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Section 09. Robust Iterative Methods Some simple examples

A Simple Model Problem P

NCMIS

@ A representative example is the second-order elliptic problem with anisotropic coefficient
—€Ugy — Uyy = f(z,y), Y(z,y) €Q,
where € > 0 is usually small.
@ If we apply the standard finite difference discretization on the uniform n x n tensor-product grid, then
Ac=1® A1+ C®I, with Ay, = tridiag(—e, 2 + 2¢, —¢), C = tridiag(—1,0, —1).

@ The eigenvalues of A are given

i j(Ae) = 2(1 +€) — 2ecos nm

. o , g
= desin® ———— + 4sin?

g
_9 _Jr
1 2(n + 1) 2(n+ 1)’

with eigenvectors

- . kim . ljm
&= (sm sin ) .
’ n—+1 n+1/ki=1,..n
0 Ifexk 1,then/\1,1 < )\271 < <K /\n,l < )\172 < /\2,2 < -eel
@ Unlike the Poisson’s equation, these eigenvalues are ordered in a different pattern.
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Section 09. Robust Iterative Methods Some simple examples

Local Relaxation Method In Danger

NCMIS

( Error smoothness is not trivial to define for problems for complex problems in general. ]

@ Using the LFA analysis, we obtain that the error of the G-S method satisfies

new __ __new old new old <.
(2 +26)e; = ee;™y ; +eefyy j e +efi, hi=1...,n

@ According to the local Fourier analysis, we can obtain that

)\(0 ) ) B agew B 66‘/_7101 +e\/—7192
1,V2) = Oégld - 24 2 — ce—V—101 _ €_ﬁ92.

@ In this case, the smoothing factor of the G-S method is

e(1—p2,) ) _ Vhe2 —2e+1+2 N
2(c + 1)p2, Be+3

Pas = A(;T, arctan ( 1, ase—0.

@ This observation suggests that the G-S method barely have any smoothing effect for small e.
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Section 09. Robust Iterative Methods Some simple examples

Line Smoother for Anisotropic Problems é:i’
‘ i+l { i+1
i—1 i—1
j—1 j j+1 j—1 3§ j+1

@ Standard (left) and line Gauss—Seidel (right) smoothers: Blue points have updated values and white
points have old values.

@ We apply the line smoother in natural ordering:

new __ new old new new . .
(2 + 26)“7;,‘7‘ = €Ui_1,j + €ui+17]‘ + ui,j—l + ui,j+17 ] = 1, ey, 1= 17 e, n.
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Section 09. Robust Iterative Methods Some simple examples

LFA for Line Smoother P

NCMIS

@ The error satisfies
new __ new old new new s s
(2 + 26)61"]' = €615 + €Ciy1,5 + €ij—1 + €+l J= 1,...,n, t1=1,...,n.
@ By LFA, we can obtain that

)\(9 9) agew eeﬁal
1,Y2) = agld - 24 2 — ce—V—101 _ 9p—/—102"

Y
2ie’ 55}'

@ The maximal smoothing factor is p, ., = max {

@ If0 < e < 1, we always have p, . = v/5/5 < 1 independent of e.

This example illustrates a typical problem used by researchers to evaluate the robustness of multi-
grid methods as well as other iterative solvers. Other examples include problems with high-
contrast coefficients, heterogeneous coeflicients, anisotropic meshes, etc.
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Section 09. Robust Iterative Methods Some simple examples

Methods for Improving Performance 5

NCMIS

(1) Apply an line smoother (group all those y-variables corresponding to the same z-coordinate together)
(2) Employ y-semi-coarsening (only coarse in the y-direction)

(3) Construct operator-dependent interpolations

Figure: Examples of coarsening methods (Left: standard coarsening; Right: y-semi-coarsening): Red
depicts coarse points and black depicts fine points.
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Section 09. Robust Iterative Methods Some simple examples

Another Simple Model Problem 5

NCMIS

Example (2D convection-diffusion [Notay 2020])

Consider —V - (uVu + vu) = 0 on the unit square discretized by an upwinding FD on uniform meshes.
Solve the discrete system by TG + weighted Jacobi smoother.

