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Projections and Subspace Problems
Definition

Let V be a finite-dimensional Hilbert space with inner product (·, ·) and Vj → V be a subspace. Define





subspace problem Aj : Vj ↑↓ Vj , (Ajvj , wj) = (Avj , wj), ↔ vj , wj ↗ Vj ;

(·, ·)-projection Qj : V ↑↓ Vj , (Qjv, wj) = (v, wj), ↔wj ↗ Vj ;

(·, ·)A-projection !j : V ↑↓ Vj , (!jv, wj)A = (v, wj)A, ↔wj ↗ Vj .

Lemma (Relation between projections)

The following equalities hold: IT

j
= Qj , I→

j
= !j , QjA = Aj!j .

From the definition of Aj , we get

Aj = IT

j
AIj = QjAIj = QjAQT

j
.

We can immediately obtain the error equation on each subspace Vj :

Ae = r =↘ QjAe = Qjr =↘ Aj!je = Qjr =↘ Ajej = rj ,

where rj = Qjr and ej = !je. We do not know e, but we can find ej .
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Method of Subspace Corrections

Problem: Find u ↗ V such that a[u, v] = f(v), ↔v ↗ V.

Space decomposition: V =
∑

n

i=1 Vi, divide and conquer

Subspace corrections: ei ≃ A↑1
i

Qi(f ⇐Au)

u ⇒ u +
n∑

i=1

ei (Parallel subspace corrections, Jacobi)

for (i = 1 : n) u ⇒ u + ei (Successive subspace corrections, GS)

Algorithm (Method of subspace corrections)

unew = MSC(uold)

1 Form residual: r = f ⇐Auold

2 Approximate error equation on Vj : Ajej = rj by êj = Sjrj

3 Apply subspace corrections: unew = uold + êj

Q: How to apply these corrections?
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Typical Examples of MSC

Algorithm (Successive subspace corrections)

unew = SSC(uold)

1 v = uold

2 for (j = 1 : J) v = v + SjQj(f ⇐Av)

3 unew = v

Algorithm (Parallel subspace corrections)

unew = PSC(uold)

1 r = f ⇐Auold

2 êj = SjQjr, j = 1, . . . , J

3 unew = uold +
∑

J

j=1 êj

There are two basic approaches to implement the MSC algorithm, namely SSC and PSC
Hybrid approaches by combining SSC and PSC can also be introduced easily

! 96 !



Section 06. Subspace Correction Methods Subspace corrections

Some Notations for Convience

For convenience, we define an operator

Tj = TSj := SjQjA = SjAj!j : V ↑↓ Vj .

Apparently, if we restrict the domain to Vj , then we have

Tj = TSj = SjAj : Vj ↑↓ Vj .

We now assume all the subspace solvers (smoothers) Sj are SPD operators. If ST

j
= Sj , the operator

Tj = SjAj : Vj ↑↓ Vj

is symmetric and positive definite with respect to (·, ·)A.

If Sj = A↑1
j

, i.e., the smoother is the exact solver on each subspace, then we have Tj = !j .
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Operator Form of MSC

The SSC method:

u ⇐ unew = (I ⇐ BSSCA)(u ⇐ uold) = (I ⇐ TJ) · · · (I ⇐ T1)(u ⇐ uold). (34)

If J = N and each subspace Vj = span{ωj} (j = 1, . . . , N ) and Sj = A↑1
j

, then the corresponding
SSC method (34) is exactly the G-S method.

The PSC method:

BPSC =
J∑

j=1

SjQj =
J∑

j=1

IjSjQj and BPSCA =
J∑

j=1

SjQjA =
J∑

j=1

Tj . (35)

If Sj’s (j = 1, . . . , J) are all SPD, then the preconditioner BPSC is also SPD. If each subspace
Vj = span{ωj} (j = 1, . . . , N ), then the resulting PSC methods with Sj = ε(·, ωj)ωj and Sj = A↑1

j

correspond to the Richardson method and the Jacobi method, respectively.
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Generalized GS Method
Define a weighted GS method Bω = (ε↑1D + L)↑1. We have

B↑T

ω
+ B↑1

ω
⇐ A = (ε↑1D + L)T + (ε↑1D + L) ⇐ (D + L + U) = (2ε↑1 ⇐ 1)D.

We assume that there is an invertible smoother or a local relaxation method S for the equation Aϑu = ϑf .

