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Section 09. Robust Iterative Methods Some simple examples

A Simple Model Problem

A representative example is the second-order elliptic problem with anisotropic coe!cient

→ωuxx → uyy = f(x, y), ↑ (x, y) ↓ !,

where ω > 0 is usually small.

If we apply the standard finite di”erence discretization on the uniform n ↔ n tensor-product grid, then

Aω = I ↗ A1,ω + C ↗ I, with A1,ω = tridiag(→ω, 2 + 2ω,→ω), C = tridiag(→1, 0,→1).

The eigenvalues of A are given

εi,j(Aω) = 2(1 + ω) → 2ω cos
iϑ

n + 1
→ 2 cos

jϑ

n + 1
= 4ω sin2 iϑ

2(n + 1)
+ 4 sin2 jϑ

2(n + 1)
,

with eigenvectors
ϖϱi,j =

(
sin

kiϑ

n + 1
sin

ljϑ

n + 1

)

k,l=1,...,n

.

If ω ↘ 1, then ε1,1 < ε2,1 < · · · < εn,1 < ε1,2 < ε2,2 < · · · .

Unlike the Poisson’s equation, these eigenvalues are ordered in a di”erent pattern.
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Section 09. Robust Iterative Methods Some simple examples

Local Relaxation Method In Danger

Error smoothness is not trivial to define for problems for complex problems in general.

Using the LFA analysis, we obtain that the error of the G-S method satisfies

(2 + 2ω)enew
i,j

= ωenew
i→1,j

+ ωeold
i+1,j

+ enew
i,j→1 + eold

i,j+1, i, j = 1, . . . , n.

According to the local Fourier analysis, we can obtain that

ε(ς1, ς2) :=
φnew

ε

φold
ε

=
ωe

↑
→1ε1 + e

↑
→1ε2

2 + 2ω → ωe→
↑
→1ε1 → e→

↑
→1ε2

.

In this case, the smoothing factor of the G-S method is

↼̄GS = ε

(
ϑ

2
, arctan

( ω(1 → ↼̄2
GS

)

2(ω + 1)↼̄2
GS

))
=

≃
5ω2 → 2ω + 1 + 2

5ω + 3
→⇐ 1, as ω ⇐ 0.

This observation suggests that the G-S method barely have any smoothing e”ect for small ω.
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Line Smoother for Anisotropic Problems

Standard (left) and line Gauss–Seidel (right) smoothers: Blue points have updated values and white
points have old values.

We apply the line smoother in natural ordering:

(2 + 2ω)unew
i,j

= ωunew
i→1,j

+ ωuold
i+1,j

+ unew
i,j→1 + unew

i,j+1, j = 1, . . . , n, i = 1, . . . , n.
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LFA for Line Smoother

The error satisfies

(2 + 2ω)enew
i,j

= ωenew
i→1,j

+ ωeold
i+1,j

+ enew
i,j→1 + enew

i,j+1, j = 1, . . . , n, i = 1, . . . , n.

By LFA, we can obtain that

ε(ς1, ς2) :=
φnew

ε

φold
ε

=
ωe

↑
→1ε1

2 + 2ω → ωe→
↑
→1ε1 → 2e→

↑
→1ε2

.

The maximal smoothing factor is ↼̄LGS = max
{ ω

2 + ω
,

≃
5

5

}
.

If 0 < ω ⇒ 1, we always have ↼̄LGS =
≃

5/5 < 1 independent of ω.

This example illustrates a typical problem used by researchers to evaluate the robustness of multi-
grid methods as well as other iterative solvers. Other examples include problems with high-
contrast coe!cients, heterogeneous coe!cients, anisotropic meshes, etc.

# 222 #



Section 09. Robust Iterative Methods Some simple examples

Methods for Improving Performance

(1) Apply an line smoother (group all those y-variables corresponding to the same x-coordinate together)
(2) Employ y-semi-coarsening (only coarse in the y-direction)
(3) Construct operator-dependent interpolations

Figure: Examples of coarsening methods (Left: standard coarsening; Right: y-semi-coarsening): Red
depicts coarse points and black depicts fine points.
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Another Simple Model Problem

Example (2D convection-di”usion [Notay 2020])
Consider →⇑ · (µ⇑u + vu) = 0 on the unit square discretized by an upwinding FD on uniform meshes.
Solve the discrete system by TG + weighted Jacobi smoother.

