中国科学院大学 夏季强化课程 20222

Fast Solvers for Large Algebraic Systems

Lecture 8. Robustness and adaptivity

Chensong Zhang, AMSS

http://lsec.cc.ac.cn/~zhangcs

Table of Contents

- Lecture 1: Large-scale numerical simulation
- Lecture 2: Fast solvers for sparse linear systems
- Lecture 3: Methods for non-symmetric problems
- Lecture 4: Methods for nonlinear problems
- Lecture 5: Mixed-precision methods
- Lecture 6: Communication hiding and avoiding
- Lecture 7: Fault resilience and reliability
- Lecture 8: Robustness and adaptivity

Sources of Error in Simulation

Robustness Is Crucial

- In some (many) real applications, we need to solve thousands or more of linear systems from a PDE with a set of physical/discretization parameters
- Physical parameters could be nonlinear, heterogenous, anisotropic, degenerating
- Classical iterative methods (Weighted Jacobi, SOR, ...) introduce parameters

Shape Optimization for Artificial Heart Pumps

Source: W. Leng, C.-S. Zhang, P. Sun, et al., "Numerical simulation of an immersed rotating structure in fluid for hemodynamic applications", Journal of Computational Science, 30, 79–89 (01/2019)

Robustness of Solvers

Parameters can affect convergence performance in a large extent -> Iterative methods are not robust

Q: What does "robustness" mean?

 $Solve(P_{\alpha}$

- Robustness of a system can be viewed as the property of being strong and healthy in constitution
- For solvers of linear algebraic systems, robustness has two meanings:
 - Breakdown-free and reliable for providing a solution; e.g.: GMRES, Robust ILU
 - Performance is resistant to perturbations of parameters
 - Solve is a solution algorithm (or a set of solution algorithms)
 - \mathcal{P} is a given set of problems (preferably parametrized)
 - $\|\cdot\|$ is a reasonable performance measurement (0: best, ∞ : fail)
 - ε is a tolerance for worst performance compared with baseline
 - \lesssim refers to there might be a constant independent of parameter α

Algebraic Systems of Discretizations

- Different discretization methods lead to systems with different properties
 - Preserve positive-definiteness and symmetry at discrete level
 - Preserve maximum principle at discrete level
 - Sparsity pattern

SUPG and EAFE Methods

Solve the advection-diffusion problem using finite element:

$$u_t + b \cdot \nabla u - \mu \Delta u = 0$$

DoF	รเ	JPG	EA	AFE	Sparsity
DOF	NNZ	Average NNZ	NNZ	Average NNZ	Gain
66,049	454,161	6.88	329,217	4.98	28%
263,169	1,825,809	6.94	1,313,793	4.99	28%
1,050,625	7,321,617	6.97	5,249,025	5.00	28%
4,198,401	29,323,281	6.98	20,983,809	5.00	28%
4,913	46,941	9.55	32,657	6.65	30%
35,937	430,317	11.97	245,025	6.82	43%
274,625	3,680,781	13.40	1,897,025	6.91	48%
2,146,689	30,438,477	14.18	14,926,977	6.95	51%

AMG Performance, mu=1

$u = 10^{0}$	Mach			SUPG					EAFE		
$\mu = 10$	wiesn	lter	Setup	Solve	Total	Comp	lter	Setup	Solve	Total	Comp
	1	5	0.10	0.05	0.15	2.42	5	0.08	0.04	0.13	2.19
Classic AMG	2	5	0.48	0.25	0.74	2.43	5	0.39	0.20	0.59	2.19
Classic Alvio	3	5	2.48	1.11	3.59	2.43	5	2.04	0.88	2.91	2.20
	4	5	11.86	5.14	17.01	2.43	5	9.79	3.92	13.71	2.20
	1	11	0.07	0.07	0.15	1.43	11	0.07	0.07	0.13	1.59
Best AMG	2	10	0.35	0.31	0.66	1.45	10	0.33	0.28	0.61	1.62
Dest Airio	3	10	1.78	1.33	3.11	1.46	10	1.65	1.19	2.85	1.64
	4	10	8.40	5.70	14.11	1.46	10	8.25	5.89	14.15	1.64
	1	8	0.19	0.09	0.28	2.79	8	0.16	0.07	0.24	2.74
CAIR2 AMG	2	8	0.88	0.41	1.30	2.81	8	0.76	0.33	1.09	2.76
CAILS AIVIG	3	8	4.21	1.92	6.14	2.82	8	3.64	1.59	5.23	2.78
	4	8	19.06	8.77	27.83	2.82	8	16.54	7.05	23.6	2.78

