tradeoff: Algorithm needs sufficiently large units of work to 

run fast in parallel (i.e. large granularity), but not so large that 

there is not enough parallel work



Principles of Parallel Computing

• Finding enough parallelism  (Amdahl’s Law)

• Locality – moving data costs more than arithmetic

• Load balance – don’t want 1K processors to wait for one slow 

one

• Coordination and synchronization – sharing data safely 

• Granularity – how big should each parallel task be

• Performance modeling/debugging/tuning

All of these things makes parallel programming even 

harder than sequential programming.



Topic 2: Method and Tools of performance analysis

how to benchmarking?

How to collect performance data?

How to analyze the data?



Performance Analysis of Parallel Programs

• Correctly and comprehensively diagnose 

performance behaviors of parallel programs, to 

support effective optimizations
• Experiment design and implementation, have to care

• Representative of samples

• External constrains on the viewpoint of system level

• Correctness check

• Scientific benchmarking of Parallel Computing Systems

• Methods for Performance analysis
• Speedup, efficiency

• Amdahl and Gustafson laws, critical path

• Performance data collection
• Profiling: statistics of program performance behaviors, such as 

time of functions

• Subroutine profiling vs. PMU sampling

• Tracing: records of most of the events happened, such as 

sequence of memory access and instructions

• Performance tools



Mostly used profiling: Timing of Parallel Program

 Timers

 Linux: rdtsc (cycle precision) /gettimeofday(us) / clock_getres, 
clock_gettime(ns)

 Windows: __rdtsc (cycle precision) / QueryPerformanceFrequency / 
QueryPerformanceCounter

 Intel Timer Utility: https://software.intel.com/en-us/code-
samples/intel-c-compiler/utilities/Timer-Utility

 MPI_Wtime/MPI_Wtick

 Timing of Parallel Programs

1. Barrier

2. Start Timer

3. Run Program

4. End Timer

5. Max(EndTime[i]-StartTime[i])

https://software.intel.com/en-us/code-samples/intel-c-compiler/utilities/Timer-Utility


Hardware performance monitoring unit (PMU)

• Most processors nowadays have special, on‐chip hardware that

monitors micro architectural events

• Core: instructions retired, elapsed core clock ticks, core frequency 

including Intel® Turbo boost technology, L2 cache hits and misses, L3 

cache misses and hits (including or excluding snoops).

• Uncore: read bytes from memory controller(s), bytes written to memory 

controller(s), data traffic transferred by the Intel® QuickPath

Interconnect links.

• It is a subsystem on the processor 

which helps in analyzing how an application 

or operating systems are performing on the processor.

• The Performance Monitoring Events can be broadly categorized

in two types

• Hardware: CPU‐Cycles, Instructions, SIMD Instructions, 

Cache References, Memory Access, Stalls, TLB miss

• Software: Page Fault, Context Switch, etc



• PMU consists of two components:

Performance Event Select Registers

Configuration registers to control what events to be monitored 

and how to monitor.

Event Counters (both configurable and fix ones)

The registers which actually count the number of events based on

the event select register’s configuration.

• For monitoring an event a counter is paired with an event select

register.

Hardware performance monitoring unit (PMU)



• Periodically interrupt the processor to obtain 
execution status and context
• Periodic sampling

• OS Timer Services (RTC), Every N Processor Clockticks

• Event Based Sampling (EBS).
• Specific processor events, such as L2 Cache Misses, Branch 

Mispredictions, Floating-point instructions retired.

• Manual sampling

Sampling of PMU



Advantages of PMU sampling

• No code modification and no libraries to link

• May need to add compiler option (-g) to get the program 

call-stack information

• System level Sampling

• Not only your program is sampled, but all the programs are 

scheduled to run on the same processor/core are sampled

• Low overhead and high accuracy (when your 

program/function takes long time enough)



• Where in an application/system where there is 
a significant amount of activity

• Where = Memory Address => OS Process => OS Thread
=> Executable or module => Function => Lines of code

• Significant = 如果相关活动并不频繁发生，就可能对系
统性能不会造成太大影响

• Activity = 花费的时间或者其它处理器内部事件
• Cache misses, Branch mispredictions, Floating-point instructions 

retired, Partial register stalls, etc.