Let µ = 1, v =
(
m(ω→ 1),m(ε → 1)

)T , and meshsize h = 1
m . Simplest setting: m = 30, ω = 50, ε = 1, and

damping ϑ = 0.5, geometric coarsening, bilinear interpolation, and full-weighting restriction. We have the FD stencil:




→1

→ω 2 + ω+ ε →1

→ε





h

symmetrize
→→→→↑





→ω+1
2

→ε+1
2 2 + ω+ ε →ε+1

2

→ω+1
2





h

non-symmetric anisotropic

Example: µ = 0.01, v =
(
0, 1

)T , N = 13

Typical behavior for non-normal matrices

Estimates: eigenvalues (EV), field of values (FOV), and pseudo-spectra (ϖ)

Theoretical and numerical comparisons [Embree 1999]
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Solving with Two-grid Method

Blue crosses denote the spectrum of iteration matrix E =⇓ ↼(E) predicts asymptotic convergence
behavior; but it might be miss-leading in practice.

Red dashed curve denotes boundary of the field of values (numerical range).

Black solid curve is given based on the estimate for the numerical range

WP→(T ) ⇔
{

z ↓ C : Re(z) ⇒ ↼(TH) and
∣∣1
2
→ z

∣∣ ⇒ 1

2

}
,

which applies to the weighted Jacobi smoother [Notay 2020].

Same convergence behavior could also happen for multigrid methods!
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Discretization Methods for Convection

Streamline-Upwinding Petrov-Galerkin: [Hughes, Brooks 1979; Brooks, Hughes 1982; ...]

– Equivalent to adding a perturbation term:
∑

E↓T
h

µE

∫
E


v ·⇑u, v ·⇑w



– Popular in computational fluid dynamics (CFD packages, 7000+ citations)

– Introduce more nonzero entries to the linear system

Edge-Averaged Finite Element: [Xu, Zikatanov 1999; Lazarov, Zikatanov 2012]

– Idea in 1D: change of variable

u↔ + vu = e→vx(evxu)↔ =⇓ vevxi

evxi+1 → evxi
ui →

vevxi+1

evxi+1 → evxi
ui+1

=⇓ 1

h


B(vh)ui → B(→vh)ui+1



– Can be implemented by modifying the discrete system of Poisson
=⇓ Will not expand the stencil pattern =⇓ At least keep sparsity

– A monotone scheme on Delaunay triangulations =⇓ Gives an M coe!cient matrix
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Discrete Systems of SUPG / EAFE

A simple case v = (1, 0)T , P 1 finite element [Fan, Yue, Z., Report, 2020]
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AMG Preconditioned GMRES

Keep the following questions in mind throughout this lecture:

– How to choose solver parameters? For example, parameters for AMG methods ...

– Are there “best” parameters anyways? Is it practical to find them?

Numerical studies

The convection-di”usion eqn (fixed convection, variable di”usion coe!cient)

Focus on AMG-GMRES: di”usion coe!cient, discretization, meshsize, AMG

AMG parameters
Tested using hypre: MaxIter = 200, tol = 1E-8, SizeOfCoarsestLevel = 100, ...

Classical: Falgout, strong threshold 0.25, classical interpolation, GS smoother with C/F ordering, ...

Best practices: HMIS (aggressive coarsening on the finest level only), strong threshold 0.25, distance-two
interpolation, GS smoother with C/F ordering, truncate small nonzeros (keep at most 5 in each row), ...