AMG Performance, mu=1e-2

$u = 10^{-2}$	Mach			SUPG					EAFE		
$\mu = 10^{-1}$	wiesn	lter	Setup	Solve	Total	Comp	lter	Setup	Solve	Total	Comp
	1	4	0.12	0.05	0.17	2.43	4	0.09	0.04	0.14	2.19
	2	4	0.51	0.22	0.73	2.43	4	0.39	0.18	0.58	2.20
Classic Alvid	3	4	2.49	0.93	3.42	2.43	4	2.07	0.72	2.80	2.20
	4	4	11.79	4.19	15.98	2.43	4	10.00	3.30	13.30	2.20
	1	10	0.07	0.07	0.14	1.43	10	0.07	0.06	0.13	1.59
Best AMG	2	10	0.35	0.31	0.66	1.45	10	0.32	0.28	0.60	1.62
Dest Aivio	3	10	1.77	1.34	3.11	1.46	10	1.66	1.20	2.86	1.64
	4	9	9.03	5.15	14.19	1.46	9	8.05	4.69	12.75	1.64
	1	6	0.20	0.07	0.27	2.80	6	0.17	0.06	0.23	2.75
CAIR2 ANG	2	6	0.89	0.31	1.20	2.81	6	0.77	0.26	1.03	2.77
CAITZ AIVIG	3	6	4.19	1.45	5.65	2.82	6	3.65	1.22	4.87	2.78
	4	6	19.21	6.82	26.04	2.82	6	16.67	5.52	22.20	2.78

AMG Performance , mu=1e-4

$u = 10^{-4}$	Mach			SUPG					EAFE		
$\mu = 10$	wesn	lter	Setup	Solve	Total	Comp	lter	Setup	Solve	Total	Comp
	1	8	0.20	0.15	0.35	4.14	6	0.12	0.09	0.21	4.09
	2	7	0.85	0.60	1.46	4.07	6	0.70	0.43	1.14	4.50
Classic Alvio	3	6	4.21	2.58	6.79	4.17	6	3.25	1.95	5.21	4.12
	4	5	15.73	7.40	23.14	3.36	6	12.18	6.34	18.52	3.01
	1	14	0.07	0.07	0.14	1.43	14	0.12	0.14	0.26	2.99
Best AMG	2	12	0.35	0.31	0.66	1.45	15	0.53	0.64	1.17	2.63
Dest Aivid	3	14	1.77	1.34	3.11	1.46	13	1.70	1.79	3.52	1.69
	4	8	9.03	5.15	14.19	1.46	9	8.33	5.12	13.45	1.67
	1	5	0.71	0.17	0.88	11.03	5	0.41	0.10	0.52	8.58
CAIR2 AMG	2	5	3.69	0.83	4.53	12.96	5	2.81	0.62	3.43	13.62
CAILS AINIG	3	6	15.75	4.07	19.83	11.43	6	11.87	3.00	14.88	11.79
	4	5	39.22	9.63	48.86	6.32	5	32.73	7.51	40.26	6.79

AMG Performance , mu=1e-6

<i>u</i> – 10 ⁻⁶	Mach			SUPG			EAFE				
$\mu = 10$	wiesn	lter	Setup	Solve	Total	Comp	lter	Setup	Solve	Total	Comp
	1	Х	0.15	3.50	3.66	3.88	7	0.10	0.10	0.21	3.76
Classic AMG	2	Х	0.64	15.56	16.20	3.89	7	0.45	0.41	0.87	3.77
Classic Alvid	3	Х	2.95	71.35	74.31	3.89	7	2.21	1.91	4.13	3.85
	4	Х	13.95	311.80	325.77	3.91	6	10.24	7.63	17.89	3.87
	1	Х	0.12	2.56	2.68	2.28	16	0.11	0.17	0.28	2.91
Best AMG	2	Х	0.56	12.14	12.71	2.40	16	0.51	0.76	1.27	2.94
Dest Aivio	3	Х	2.54	53.13	55.68	2.31	15	2.39	3.13	5.53	2.92
	4	Х	12.73	202.35	215.09	2.26	15	11.45	14.03	25.49	2.92
	1	9	0.34	0.19	0.53	6.12	5	0.15	0.06	0.22	3.41
CAIR2 AMG	2	8	1.41	0.73	2.15	5.97	5	0.60	0.29	0.89	3.25
CAITZ AIVIG	3	6	6.13	2.52	8.66	5.82	5	2.98	1.12	4.10	3.40
	4	6	26.76	11.24	38.02	5.68	7	14.05	6.90	20.96	3.35

