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Sources of Error in Simulation
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Discretization Error Algebraic Error Floating-Point Error

Discretization 
Methods

Algebraic Solvers
Finite-Precision 

Arithmetic

More refined mesh 

Better discretizations

Approximation:

Better solvers

Better computers
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Introduction

A non-symmetric model problem and its discretizations



Source (modified):

A “Simple” Model Problem
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Advection

Convection

Differences?

⚫ Mass (energy) advection: 
Transfer of a substance 
due to bulk motion

⚫ Heat convection: 
Combined effect of bulk 
motion and diffusion



Advection-Diffusion Equation
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⚫ Advection-diffusion (convection-diffusion)

⚫ Discretize the PDE with implicit discretization methods

◼ If discretize in a classical way, we will get non-symmetric linear systems

◼ Q: Is it still possible to get symmetric problems?

◼ Yes. We can discretize the material derivative (like ELM in Lecture 2)

⚫ How to solve the non-symmetric linear systems?

◼ Direct solvers still work very well: LLT , LDLT
➔ LU

◼ Iterative solvers need to be modified: CG➔ GMRES, BiCGstab, …

◼ Preconditioners most likely need to be modified: IC➔ ILU, CAMG➔ ???



Steady-State Advection-Diffusion Equation
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⚫ Steady-state advection-diffusion equation (ADE)

⚫ Difficult to solve if the Pe̒clet number is large (convection dominates)

⚫ Challenging to solve: boundary layers, convection-dominant, …

⚫ For this model problem, the weak form of advection is skew self-adjoint:

⚫ ADE is bounded and coercive ➔ Lax-Milgram Theorem ➔Well-posed

There’s a discrete version!
Mesh/discrete Pe̒clet number

Dimensionless



General FE Discretization
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Ref: Jinchao Xu. “Two-grid Discretization Techniques for Linear and Nonlinear PDEs”. SIAM J. Numer. Anal. 33, 5,
1759–1777, 1996

⚫ Define bilinear forms and the finite element approximation

⚫ Some operators:

Finite element approximation

Solving the resulting algebraic system is not easy.



Difficulties in Numerical Simulation
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Source: Howard Elman. 
“Discretization and solution 
of convection-diffusion 
problems”. Lecture Notes, 
2006

⚫ Quasi-optimal estimate, 

could have large constant

⚫ Sharp boundary layers 

might cause non-physical 

oscillations if the mesh 

Pec̒let number is large



EAFE Method
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⚫ 1D model:

⚫ Change variable:

⚫ Flux term:

⚫ Numerical flux:

⚫ P1 finite element:

⚫ EAFE:

Using p.w. constant 
flux approximations 
and integrating in 
each interval

Ref: Xu and Zikatanov, 1999Sounds Good? Bernouilli function



A Two-Level FE Discretization
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⚫ Introduce a new finite element space (usually smaller space)

⚫ Convergence results:

⚫ Improved the two-grid discretization Ref: Xu, Jinchao. "An 
introduction to 
multilevel methods." 
Wavelets, multilevel 
methods and elliptic 
PDEs, 1997



A Two-Level Preconditioner
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⚫ Assume that there exists a subspace                    such that  

has a unique solution, defined by:

⚫ Define coarse-level problem and L2-projection

⚫ Construct a new preconditioner:
Preconditioner for the symmetric part

Ref: J. Xu and X.-C. Cai. 
“A preconditioned 
GMRES method for 
nonsymmetric or 
indefinite problems”. 
Math. Comp. 59, 311-
319, 1992

Need to solve the 
coarse problem here

“Solver” for the non-symmetric problem



The Finite Element Circus
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⚫ R. Scott, High order methods for fluid flow, Finite Element 

Circus, Spring 1996

⚫ H. Wang, An ELLAM scheme for advection diffusion 

equations, Finite Element Circus, Spring 1996

⚫ J. Xu, EAFE scheme for convection-diffusion equations 

and conservation laws, Finite Element Circus, Fall 1997

Former circus ringmasters D. Arnold and R. Falk
and the current co-ring master S. Brenner at the
90th birthday of Ivo Babuška (2016)

Source: https://sites.google.com/view/fecircus



Krylov Subspace Methods

Krylov subspace methods for non-symmetric problems



Krylov Matrices
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⚫ Apply the QR factorization  

⚫ The Krylov matrix can be defined as

⚫ Get a similar transformation:
Upper Hessenberg

⚫ By the Cayley–Hamilton theorem, there exists a polynomial                                   , such that



Krylov Subspace Methods
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⚫ The above Krylov matrix approach is not useful in practice: 

◼ Nearly-singular ➔ It’s a power sequence

◼ Expensive to compute the full QR factorization

⚫ The Krylov subspace

⚫ We will focus on the generalized minimum residual (GMRES) method:

⚫ Examples: CG, MinRes, GMRES, BiCGstab, FOM, GCR, ORTHOMIN, ... (see Y. Saad 2003)

Simoncini, Valeria, and Daniel B. Szyld. "Recent computational developments in Krylov subspace 
methods for linear systems." Numerical Linear Algebra with Applications 14.1, 1-59, 2007

Nested Subspaces

Line 4 of Algorithm 1



Basic Idea of GMRES
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⚫ Suppose that we have an orthonormal basis of the Krylov subspace

⚫ Solve a least squares (LSQ) problem to find an “optimal” solution in the Krylov subspace

Only need to solve a 

smaller LSQ problem

Multiply unitary matrix 
does not change 2-norm

Saad and Schultz 1986

1

2

3



Eigenvalue Equations
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⚫ Assume that we have the Hessenberg decomposition of 

⚫ We want part of this decomposition

𝐴



Toward A Practical Iterative Procedure
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⚫ Part of the eigenvalue equation:

There should be an iterative 

procedure to construct q-vectors!

⚫ How to develop an iterative procedure?

2



Arnoldi Iteration
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⚫ Assume that we start from the residual vector

⚫ Gram-Schmidt orthogonalization

3



Practical Implementation of Arnoldi
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⚫ Arnoldi algorithm breaks down at step 𝑗, if and only if the minimal polynomial of the vector 𝑞1 (i.e. 

𝑝 𝐴 𝑞1 = 0) is of degree 𝑗

⚫ See Proposition 6.6 in Y. Saad,  “Iterative Methods for Sparse Linear Systems” (2nd Edition), 2003

Standard Gram-Schmidt, not stable! 

➔Modified Gram-Schmidt ➔ Reorthogonalization



Classical Gram-Schmidt Method

C.-S. Zhang, AMSS 21

Orthonormal

?

⚫ Orthogonalization

⚫ Classical G-S:

1



Modified Gram-Schmidt Method
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?

⚫ Orthogonalization

⚫ Modified G-S:

Orthonormal 1



Generalized Minimum Residual Method
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Lucky breakdown: If and only if the iterative 

solution is exact!
⚫ GMRES: the MGS variant

⚫ GMRES: the Householder variant

⚫ GMRES with restarting (stagnation)

⚫ GMRES with deflated restarting

⚫ GMRES with variable restarting



Stability of GMRES
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Ref: Christopher C. Paige, Miroslav Rozložník, and Zdeněk Strakoš. “Modified Gram–Schmidt (MGS),
least squares, and backward stability of MGS-GMRES”. SIAM Journal on Matrix Analysis and
Applications, 2006; 28:264–284

⚫ Backward error analysis for GMRES with MGS in finite-precision arithmetic  

⚫ Review the forward error for direct methods discussed in Lecture 2

⚫ Finite-precision arithmetic (floating-point calculation) will be discussed in Lecture 5

⚫ Cannot store too many iterations for large linear systems!

⚫ Cannot maintain orthogonality and numerical stability!

⚫ We have to restart the iteration ➔ GMRES(𝑚)



Convergence of GMRES
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⚫ General results: If 𝐴 is diagonalizable, i.e. 𝐴 = 𝑍 Λ 𝑍−1, then

⚫ If 𝐴 is normal, then 𝑍 is unitary ➔ 𝑍 = 𝑍−1 = 1➔ Only need to analyze 𝑝𝑘(𝜆𝑖)



Convergence Behavior of GMRES
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⚫ Need good preconditioners

⚫ If 𝑚 gets too large, we cannot 

store everything; need to do 

truncation or restarting

⚫ Restarts may kill convergence!

⚫ Reuse the previous iterations 

after restarts? Do not forget 

everything when restarted

⚫ Different preconditioners at 

each iteration?Using GMRES and BiCGstab to solve SPE1 and SPE9 benchmark problems



Preconditioned GMRES Method

C.-S. Zhang, AMSS 27

We do not save the 

preconditioned 

vectors because 

their sizes; instead, 

we just apply the 

preconditioner at 

Line 4 and Line 14. 

This way, one more 

precondition step, 

but less memory 

needed!



Flexible GMRES Method
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In order to allow 

different 

preconditioners at 

different steps, we 

have adjusted the 

PGMRES method 

and store the 

preconditioned 

vectors in FGMRES.

⚫ FGMRES is useful in practice and will be used later over and over again

⚫ But pay attention: Lucky breakdown no more! 



Finding Eigenvalues using Krylov Methods
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⚫ Consider the eigenvalue problem

⚫ Approximate the original space using the Krylov subspace 

⚫ Approximate eigenvalue problem in the Krylov subspace

⚫ This gives a way to approximate the eigenvalues of the original problem



Take Care of Small Eigenvalues
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⚫ Small eigenvalues can cause troubles for Krylov subspace methods

⚫ Add approximate eigenvectors targeting the “smallest eigenvalues” to the Krylov subspace

⚫ Q: How to obtain these eigenvectors?