Letp=1,v=(m(a—1),m(8 — 1))T, and meshsize h = L. Simplest setting: m = 30, « = 50, 8 = 1, and

m
damping w = 0.5, geometric coarsening, bilinear interpolation, and full-weighting restriction. We have the FD stencil:

1 _B+1
symmetrize 2
—a 24+a+B -1 —_— -l 24048 —oH
— B+1
p h R h
non-symmetric anisotropic
- @ Example: = 0.01, v = (0,1)", N =13
">, @ Typical behavior for non-normal matrices
- ::\ @ Estimates: eigenvalues (EV), field of values (FOV), and pseudo-spectra (¢)
""" @ Theoretical and numerical comparisons [Embree 1999]
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Section 09. Robust Iterative Methods Some simple examples

>

Solving with Two-grid Method Nemz

@ Blue crosses denote the spectrum of iteration matrix E = p(FE) predicts asymptotic convergence
behavior; but it might be miss-leading in practice.

@ Red dashed curve denotes boundary of the field of values (numerical range).

@ Black solid curve is given based on the estimate for the numerical range
1 1
Wpo(T) C {z € C : Re(z) < p(Ty) and |§ —z| < 5},

which applies to the weighted Jacobi smoother [Notay 2020].
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( Same convergence behavior could also happen for multigrid methods! ]
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Section 09. Robust Iterative Methods A more complicated example

Discretization Methods for Convection A:m’

NCMIS

Streamline-Upwinding Petrov-Galerkin: [Hughes, Brooks 1979; Brooks, Hughes 1982; ...]
~ Equivalent to adding a perturbation term: 3 ey f1,, [y (v-Vu, v-Vuw)
— Popular in computational fluid dynamics (CFD packages, 7000+ citations)

— Introduce more nonzero entries to the linear system

Edge-Averaged Finite Element: [Xu, Zikatanov 1999; Lazarov, Zikatanov 2012]
— Idea in 1D: change of variable

velri velTitt

i - /
u +ou=e (") = u; — Uit1
eva:,Hl — e'uwi e’l)$7;+1 —_ e’l}fti

— %(B(vh)ui — B(—vh)ui41)

— Can be implemented by modifying the discrete system of Poisson

= Will not expand the stencil pattern = At least keep sparsity

— A monotone scheme on Delaunay triangulations = Gives an M coefficient matrix
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Section 09. Robust Itera A more complicated example

Discrete Systems of SUPG / EAFE ﬁ
1 - m m|1 n " E - L
2 | ] - . 2 n -n 2 | | - nm
3 m|3 n n m|s | | n
| LI AR " EEE N - n - nm
5 L ] 5 " EEn s L N BN
2R | - 61l | | | | | | s m | | | | | ]
7{m N L] L BN RRAN BN | | | | 7 | | | | |
8 - - . m E|s L ] -n s | | | | |
mesh SUPG EAFE before EAFE
modification
DoF SUPG EAFE Sparsity
NNZ Average NNZ NNZ Average NNZ Gain
66,049 454,161 6.88 329,217 4.98 28%
263,169 1,825,809 6.94 1,313,793 4.99 28%
1,050,625 7,321,617 6.97 5,249,025 5.00 28%
4,198,401 29,323,281 6.98 20,983,809 5.00 28%
4,913 46,941 9.55 32,657 6.65 30%
35,937 430,317 11.97 245,025 6.82 43%
274,625 3,680,781 13.40 1,897,025 6.91 48%
2,146,689| 30,438,477 14.18 14,926,977 6.95 51%

A simple case v = (1, (J)T, P! finite element [Fan, Yue, Z., Report, 2020]
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Section 09. Robust Iterative Methods A more complicated example

AMG Preconditioned GMRES 5@.

NCMIS

Keep the following questions in mind throughout this lecture:
— How to choose solver parameters? For example, parameters for AMG methods ...

— Are there “best” parameters anyways? Is it practical to find them?

Numerical studies
@ The convection-diffusion eqn (fixed convection, variable diffusion coefficient)
@ Focus on AMG-GMRES: diffusion coeflicient, discretization, meshsize, AMG
AMG parameters
@ Tested using hypre: MaxlIter = 200, tol = 1E-8, SizeOfCoarsestLevel = 100, ...
@ Classical: Falgout, strong threshold 0.25, classical interpolation, GS smoother with C/F ordering, ...