Solver Performance for SUPG

SUPG Method										
	N	MUMPS	CAN	٨G	CAMG+	GMRES	All	R2	AIR2+0	GMRES
μ	IN	Time (s)	Numlt	Time (s)						
	256X256	0.88	23	0.18	11	0.15	11	0.25	8	0.28
1.00	512X512	5.02	23	0.89	10	0.66	10	1.14	8	1.31
10°	1024X1024	29.56	23	4.34	10	3.11	11	5.67	8	6.14
	2048X2048	203.17	22	17.63	10	14.11	10	25.22	8	27.83
	256X256	0.89	16	0.15	10	0.14	8	0.23	6	0.27
10-2	512X512	4.85	16	0.73	10	0.66	8	1.06	6	1.21
10 2	1024X1024	29.17	16	3.65	10	3.11	8	5.05	6	5.65
	2048X2048	203.34	15	16.48	9	14.19	7	22.57	6	26.04
	256X256	0.89	14	0.21	14	0.14	9	0.71	5	0.88
10-4	512X512	5.47	13	0.85	12	0.66	48	7.46	5	4.53
10 4	1024X1024	33.52	29	5.43	14	3.11	58	37.18	6	19.83
	2048X2048	265.11	9	12.63	8	14.19	19	54.71	5	48.86
	256X256	0.89	x	x	x	x	21	0.57	9	0.53
	512X512	5.18	x	X	x	x	13	1.94	8	2.15
10 ⁻⁶	1024X1024	43.08	x	X	x	x	9	7.48	6	8.66
	2048X2048	371.99	x	X	x	X	8	32.55	6	38.02

Direct Solver

Preconditioning

Solvers Performance for EAFE

					EAFE Method					
	N	MUMPS	CAN	٨G	CAMG+	GMRES	Alf	R2	AIR2+G	SMRES
μ	IN	Time (s)	Numlt	Time (s)	Numlt	Time (s)	Numlt	Time (s)	Numlt	Time (s)
	256X256	0.93	23	0.18	11	0.13	11	0.21	8	0.24
1.00	512X512	4.33	23	0.79	10	0.61	10	0.94	8	1.09
10°	1024X1024	25.28	23	3.68	10	2.85	11	4.79	8	5.23
	2048X2048	157.77	22	16.23	10	14.15	10	21.52	8	23.61
	256X256	0.93	16	0.13	10	0.13	8	0.19	6	0.23
10-2	512X512	4.41	16	0.64	10	0.6	8	0.88	6	1.03
10 2	1024X1024	26.08	16	3.03	10	2.86	8	4.28	6	4.87
	2048X2048	158.03	16	15.02	9	12.57	7	19.38	6	22.2
	256X256	0.98	x	x	14	0.26	7	0.39	5	0.52
10-4	512X512	5.02	65	2.69	15	1.17	9	2.55	5	3.43
10 4	1024X1024	29.66	13	3.06	13	3.52	11	11.91	6	14.88
	2048X2048	205.16	8	11.74	9	13.45	23	48.48	5	40.26
	256X256	0.91	x	x	16	0.28	12	0.24	5	0.22
	512X512	4.32	x	X	16	1.27	8	0.83	5	0.89
10^{-6}	1024X1024	23.27	x	X	15	5.53	9	3.97	5	4.11
	2048X2048	143.19	X	X	15	25.49	13	21.52	7	20.96

