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Motivations Towards TG

Solutions of local problems approximate high frequency components of the global solution

Smoothers are e!ective in reducing high frequency errors, but not for low frequency errors

A (locally) high resolution mesh is able to capture local features

Coarse-space provides good approximation to fine-space problems if the solution is smooth

As an example, geometric multigrid has demonstrate optimal textbook multigrid performance

Another example, two-level domain decomposition method improves e”ciency

Multilevel iterative methods can be and should be used as preconditioners for KSMs
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Two-grid Method

Some remarks on the two-grid method:

TG should contain two key parts: the smoothing steps and the coarse grid correction (CGC);

When smoothing and CGC are complement to each other, we can expect high e!ectiveness of the
resulting algorithm;

TG is defined in the hope of capturing the high-frequency components of error on the fine-grid, and
leaving the low-frequency components to the coarser grid.

Algorithm (Two-grid method in operator form)

Given an initial guess u(0) → V .

1 Pre-smoothing: u(1) = u(0) + S(f ↑Au(0));

2 Coarse-grid Correction: u(2) = u(1) + (IcBcIT

c
)(f ↑Au(1));

3 Post-smoothing: u(3) = u(2) + ST (f ↑Au(2)).
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Operator Form of Two-grid Methods
Definition

Let V be a finite-dimensional Hilbert space with inner product (·, ·) and Vc ↓ V be a subspace. Define





Coarse problem Ac : Vc ↔↗ Vc, (Acvc, wc) = (Avc, wc), ↘ vc, wc → Vc;

(·, ·)-projection Qc : V ↔↗ Vc, (Qcv, wc) = (v, wc), ↘wc → Vc;

(·, ·)A-projection !c : V ↔↗ Vc, (!cv, wc)A = (v, wc)A, ↘wc → Vc.

Lemma (Relation between projections)

The following equalities hold: IT

c
= Qc, I→

c
= !c, QcA = Ac!c.

From the definition of Ac, we get

Ac = IT

c
AIc = QcAIc = QcAQT

c
.

Error equation on coarse space Vc:

Ae = r =≃ QcAe = Qcr =≃ Ac!ce = Qcr =≃ Acec = rc,

where rc = Qcr and ec = !ce.
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Error Propagation of Two-grid Methods

Lemma (Error propagation of two-grid methods)

The error propagation operator ETG = I ↑ BTGA for two-grid method is

ETG = (I ↑ STA)(I ↑ BcAc!c)(I ↑ SA), (30)

where !c is the (·, ·)A-orthogonal projection onto Vc. If the coarse-level solver is exact, namely, Bc = A↑1
c

,
then we have

ETG = (I ↑ STA)(I ↑ !c)(I ↑ SA). (31)

Some comments on TG:

We can simply the method by eliminating pre- or post-smoothing

We can use exact CGC, but it is costly (HW2)

We can use inexact CGC, like MG V-cycle (recursive calls to TG)

Q: What is a good smoother? How to construct a good coarse approximation?
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Smoothing E!ect of Richardson Method, Revisited

Error components: Assume that
Aωε k = ϑk

ωε k, k = 1, . . . , N,

where 0 < ϑ1 ⇐ · · · ⇐ ϑN . {ωε k}N

k=1 forms a basis of RN . We can then write

ωu ↑ ωu (m) =
∑

N

k=1 ϖ(m)
k

ωε k.

Error propagation equation of the Richardson method (ϱ = 1
ωN

):

ωu ↑ ωu (m) = (I ↑ ϱA)(ωu ↑ ωu (m↑1)) = · · · = (I ↑ ϱA)m(ωu ↑ ωu (0)).

=≃
N∑

k=1

ϖ(m)
k

ωε k = (I ↑ ϱA)m

N∑

k=1

ϖ(0)
k

ωε k =
N∑

k=1

ϖ(0)
k

(1 ↑ ϱϑk)mωε k

=≃ ϖ(m)
k

= (1 ↑ ϱϑk)mϖ(0)
k

=
(
1 ↑ ϑk

ϑN

)m

ϖ(0)
k

, k = 1, . . . , N

This is a straightforward approach for seeing the Richardson method is e!ective for high-frequencies.
However, it is not always easy to do this type of estimates in practice.
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Local Fourier Analysis

Q: How to quantify the convergence factor of a smoother for high-frequency error?