CAir2: Falgout, strong threshold for coarsening and restriction 0.2 and 0.05, classical interpolation, ϱAIR2

restriction (F-F-C connections), Jacobi smoother (1F,2F), ...
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Preliminary Results, Good News

AMGs work well and converge
uniformly w.r.t. h

Best practices AMG gives best
performance

EAFE is easier to solve, compared
with SUPG

CAir2 takes longer setup time and
yields higher operator complexity

Best practices AMG is good, but not
much better for EAFE discretization.
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Preliminary Results, Not So Good News

If AMGs converge, they converge
uniformly

Standard AMG does not work for
SUPG when µ is small

CAir2 is more robust, but may lead
to higher complexity

For EAFE with small µ, best
practices AMG is not the best any
more

Need good parameters to achieve good
AMG performance!
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Performance of Linear Solvers for SUPG

Linear solution methods (direct solver, classical AMG, approximate ideal restriction AMG, ...)
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Performance of Linear Solvers for EAFE

Linear solution methods (direct solver, classical AMG, approximate ideal restriction AMG, ...)
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Robustness of Iterative Solvers

Q: What does it mean?
Robustness of a system can be viewed as the property of being strong and healthy in constitution
For solution methods of linear algebraic systems, robustness has two meanings:

– Breakdown-free and reliable for providing a solution; eg: Robust ILU
– Performance is resistant to perturbations of parameters

Problem Setting:

max
Pω↓P

Solve(Pϑ)
 ↭ ↽

Solve is a solution algorithm (or a set of solution algorithms)
P is a given set of problems (preferably parametrized)
↖ · ↖ is a reasonable performance measurement (0: best, ↙: fail)
↖ · ↖ should take available resources into account
↽ is a tolerance for worst performance compared with baseline
↭ refers to there might be a constant independent of parameter φ
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Improving Robustness of Iterative Solvers

Why and where it matters?

In many applications, we need to solve thousands or more of linear systems from a fixed PDE with a
set of physical/discretization parameters

Physical parameters are nonlinear, heterogenous, anisotropic, degenerating

Di”erent discretization methods lead to systems with di”erent properties

! Classical iterative methods (Weighted Jacobi, SOR, ...) introduce parameters

! Solver parameters a”ect the performance in large extent =⇓ Not robust!

How to improve robustness? Some strategies:

Combine appropriate iteration, precondition, and decoupling methods

Improve theoretical understanding for simple model problems and construct preconditioners that are
not sensitive to given parameters

! Provide an automatic or adaptive procedure to select solver or its parameters to assist simulation
software

# 234 #



Section 09. Robust Iterative Methods Combining di”erent methods

Combination of Solution Methods

Combining di”erent methods in a single preconditioner
A framework combines an A-convergent method with an SPD preconditioner

Porous media flow equation [Hu et al. 2013]

Radiation di”usion equation [Yue, Shu, Xu, Zhou 2015]

Another way to combine Schwarz methods [de Dios, Barker, Vassilevski 2014]

Appling multiple solvers at the same time
Apply Krylov methods with similar structure and combine communications

Poly-iterative technique [Rice 1967; Barrett, Berry, Dongarra, Eijkhout, Romine 1996]

Composition of di”erent solvers
A sequence of linear solvers are queued to improve reliability (rate of success)

Robust composite linear solver [Bhowmick, Raghavan, McInnes, Norris 2004]

Choose a solver from a set of methods automatically ⇀

Adaptive ILU for CFD simulation [McInnes, Norris, Bhowmick, Raghavan 2003]

Adaptive AMG setup [Xu, Mo, An 2016; Xu et al. 2020]
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Combination of AMG and ILU

An example from ExxonMobil
Preconditioner #iter Setup time Solve time
ILU(0) 3458 0.16 96.19
AMG 362 0.85 40.32
AMG with ILU(0)/1 2255 1.00 305.17
AMG with ILU(0)/2 # 1.18 #
AMG + ILU 47 1.83 12.75

Robustness of ILU smoother for anisotropic problem [Kettler 1982; Wittum 1989; Stevenson 1994]

But neither ILU nor AMG works well alone for this test problem

E!cient ILU smoother for 3D anisotropic problems is di!cult to construct?

Question: Why AMG with ILU smoother does not converge?
Consider one V-cycle AMG with an ILU smoother (B denotes ILU and S is CGC)

u ↓ u+B(f →Au), u ↓ u+ S(f →Au), u ↓ u+B(f →Au).