Direct Solver

Preconditioning

Robustness of Iterative Methods

Standard techniques for improving robustness of iterative methods

Find optimal available solver: $\operatorname{argmin}_{S_{\beta} \in \mathcal{S}} \max_{P_{\alpha} \in \mathcal{P}} \|S_{\beta}(P_{\alpha})\| \leq \varepsilon$

- The easy way is, of course, to use solvers based on the direct methods; see Lectures 2 and 5
- We mainly discuss how to improve iterative methods:
 - 1. Improve theoretical understanding for simple model problems and construct preconditioners that are not sensitive to given parameters
 - 2. Combine appropriate iteration, precondition, and decoupling
 - 3. Provide an automatic / adaptive procedure to select solver or its parameters to assist simulation software

The unfortunate fact is: There is no well established theory, yet!

Combination of Iterative Methods

Extended Combined Preconditioners

- Extended the combined preconditioners to nonsymmetric problems
- Combine drop tolerance technique with ILU(k)
- Applied to multi-group radiation diffusion problems

		800	0×6			1600	0×12	2		3200	0×24	
	Eu	clid	A	MG	Euclid		AMG		Euclid		AMG	
	It	T_c	It	$T_{\mathcal{C}}$	It	T_{c}	It	T_{c}	It	T_{c}	It	T_{c}
S_1	3	0.4	11	0.5	3	1.6	11	2.0	4	6.5	11	8.9
<i>S</i> ₂	15	0.5	33	1.3	26	2.7	46	8.4	65	18.7	56	42.6
S_3	-	-	14	0.6	-	-	16	3.5	-	-	13	11.0
		4000	0×12			800	0×24			1600	0×48	
	Eu	clid	A	MG	Εu	ıclid	A	MG	E	uclid	I	AMG
	It	$T_{\mathcal{C}}$	It	$T_{\mathcal{C}}$	It	$T_{\mathcal{C}}$	It	$T_{\mathcal{C}}$	It	$T_{\mathcal{C}}$	It	$T_{\mathcal{C}}$
M_1	2	3.3	14	14.2	2	13.8	35	179.6	3	60.6	48	1002.3
M_2	2	3.3	14	16.1	2	14.0	39	212.3	3	61.6	42	972.6
M_3	2	3.3	22	27.8	2	14.1	37	201.4	3	60.1	41	932.1
M_4	2	3.1	48	43.6	2	12.8	51	206.9	3	56.4	52	832.8
M_5	6	3.8	26	22.7	9	19.1	24	97.6	19	138.1	29	482.4
M_6	-	-	27	25.6	-	-	28	120.2	-	-	34	602.9

Table 1: Number of iterations and wall time of ILU(0) and AMG.

Table 2: Number of iterations and wall time of B_{co} (left) and \tilde{B}_{co} (right).

		800	0×6			1600	0×12		32000×24			
	E	3 _{co}	Ĩ	со		B _{co}	B_{co}		B_{co}		₿ _{co}	
	It	T_{c}	It	$T_{\mathcal{C}}$	It	T_c	It	T_{c}	It	T_{c}	It	$T_{\mathcal{C}}$
S_1	1	0.5	2	0.5	2	2.5	2	2.3	2	10.0	2	9.2
<i>S</i> ₂	5	0.7	6	0.6	5	3.1	6	2.7	5	12.7	6	11.2
S_3	7	0.8	10	0.7	6	3.3	10	3.2	8	15.4	11	13.8
		4000)×12			8000)×24			1600	0×48	
	E	3 _{co}	Ĩ	со		B _{co}	ĺ	3 _{co}		B _{co}		₿ _{co}
	It	T_{c}	It	$T_{\mathcal{C}}$	It	T_c	It	T_{c}	It	T_c	It	$T_{\mathcal{C}}$
M_1	1	5.1	1	4.7	1	20.9	1	19.1	3	119.1	3	98.2
M_2	1	5.3	1	4.8	1	21.5	1	19.5	2	110.6	2	93.9
M_3	1	5.2	1	4.7	1	21.3	1	19.4	2	109.0	2	94.1
M_4	1	5.4	1	4.8	1	22.1	1	19.5	2	111.6	2	95.0
M_5	6	9.4	3	5.6	6	38.2	3	23.0	3	125.7	3	102.7
M_6	4	7.9	3	5.8	3	29.2	3	23.5	7	191.1	3	103.6