Example: Weighted Jacobi Method for 2D Poisson
1 The standard five-point FD stencil can be written as

4ui,j ↑
(
ui↑1,j + ui+1,j + ui,j↑1 + ui,j+1

)
= h2fi,j , i, j = 1, . . . , n

and the weighted Jacobi (or Richardson) method for the above equation reads

unew
i,j

= (1 ↑ ϱ)uold
i,j

+
ϱ

4

(
uold

i↑1,j
+ uold

i+1,j
+ uold

i,j↑1 + uold
i,j+1

)
+

ϱ

4
h2fi,j , i, j = 1, . . . , n.

2 Define the discrete error function enew
i,j

:= ui,j ↑ unew
i,j

and eold
i,j

:= ui,j ↑ uold
i,j

, for i, j = 1, . . . , n. It is
clear that the error function satisfies the local error equation

enew
i,j

= (1 ↑ ϱ)eold
i,j

+
ϱ

4

(
eold
i↑1,j

+ eold
i+1,j

+ eold
i,j↑1 + eold

i,j+1

)
, i, j = 1, . . . , n.
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Local Fourier Analysis, Continue

3 Define a grid function:
ei,j =

∑

ε↓!n

ϖεe
↔
↑1(iε1+jε2)

!n :=
{

(ς1, ς2) : ς1 =
2kφ

n
, ς2 =

2lφ

n
, k, l → [↑m1, m2]

}
,

where m1 = n/2↑ 1, m2 = n/2, if n is even and m1 = m2 = (n↑ 1)/2, if n is odd. Plugging to the
error equation and get the amplification factor of the local mode e

↔
↑1(iε1+jε2)

ϑ(ς) :=
ϖnew

ε

ϖold
ε

= 1 ↑ ϱ
(
1 ↑ cos(ς1) + cos(ς2)

2

)
⇐ 1.

4 Asymptoticly, m1 ⇒ m2 ⇒ n

2 . So we can define a smoothing factorby

↼̄ := sup
ε

{∣∣ϑ(ς)
∣∣ : ς → [↑φ, φ)2 \ [↑φ/2, φ/2)2

}
.

Plugging the end points in, we get the the smoothing factor

↼̄WJ := max
{∣∣∣1 ↑ 2ϱ

∣∣∣,
∣∣∣1 ↑ 1

2
ϱ
∣∣∣
}

.
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Some Remarks on Local Fourier Analysis

Remark (Optimal damping factor for smoothing)
We notice that, if ϱ = 1 (the Jacobi method), then ↼̄WJ = 1. Apparently, the “best” weight that minimizes
the smoothing factor is ϱ = 4/5, which leads to ↼̄WJ = 3/5.

Remark (Smoothing factor of GS)

One can show the smoothing factor for the G-S method is ↼̄GS = 1
2 . When using the red-black ordering

instead of the lexicographical ordering above, one can show the smoothing factor ↼̄RB is 1
4 .

Remark (What is high-frequency error)

In the local Fourier analysis, we define the high-frequency component as the part corresponding to
ϑ

2 ⇐ |ςk| ⇐ φ. On the other hand, high-frequency components can be accurately approximated by looking
at local behavior, while low-frequency components should be well represented on coarser grids. As such,
this definition is not universal and must be adjusted to correspond with the coarsening algorithm under
consideration.
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Operator and Matrix Forms of Smoothers
Consider a smoother (or local relaxation) in the following form

unew = uold + S(f ↑Auold)

and its matrix representation is

unew = uold + S(M↑1 ωf ↑ M↑1Âuold) = uold + SM↑1(ωf ↑ Âuold).

The above equality indicates that, we shall define a smoother in the matrix form as

S := SM↑1, i.e., S = SM.

Example (Richardson iteration for discrete Poisson problem)
If we consider the Richardson method as an example, i.e. SR := Bϖ , then

SR = SRM↑1 = BϖM↑1 = ϱI.