We can define a generalized or modified GS method:

B :=
(
S↑1 + L

)↑1
. (36)

Since K = B↑T + B↑1 ⇐ A is symmetric and B = BT KB. If B is defined as (36), we have

K = (S↑T + U) + (S↑1 + L) ⇐ (D + L + U) = S↑T + S↑1 ⇐ D.

From the definition of K, we notice B↑1 = K + A ⇐ B↑T . Hence we get an explicit form of B
↑1 :

B
↑1

= (K + A ⇐ B↑T )K↑1(K + A ⇐ B↑1) = A + (A ⇐ B↑T )K↑1(A ⇐ B↑1).

This identity and the definition of B yield:
(
B

↑1
ϑv,ϑv

)
= (Aϑv,ϑv) +

(
K↑1(D + U ⇐ S↑1)ϑv, (D + U ⇐ S↑1)ϑv

)
, ↔ϑv ↗ RN .
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Convergence of Generalized GS Method

Corollary (Convergence rate of generalized GS)

If K = S↑T + S↑1 ⇐ D is SPD, then the generalized GS method converges and

⇑I ⇐ BA⇑2
A

= ⇑I ⇐ BA⇑A = 1 ⇐ 1

1 + c0
, with c0 := sup

↓εv↓A=1

∥∥∥K↑ 1
2
(
D + U ⇐ S↑1

)
ϑv
∥∥∥

2
.

Example (Solving 1D Poisson’s equation using GS)

If S = D↑1 and K = D in the above generalized GS method and

⇑I ⇐ BA⇑2
A

= 1 ⇐ 1

1 + c0
, with c0 = sup

εv↔RN\{0}

(LD↑1Uϑv,ϑv)

⇑ϑv⇑2
A

.

Asymptotically, we have the following estimate

c0 ⇓ sup
εv↔RN\{0}

1
2⇑ϑv⇑

2

4 sin2
(

ϖ
2(N+1)

)
⇑ϑv⇑2

⇔ (N + 1)2 = h↑2.
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Expansion of Original System

Next, we will consider an equivalent block matrix form of subspace correction methods.

Suppose that the finite dimensional vector space V can be decomposed as the summation of linear
vector subspaces, V1, V2, . . . , VJ , i.e., V =

∑
J

j=1 Vj .

We define a new vector space
V := V1 ↖ V2 ↖ · · ·↖ VJ .

Define an operator ! : V ↑↓ V such that

!u =
J∑

j=1

uj , where u := (u1, . . . , uJ)T ↗ V

with each component uj = uj ↗ Vj . It is easy to see that ! is surjective.

This operator can be interpreted as
! = (I1, . . . , IJ),

where Ij is the natural embedding from Vj to V .
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Expanded System

Hence, we obtain

!u = (I1, . . . , IJ)




u1
...

uJ



 =
J∑

j=1

Ijuj =
J∑

j=1

uj .

So we have

!T =




IT

1
...
IT

J



 =




Q1
...

QJ



 .

Note that !!T ↙= I in general.

Define A : V ↑↓ V such that Ai,j = Ai,j := IT

i
AIj : Vj ↑↓ Vi.

Find u ↗ V, such that Au = f , where

A := !TA! =
(
Ai,j

)

J↗J

=




A1,1 · · · A1,J

...
. . .

...
AJ,1 · · · AJ,J



 , f := !T f =




IT

1 f
...

IT

J
f



 ↗ V.
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Block Solvers for Expanded System

If A is SPD, then A is a symmetric positive semidefinite (SPSD) operator. Note that A is
usually singular due to its nontrivial null space, null(!). However, its diagonal entries Aj

(j = 1, 2, . . . , J) are non-singular, where Aj := Aj,j (j = 1, . . . , J).

The linear stationary iterative methods for the expanded system can be written as

unew = uold + B(f ⇐Auold), (37)

where the iterator B : V ↑↓ V can be chosen accordingly.

If B = D↑1, then we have the block Jacobi method.

If B = (D + L)↑1, then we have the block Gauss–Seidel method.

Assume there is a non-singular block diagonal smoother (or relaxation operator) S : V ↑↓ V, i.e.,

S = diag(S1,S2, . . . ,SJ), with Sj : Vj ↑↓ Vj , j = 1, 2, . . . , J.