Source: Yue, X., Shu, S., Xu, X., & Zhou, Z. (2015). An Adaptive Combined Preconditioner with Applications in Radiation Diffusion Equations. Communications in Computational Physics, 18(5), 1313-1335

Matlab[®] Solver mldivide

C.-S. Zhang, AMSS

Intel[®] oneAPI MKL Advisor

Intel [®] c	oneAPI Math Kernel Library Link Line Advisor	L	APACK Search Engine
		LAPACK	<u>Home Help Netlib Search Sitemap</u>
Introduction			Search
The Intel [®] oneAPI Math Kernel Libra compatible with several compilers a different environments, tools, and i To see which libraries are recomme	ary (oneMKL) is designed to run on multiple processors and operating systems. It is also and third-party libraries, and provides different interfaces to the functionality. To support these nterfaces, oneMKL provides multiple libraries to choose from. nded for a particular use case, specify the parameters in the drop-down lists below.	Access Individual Routines	Note: You can use two engines for your search:
Intel® oneAPI Math Kernel Lil	prary (oneMKL) Link Line Advisor v6.19 Reset	Driver Routines	2. Search for LAPACK Routine by Name (applet):
Select Intel® product:	Image: Image of the second	Computational Routines	(-++)
Select US:			
Select programming language:		Lifelity Doutinoo	
Select compiler:		<u>Ounty Routines</u>	
Select architecture:			
Select dynamic or static linking:		Testing Routines	
Select interface layer:	C API with 32-bit integer V	-	
Select threading layer:	OpenMP threading ~	Timing Routines	
Select OpenMP library:		<u>Thing Roddines</u>	
GPU:			
Select cluster library:	Parallel Direct Sparse Solver for Clusters (BLACS required) Cluster Discrete Fast Fourier Transform (BLACS required) ScaLAPACK (BLACS required) BLACS		corma
Select MPI library:	<select mpi=""> >/</select>	Download Libraries and	
Select the Fortran 95 interfaces:	BLAS95 LAPACK95	Packages	iste!
Link with Intel® oneMKL libraries			
Link with DPC++ debug runtime compatible libraries:		Documentation	, ot
Use this link line: -Wiestart-group \${MKLROOT}, \${MKLROOT}/lib/intel64/libmk1 -liomp5 -lpthread -lm -ld1	/lib/intel64/libmkl_intel_lp64.a intel_thread.a \${MKLROOT}/lib/intel64/libmkl_core.a -W1,end-group		Ou

Lighthouse Project

Lighthouse Taxonomy A FRAMEWORK THAT BUILDS ON AND IMPROVES EXISTING COLLECTIONS OF NUMERICAL SOFTWARE WITH ADDED TOOLS FOR CODE GENERATION AND THE TUNING OF MATRIX ALGEBRA COMPUTATIONS ABOUT Home **Report Issues** LOGIN E-mail Address Password Login Register + Forgot Password Try out as a guest

Lighthouse Taxonomy

Lighthouse is a framework for creating, maintaining, and using a taxonomy of available software that can be used to build highly-optimized linear algebra computations. The Lighthouse search-based system combines expert knowledge, machine learning-based classification of existing numerical software collections, and automated code generation and tuning. It enables developers with varied backgrounds to readily discover and effectively apply the best available numerical software for their problems.

Lighthouse supports libraries covering a broad space of sequential and parallel solution methods for dense and sparse linear algebra. It currently offers access to functionality from three packages: LAPACK, PETSc, and SLEPc. To start the services, please click on the links listed below. If you would like to check out the code and run it on Linux or Mac OS X 10.6 or later, visit <u>GettingStarted</u> for Lighthouse.

Click on the links below to start using Lighthouse!