Using the weight ϱ = h2↑d, the Richardson iteration is defined as

SRv := Bϖv = h2↑d

N∑

i=1

(v, ↽i)↽i, ↘v → V.
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Smoothing E!ect
Considering the Richardson method Bϖv = ϱ

∑
N

i=1(v, ↽i)↽i, which yields

(Bϖv, v) = ϱ
N∑

i=1

(v, ↽i)
2 = ϱ

N∑

i=1

(Mv)2
i

= ϱ(Mv, Mv) = ϱ(M2v, v).

Since M is SPD, we get

(M2v, v) = (MM
1
2 v, M

1
2 v) ⇑= hd(M

1
2 v, M

1
2 v) = hd(Mv, v).

This implies that
(Bϖv, v) ⇑= ϱhd(v, v).

Since the spectral radius of the FE operator is ↼(A) ⇑= h↑2, we find

(SRv, v) ⇑= h2(v, v) ⇑=
1

↼(A)
(v, v).

Roughly speaking, SR behaves like A↑1 in the high-frequency regime.

Smoothing e!ect =≃ (Sv, v) ⇑=
1

↼(A)
(v, v) =≃ “Good” smoother
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Smoothing E!ect of Classical Smoothers

Example (Jacobi method)
Using the standard scaling argument on each element, we can see that

hd↑2(ε, ε) ↭ (Dε, ε) ↭ hd↑2(ε, ε).

Hence we have the Jacobi smoother satisfies that

(SJv, v) = (MSJv, v) = (MD↑1Mv, v) ⇑= hd+2(v, v) ⇑= h2(v, v) ⇑=
1

↼(A)
(v, v).

Example (G-S method)

Let Â be the sti!ness matrix and Â = A = D + L + U . Locality of the nodal basis functions leads to
∥∥(D + L)ε

∥∥
0
↭

∥∥Dε
∥∥

0
↭ hd↑2⇓ε⇓0.

The other direction follows from

hd↑2⇓ε⇓2
0 ↭

(
Dε, ε

)
⇐

(
(D + A)ε, ε

)
= 2

(
(D + L)ε, ε

)
↭ ⇓(D + L)ε⇓0 ⇓ε⇓0.
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Iterator, Smoother, and Preconditioner

If S is SPD, the convergence rate of the iterative method is

⇓I ↑ SA⇓2
A = ⇓I ↑ SA⇓A = 1 ↑ 1

c1
, with c1 := sup

↗v↗A=1
(S↑1

v, v).

For good smoothers, we can easily see that

↼↑1
A (v, v) ↭ (Sv, v) ↭ ↼↑1

A (v, v), with ↼A := ↼(A).

Based on this property, we can establish a lower bound for the minimal eigenvalue ↼↑1
A ↭ ϑmin(S).

When the smoother is symmetric, the smoother is SPD. Hence S is a viable preconditioner candidate.
For the finite element operator, we have

⇓v⇓2
0 ↭ (v, v)A ⇐ ↼A⇓v⇓2

0.

We then have the following conclusion:

↼↑1
A (v, v)A ↭ ↼↑1

A (Av,Av) ↭ (SAv, v)A ↭ ↼↑1
A (Av,Av) ⇐ (v, v)A.

Condition number as a preconditioner:

⇀(SA) ↭ ↼(A) ⇑= ⇀(A).
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Convergence Rate of Two-grid Methods

Algorithm (Simplified two-grid method)

Given an initial guess u(0) → V .
1 Coarse-grid Correction: u(1) = u(0) + (IcBcIT

c
)(f ↑Au(0))

2 Post-smoothing: u(2) = u(1) + S(f ↑Au(1))

Theorem (Convergence rate of the two-grid method)

For the simplified two-grid method defined by ETG = (I ↑ SA)(I ↑ !c), we have ⇓ETG⇓2
A = 1 ↑ 1

c1(Vc)
,

where

c1(Vc) := sup
v↓V

∥∥(I ↑QS→1)v
∥∥2

S→1

⇓v⇓2
A

= sup
v↓V

inf
vc↓Vc

∥∥v ↑ vc

∥∥2

S→1

⇓v⇓2
A

. (32)

Notation: QS→1 : V ↔↗ Vc is the orthogonal projection with respect to (·, ·)S→1 .