@ Best practices: HMIS (aggressive coarsening on the finest level only), strong threshold 0.25, distance-two
interpolation, GS smoother with C/F ordering, truncate small nonzeros (keep at most 5 in each row), ...

@ CAir2: Falgout, strong threshold for coarsening and restriction 0.2 and 0.05, classical interpolation, /AIR,
restriction (F-F-C connections), Jacobi smoother (1F,2F), ...
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Robust Iterative Methods A more complicated example

Preliminary Results, Good News 5

NCMIS
SUPG EAFE
=10° | M
a el Ilter Setup Solve Total Comp| Iter Setup Solve Total Comp
1 5 010 005 015 242| 5 008 004 013 219
casscama| - [RER e cns 2 IS
4 5 1186 514 1701 243 | 5 979 392 1371 2.20 @ AMGs work well and converge
1 | 11 007 007 015 143| 11 007 007 013 159 uniformly w.r.t. h
Bestavc | 2 | 10 035 031 066 145| 10 033 028 061 162
3 | 10 178 133 311 146 | 10 165 119 28 164 @ Best practices AMG gives best
4 | 10 840 570 1411 146 | 10 825 589 1415 164 f
1 | 8 019 009 028 279| 8 016 007 024 274 pertormance
| B 8 08 041 130 281 | 8 076 033 109 276
3 8 421 192 614 28 | 8 364 159 523 278 @ EAFE is easier to solve, compared
4 8 1906 877 27.83 282 | 8 1654 7.05 236 278 with SUPG
SUPG EAFE
u=10"2 [ Mesh
Ilter Setup Solve Total Comp| Iter Setup Solve Total Comp @ CAir2 takes longer setup time and
1 4 012 005 017 243| 4 009 004 014 219 ields hish lexi
el BN | 4 051 @R @E 26| 4 0 @@ 0F AW yields higher operator complexity
3 4 249 093 342 243| 4 207 072 28 220
4 | 4 1179 419 1598 243 | 4 1000 3.30 1330 220
1 [ 10 007 007 014 143| 10 007 006 013 159 Best practices AMG is good, but not
2 | 10 035 031 066 145| 10 032 028 060 162 : S
Best AMG o
3 | 10 177 134 311 146 | 10 166 120 286 164 much better for EAFE discretization
4 9 903 515 1419 146 | 9 805 469 1275 164
1 6 020 007 027 280| 6 017 006 023 275
. 2 6 08 031 120 281| 6 077 026 103 277
CAIZAMG | 3 | 6 419 145 565 282| 6 365 122 487 278
4 6 1921 682 2604 282 | 6 1667 552 2220 2.78
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Robust Iterative Methods A more complicated example

Preliminary Results, Not So Good News 5

NCMIS
SUPG EAFE
=10"* | M
& i Ilter Setup Solve Total Comp| Iter Setup Solve Total Comp
1 8 020 015 035 414| 6 012 009 021 4.09
e 2 7 08 060 146 407 | 6 070 043 114 450
3 6 421 258 679 417 6 325 195 521 412 @ If AMGs converge, they converge
4 5 1573 740 2314 336 | 6 1218 634 1852 3.01 uniformly
1 | 14 007 007 014 143 14 o012 014 026 299
2 | 122 035 031 066 145| 15 053 064 117 263
Best AMG
3 | 14 177 134 311 146 | 13 170 179 352 169 @ Standard AMG does not work for
4 | 8 903 515 1419 146 | 9 833 512 1345 167 SUPG when p is small
1 5 071 017 088 1103] 5 041 010 052 858
e 5 369 083 453 1296 5 281 062 343 13.62 @ CAir2 is more robust, but may lead
3 6 1575 407 19.83 1143| 6 1187 3.00 14.88 1179 hisher ¢ lexi
4 | 5 3022 963 4886 632| 5 3273 751 4026 6.79 to higher complexity
SUPG EAFE .
=106
& Wladhh Iter Setup Solve Total Comp| Iter Setup Solve Total Comp @ For EAFE with small Mo best
1 | x o015 350 366 38| 7 010 010 021 376 practices AMG is not the best any
e 2 X 064 1556 1620 389 | 7 045 041 087 3.77 more
3 X 295 7135 7431 38| 7 221 191 413 385
4 | x 1395 311.80 32577 391 | 6 1024 7.63 17.89 3.87
a X 012 256 268 228| 16 011 017 028 291 o ) .
oo | 2 X 056 1214 1271 240 | 16 051 076 127 294 Need good parameters to achieve good
3 | x 254 5313 5568 231 15 239 343 553 292 AMG performance!
4 | X 1273 20235 21509 2.26 | 15 1145 1403 2549 292
1 9 034 019 053 612| 5 015 006 022 341
) 2 8 141 073 215 597 | 5 060 029 08 325
CARZAMG | 3 | 6 613 252 866 58| 5 298 112 410 340
4 6 2676 11.24 3802 568 | 7 1405 690 2096 3.35
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Section 09. Robust Iterative Methods