• From hotspots to bottleneck

Hotspot Analysis (热点分析) with PMU



Performance Analysis of Parallel Programs

• Correctly and comprehensively diagnose 

performance behaviors of parallel programs, to 

support effective optimizations
• Experiment design and implementation, have to care

• Representative of samples

• External constrains on the viewpoint of system level

• Correctness check

• Scientific benchmarking of Parallel Computing Systems

• Methods for Performance analysis
• Speedup, efficiency

• Amdahl law, Gustafson laws, and critical path analysis

• Performance data collection
• Profiling: statistics of program performance behaviors, such as 

time of functions

• Subroutine profiling vs. PMU sampling

• Tracing: records of most of the events happened, such as 

sequence of memory access and instructions

• Performance tools



Speedup

• The speedup of a parallel application is

Speedup(p) = Time(1)/Time(p)

• Where
• Time(1) = execution time for a single processor and

• Time(p) = execution time using p parallel processors

• If Speedup(p) = p we have perfect speedup (also called
linear scaling)

• As defined, speedup compares an application with itself on 
one and on p processors, but it is more useful to compare

• The execution time of the best serial application on 1 processor 

versus
• The execution time of best parallel algorithm on p processors



Superlinear Speedup

Question: can we find “superlinear” speedup, that is

Speedup(p) > p ?

• Choosing a bad “baseline” for T(1)
• Old serial code has not been updated with 

optimizations

• Avoid this, and always specify what your baseline is

• Shrinking the problem size per processor
• May allow it to fit in small fast memory (cache)

• Application is not deterministic
• Amount of work varies depending on execution order

• Search algorithms have this characteristic



Efficiency

• The parallel efficiency of an application is defined as

Efficiency(p) = Speedup(p)/p
• Efficiency(p) <= 1

• For perfect speedup Efficiency (p) = 1

• We will rarely have perfect speedup.
• Lack of perfect parallelism in the application or algorithm

• Imperfect load balancing (some processors have more work)

• Cost of communication

• Cost of contention for resources, e.g., memory bus, I/O

• Synchronization time

• Understanding why an application is not scaling linearly 
will help finding ways improving the applications 
performance on parallel computers.



n = number of processors

Tparallel = {(1-P) + P/n} Tserial

Speedup = Tserial / Tparallel

Amdahl law

• Describes the upper bound of parallel execution speedup

Serial code limits speedup

(1
-P

)
P

T
s
e

ri
a
l

(1
-P

)

P/2

0.5    +  0.25

1.0/0.75 = 1.33

n = 2n = ∞

P/∞

…

0.5    +   0.0

1.0/0.5 = 2.0



Amdahl law

程序中顺序部分的百分比f

(c)

0%    1%    2%    3%    4%                      100%

加
速
比

S S1024=1024/(1+1023f )

1024x

91x

48x
31x

24x
1x

Wp Wp Wp Wp Wp Wp

W1 W1 W1 W1 W1 W1

工
作
负
载

W

处理器数P

(a)

1 2 3 4 5 6

T1

T1

Tp
T1执

行
时
间

T

处理器数P

(b)

T1

1 2 3 4 5 6

Tp
T1

T1
Tp

Tp Tp Tp



Gustafson law

• Use more computing resources (processors/nodes) to solve 

larger problem

PS

S

S

S

WW

pW pW

pW ppW

pW pW
S











/
'

)  p-f (p--p)  f ( p -f)  p ( f S' 111 

 
WW

fpf

WWW

pWW
S

OOPS

PS

/1

1'











If parallel overhead Wo



44

Gustafson Law

程序中顺序部分的百分比f

(c)

S '1024=1024-1023f

0% 1% 2% 3% 4%

1024x

1014x 1004x 993x 983x

加
速
比
S 
'

处理器数P

工
作
负
载
W

  (a)

W1

W1

W1

W1

W1

W1

Wp
Wp

Wp

Wp

Wp

Wp

1 2 3 4 5 6

 Tp

T1 T1 T1 T1 T1 T1
执
行
时
间
T

处理器数P

  (b)