Remark: This theorem can be obtained later using a more general framework, the XZ identity.

[Xu, Zikatanov 2002; Falgout, Vassilevski, Zikatanov 2005; Zikatanov 2008; Xu, Zikatanov 2017; ...]
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Section 05. Two-grid Iterative Methods Convergence of two-grid methods

Sketch of Proof

1 The TG method has error propagation operator ETG = (I ↑ SA)(I ↑ !c) =: (I ↑ T )(I ↑ !c).
Using the definition of (·, ·)A-projection !c, we can show that

⇓ETG⇓2
A = sup

v↓V
↑A
c

(
(I ↑ T )v, v

)
A

⇓v⇓2
A

= 1 ↑ inf
v↓V

↑A
c

(
T v, v

)
A

(v, v)A
= 1 ↑ inf

v↓V
↑A
c

(
(I ↑ !c)T v, v

)
A

(v, v)A
.

2 Define
X := (I ↑ !c)T : V ↘A

c
↔↗ V ↘A

c

and it is easy to check that X is self-adjoint with respect to (·, ·)A and

X↑1 = Z := T ↑1(I ↑QS→1).

3 Consequently, ϑmin (X ) = ϑmax (Z)↑1. Finally,

ϑmax (Z) = sup
v↓V

↑A
c

(T ↑1(I ↑QS→1)v, v)A
(v, v)A

= sup
v↓V

↑A
c

(
(I ↑QS→1)v, v

)
S→1

(v, v)A

= sup
v↓V

↑A
c

⇓(I ↑QS→1)v⇓2
S→1

(v, v)A
= sup

v↓V

∥∥(I ↑QS→1)v
∥∥2

S→1

⇓v⇓2
A

=: c1(Vc).
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Upper and Lower Estimates
Assume that there is an SPD operator D, such that

CL

∥∥v
∥∥2

D ⇐
∥∥v

∥∥2

S→1 ⇐ CU

∥∥v
∥∥2

D, ↘ v → V.

Similar to the definition of c1(Vc), we can introduce the quantity

c1(Vc,D) = sup
v↓V

∥∥(I ↑QD)v
∥∥2

D
⇓v⇓2

A
= sup

v↓V

inf
vc↓Vc

∥∥v ↑ vc

∥∥2

D
⇓v⇓2

A
,

where QD : V ↔↗ Vc is the (·, ·)D-orthogonal projection. Hence CL c1(Vc,D) ⇐ c1(Vc) ⇐ CU c1(Vc,D).

Theorem (An estimate of convergence rate of TG)

The convergence rate of the two-grid method with exact coarse-level solver is given by

1 ↑ 1

CL c1(Vc,D)
⇐ ⇓ETG⇓2

A ⇐ 1 ↑ 1

CU c1(Vc,D)
⇐ 1 ↑ 1

CUC
,

where C is an upper bound of c1(Vc,D), i.e.,

inf
vc↓Vc

∥∥v ↑ vc

∥∥2

D ⇐ C⇓v⇓2
A, ↘ v → V.
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Optimal Choice of Coarse Space
Theorem (Optimal coarse space)

Given a smoother S , the best coarse space of dimension Nc for TG is given by

V opt
c

:= argmin
dim Vc=Nc

⇓ETG(Vc)⇓A = span
{
εk

Nc

k=1
,

where
{
εk

Nc

k=1
be the eigenfunctions corresponding to the Nc smallest eigenvalues ϑk of SA.

Sketch of proof: Recall that ETG = (I ↑ STA)(I ↑ !c)(I ↑ SA). We have

⇓ETG(Vc)⇓A = 1 ↑ min
v↓V

↑A
c

(SAv, v)A
⇓v⇓2

A
.

Thus, SA is symmetric with respect to (·, ·)A and

min
dim Vc=Nc

⇓ETG(Vc)⇓A = 1 ↑ max
dim Vc=Nc

min
v↓V

↑A
c

(SAv, v)A
⇓v⇓2

A
.