Performance of Linear Solvers for SUPG

A more complicated example

Linear solution methods (direct solver, classical AMG, approximate ideal restriction AMG, ...)

SUPG Method
N MUMPS CAMG CAMG+GMRES AIR2 AIR2+GMRES
K Time (s) Numlt Time (s) Numlt Time (s) Numlt Time (s) Numlt Time (s)

256X256 0.88 23 0.18 11 0.15 11 0.25 8 0.28

100 512X512 5.02 23 0.89 10 0.66 10 1.14 8 1.31
1024X1024 29.56 23 4.34 10 3.11 11 5.67 8 6.14
2048X2048 203.17 22 17.63 10 14.11 10 25.22 8 27.83

256X256 0.89 16 0.15 10 0.14 8 0.23 6 0.27

10-2 512X512 4.85 16 0.73 10 0.66 8 1.06 6 1.21
1024X1024 29.17 16 3.65 10 3.11 8 5.05 6 5.65
2048X2048 203.34 15 16.48 9 14.19 7 22.57 6 26.04

256X256 0.89 14 0.21 14 0.14 9 0.71 5 0.88

10-4 512X512 5.47 13 0.85 12 0.66 48 7.46 5 4.53
1024X1024 33.52 29 5.43 14 3.11 58 37.18 6 19.83
2048X2048 265.11 9 12.63 8 14.19 19 54.71 5 48.86

256X256 0.89 X X X X 21 0.57 9 0.53]

512X512 5.18 X X X X 13 1.94 8 2.15

107¢ [1024x1024 43.08 X X x x 9 7.48 6 8.66
2048X2048 371.99 X X X X 8 32.55 6 38.02
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Section 09. Robust Iterative Methods A more complicated example

Performance of Linear Solvers for EAFE

Linear solution methods (direct solver, classical AMG, approximate ideal restriction AMG, ...)

EAFE Method
N MUMPS CAMG CAMG+GMRES AIR2 AIR2+GMRES
K Time (s) Numlt Time (s) Numlt Time (s) Numlt Time (s) Numlt Time (s)

256X256 0.93 23 0.18 11 0.13 11 0.21 8 0.24

100 512X512 4.33 23 0.79 10 0.61 10 0.94 8 1.09
1024X1024 25.28 23 3.68 10 2.85 11 4.79 8 5.23
2048X2048 157.77 22 16.23 10 14.15 10 21.52 8 23.61

256X256 0.93 16 0.13 10 0.13 8 0.19 6 0.23

10-2 512X512 4.41 16 0.64 10 0.6 8 0.88 6 1.03
1024X1024 26.08 16 3.03 10 2.86 8 4.28 6 4.87
2048X2048 158.03 16 15.02 9 12.57 7 19.38 6 22.2

256X256 0.98 X X 14 0.26 7 0.39 5 0.52

10-4 512X512 5.02 65 2.69 15 1.17 9 2.55 5 3.43
1024X1024 29.66 13 3.06 13 3.52 11 11.91 6 14.88
2048X2048 205.16 8 11.74 9 13.45 23 48.48 5 40.26

256X256 0.91 X X 16 0.28 12 0.24 5 0.22

512X512 4.32 X X 16 1.27 8 0.83 5 0.89

10-¢ 1024X1024 23.27 X X 15 5.53 9 3.97 5 4.11
2048X2048 143.19 X X 15 25.49 13 21.52 7 20.96
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Section 09. Robust Iterative Methods Improving robustness

