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Parallel Matrix Data Layout
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Basic Ideas on Reducing Communication
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Num of messages

Reduce total number 
of messages needed 
by better organizing 
algorithms, 
combining messages,  
……

Size of messages

Reduce amount of 
data that need to be 
moved by better 
iterative algorithms, 
better partitioning, 
…….

Comm. hiding

Hide communication 
behind computation 
by aligning them in a 
smart way,
……

Better network

Use better inter-
connecting network 
with high throughput,
……

So communication could be more costly compared to computation. How can we get around?



Communication Performance Model
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Communication Time = Latency + Num of Bytes Moved ÷ Bandwidth

Fast Memory

Sufficiently large but 
slow memory (assume 
it can’t be used for FP 

arithmetic)

Cache

DRAM or HBM

Local

Remote

Serial Case Distributed Case
Not big enough to store
the whole problem

Ref: CS267 lecture notes on J. Demmel’s webpage: https://people.eecs.berkeley.edu/~demmel/
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SpMV, Overly Simplified Case
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GMRES Method, Revisited
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in the Krylov subspace

l The generalized minimum residual (GMRES) method finds:

l By applying the modified Gram-Schmidt (MGS) algorithm, we form /0% and then solve the least 

squares (LSQ) problem with /0%

Q: Remember why we use such implementation? We tried to: (1) ease numerical instability; (2) use an

iterative procedure that can stop at any time. However, communication was never considered!

l We form an orthonormal basis of the Krylov subspace



Data Movement in GMRES
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l SpMV
n Words moved ~ '() * ++,)
n Number of messages ~ '())

Solve LSQ Problem

l MGS
n Words moved ~ '()! * +)
n Number of messages ~ '()! * log 1)

l Analyzing data movement is difficult
n Parallel architectures

n Parallel data layout

n Parallel algorithm

No chance for data reuse

Iterative procedure



Communication-Avoiding GMRES

C.-S. Zhang, AMSS 39

Solve LSQ Problem

l Matrix Powers Kernel
n Words moved ~ '(++,)
n Number of messages ~ '(1)

l TSQR
n Words moved ~ '() * +)
n Number of messages ~ '(log 1)

l Reorganize the algorithm
n Identical mathematical method (with exact FP)

n Use the matrix powers kernel

n Use QR factorization instead of MGS



Performance of CA-GMRES
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Source: Marghoob Mohiyuddin, Mark Hoemmen, James Demmel, and Katherine Yelick. Minimizing
communication in sparse matrix solvers. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis (SC 2009).

l The “easy” implementation of CA-GMRES is not 

stable because the matrix powers kernel may 

produce linearly dependent vectors 

l Use the Newton basis (shifted polynomials 

based on the eigenvalues of the upper 

Hessenberg matrix) proposed by Bai, Hu, and 

Reichel, 1994

Restart=60

GMRES(k,t), k*t=60



Source: Erin 
Carson, PP18

Conjugate Gradient Method, Revisited
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SpMV is the most expensive part: more floating-point calculations required and 

not cache-friendly (memory-bound)

Inner products are expensive for communication: not much computation cost 

but global all-reduce is necessary (communication-bound)



Three-Term Recurrence CG
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Ref: Y. Saad, “Iterative Methods for Sparse Linear Systems”, SIAM, Philadelphia, Second Ed., 2003 

l Based on the three-term recurrence formulation for residuals

and the residuals are orthogonal to each other, we have

l We can derive a new recurrence relation

M. Hoemmen 2010

This formulation (usually 

known as CG3) does not 

involve the conjugate 

directions. This is desirable 

for deriving 1-step CG 

algorithms.



!-Step CG3 Method
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Source: Erin 
Carson, PP18

Ref: Mark F. Hoemmen, Communication-avoiding Krylov subspace methods, Ph.D. thesis, 2010



Communication-Avoiding CG
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M. Hoemmen 2010l We have the recurrence relation for residual

l Rearrange the terms as follows:

l Write the recurrence in terms of matrix form:

where        is a (1 + 1)×1 tridiagonal matrix in terms of 



l The matrix powers kernel only needs to load the 

coefficient matrix once

l In exact arithmetic, the algorithm produces the 

same results as the standard CG

l Further improvement by using an inner product 

coalescing kernel

From !-Step CG To CA-CG
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Sec 5.4.4, M. Hoemmen 2010

Use Matrix Powers Kernel to form 34"

Compute a vector of 26 + 1 entries 7#"$%

Compute 8#"$%, 9#"$%, :#"$% , and <#"$%

Update !#"$%$& and =#"$%$&

Outer loop

Inner loop (6 steps)

is a basis of the Krylov subspace



Pipelined Conjugate Gradient Method
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Source: Erin 
Carson, PP18

Ref: Ghysels, Pieter and Wim Vanroose. “Hiding global synchronization latency in the preconditioned
Conjugate Gradient algorithm.” Parallel Comput. 40 (2014): 224-238.