By the well-known Courant minimax principle, we have the result.
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Matrix Form of Transfer Operators

In order to transfer between fine and coarse spaces, we introduce:

Let {↽i} be the basis of V . The sti!ness matrix Â reads
(
Â
)
i,j

= a[↽i, ↽j ].

Let {↽c

l
} be the basis of Vc ↓ V . The sti!ness matrix on the coarse space is denote by Âc with(

Âc

)
k,l

= a[↽c

k
, ↽c

l
].

By definition, ↽c

l
can be expressed as

↽c

l
=

N∑

i=1

(
P
)
i,l

↽i or (↽c

1, . . . , ↽
c

Nc
) = (↽1, . . . , ↽N )P,

which defines a prolongation matrix P → RN≃Nc . This implies that P = Ic.

It is important to note that
IT

c
= Qc ⇔= Ic

T .

Q: What is the matrix form of IT

c
or Qc?
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Matrix Representation of L
2-Projection

If we take any v → V , then we have

vc := Qcv and vc = (↽c

1, . . . , ↽
c

Nc
)vc.

On the other hand, with straightforward calculations, we obtain that

ωvc =
(
(vc, ↽

c

k
)
)Nc

k=1
=

(
(v, ↽c

k
)
)Nc

k=1
=

( N∑

j=1

v
j
(↽j , ↽

c

k
)
)Nc

k=1
=

( N∑

j=1

v
j

(
Ic

T M
)

k,j

)Nc

k=1
= Ic

T Mv.

In turn, we can obtain the matrix representation of the L2-projection

Qcv = vc = M↑1
c

ωvc = M↑1
c

Ic
T Mv =≃ IT

c
= Qc = M↑1

c
Ic

T M = M↑1
c

PT M.

We have obtained the matrix form of L2-projection

Qc = M↑1
c

PT M.

Q: What is the matrix form of !c?
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Matrix Representation of H
1-Projection

Let !c : V ↔↗ Vc ↓ V be the A-orthogonal projection operator and uc := !cu. For any u → V , we have

a[uc, vc] = a[!cu, vc] = a[u, vc], ↘ vc → Vc.

Using the matrix representation notations, we have, for any vc → Vc, that

LHS := a[uc, vc] = (Auc, vc) = vc
T Âc uc, ↘uc → Vc;

RHS := a[u, vc] = (Au, vc) = (Icvc)
T Âu = vc

T PT Âu, ↘u → V.

Hence we can derive the matrix representation of the Galerkin projection on the coarse-grid

Âcuc = PT Âu =≃ !c u = !cu = uc = Â↑1
c

PT Âu.

We have obtained the matrix form of the A-projection operator

!c = Â↑1
c

PT Â = A↑1
c

PT A.
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Matrix Form of Error Propagation

Reminder: The error propagation operator ETG = I ↑ BTGA has been given in (30), namely,

ETG = (I ↑ STA)(I ↑ BcAc!c)(I ↑ SA)

Since the coarse-level operator is defined as Ac = IT

c
AIc, we obtain its matrix representation

Ac = Qc AIc.

Hence we have

Ac = Âc = McAc = McQc AIc = PT MAP = PT ÂP = PT AP.

In turn, we have matrix form of the iteration operator

ETG = ETG = (I ↑ ST A)(I ↑ PA↑1
c

PT A)(I ↑ SA)

= (I ↑ ST A)(I ↑ ”c)(I ↑ SA), (33)

where ”c := PA↑1
c

PT A is the matrix form of the coarse-level correction.
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Some Remarks on Matrix Form of TG

Remark (Cannonical prolongation operator)

Let 1N := (1, 1, . . . , 1)T . Since the basis functions form the partition of unity, it follows that

(↽1, · · · , ↽N ) 1N =
N∑

i=1

↽i = 1 =
Nc∑

l=1

↽c

l
= (↽c

1, · · · , ↽c

Nc
)1Nc = (↽1, · · · , ↽N )P 1Nc .

Hence the prolongation matrix preserves constant away from the boundary, i.e.,

P 1Nc = 1N .