Robustness of Iterative Solvers 5&

NCMIS

Q: What does it mean?
@ Robustness of a system can be viewed as the property of being strong and healthy in constitution

@ For solution methods of linear algebraic systems, robustness has two meanings:
— Breakdown-free and reliable for providing a solution; eg: Robust ILU
— Performance is resistant to perturbations of parameters

Problem Setting:

max HSolve(Pa)
Py €P

|5

Solve is a solution algorithm (or a set of solution algorithms)

P is a given set of problems (preferably parametrized)

|l - || is a reasonable performance measurement (0: best, co: fail)
|l - || should take available resources into account

¢ is a tolerance for worst performance compared with baseline

< refers to there might be a constant independent of parameter «
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Section 09. Robust Iterative Methods Improving robustness

Improving Robustness of Iterative Solvers 5

NCMIS

Why and where it matters?

@ In many applications, we need to solve thousands or more of linear systems from a fixed PDE with a
set of physical/discretization parameters

@ Physical parameters are nonlinear, heterogenous, anisotropic, degenerating
@ Different discretization methods lead to systems with different properties
1=~ Classical iterative methods (Weighted Jacobi, SOR, ...) introduce parameters
1z~ Solver parameters affect the performance in large extent = Not robust!
How to improve robustness? Some strategies:

@ Combine appropriate iteration, precondition, and decoupling methods

@ Improve theoretical understanding for simple model problems and construct preconditioners that are
not sensitive to given parameters

1¥= Provide an automatic or adaptive procedure to select solver or its parameters to assist simulation
software
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Section 09. Robust Iterative Methods Combining different methods

Combination of Solution Methods 5&’

NCMIS

Combining different methods in a single preconditioner

@ A framework combines an A-convergent method with an SPD preconditioner

@ Porous media flow equation [Hu et al. 2013]

@ Radiation diffusion equation [ Yue, Shu, Xu, Zhou 2015]

@ Another way to combine Schwarz methods [de Dios, Barker, Vassilevski 2014]
Appling multiple solvers at the same time

@ Apply Krylov methods with similar structure and combine communications

@ Poly-iterative technique [Rice 1967; Barrett, Berry, Dongarra, Eijkhout, Romine 1996]
Composition of different solvers

@ A sequence of linear solvers are queued to improve reliability (rate of success)

@ Robust composite linear solver [Bhowmick, Raghavan, Mclnnes, Norris 2004]
Choose a solver from a set of methods automatically

@ Adaptive ILU for CFD simulation [McInnes, Norris, Bhowmick, Raghavan 2003 ]

@ Adaptive AMG setup [Xu, Mo, An 2016; Xu et al. 2020]
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Section 09. Robust Iterative Methods Combining different methods: single-solver

Combination of AMG and ILU dia’

NCMIS
An example from ExxonMobil
Preconditioner #iter Setup time  Solve time
ILU(0) 3458 0.16 96.19
AMG 362 0.85 40.32
AMG with ILU(0)/1 2255 1.00 305.17
AMG with ILU(0)/2 — 1.18 —
AMG + ILU 47 1.83 12.75
@ Robustness of ILU smoother for anisotropic problem [Kettler 1982; Wittum 1989; Stevenson 1994]
@ But neither ILU nor AMG works well alone for this test problem
@ Efficient ILU smoother for 3D anisotropic problems is difficult to construct?
Question: Why AMG with ILU smoother does not converge?
Consider one V-cycle AMG with an ILU smoother (B denotes ILU and .S is CGC)
u+u+ B(f —Au), u+u+S(f—Au), u+ u+ B(f— Au).
This gives: I — BA = (I — BA)(I — SA)(I — BA).
{ But, in general, B might not be positive definite! When does it work? ]
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Effectiveness of Combined Preconditioner 5«3’

NCMIS

Change the order in which S and B are applied
u+u+ S(f—Au), v+ u+ B(f—Au), u<+ u+S(f— Au).
This gives a combined preconditioner B:
I—BA=(I—SA)I - BA)(I - SA).
Theorem (Hu et al. 2013)

Assume that S : V — V satisfies || (I — SA)z||a < ||z]| 4, Yz € V and that operator B : V' — V is SPD.
Then, the operator B is SPD.