DENSE MATRIX	SPARSE MATRIX
Linear systems Eigenvalue problems Singular Value Decomposition (SVD) Sylvester matrix equation	Linear systems Eigenvalue problems
Build to Order BLAS	

A Weaker Request on Robustness

Problem Feature Parameters

Feature	e names				
avgnnzprow	right-bandwidth				
avgdistfromdiag	symmetry				
n-dummy-rows	blocksize				
max-nnzeros-per-row	diag-definite				
lambda-max-by-magnitude-im	lambda-max-by-magnitude-re				
ellipse-cy	nnzup				
ruhe75-bound	avg-diag-dist				
nnz	left-bandwidth				
lambda-min-by-magnitude-im	lambda-min-by-magnitude-re				
norm1	sigma-min				
upband	n-struct-unsymm				
colours	diagonal-average				
diagonal-dominance	dummy-rows				
ritz-values-r	symmetry-snorm				
symmetry-fanorm	symmetry-fsnorm				
lambda-max-by-real-part-im	lambda-max-by-real-part-re				
lambda-max-by-im-part-re	lambda-max-by-im-part-im				
col-variability	trace-abs				
ritz-values-c	nnzeros				
diag-zerostart	loband				
positive-fraction	trace				
min-nnzeros-per-row	diagonal-sign				
row-variability	nrows				
colour-offsets	n-colours				
relsymm	diagonal-variance				
departure	nnzlow				
n-nonzero-diags	sigma-max				
dummy-rows-kind	kappa				
n-ritz-values	colour-set-sizes				
sigma-diag-dist	symmetry-anorm				
ellipse-ax	ellipse-ay				
ellipse-cx	lee95-bound				
normInf	normF				
nnzdia	trace-asquared				

Feature learning (selection & extraction)

- Performance of ML models is largely affected by the choice of features
- A comprehensive feature set may include all entries of A (however, it is too complicated)
- The choice of features is usually problem-dependent
- Obtaining features is usually costly and needed in both offline and online steps
- Training takes a lot of time if too many features are selected
- Analytical and/or empirical results should be used to select features

Full feature set comprising of 68 features computed using Anamod

Weighted Jacobi method

$$\vec{u}^{\text{new}} = \vec{u}^{\text{old}} + \omega D^{-1} (\vec{f} - A\vec{u}^{\text{old}})$$

- Minimize smoothing factor by LFA (local mode analysis) [Brandt 1994]
- Minimize spectral radius bound of iterative matrix [Yang 2004]
- It is complicated to determine ω for practical applications: Trial and error!

Question: How to find a good weight in practice?

A Short Summary on Classical Methods

- 迭代法中有很多可调参数,这些
 参数对求解效率有很大影响
 - 同一个方程,选择不同的参数,会 对求解效率有很大影响
 - •不同的方程,往往需要不同的参数, 固定的参数无法达到最优效果
- 在实际应用场景中,如油藏数值
 模拟、计算流体、形状优化
 - 往往需要求解成千上万次不同的线
 性代数方程组
 - 这些问题有类似的性质,但不完全 相同,需要使用不同的可调参数
 - 需要有一个自适应的策略,自动地
 选择合适的可调参数

Constructing Adaptive Solvers

Free Parameters: Coupling Threshold

Strong coupling threshold: $-a_{i,j} \ge \theta_{\text{str}} |\min_k a_{i,k}|$

- G = (V, E) is the corresponding graph of A

- $S_i := \{j \in N_i : j \text{ strongly coupled to } i\}, S_i^T := \{j \in V : i \in S_j\}$ set affected by i

Numerical Results Matches Theory

Convergence Analysis (X. Xu and C.S. Zhang, 2022)

$$1 - \frac{\Delta_2}{K_{\mathrm{TG}}} \le \|E_{\mathrm{PTG}}\|_A \le \max\left\{1 - \frac{\Delta_1}{K_{\mathrm{TG}}}, \, \Delta_2 - 1\right\}$$

Smoother	Cycle Type	Convergence Rate	Y. Notay 2007	Xu & Zhang 2022
Gauss-Seidel	V-cycle	0.876	N/A	0.955
	W-cycle	0.556	0.859	0.812
Weighted Jacobi (0.5)	V-cycle	0.905	N/A	0.993
	W-cycle	0.639	Fail	0.979

Construct a test finite element matrix on 12×12 grid

- $\theta = 0.26$: Num Iter = 08, Actual Rate = 0.2498, Theoretical Rate = 0.2500
- $\theta = 0.27$: Num Iter = 74, Actual Rate = 0.9477, Theoretical Rate = 0.9477