1 2 3 4 5 6

 Tp Tp Tp Tp Tp



The critical path is the longest execution flow

Critical Path

• Parallel applications contain multiple execution flows
• A new flow is created when a thread/process is created or 

resumes
• Flow ends when a thread/process terminates or blocks on a 

synchronization primitive

Thread 1

Thread 2

Thread 3

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

Acquire L

Threads 

2 & 3 Done

Acquire L

Wait for Threads 

2 & 3

Release L

Acquire lock L

Wait for L

Release L Wait for L

Thread 2 

terminates

Thread 3 

terminates

Thread 1 

terminates



Performance Analysis of Parallel Programs

• Correctly and comprehensively diagnose 

performance behaviors of parallel programs, to 

support effective optimizations
• Experiment design and implementation, have to care

• Representative of samples

• External constrains on the viewpoint of system level

• Correctness check

• Scientific benchmarking of Parallel Computing Systems

• Methods for Performance analysis
• Speedup, efficiency

• Amdahl law, Gustafson laws, and critical path analysis

• Performance data collection
• Profiling: statistics of program performance behaviors, such as 

time of functions

• Subroutine profiling vs. PMU sampling

• Tracing: records of most of the events happened, such as 

sequence of memory access and instructions

• Performance tools



Performance may be changing

~1.77us

~1.2ms

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

• What is the real 

performance of point-to-

point communication on 

this supercomputer?

• 1.77us?



Performance may be changing

~1.77us

~1.2ms

TH, Belli: Scientific Benchmarking of Parallel Computing Systems, IEEE/ACM SC15

• How to report performance 

results of point-to-point 

communication

• Normal distribution?

• confidence interval?



Performance analysis in contended system

Image credit: nersc.gov

D

S

S. Di Girolamo, TH: http://spcl.inf.ethz.ch/Research/Performance/LibLSB/

http://spcl.inf.ethz.ch/Research/Performance/LibLSB/


Scientific benchmarking of parallel computing systems

Rule 1: When publishing parallel speedup, report if the base

case is a single parallel process or best serial execution, as 

well as the absolute execution performance of the base case.

Rule 2: Specify the reason for only reporting subsets of 

standard benchmarks or applications or not using all system 

resources.
Rule 3: Use the arithmetic mean only for summarizing costs. 

Use the harmonic mean for summarizing rates.
Rule 4: Avoid summarizing ratios; summarize the costs or 

rates that the ratios base on instead. Only if these are not 

available use the geometric mean for summarizing ratios.

Rule 5: Report if the measurement values are deterministic. 

For nondeterministic data, report confidence intervals of the 

measurement.
Rule 6: Do not assume normality of collected data (e.g., 

based on the number of samples) without diagnostic checking.
Rule 7: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

Rule 8: Carefully investigate if measures of central tendency

such as mean or median are useful to report. Some problems,

such as worst-case latency, may require other percentiles.

Rule 9: Document all varying factors and their levels as well 

as the complete experimental setup (e.g., software, hardware, 

techniques) to facilitate reproducibility and provide 

interpretability.

Rule 10: For parallel time measurements, report all 

measurement, (optional) synchronization, and summarization 

techniques.
Rule 11: If possible, show upper performance bounds to 

facilitate interpretability of the measured results.
Rule 12: Plot as much information as needed to interpret the

experimental results. Only connect measurements by lines if 

they indicate trends and the interpolation is valid.

ACM/IEEE Supercomputing 2015 (SC15) + talk online on youtube!



HPC Performance Tools

51

User-level abstractions

problem domain

source code

source code

object code libraries

instrumentation

instrumentation

executable

runtime image

compiler

linker

OS

VM

instrumentation

instrumentation

instrumentation

instrumentation

instrumentation

instrumentationperformance
data run

preprocessor

• Instrumenting

– Insert hooks into program to 

record and time events

• Sampling

– Regularly interrupt the 

program and record where it is

– Build up a statistical profile

– Use Hardware Event Counters 

(PMUs)



Registers

Caches

Local Memory

Remote Memory

Disk / Filesystem

Tools are Hierarchical

Intel Vtune

Perf

valgrind

Tau

IPM

Scalasca

HPC toolkit

Intel Application 

Performance Snapshot

Intel ITAC

Vampir

mpiP

GPTL

Extrae

printf is the most used and easy-use tool



 热点分析
 并行度分析
 锁和等待分析
 对比分析

https://software.intel.com/en-us/vtune 

https://software.intel.com/en-us/vtune/features/single-threaded



Find Hotspots

• Identifying code that uses a lot of processor time is often 

the first step in single-threaded optimization. Hotspot 

analysis gives you a list of functions sorted by the 

amount of time they consume. Optimizing the longest 

running functions provide you with the biggest 

performance gain.