Theorem (Hu et al. 2013)

Assume that ||(I — SA)v||%4 < pllv||%4, p € [0,1). If B is a SPD and it satisfies that

Amax(BA) > 1 > Apin(BA) > 0, then K‘,(EA) < k(BA). Furthermore, if p > 1 — )\;‘:?—](31;?11, then
k(BA) < k(SA) with § = § 4+ ST — STAS.

Remark: p > 1 — %,i::“im means p ~ 1 — n(BA)fl, if Amax(BA) > 1.
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Section 09. Robust Iterative Methods Combining different methods: single-solver

Nonsymmetric Combined Preconditioner

@ Approximate w; = A~1g by ILU and form the residual r; = g — Aw;
@ Solve Aw, = 7 approximately by one V-cycle and zero as the initial guess

@ Compute Ecog = wi + ws [Yue, Shu, Xu, Zhou 2015]

Euclid AMG Bco Beo
It Tc It Te It Tc It Tc
S1 4 6.5 11 8.9 2 10.0 2 9.2
S» | 65 18.7 | 56 42.6 5 12.7 6 11.2

S | - - 13| 110 |8 | 154 |11 | 138
Euclid AMG Beo Beo
it T It T. it Te it | T
M | 3 | 606 | 48 | 10023 | 3 | 119.1 | 3 | 98.2
M | 3| 616 | 42| 9726 | 2 | 1106 | 2 | 939
Ms | 3 | 601 |41 | 9321 | 2 | 109.0 | 2 | 941
My | 3 | 564 |52 8328 | 2| 1116 | 2 | 950
Ms | 19 | 138.1 | 20 | 4824 | 3 | 125.7 | 3 | 102.7
M | - - 34 | 6029 | 7 | 191.1 | 3 | 1036

Number of iterations and wall time (sec) of right-preconditioned GMRES(30) solvers
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Section 09. Robust Iterative Methods

Comparison of Combined Solution Methods

Poly-Iterative
Method

Composite
Method

w Method 2 Method 3

Adaptive Method

- Failed or aborted methods
- Working methods
- Void methods

l:| Selection procedure

@ Poly-iterative methods: apply multiple solvers simultaneously

© Composite methods: apply multiple solvers sequentially (dynamic ordering)

@ Automatic solver selectors: pick a solver based on some criteria
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Choosing Solver Parameters 25

NCMIS

( For any problem P, € P, find a solver Sg € S such that ||[Sg(P,)|| < e ]

Black-box Gray-box White-box

Available Solvers

solvers solvers solvers

Efficiency Robustness
Scalability Applicability
Problems Algorithms Resources
@ Type of PDE (system) @ Krylov methods @ Num of nodes
@ Physical parameters @ Preconditioning @ Num of processes
@ Discretization @ Decoupling @ Num of threads
@ ... @ -..... @ ------
analysis tuning

Parameters —— Feature (fixed) U Free (variable) —— Performance!
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Workflow to Construct Adaptive Solvers

Obtain features
for a problem

Select input
parameters

Feature
parameters

Free
parameters

]

!

i

1

]

1

!

1

!

!

1

i

l

X Find variables
i —> usingthe ML <+
:
1
!
1
!
1
1
!
1
!
1
1
1
1
!

1

!

1

!

!

1

!

1

!

1

!

:

!

Distinguish :
model :
1
1
!
1
!
1
!
1
1
!
1
!
1
1
1
1

different types of
input parameters

Reinforced
learning to
improve model

Train a model for
automatically
setting variables

Offline Online

[ Need to begin with a general enough framework (KSM + PC, e.g. AMG, DDM, ILU)!
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Section 09. Robust Iterative Methods Solver algorithm selection

Automatic Solver Selector

NCMIS

Find the optimal solver from the available ones: argming s maxp,ep [|[Ss(Fa)ll < €

@ Automatic and adaptive procedures for select solver or solver parameters
— Automatic procedure: give a mapping from P to S
— Adaptive (or self-adaptive) procedure: this mapping also evolves
@ Timing for automatic tuning in general
Offline: Computational pattern is independent of the user data