Modified block Jacobi method B = S and modified block GS method B = (S↑1 + L)↑1.
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Block Solvers for Expanded System

Theorem (Solution of expanded and original systems)

The linear stationary iteration (37) for the expanded system reduces to an equivalent stationary iteration
(11) with the iterator

B = !B!T

for the original equation. Moreover, these two methods have the same convergence speed, namely,

⇑I ⇐ BA⇑A = |I⇐BA|A.

The iterators B and B define methods which are equivalent to each other.

Block solvers (37) for the expanded system ⇔ MSC for the original system.

However, A is oftentimes singular and has multiple solutions.

It seems useless in practice, except we have special reasons.

Next, we show a couple of classical examples.
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Jacobi, PSC, AS, and Block Jacobi

Example (Block Jacobi method and PSC)
We now apply the block Jacobi method for the expanded system, i.e.,

unew = uold + D↑1(f ⇐Auold).

We notice that
D↑1A = D↑1!TA!,

which is spectrally equivalent to !D↑1!TA because ϱ(BA)\{0} = ϱ(AB)\{0}.

In fact, from the above theorem, we can see that the above iterative method is equivalent to

unew = uold + !D↑1!T (f ⇐Auold) = uold +
J∑

j=1

IjA↑1
j

IT

j

(
f ⇐Auold).

We immediately recognize that this is the PSC method (or the additive Schwarz method) with exact
subspace solvers.
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Gauss-Seidel, SSC, MS, and Block GS

Example (Block G-S method and SSC)
Similar to the above example, the block G-S method is just the SSC method (or the multiplicative Schwarz
method) for the original problem. We now apply the block G-S method for the expanded system, i.e.,

unew = uold + (D + L)↑1(f ⇐Auold).

We can rewrite this method as

(D + L)unew = (D + L)uold + (f ⇐Auold).

Hence we have
Dunew = Duold + f ⇐ Lunew ⇐ (D + U)uold;

in turn, we get
unew = uold + D↑1

(
f ⇐ Lunew ⇐ (D + U)uold

)
.

We can check that the block G-S method is just the SSC method with exact subspace solvers Sj = A↑1
j

for
the original linear equation (10).
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Generalized Block Gauss-Seidel Method
Define a general or modified block G-S method:

B :=
(
S↑1 + L

)↑1
. (38)

Let K := B↑T + B↑1 ⇐A and the symmetrization operator as B = BTKB. Then we get
(
B

↑1
v,v

)
=

(
B↑1K↑1B↑Tv,v

)
=

((
S↑1 + L

)
K↑1

(
S↑T + U

)
v, v

)
, ↔v ↗ V (39)

By the definition of K, it is clear that K is diagonal and

K = (S↑T + U) + (S↑1 + L) ⇐ (D + L + U)

= S↑T + S↑1 ⇐D = S↑T
(
ST + S⇐ STDS

)
S↑1.

Hence, its inverse matrix is also diagonal and

K↑1 = S(ST + S⇐ STDS)↑1ST . (40)

Since B↑1 = K + A⇐B↑T , we have a representation of B↑1 by simple manipulations:

B
↑1

= (K + A⇐B↑T )K↑1(K + A⇐B↑1) = A + (A⇐B↑T )K↑1(A⇐B↑1).
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Convergence of Modified BGS
Suppose V =

∑
J

j=1 Vj . It is clear that !u =
∑

J

j=1 Ijuj and ! : V ↑↓ V is surjective.

Lemma (Technical Lemma)

If the iterator B in (37) is SPD, then B = !B!T is also SPD and

(B↑1v, v) = inf
v↔V
!v=v

(B↑1v,v), ↔v ↗ V.

The last equality and (38) immediately yield another important identity:
(
B

↑1
v,v

)
= (Av,v) +

(
K↑1(D + U⇐ S↑1)v, (D + U⇐ S↑1)v

)
, ↔v ↗ V. (41)

Theorem (Convergence rate of modified block G-S)

If K := S↑T + S↑1 ⇐D is SPD, then the modified block G-S method converges and

|I⇐BA|2A = 1 ⇐ 1

1 + c0
, with c0 := sup

|v|A=1

∥∥∥K↑ 1
2
(
D + U⇐ S↑1

)
v
∥∥∥

2
.
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Proof of the Technical Lemma
(1) It is clear that (Bv, v) ∝ 0 for any v ↗ V due to positive definiteness of B. Furthermore, we have

0 = (Bv, v) = (B!T v,!T v) =↘ !T v = 0 =↘ v ↗ null(!T ) = range(!)↘.