View Profiling Results on Your Source Code

• Once you find the time-consuming functions, the next 

step is to figure out what part of each function needs 

improvement. Double-clicking the hotspot list takes you 

directly to the source, showing the hottest spot in the 

function. 

• Intel® VTune™ Amplifier supports most native compilers 

that follow industry standards, such as C, C++, and 

Fortran.



Analyze Faster with Highlighted Tuning Opportunities

• Event-based sampling uses the hardware performance 

monitoring unit (PMU) built into Intel® processors. PMU 

events can find specific tuning opportunities fast—like 

backend stalls or cache misses—highlighting them to 

facilitate easier analysis and optimization.



Linux Perf



GPTL with PAPI

• 用户使用GPTL插装源代码中获得函数与代码段级性能数
据

• GPTL负责调用PAPI获得PMU事件次数信息

• GPTL负责调用PMPI获得MPI通信数据量等信息

• 一次GPTLstart与GPTLstop的开销在1e-8至1e-6秒量级

• Usage of GPTL

• 手动插装代码段

• 代码调用GPTLstart()、GPTLstop()

• 编译器插装函数

• GCC选项 -finstrument-functions -g -rdynamic

– 函数头添加__attribute__((no_instrument_function))可避免
插装

• -g与-rdynamic：

– 允许GPTL从符号表中获得函数名（this_fn, from_where）

– 否则GPTL仅打印函数指针（this_fn）

– static inline函数不一定存在函数名



mpiP

• mpiP is a lightweight profiling library for MPI applications

• Low ovehead

• Only collects statistical information about MPI functions

• All the information captured by mpiP is task-local. It only 

uses communication during report generation, typically at 

the end of the experiment, to merge results from all of the 

tasks into one output file

• Scalability

• A variety of C/C++/Fortran applications from 2 to 262144 

processes

• Easy to use

• Introduce mpiP and related libraries during Link stage

• Work well with dispatcher

59



60

Intel Trace Analyzer and Collector

https://software.intel.com/en-us/trace-analyzer

https://software.intel.com/en-us/articles/intel-parallel-studio-xe-analysis-

tools-on-clusters-with-slurm-srun

https://software.intel.com/en-us/trace-analyzer
https://software.intel.com/en-us/articles/intel-parallel-studio-xe-analysis-tools-on-clusters-with-slurm-srun


61

Intel Trace Analyzer and Collector



TAU



63

Intel Application Performance Snapshot

https://software.intel.com/en-us/node/836966

https://software.intel.com/en-us/node/836966


 Outline

1. Motivation

2. Performance Analysis of Parallel Programs

3. Performance Modeling of Parallel Programs



 Simple definition

• Performance modelling is the process of 

simulating various user and system loads 

against varying system configurations by using

a mathematical approximation of how the 

model works. This is typically much cheaper 

than performance testing and can produce very 

accurate results.

http://www.testingperformance.org/definitions/what-is-performance-

modelling



 Why we need performance model?

• Evaluate effectiveness of a computing platform to solve a 
particular problem
– Predict resources and costs to solve a particular problem instance

• Runtime prediction for different input-size 

• Predict time when scaling a problem

– Help identify bottlenecks for hardware

• Makes programmers think about the structured performance 
profile of an application or platform
– Find performance bugs and assess upper and lower bounds of code 

optimizations
• Scalability bug detection

• Build a surrogate model in automated performance tuning
– Performance modeling as part of a software engineering discipline in 

HPC

Performance Modeling is Performance analysis v2.0



 Limitations

Burnham, Anderson: “A model is a simplification or 

approximation of reality and hence will not reflect all 

of reality. ... Box noted that “all models are wrong, but 

some are useful.” While a model can never be “truth,” a 

model might be ranked from very useful, to useful, 

to somewhat useful to, finally, essentially useless.”