Section 4. KSM and Preconditioning Methods



Taking Preconditioning Into Account
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Source: A stable and scalable hybrid solver for rate-type non-Newtonian fluid models, Y.-J. Lee, W. Leng,
and C.-S. Zhang, Journal of Computational and Applied Mathematics, 300, 103–118 (07/2016).

l Note: Preconditioning might take more time than other parts in practice

l Parallelization must take preconditioning part into account



Convergence Result of KSM
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l Q: Can we apply KSM to infinite dimensional problems?

l The above convergence estimates do not depend on dimensionality



More General Setting for KSM
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l We consider a more general and more natural setting:

l Typically, we have

l Note: Apparently, KSM cannot be directly applied in this setting anymore!

l Need to construct an isomorphism

l Define a Riesz operator

l Preconditioned system Source: Mardal and
Winther, NLAA 2011



Condition Number Analysis
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l Convergence results similar to Theorem 2.43 can be obtained:

where

l From symm, continuity, and inf-sup condition of 4[6,6], we get boundedness of condition number:



Second-order Elliptic Problem
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l Assume the diffusion coefficient is uniformly bounded

l Consider the linear operator

l Define a natural preconditioner

l Uniform convergence



Constructing Natural Preconditioners
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l Define an appropriate inner product

l Construct a discretization which satisfies the corresponding discrete inf-sup condition

l Define a spectrally equivalent discrete preconditioner

l Establish the inf-sup condition:

l Define the Reisz operator

l The preconditioned system           is symmetric with respect to                and well-conditioned



Preconditioning Techniques

Chensong Zhang, AMSS 54

基于代数的方法

LU, ILU, SAI, …

纯代数，通用性强，稳健性

高，用户友好；效率一般不

高，并行可扩展性较差。

02.
DDM, RAS, FETI-DP, …

可以基于网格进行，效率高，

通用性较强，可扩展性较强；

难以兼顾通用性与最优性。

基于区域分解的方法 基于物理的方法

Block Preconditioners

算法灵活，基于成熟算法开

发，效率高，可扩展性强；

通用性弱，用户友好度差。

简单、易用 有针对性、效率高通用性强、可扩展



Domain Decomposition Method

C.-S. Zhang, AMSS 55

Divide and conquer Additive method

Multiplicative method

How to set boundary conditions for subdomains?

DDM is widely used in, e.g., parallel computing, solving
multi-physics problems, as well as preconditioners!



Overlapping DDM for Linear Systems
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l Form subdomain problems and choose

subdomain solvers

grid points

subdomain grid points

injection, natural embedding:

l Apply the DDM idea as a linear solver

(preconditioner)

Additive Schwarz method

Multiplicative Schwarz method



Convergence of Overlapping DDM
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l Introduce a coarse space and a corresponding coarse-level solver, i.e.

l The two-level additive Schwarz preconditioner is uniform with respect to subdomain size



Smoothing and CGC in TG DDM
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Solve the
subproblem
on the first
subdomain

Solve the
subproblem
on the second
subdomain

After one
iteration of
DDM on four
subdomains

After coarse
grid correction

Solve the Poisson’s equation

using the two-level domain

decomposition method:

(Upper) smoothing;

(Lower) CGC



When Is Coarse Approximation Good
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l Suppose we have fine and coarse finite element solutions: 

l Galerkin orthogonality:

l Duality argument

l Difference between fine and coarse approximations

assuming full elliptic 
regularity

Coarse solution is a good approximation 
if fine solution is smooth!



Twogrid Method
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l The multigrid V-cycle:

l Using a relaxation method to reduce smooth error components

l Using a coarse-grid correction (CGC) method to provide a coarse approximation

l Key to success: Make smoother and CGC compensate each other
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