Since ! is surjective, we have v = 0. This proves the iterator B is SPD.

(2) Define v→ := B!TB↑1v. It is easy to see that

!v→ = !B!TB↑1v = BB↑1v = v, ↔v ↗ V,

and
(B↑1v→,w) = (!TB↑1v,w) = (B↑1v,!w).

If w ↗ null(!), then (B↑1v→,w) = 0. This ensures that, for any vector v ↗ V, there exists a
B↑1-orthogonal decomposition v = v→ + w with w ↗ null(!).

(3) Hence, we get (B↑1v,v) =
(
B↑1(v→ + w),v→ + w

)
=

(
B↑1v→,v→

)
+
(
B↑1w,w

)
. Thus

inf
v↔V
!v=v

(B↑1v,v) =
(
B↑1v→,v→

)
+ inf

w↔null(!)

(
B↑1w,w

)

=
(
B↑1v→,v→

)
=

(
!TB↑1v,B!TB↑1v

)
=

(
B↑1v, v

)
.
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Convergence Results of SSC
Theorem (XZ Identity)

Assume that B is defined by the SSC Algorithm and, for j = 1, . . . , J ,

wj := Aj!j

∑

i≃j

vi ⇐ S↑1
j

vj .

If S↑T

j
+ S↑1

j
⇐Aj are SPD’s for j = 1, . . . , J , then

⇑I ⇐ BA⇑2
A = 1 ⇐ 1

1 + c0
= 1 ⇐ 1

c1
, (42)

where

c0 := sup
↓v↓A=1

inf∑
j vj=v

J∑

j=1

⇑ST

j
wj⇑2

S→1
j

(43)

and

c1 := sup
↓v↓A=1

inf∑
j vj=v

J∑

j=1

∥∥SjS↑1
j

vj + ST

j
wj

∥∥2

S→1
j

. (44)
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Some Remarks on XZ Identity
We have introduced operators Tj = TSj := SjAj : Vj ↑↓ Vj earlier. Hence

TSj
:= SjAj = Tj + T →

j
⇐ T →

j
Tj .

Furthermore,

S↑T

j
vj +

∑

i>j

QjAIivi = Aj

(
ST

j
Aj

)↑1
vj + Aj!j

∑

i>j

vi = Aj

(
T →

j

)↑1
vj + !j

∑

i>j

vi



=↘
(
S↑1

j
+ S↑T

j
⇐Aj

)↑1Aj =
(
T ↑1

j
+ (T →

j
)↑1 ⇐ Ij

)↑1
= TjT ↑1

Sj
T →

j
.

Theorem (Another form of XZ identity)
We can rewrite the above estimate (44) in another form:

c1 = sup
↓v↓A=1

inf∑
j vj=v

J∑

j=1

∥∥∥∥T
↑ 1

2

Sj

(
vj + T →

j
!j

∑

i>j

vi

)∥∥∥∥
2

A
. (45)

Employing exact subspace solvers =↘ c1 = sup
↓v↓A=1

inf∑
j vj=v

J∑

j=1

∥∥∥∥!j

∑

i≃j

vi

∥∥∥∥
2

A
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Application of XZ Identity: Linear Stationary Method

Example (Linear stationary iterative method)
One-level linear stationary iterative method

unew = uold + S(f ⇐Auold),

can be viewed as a special subspace correction method with only one subspace V . Hence, using (45), we
immediately have

c1 = sup
↓v↓A=1

∥∥T ↑ 1
2

S v
∥∥2

A = sup
↓v↓A=1

(
(SA)↑1v, v

)
A = sup

↓v↓A=1

(
S↑1

v, v
)
,

which is exactly the convergence rate given in Theorem 20.
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Application of XZ Identity: TG Method

Example (Two-grid method)
Theorem 33 can be viewed as a special case of the XZ identity in the case of space decomposition with two
subspaces, i.e., V = Vc + V . Suppose we use A↑1

c
and S as subspace solvers, respectively. According to

(45), we get
c1 = sup

↓w↓A=1
inf

w=vc+v

vc↔Vc,v↔V

⇑vc + !cv⇑2
A + ⇑(SA)↑

1
2 v⇑2

A.