 Classification of performance model

• Capability Model

– Roofline model (Prof. Zhang chensong)

– Parallel performance model (communication side)

– Architecture-oriented model

• Application performance model

– Analytical Model

– Empirical model

– Automated performance modelling



 Parallel Performance Model

Latency/Bandwidth model for 

Parallelism

• Transfer time T(s)=a+bs

– a = startup time (latency)

– b = cost per byte 

(bandwidth=1/b)

• As s increases, bandwidth 

approaches 1/b

• Often assuming no pipeline 

(new messages can only be 

issued from a process after all 

arrived)



 Parallel Performance Model

LogP Model to model pipeline, computation/communication overlap and endpoint 

congestion/overhead

• Four parameters of model

– L: an upper bound on the latency or delay

– o: the overhead defined as the length of time that a processor is engaged in the 

transmission or reception of each message

– g: the gap defined as the minimum time interval between consecutive message 

transmissions or consecutive message receptions at a processor (1/b in L/B model)

– P: the number of 

processors/memory modules

• Transmitting n messages

T(n)=L+(n-1)*max(g,o)+2o

• Concerns

– Bulk message? -> LogGP

– Complex to use



 Architecture-oriented model

SW26010 Many-core Processor

• 4 core groups (CG) in socket 

and each CG consists of 

a MPE and 64 CPEs

• Each CPE has  64KB 

LDM (local data mem.)

• Shared memory for socket

• 128b Register communication 

among same column or same

row



 Architecture-oriented model

1. Memory access transaction analysis:

• Two Kinds Memory Requests: DMA, Gload

• DMA Requests’ MR from 1Byte to LDM 

• Gload Requests’ MR from 1Byte to 32Bytes

• Gload Requests and small granularity DMA access waste more Bandwidth



 Architecture-oriented model

CPEs 256B 4096B

1 1.3 8.1

2 2.3 13.7

4 4.5 21.7

8 8.8 21.7

16 16.2 21.7

32 25.5 26.7

64 27.2 27.1

• 16 CPEs are connected to a memory bus

• Four buses are merged into one bus and to the MC 

• Designed BW is 32GB/s, designed sub bus BW is 25.6GB/s

• Default layout use one sub bus until all the CPEs on this bus is active



 Architecture-oriented model

2. Overlap analysis

MRT Latency refers to memory access time for CPE

MRP is usually 4.



 Architecture-oriented model

Computation 

Time

Memory 

Access Time

Overlapping 

Time
Total Time

𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒
𝑖𝑛𝑠𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚



𝐷𝑎𝑡𝑎 𝑆𝑖𝑧𝑒
𝐴𝑐𝑡𝑖𝑣𝑒 𝐶𝑃𝐸

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛
𝑆𝑖𝑧𝑒

𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛
𝐶𝑜𝑢𝑛𝑡

𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

Which Bigger?

𝐴𝑐𝑡𝑖𝑣𝑒 𝐶𝑃𝐸

𝑀𝑅𝑃
− 1 ∗ 𝐷𝑀𝐴

𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

Case1:𝑀𝐴𝑇 ∗ 1 −
1

𝐶𝑦𝑐𝑙𝑒

Case2: 𝐶𝑇 ∗ (1 −
1

𝐶𝑦𝑐𝑙𝑒
)



 Architecture-oriented model

Intel Xeon Phi KNL

NVIDIA GPGPU

Intel x86-64



 Classification of performance model

• Capability Model

– Roofline model (Prof. Zhang chensong)

– Parallel performance model (communication side)

– Architecture-oriented model

• Application performance model

– Analytical Model

– Empirical model

– Automated performance modelling



 Application Performance Model

分析模型

• 分析程序算法结构
• 分析程序实现方案

 HPCA’16 LRU cache
 COMMU’14 Cache-aware Roofline model
 CCGrid’12  su3_rmd
 SC’12 Aspen 
 JHPCA’10 Sweep3D

第一步：计算单元到进程的映射关系

第二步：一个计算单元中，
关键应用变量到时间的映射关系

第三步：设计实验、量测性能、拟合模型参数

示例：并行海洋程序POP

L/BW 

model



 Application Performance Model

经验模型

• 回归拟合运行时间
• 机器学习

 SC’17 Transfer learning
 IPDPS’16 NPB
 SC’15 Extra-P
 PACT’14 NPB HPCCG
 SC’13 Sweep3D, HOMME
 ICS’08 NPB 