Online: Optimal choice depends largely on the user data, run-time tuning
Hybrid: Combines offline and online tuning steps

Compile — Compute — Collect profile — Compile again
@ Key components:

— A class of algorithms available

1== A performance model (input, output, practical, accurate)
— An automated analyzer of problem
— A self-adaptation strategy
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Section 09. Robust Iterative Methods

Choosing Feature Parameters

Feature names

avgnnzprow right-bandwidth
avgdistfromdiag symmetry
n-dummy-rows blocksize

Aax-NNZzeros-per-row

diag-definite

lambda-max-by-magnitude-im

lambda-max-by-magnitude-re

ellipse-cy

nnzup

ruhe75-bound

avg-diag-dist

nnz

left-bandwidth

lambda-min-by-magnitude-im

lambda-min-by-magnitude-re

norml

sigma-min

upband n-struct-unsymm
colours diagonal-average
di; I-d dummy-rows

ritz-values-r

symmetry-snorm

symmetry-fanorm

symmetry-fsnorm

lambda-max-by-real-part-im
lambda-max-by-im-part-re

lambda-max-by-real-part-re
lambda-max-by-im-part-im

col-variability

trace-abs

ritz-values-c

nnzeros

diag-zerostart loband
positive-fraction trace
MiN-NNzeros-per-row diagonal-sign
row-variability nrows
colour-offsets n-colours
relsymm diagonal-variance
departure nnzlow
n-nonzero-diags sigma-max
dummy-rows-kind kappa
n-ritz-values colour-set-sizes
sigma-diag-dist symmetry-anorm
ellipse-ax ellipse-ay
ellipse-cx lee95-bound
normInf normF

nnzdia trace-asquared

Full feature set comprising of 68 features computed using Anamod

Solver algorithm selection

NCMIS

Feature learning (selection & extraction)

)
—/

1Z= Performance of ML model is largely affected by the

choice of features

@ A comprehensive feature set includes all entries of A~!
(too complicated)

@ The choice of features is usually problem-dependent

1Z- Obtaining features is usually costly and needed in both

offline and online steps

@ Training takes a lot of time if too many features are
selected

@ Analytical and empirical results should be used to select
features

( Key: Choosing a good set of features is essential! J
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Section 09. Robust Iterative Methods Solver algorithm selection

Performance Model for Solver Selection 5«3'

NCMIS

@ Choose a general enough algorithm framework which is efficient or even optimal for simple cases and
can be adjusted for more difficult cases

@ Find a small set of feature parameters which affect solver performance the most

@ Construct a performance model based on analytical convergence factor estimates or empirical
experiments which can predict how efficient the solver might be

12" Train a performance model efficiently based on actual simulation runs, in case an analytical
performance model is hard or not possible to be obtained

Determine how fast
an iterative solver
will converge

Free
Parameters

Feature
Parameters

* Analytical estimates « Explicit models
* Empirical experiments ¢ Machine-learning models

( Key: Finding a small but influential set of (feature and free) parameters! }
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Classical Models for Solver Selection 5&'

NCMIS

@ Based on physical parameters (diffusion coefficient, Peclet number, ...)

© Based on PDE type (elliptic, transport, ...)

© Based on discretization method (SUPG, EAFE, ...)

© Based on convergence stage in nonlinear iteration (early, near convergence, ...)
© Based on phase during transient process (based on physics ...)

@ Based on structural features (problem size, symmetry, positivity, ...)

@ Based on norm-related features (trace, L'-norm, ...)

© Based on spectral features (condition number, numerical range, ...)

@ Based on variability features (row variability, diagonal dominance, ...)