We can prove that
c1 = sup

↓v↓A=1

∥∥T ↑ 1
2

S (I ⇐QS→1)v
∥∥2

A,

which coincides with (32) in Theorem 33.

Remark: For a complete proof of this result, we refer to Zikatanov [Zikatanov 2008].
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Application of XZ Identity: Alternating Projection Method

Define !j := I ⇐ !j : V ↑↓ V ↘
j

=: Uj . Now we can define a projection

!0 : V ↑↓ U0, where U0 :=
J

j=1

Uj .

We notice that !j!0 = !0. From the XZ identity with exact subspace solvers, we have
∥∥∥”j=J:↑1:1!j

∥∥∥
2

A
=

∥∥∥”j=J:↑1:1(I ⇐ !j)
∥∥∥

2

A
= 1 ⇐ 1

1 + c0

=↘
∥∥∥”j=J:↑1:1!j(I ⇐ !0)v

∥∥∥
2

A
⇓ c0

1 + c0

∥∥∥(I ⇐ !0)v
∥∥∥

2

A
.

Hence, we have ∥∥∥ (”j=J:↑1:1!j ⇐ !0) v
∥∥∥

2

A
⇓ c0

1 + c0
⇑v⇑2

A.

Besides, we have (”j=J:↑1:1!j ⇐ !0)
k = (”j=J:↑1:1!j)

k ⇐ !0 and

lim
k⇐⇒

(”j=J:↑1:1!j)
k = !0.
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Proof of XZ Identity
(1) From (41), we have, for any v ↗ V, that

(
B

↑1
v,v

)
= (Av,v) +

(
K↑1

(
D + U⇐ S↑1

)
v,

(
D + U⇐ S↑1

)
v
)
.

By simple calculations, we get

(
D + U

)
v =

(∑

j≃1

Q1AQT

j
vj ,

∑

j≃2

Q2AQT

j
vj , · · ·

)T

=
(∑

j≃1

A1!1Ijvj ,
∑

j≃2

A2!2Ijvj , · · ·
)T

=
(
A1!1

∑

j≃1

vj , A2!2

∑

j≃2

vj , · · ·
)T

.

Hence we can denote
(
D + U⇐ S↑1

)
v = (w1,w2, . . . ,wJ)T , with wj := Aj!j

∑

i≃j

vi ⇐ S↑1
j

vj .
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Proof of XZ Identity, Continued

Due to (40) and the fact that K is diagonal, we have

(
K↑1

(
D + U⇐ S↑1

)
v,

(
D + U⇐ S↑1

)
v
)

=
J∑

j=1

(
SjS

↑1
j

ST

j
wj ,wj

)
=

J∑

j=1

∥∥∥ST

j
wj

∥∥∥
2

S→1
j

,

where Sj := ST

j
+ Sj ⇐ ST

j
AjSj . For any v ↗ V , that

sup
↓v↓A=1

inf
!v=v

(
B

↑1
v,v

)
= 1 + sup

↓v↓A=1
inf

!v=v

J∑

j=1

∥∥∥ST

j
wj

∥∥∥
2

S→1
j

.

By applying Theorem 20 and Lemma 45, we know

⇑I ⇐ BA⇑2
A = 1 ⇐


sup

↓v↓A=1

(
B↑1

v, v
)↑1

= 1 ⇐


sup
↓v↓A=1

inf
!v=v

(
B

↑1
v,v

)↑1

. (46)

This gives the desired estimate for the constant c0.
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Proof of XZ Identity, Continued
(2) On the other hand, from (39), we have

(
B

↑1
v,v

)
=

(
K↑1

(
S↑T + U

)
v,

(
S↑T + U

)
v
)

=
J∑

j=1

∥∥∥
(
S↑1

j
+ S↑T

j
⇐Aj

)↑ 1
2
(
S↑T

j
vj +

∑

i>j

QjAIivi

)∥∥∥
2
. (47)

We notice that

S↑T

j
vj +

∑

i>j

QjAIivi = S↑T

j
vj + Aj!j

∑

i>j

vi =
(
S↑T

j
+ S↑1

j
⇐Aj

)
vj + wj

= S↑T

j
SjS↑1

j
vj + wj = S↑T

j

(
SjS↑1

j
vj + ST

j
wj

)
.