Remark (Finite di!erence case)
We have already noticed that R ⇔= PT for the finite di!erence method. This di!erence comes from the
scaling e!ect caused by di!erent meshsizes. In the 1D FD example, the coe”cient matrices on fine and
coarse levels are A = h↑1Â and Ac = H↑1Âc, respectively. Hence we get

Âc = PT ÂP =≃ Ac =


h

H
PT


AP =: RAP.
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Two-grid Method with Exact CGC

Q: Solve the linear system Au = f , where A → RN≃N is an SPD matrix.

Algorithm (Exact TG method)
1 Pre-smoothing: u ↖ u + S↑1

(
f ↑ Au

)

2 Coarse-level correction: u ↖ u + PA↑1
c

PT
(
f ↑ Au

)

3 Post-smoothing: u ↖ u + S↑T
(
f ↑ Au

)

Some Remarks:

– Here we abuse the notation and denote S↑1 as a smoother, instead of S

– Error propagation matrix ETG = (I ↑ S↑T A)(I ↑ PA↑1
c

PT A)(I ↑ S↑1A)

– If we replace A↑1
c

by recursively calling TG, then we get MG

– Studies on TG analysis motivate analysis of MG and ideas of AMG
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More About Convergence of Two-grid Method

Theorem (Convergence rate of TG [Falgout, Vassilevski, Zikatanov 2005])

If S + ST ↑ A is SPD and P → RN≃Nc is of full column rank. Let

S := ST (S + ST ↑ A)↑1S and !
S̃

:= P (PT SP )↑1PT S.

Then ⇓ETG⇓A = 1 ↑ 1
KTG

with

KTG := sup
e ⇐=0

eT (I ↑ !
S̃
)T S(I ↑ !

S̃
)e

eT Ae
.

Theorem (Optimal interpolation [Xu, Zikatanov 2017])

Let (ϑi, εi)N

i=1 be the eigen-pairs such that Aεi = ϑi
Sεi and ϑ1 ⇐ ϑ2 ⇐ · · · ⇐ ϑN . Then

range(Popt) = range(ε1, . . . , εNc) and ⇓ETG(Popt)⇓A = 1 ↑ ϑNc+1.

Popt is the optimal choice in terms of convergence factor. But it is too costly to apply!
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Two-grid Method with Inexact CGC

Algorithm (Peturbed TG method)
1 Pre-smoothing: u ↖ u + S↑1

(
f ↑ Au

)

2 Coarse-level correction: u ↖ u + PB↑1
c

PT
(
f ↑ Au

)

3 Post-smoothing: u ↖ u + S↑T
(
f ↑ Au

)

If TG converges su”ciently well, the corresponding MG with ⇁ ↙ 2 also converges in a similar rate.
Q: How to check this condition?

– This is a common wisdom validated by theory and practice [Hackbush 1982; Trottenberg et al. 2001]

– Such a statement is not rigorous; more quantitative analysis is necessary [Notay 2007]

– Two-sided estimates for convergence rate [Xu, Zhang 2022]

– Motivate approximated coarse problem for AMG [Falgout, Schroder 2014]:

Use a sparse non-Galerkin matrix, instead of Ac, s.t. ϖ ⇐ ϑ(B↑1
c

Ac) ⇐ β
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Section 05. Two-grid Iterative Methods Inexact two-grid methods

Generating Multilevel Hierarchy

Q: How to construct the multilevel hierarchy for multilevel methods?

Algorithm (Setup step for multigrid methods)

For a given sparse matrix A → RN≃N , we apply the following steps:

1. Obtain a suitable matrix for coarsening Af → RNf≃Nf (for example, Af = Asym);

2. Define a coarse space with Nc variables (C/F splitting or aggregation);

3. Construct a prolongation (usually an interpolation) P → RNf≃Nc :

3.1. Give a sparsity pattern for the interpolation P ;
3.2. Determine weights of the interpolation P ;

4. Construct a restriction R → RNc≃Nf (for example, R = PT );

5. Form a coarse-level coe”cient matrix (for example, Ac = RAfP );

6. Give a sparse approximation of Ac whenever necessary.
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