⚫ Approximate eigen information using Krylov subspaces (e.g. Paige, Parlett, van der Vorst 1995)

Find smallest eigenpairs

Harmonic Ritz values

Good approximations 

of 

GMRES-E (Morgan 1995)



GMRES with Deflated Restarting
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⚫ Step 1. Apply the standard GMRES(m)

⚫ Step 3. Orthonormalize 

⚫ Step 2. Find smallest harmonic Ritz values

, and append a zero row to it: (𝑘 + 1) × 𝑚

⚫ Step 4. Orthonormalize                                           against 

⚫ Step 5. Form the deflated subspace for restrarting

⚫ Step 6. Re-orthogonalize and continue with a new Arnoldi iteration (GMRES-DR)

Ref: Morgan, Ronald. “GMRES with Deflated Restarting.” SIAM J. Sci. Comput. 24 (2002): 20-37.



Performance of GMRES-DR
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Source: 电子科技大
学荆燕飞《应用数
学中的某些前沿问
题》学科前沿课程
笔记，2022

⚫ Full GMRES converges

⚫ Restarting may destroy convergence

⚫ Increase restart number may help

⚫ GMRES-DR can improve convergence

⚫ Variable restarting might help?



Multigrid Preconditioners

Multigrid designed for non-symmetric problems



Simple Iterative Methods
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⚫ Simple iterative methods usually slow down 

after a few iterations (relaxation stage)

⚫ Local relaxation methods have smoothing 

properties but cannot deal with global error

Gauss-Seidel

Jacobi
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Two-Grid Methods

C.-S. Zhang, AMSS 35

⚫ Step 1. Presmoothing with a simple iterative method (smoother / relaxation)

⚫ Step 2. Coarse grid correction (CGC)

⚫ Step 3. Postsmoothing (optional)

⚫ Does such a simple method work? 

⚫ Why does this method work?

⚫ What are the key components that make this method work?

⚫ How to improve this TG method?



Construction of Coarse Problems
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Constructing coarse problems:

⚫ Coarse problems can be directly defined

on the coarse mesh in some cases

⚫ Coarse problems can also be constructed

using transfer operators and the following

relation

Galerkin relation
for SPD problems

Question: Why geometric multigrid methods don’t usually work this way?

Multilevel cycles (left: V-cycle, right: W-cycle)

Coarse variables

Fine variables

Piecewise linear 
interpolation



Simple Numerical Tests on GMG
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⚫ GMG usually avoids storing stiffness matrices and other operators

⚫ GMG often can achieve the so-called “textbook multigrid performance”

⚫ GMG converges uniformly and has optimal complexity

⚫ But GMG methods are usually constructed based on hierarchical meshes

It is certainly a 

Schwarz 

method, but on 

multiple levels!

Prolongation

Restriction



Algebraic Multigrid
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⚫ If a hierarchical mesh is available, then we can construct coarse levels easily

⚫ If only the stiffness matrix is available, then we must construct the hierarchy in

an algebraic manner

⚫ Tentative prolongation

⚫ Coarser matrix



Numerical Experiments and Comparisons
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Direct method   vs   AMG methods   vs   AMG Preconditioned GMRES methods



Reading and Thinking
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⚫ Do you need to solve non-symmetric 

problems in your applications?

⚫ What linear solvers do you use for 

solving these problems? 

⚫ Have you used some of the Krylov

methods to solve non-symmetric 

problems? 

⚫ How do they perform? How do they 

scale?

⚫ If not yet, try …



Contact Me
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⚫ Office hours: Mon 14:00—15:00

⚫ Walk-in or online with appointment

⚫ zhangcs@lsec.cc.ac.cn

⚫ http://lsec.cc.ac.cn/~zhangcs

C.-S. Zhang, AMSS

My sincere gratitude to: 

Liuqiang Zhong, Yanfei Jing, Xiaoqiang Yue, Bin Dai 
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Review
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⚫ Why the Krylov matrix approach is rarely used in practice: 

• Nearly singular (It’s a power sequence) 

• Expensive to compute the full QR factorization

⚫ The reorthogonalized Arnoldi iteration is often used to construct the GMRES method: 

• The modified Gram-Schmidt method is numerically stable

• Terminate at any time ➔ No need to compute the full QR factorization

• 𝑚 is usually much smaller than 𝑛➔ tall skinny matrices

• For symmetric problems, 𝐻𝑚 reduces to a symmetric tridiagonal matrix ➔ Lanczos methods

⚫ Multigrid methods for nonsymmetric problems

• Better with relaxation methods for nonsymmetric problems (GMG)

• Use symmetrized problem or other available information to construct preconditioner



Fast Solvers for 
Large Algebraic Systems

Chensong Zhang, AMSS
http://lsec.cc.ac.cn/~zhangcs Release version 2022.07.12