{ Key: Finding an adaptive procedure to automatically pick free parameters! }

245 —



Section 09. Robust Iterative Methods Some existing tools

Software for Selecting Algorithms Automatically 5

NCMIS

ESI group
— The Equation Solver Interface: develop an integral set of standards for solver components
— Multi-lab working group & interface design effort hosted by Sandia, 1997
LSA project
— Linear System Analyzer: build a problem solving environment for linear systems
— http://www.extreme.indiana.edu/pseware/Isa/index.html, Bramley, Gannon, et al. 1998
SANS project: SALSA, AnaMod
— SANS: Self-Adapting Numerical Software
— SALSA: Self-Adapting Large-scale Solver Architecture
— http://icl.cs.utk.edu/salsa/, Demmel, Dongarra, Eijkhout, et al. 2002
ASLib project
— Algorithm Selection Library: A benchmark library for algorithm selection in general
— Algorithm selection problem [Rice 1976]
— http://www.coseal.net/aslib/, Bischl, Kerschke, et al. 2016
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Taxonomy Solver Selection: An Example =

NCMIS

@ mldivide: Automatic taxonomy
solver in Matlab

@ Solver algorithms:
QR
LU
LDLt
Cholesky
Banded
Triangular
Diagonal

@ Robust and easy to use




Section 09. Robust Iterative Methods Some existing tools

Taxonomy Solver Selection: Another Example 5

NCMIS

Existing tools http://lighthousehpc.github.io/lighthouse/
@ LAPACK search engine: dense linear algebra
@ Lighthouse: iterative solvers for LAPACK / PETSc / SLEPc / Trilinos
Functionalities: Create performance model using classification algorithms
@ Input: problem characteristics or coefficient matrix
@ Output: calling prototype or a piece of code

1z~ Disadvantages: Features too algebraic (sym, norml, nnz, min-nnz-per-row, ...)

~o-All Features  ~#-Reduced Set 1 Reduced Set 2 ~o-All Features  ~#-Reduced Set 1 Reduced Set 2 ~o-All Features  ~-Reduced Set 1 Reduced Set 2

Libsvm
100%

VFI

100%

s -~ RF 18

" BayesNet* ADT > BayesNet

ADT™ BayesNet

Classification Accuracy. Left: PETSc+AnaMod; Middle: Trilinos+AnaMod; Right: Trilinos.
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Three Steps Towards An Adaptive Solver fmiz'

I. From experience to automated procedure

Using theoretical or practical info to set range of algorithms/parameters

o Reduce number of input (feature and free) parameters — Key!
e Many machine learning methods can be used to get an initial model

I. Performance enhancement during application

Improving the initial model by reinforced learning during practice

o Every application has its own characteristics
o The initial training set might not have enough data from this application

II. General-purpose iterative solver package

Make a general-purpose iterative solver package with build-in parameter autotuning and
self-learning mechanism

o Include state-of-the-art algorithms enhanced with a robust autotuner

o Like a black-box iterative solver with expanding abilities
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Step 1. From Experience to Automated Procedure

NCMIS

For a given task, we have the following workflow:
(i) find a suitable algorithm framework which has good properties;
(i) choose input parameters;
(ii) gather training/validation/test data;
(iv) train a good initial machine learning model;

(v) improve the model during application.

AFTER SMOOTHING AFTER COARSE GRID CORRECTION

°
4 hbdN Lo AN G



Section 09. Robust Iterative Methods Three steps to adaptive solvers

Step II. Performance Enhancement during Application 5

NCMIS

After obtaining an initial model, find suitable transfer learning and reinforced learning techniques
for a new task and improve the model during application.

— 251 —



Section 09. Robust Iterative Methods Three steps to adaptive solvers

Step 1. General-Purpose Iterative Solver Package 4&2’

Make a package which not only contains enough algorithm building blocks, but also predicts good
parameters according to problem characteristics, and most importantly evolve ...

FaspRetCode Krylov (LOP&A, VEC& b, VEC& x )
Krylov (LOP&A, VEC& b, VEC& x, SOL& pc )

FaspRetCode Krylov ( MAT& A, VEC& b, VEC& x, SOL& pc)

Users
_____________ 1 @-—[ Adaptive Solver Interface ]
vector sparse matrix | Smoother
VEC | Pl MAT freoreeeeeees {Krylov —

iterative method

Schwarz method

]
s
E Multigrid method
2 1
E 1 1 iterator preconditioning Incomplete LU
2 parallel | |——————————_____]|(
E i i Coarse problem constructor
Approximate P 1
Mok : or exact - - || Interface
S Restriction Prolongation |, to
1| factorization constructor constructor |, | external
e e e e e e e 7| code
[ Multilevel Iterative method Midware Layer (MIML) ]: A i
DCVC]OPCI‘G Implementation Hierarchy
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