This gives: I → B̄A = (I →BA)(I → SA)(I →BA).

But, in general, B̄ might not be positive definite! When does it work?
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E”ectiveness of Combined Preconditioner
Change the order in which S and B are applied

u ∝ u + S(f → Au), u ∝ u + B(f → Au), u ∝ u + S(f → Au).

This gives a combined preconditioner B:

I → BA = (I → SA)(I → BA)(I → SA).

Theorem (Hu et al. 2013)
Assume that S : V ⇐ V satisfies ↖(I → SA)x↖A ⇒ ↖x↖A, ↑x ↓ V and that operator B : V ⇐ V is SPD.

Then, the operator B is SPD.

Theorem (Hu et al. 2013)
Assume that ↖(I → SA)v↖2

A
⇒ ↼↖v↖2

A
, ↼ ↓ [0, 1). If B is a SPD and it satisfies that

εmax(BA) > 1 ′ εmin(BA) > 0, then ⇁( BA) ⇒ ⇁(BA). Furthermore, if ↼ ′ 1 → ϖmin(BA)
ϖmax(BA)→1 , then

⇁( BA) ⇒ ⇁(SA) with S = S + ST → ST AS.

Remark: ς ↔ 1→ ϑmin(BA)
ϑmax(BA)→1 means ς ↗ 1→ φ(BA)→1, if ↼max(BA) >> 1.
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Nonsymmetric Combined Preconditioner

Approximate w1 = A→1g by ILU and form the residual r1 = g → Aw1

Solve Aw2 = r1 approximately by one V-cycle and zero as the initial guess

Compute Bcog = w1 + w2 [Yue, Shu, Xu, Zhou 2015]

Number of iterations and wall time (sec) of right-preconditioned GMRES(30) solvers
# 238 #



Section 09. Robust Iterative Methods Combining di”erent methods: multi-solver

Comparison of Combined Solution Methods

1 Poly-iterative methods: apply multiple solvers simultaneously
2 Composite methods: apply multiple solvers sequentially (dynamic ordering)
3 Automatic solver selectors: pick a solver based on some criteria
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Choosing Solver Parameters

For any problem Pϑ ↓ P , find a solver Sϱ ↓ S such that ↖Sϱ(Pϑ)↖ ↭ ↽

Available Solvers

Problems

Type of PDE (system)

Physical parameters

Discretization

· · · · · ·

Algorithms

Krylov methods

Preconditioning

Decoupling

· · · · · ·

Resources

Num of nodes

Num of processes

Num of threads

· · · · · ·

Parameters
analysis
→→→⇐ Feature (fixed) ∞ Free (variable)

tuning
→→→⇐ Performance!
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Workflow to Construct Adaptive Solvers

Need to begin with a general enough framework (KSM + PC, e.g. AMG, DDM, ILU)!

# 241 #



Section 09. Robust Iterative Methods Solver algorithm selection

Automatic Solver Selector

Find the optimal solver from the available ones: argmin
Sε↓S maxPω↓P ↖Sϱ(Pϑ)↖ ↭ ↽

Automatic and adaptive procedures for select solver or solver parameters
– Automatic procedure: give a mapping from P to S
– Adaptive (or self-adaptive) procedure: this mapping also evolves

Timing for automatic tuning in general
O$ine: Computational pattern is independent of the user data
Online: Optimal choice depends largely on the user data, run-time tuning
Hybrid: Combines o$ine and online tuning steps

Compile →⇐ Compute →⇐ Collect profile →⇐ Compile again
Key components:

– A class of algorithms available
! A performance model (input, output, practical, accurate)

– An automated analyzer of problem
– A self-adaptation strategy
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Choosing Feature Parameters

Feature learning (selection & extraction)

! Performance of ML model is largely a”ected by the
choice of features
A comprehensive feature set includes all entries of A→1

(too complicated)
The choice of features is usually problem-dependent

! Obtaining features is usually costly and needed in both
o$ine and online steps
Training takes a lot of time if too many features are
selected
Analytical and empirical results should be used to select
features

Key: Choosing a good set of features is essential!
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Performance Model for Solver Selection