Extra-P

可自动化

基函数的选取问题
可解释性问题



 Application Performance Model

ICS’08 回归拟合不断校正
模型参数，时间vs进程数

PACT’14 借助编译器技术探测
程序结构与基本程序块的输入+
在线采集，细粒度的建模

SC’15 自动化建模工具，在
预定义基函数中回归拟合

CLUSTER’16 多
参数快速建模

SC’17 迁移学习法
应用程序关键因素

与计算平台交互

可移植、通用化

指导原因分析

经验模型分析模型



 资源导向性能建模

目标：寻找一种建模方式，可以同时提供应用的特征、应用与计算平台交互特征、
最大化降低建模成本、可跨平台使用

硬件计数器技术

普遍支持 广泛使用 轻量采集

IBM Power 3处
理器配置了8个
硬件计数器

英特尔P4系列处
理器18个硬件计
数器

神威架构的处
理器提供了7
个硬件计数器

 Intel Vtune
 HPCToolkit
 TAU
 LIKWID
 PAPI
 Scalasca
 Perf
 Score-P

 运行时间类：时钟周期数

 程序指令类：执行指令数等

 存储事件类：各级缓存的访问计

数、不命中数目等

 流水线类：指令流水线空周期等

 分支预测类：错误分支预测数等

从top-down到bottom-up的自动性能建模



 资源导向性能建模

自动化资源导向性能模型

应用程序

计算 通信

点对点通信 集合通信计算核心0 计算核心1 计算核心n…

计算时间 访存时间 计算时间 访存时间 计算时间 访存时间…

𝑻𝒄𝒐𝒎𝒑 = 
𝒌=𝟏

𝑲

𝑻𝒄𝒐𝒎𝒑−𝒌 + 𝑻𝒏𝒐𝒏𝒐𝒗𝒆𝒓𝒍𝒂𝒑−𝒌

关键路径分析

https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=quantifying_the_p
erformance_impact_of_memory_latency_and_bandwidth_for_big_data_workloads.pdf

https://safari.ethz.ch/architecture/fall2017/lib/exe/fetch.php?media=quantifying_the_performance_impact_of_memory_latency_and_bandwidth_for_big_data_workloads.pdf


 资源导向性能建模

自动化资源导向性能模型 硬件计数器事件

SW26010



自动化资源导向性能模型

x86平台，CICE为例 归一化均方根误差: 𝑵𝑹𝑴𝑺𝑬 =
σ𝒊=𝟏

𝑲 𝒕𝒊× 𝒕𝒊−𝒓𝒊
𝟐

max
𝟏<𝒊<𝑲

𝒕𝒊∪𝒓𝒊 − m𝑖𝑛
𝟏<𝒊<𝑲

𝒕𝒊∪𝒓𝒊
< = 10−3

𝑵𝑹𝑴𝑺𝑬 = 𝟒 ∗ 𝟏𝟎−𝟒

Tapp > 500ms   硬件计数器采样结果具有较高的准确度

采样机制是否可以开展性能建模？

 资源导向性能建模



自动化资源导向性能模型
如何选取关键计算核心？

类1：时间占比大的函数

类2：时间占比不减小

类3：类1U类2

模型准确度一致情况
下，资源导向模型与
更细粒度（循环级）
建模方法相比，可以
降低建模开销。

 资源导向性能建模



 Summary

• Performance analysis is critical to efficient and effective 

computing (know knows and unknowns, unknown unknowns)

– Complexities of computing systems and parallel programs

– Performance interference makes things harder

– Fundamental of performance engineering

– Focus on experiment design, performance data collection, and analysis 

methods

• Performance modeling is performance analysis v2.0

– Increasingly important

– Necessary to algorithm/program design, performance portability and 

hardware design

– Hybrid analytical and empirical models for parallel applications based on 

capability models



 Recommended paper

Video: Scientific Benchmarking of Parallel 

Computing Systems - insideHPC

https://insidehpc.com/2018/12/video-scientific-benchmarking-parallel-computing-systems/#:~:text=Measuring%20and%20reporting%20performance%20of%20parallel%20computers%20constitutes,obliged%20to%20ensure%20reproducibility%20or%20at%20least%20interpretability.


Thanks！

薛巍
清华大学计算机系

xuewei@tsinghua.edu.cn

88