Plugging this into the previous identity, we get

(
B

↑1
v,v

)
=

J∑

j=1

∥∥∥∥SjS↑1
j

vj + ST

j
wj

∥∥∥∥
2

S→1
j

.
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Relation Between PSC and SSC
Theorem (PSC and SSC)

If Sj = A↑1
j

for all j and Vj are subspaces of V , then there exists a constant c→ depends only on topology
of the overlaps between the subspaces such that

1

4

(
B↑1

PSCv, v
)
⇓

(
B↑1

SSCv, v
)
⇓ c→

(
B↑1

PSCv, v
)
, ↔ v ↗ V.

Sketch of proof: Given v =
∑

J

j=1 vj with vj ↗ Vj . It follows that

⇑v⇑2
A =

J∑

k,j=1

(vk, vj)A =
J∑

k=1

(
(vk, vk)A + 2

J∑

j>k

(vk, vj)A
)

= 2
J∑

k=1

J∑

j≃k

(vk, vj)A ⇐
J∑

k=1

(vk, vk)A.

Since !k is an A-projection, it follows that

J∑

k=1

⇑vk⇑2
A ⇓ 2

J∑

k=1

(
vk,

J∑

j=k

vj

)

A
= 2

J∑

k=1

(
vk,!k

J∑

j=k

vj

)

A
⇓ 2

( J∑

k=1

⇑vk⇑2
A

) 1
2
( J∑

k=1

∥∥!k

J∑

j=k

vj

∥∥2

A

) 1
2
.

In turn, it gives that
∑

J

k=1 ⇑vk⇑2
A ⇓ 4

∑
J

k=1

∥∥!k

∑
J

j=k
vj

∥∥2

A.
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Convergence Analysis of PSC

Assumptions:
1 For any v ↗ V , there exists a decomposition v =

∑
J

j=1 vj with vj ↗ Vj such that

J∑

j=1

(
S↑1

j
vj , vj

)
⇓ K1 (Av, v);

2 For any u, v ↗ V ,

∑

(i,j)

(
Tiu, Tjv

)
A ⇓ K2

( J∑

i=1

(Tiu, u)A
) 1

2
( J∑

j=1

(Tjv, v)A
) 1

2
.

By checking the above two assumptions, we can show the convergence performance of PSC method B:

Theorem (Condition number of PSC)

If the above assumptions hold, the PSC preconditioner (35) satisfies ς(BA) ⇓ K1K2.
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Proof of Condition Number Estimate
(1) Lower Bound:
For any v ↗ V , suppose that v =

∑
J

j=1 vj is a decomposition that satisfies the first assumption. It is easy to
see that

(v, v)A =
J∑

j=1

(vj , v)A =
J∑

j=1

(vj ,!jv)A =
J∑

j=1

(vj ,Aj!jv) =
J∑

j=1

(
S↑ 1

2
j

vj ,S
1
2
j
Aj!jv

)

⇓
J∑

j=1

(
S↑1

j
vj , vj

) 1
2
(
SjAj!jv,Aj!jv

) 1
2 =

J∑

j=1

(
S↑1

j
vj , vj

) 1
2
(
SjAj!jv, v

) 1
2

A

⇓




J∑

j=1

(
S↑1

j
vj , vj

)




1
2



J∑

j=1

(
Tjv, v

)
A





1
2

⇓


K1

∥∥v
∥∥
A (BAv, v)

1
2
A.

Consequently, we have the lower bound

1

K1
(v, v)A ⇓ (BAv, v)A, ↔ v ↗ V.
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Proof of Condition Number Estimate, Continued

(2) Upper Bound:
From the second assumption, we have

⇑BAv⇑2
A =

J∑

i,j=1

(
Tiv, Tjv

)
A ⇓ K2(BAv, v)A ⇓ K2⇑BAv⇑A⇑v⇑A.

So with some calculation, we can obtain the upper bound

(BAv, v)A ⇓ K2(v, v)A, ↔ v ↗ V.

Thus Lemmas 10 and 11 yield the desired estimate.