Adaptive Iterative Methods

3D ICF Demo Example: 120 training problems and 10 test problems

Number of Nodes		Average Number of Iterations				
Graph	Subgraph	$\theta = 0.25$	$\theta = 0.5$	Optimal	AutoAMG	
6.29M	4.91M	51.3	466.6	23.1	27.7	

Chensong Zhang, AMSS

Designing GNN Networks

Source: Jie Zhou et al. "Graph neural networks: A review of methods and applications", AI Open, 2020, AI Open, 57-81

From Matrices to Graphs

O: cycle_graph I: star_graph I: whel_graph I: other graph O: cycle_graph I: star_graph I: whel_graph I: other graph O: cycle_graph I: star_graph I: other graph I: other graph O: cycle_graph I: star_graph I: other graph I: other graph O: cycle_graph I: star_graph I: other graph I: other graph O: cycle_graph I: star_graph I: other graph I: other graph O: other graph I: star_graph I: other graph I: other graph

Source: https://www.dgl.ai/blog/2019/01/25/batch.html

- Using GNN to classify graph structures (learn features)
- Numerical test: 320 (8x40) training graphs,
 80 (8x10) testing graphs
- Classification accuracy: about 71.25%

Learning Solver Components

There are many examples on learning solver components by machine learning (deep learning)

Yuyan Chen, Bin Dong, and Jinchao Xu. "Meta-MgNet: Meta multigrid networks for solving parameterized partial differential equations". In: Journal of Computational Physics 455 (2022)

Learning Proxy Models

● 裂缝性油气藏储集层

- •裂缝分布随机性强,非均质性差别大
- 孔隙率高低不一
- 非裂缝处渗透率低,但在裂缝处的渗透率极高
- 在裂缝性油气藏模拟中 , 有如下难点
 - 没有准确的裂缝模型:裂缝的渗透率、孔隙度、密度等难确定
 - •裂缝处的网格处理复杂,计算量大

● 目标:建立代理模型,对于不同裂缝的位置与渗透率,快速求解油藏压力分布

考虑如下带裂缝的多孔介质流问题

$$\int -\nabla \cdot (\kappa \nabla p) = 0, \qquad \text{in } \Omega,$$

$$p = 10,$$
 in Γ_l

$$p = 1,$$
 in $\Gamma_r,$

$$\frac{\partial p}{\partial n} = 0, \qquad \qquad \text{in } \Gamma_b \cup \Gamma_t.$$

- 裂缝位置随机分布
- 渗透率к的取值分基质和裂缝两部分,基质相对渗透率
 远小于裂缝处。如:
 - ▶ 裂缝处:1000
 - ▶ 基质处: (0,10)的随机数

MULTITASK AND TRANSFER LEARNING FOR AUTOTUNING EXASCALE APPLICATIONS

WISSAM M. SID-LAKHDAR, MOHSEN MAHMOUDI AZNAVEH, XIAOYE S. LI, AND JAMES W. DEMMEL

ABSTRACT. Multitask learning and transfer learning have proven to be useful in the field of machine learning when additional knowledge is available to help a prediction task. We aim at deriving methods following these paradigms for use in autotuning, where the goal is to find the optimal performance parameters of an application treated as a black-box function. We show comparative results with state-of-the-art autotuning techniques. For instance, we observe an average 1.5x improvement of the application runtime compared to the OpenTuner and HpBandSter autotuners. We explain how our approaches can be more suitable than some state-of-the-art autotuners for the tuning of any application in general and of expensive exascale applications in particular.

https://arxiv.org/pdf/1908.05792.pdf

- Are the algebraic solvers robust in
 - your application?
- What solvers do you use? Do you
 - think they are good enough?
- What strategies for improving
 - robustness will fit your application
 - the best? Why?
- How do you want to improve
 - robustness?

Contact Me

NCMIS

- Office hours: Mon 14:00—15:00
- Walk-in or online with appointment
- <u>zhangcs@lsec.cc.ac.cn</u>
- http://lsec.cc.ac.cn/~zhangcs

My sincere gratitude to:

Xiaowen Xu, Haifeng Zou, Lian Zhang, Rui Li

中国科学院大学 夏季强化课程 20222

Fast Solvers for Large Algebraic Systems

THANKS

Chensong Zhang, AMSS

http://lsec.cc.ac.cn/~zhangcs

Release version 2022.07.1