Choose a general enough algorithm framework which is e!cient or even optimal for simple cases and
can be adjusted for more di!cult cases

Find a small set of feature parameters which a”ect solver performance the most

Construct a performance model based on analytical convergence factor estimates or empirical
experiments which can predict how e!cient the solver might be

! Train a performance model e!ciently based on actual simulation runs, in case an analytical
performance model is hard or not possible to be obtained

Key: Finding a small but influential set of (feature and free) parameters!
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Classical Models for Solver Selection

1 Based on physical parameters (di”usion coe!cient, Peclet number, ...)

2 Based on PDE type (elliptic, transport, ...)

3 Based on discretization method (SUPG, EAFE, ...)

4 Based on convergence stage in nonlinear iteration (early, near convergence, ...)

5 Based on phase during transient process (based on physics ...)

6 Based on structural features (problem size, symmetry, positivity, ...)

7 Based on norm-related features (trace, L1-norm, ...)

8 Based on spectral features (condition number, numerical range, ...)

9 Based on variability features (row variability, diagonal dominance, ...)

Key: Finding an adaptive procedure to automatically pick free parameters!
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Software for Selecting Algorithms Automatically
ESI group

– The Equation Solver Interface: develop an integral set of standards for solver components
– Multi-lab working group & interface design e”ort hosted by Sandia, 1997

LSA project
– Linear System Analyzer: build a problem solving environment for linear systems
– http://www.extreme.indiana.edu/pseware/lsa/index.html, Bramley, Gannon, et al. 1998

SANS project: SALSA, AnaMod
– SANS: Self-Adapting Numerical Software
– SALSA: Self-Adapting Large-scale Solver Architecture
– http://icl.cs.utk.edu/salsa/, Demmel, Dongarra, Eijkhout, et al. 2002

ASLib project
– Algorithm Selection Library: A benchmark library for algorithm selection in general
– Algorithm selection problem [Rice 1976]
– http://www.coseal.net/aslib/, Bischl, Kerschke, et al. 2016
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Taxonomy Solver Selection: An Example

mldivide: Automatic taxonomy
solver in Matlab

Solver algorithms:

QR
LU
LDLt
Cholesky
Banded
Triangular
Diagonal

...

Robust and easy to use
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Taxonomy Solver Selection: Another Example
Existing tools http://lighthousehpc.github.io/lighthouse/

LAPACK search engine: dense linear algebra
Lighthouse: iterative solvers for LAPACK / PETSc / SLEPc / Trilinos

Functionalities: Create performance model using classification algorithms
Input: problem characteristics or coe!cient matrix
Output: calling prototype or a piece of code

! Disadvantages: Features too algebraic (sym, norm1, nnz, min-nnz-per-row, ...)

Classification Accuracy. Left: PETSc+AnaMod; Middle: Trilinos+AnaMod; Right: Trilinos.
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Three Steps Towards An Adaptive Solver

I. From experience to automated procedure

Using theoretical or practical info to set range of algorithms/parameters

Reduce number of input (feature and free) parameters # Key!
Many machine learning methods can be used to get an initial model

II. Performance enhancement during application

Improving the initial model by reinforced learning during practice

Every application has its own characteristics
The initial training set might not have enough data from this application

III. General-purpose iterative solver package

Make a general-purpose iterative solver package with build-in parameter autotuning and
self-learning mechanism

Include state-of-the-art algorithms enhanced with a robust autotuner
Like a black-box iterative solver with expanding abilities
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Step I. From Experience to Automated Procedure

For a given task, we have the following workflow:

(i) find a suitable algorithm framework which has good properties;
(ii) choose input parameters;
(iii) gather training/validation/test data;
(iv) train a good initial machine learning model;
(v) improve the model during application.
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Step II. Performance Enhancement during Application

After obtaining an initial model, find suitable transfer learning and reinforced learning techniques
for a new task and improve the model during application.
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Step III. General-Purpose Iterative Solver Package

Make a package which not only contains enough algorithm building blocks, but also predicts good
parameters according to problem characteristics, and most importantly evolve ...
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