Remark (Similar estimate for SSC)
With the same assumptions, we can also show that the SSC method also converges with

⇑I ⇐ BA⇑2
A ⇓ 1 ⇐ 2 ⇐ ε1

K1(1 + K2)2
and ε1 := max

j

φ(SjAj) = max
j

φ(Tj). (48)
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Estimates of K1

Lemma (Estimates of K1)

Assume that, for any v ↗ V , there exists a decomposition v =
∑

J

j=1 vj with vj ↗ Vj :

(i) If the decomposition satisfies that

J∑

j=1

(vj , vj)A ⇓ C1(v, v)A,

then we have
K1 ⇓ C1/ε0, where ε0 := min

j=1,...,J


↼min(SjAj)


;

(ii) If φj := φ(Aj) and
J∑

j=1

φj(vj , vj) ⇓ Ĉ1(v, v)A,

then we have
K1 ⇓ Ĉ1/ε̂0, where ε̂0 := min

j=1,...,J


φj↼min(Sj)


.
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Estimates of K2

We introduce a nonnegative symmetric matrix

# =
(
ϱi,j

)
↗ RJ↗J , (49)

where each entry ϱi,j is the smallest constant such that
(
Tiu, Tjv

)
A ⇓ ε1ϱi,j

(
Tiu, u

) 1
2

A
(
Tjv, v

) 1
2

A, ↔u, v ↗ V. (50)

Here ε1 has been defined in (48). It is clear that

0 ⇓ ϱi,j ⇓ 1.

ϱi,j = 0, if !i!j = 0 and exact subspace solvers are used.

Lemma (Estimate of K2)

The constant K2 ⇓ ε1φ(#). Furthermore, if ϱi,j ↭ ↽|i↑j| holds for some parameter 0 < ↽ < 1, then

φ(#) ↭ (1 ⇐ ↽)↑1;

in this case, the second assumption is the well-known strengthened Cauchy–Schwarz inequality.
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Auxiliary Space Preconditioning

Sometimes, we cannot apply subspace correction methods directly due to di”culties in obtaining
an appropriate space decomposition.

We introduce an auxiliary space Ṽ . Suppose ” : Ṽ ↑↓ V is surjective and satisfies:

Firstly, ” is stable
⇑”ṽ⇑A ⇓ C⇑ṽ⇑Ã, ↔ ṽ ↗ Ṽ .

Secondly, for any v ↗ V , there exists ṽ ↗ Ṽ such that ”ṽ = v and

c⇑ṽ⇑Ã ⇓ ⇑v⇑A.

Under the above assumptions, if B̃ is a SPD preconditioner for Ã, then B = ” B̃”T is SPD and

ς(BA) ⇓


C

c

2

ς(B̃Ã).

Remark: This result is known as the Fictitious Space Lemma or the Fictitious Domain Lemma.
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Construction of E”cient Preconditioners

How to obtain a preconditioner for A? ⇑v⇑2
0 ↭ (Av, v) ↭ h↑2⇑v⇑2

0, ↔v ↗ Vh.

MSC ≃ Block solvers for the expanded system

Convergence rate of stationary methods: c1 = sup
↓v↓A=1

(B↑1
v, v)

XZ identity for SSC: c1 = sup
↓v↓A=1

inf∑
j vj=v

J∑

j=1

∥∥∥∥!j

∑

i≃j

vi

∥∥∥∥
2

A

Convergent iterative method as a preconditioner: ς(BA) ⇓ 1 + φ

1 ⇐ φ

Stable decomposition and strengthened Cauchy–Schwarz inequality

Multilevel MSC:

Introduce a multilevel space decomposition =↘ Multilevel method of subspace corrections

Subspace solvers =↘ Smoothers (local relaxations)

Recursive calls to two-grid methods =↘ Apply CGC to deal with smooth error components
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Setup Multilevel Methods

As mentioned before, we can apply a general SETUP step for constructing multilevel hierarchy.

Algorithm (Setup step for multigrid methods)

For a given sparse matrix A ↗ RN↗N , we apply the following steps:

1. Obtain a suitable matrix for coarsening Af ↗ RNf↗Nf (for example, Af = Asym);

2. Define a coarse space with Nc variables (C/F splitting or aggregation);

3. Construct a prolongation (usually an interpolation) P ↗ RNf↗Nc :

3.1. Give a sparsity pattern for the interpolation P ;
3.2. Determine weights of the interpolation P ;

4. Construct a restriction R ↗ RNc↗Nf (for example, R = PT );

5. Form a coarse-level coe”cient matrix (for example, Ac = RAfP );

6. Give a sparse approximation of Ac whenever necessary.
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